
INTERNATIONAL JOURNAL OF TECHNOLOGY ENHANCEMENTS AND EMERGING ENGINEERING RESEARCH, VOL 1, ISSUE 5 13
ISSN 2347-4289

Copyright © 2013 IJTEEE.

A Survey On WSN OS Using Real-Time
Scheduling Strategy

M. SIRISHA, S.SWETHA

msirisha87@gamil.com, s.swetha.1987@gmail.com

ABSTRACT: The Real time scheduling is Defined as a Systems whose correctness depends on their temporal aspects as well as their functional
aspects. In this paper some characteristics and limitation of operating design in wireless sensor network are discussed. The TinyOS has been designed
to run on a generalized architecture where a single CPU is shared between application and protocol processing. TinyOS is a component based
operating system designed to run in resource constrained wireless devices. It provides highly efficient communication primitives and fine-grained
concurrency mechanisms to application and protocol developers. A key concept in TinyOS is the use of event based programming in conjunction with a
highly efficient component model. in this paper we mainly discussced about message scheduling and scheduling strategy for sensor network O.S &we
analyzed the system architecture of TinyOS, FIFO scheduling TinyOS, task mechanism and event-driven mechanism.The Key characteristics for a real-
time system are reliability (stability),predictability(it must be deterministic),performance (the faster the better),compactness to code size (space is money)
and scalability.

Keywords: Wireless sensor networks, Real-Time Scheduling Strategy, TinyOS.

1. INTRODUCTION
The basic functionality of an operating system is to hide the
low-level details of the sensor node by providing a clear
interface to the external world. Processor management,
memory management, device management, scheduling
policies, multi-threading, and multitasking are some of the
low level services to be provided by an operating system.
Operating system should also provide services like support
for dynamic loading and unloading of modules, providing
proper concurrency mechanisms, Application Programming
Interface (API) to access underlying hardware, and enforce
proper power management policies. The realization of
these services in WSN is a non-trivial problem, due to the
constraints on the resource capabilities. Hence a suitable
operating system is required for WSN to provide these
functionalities to facilitate the user in writing applications
easily with little knowledge of the low-level hardware
details. Figure 1 show, where operating system stands in
the software layers of the WSN. Middleware and application
layers are distributed across the nodes as interacting
modules. Core kernel of the operating system sits at each
individual node.

Figure 1: operating system stands in the software layers of
the WSN

A common characteristic of many real-time systems is that
their requirements specification includes timing information
in the form of deadlines. An acute deadline is represented
in Figure2.

Figure 2: common characteristic of real-time systems

WSN operates at two levels. One is at the network level
and the other is at node level. Network level interests are
connectivity, routing, communication channel
characteristics, protocols etc. and node level interests are
hardware, radio, CPU, sensors and limited energy. At a
higher level OS for WSN can also be classified as node-
level (local) and network-level (distributed). According to [1],
Real time scheduling is included:

• Static table-driven
- Determines at run time when a task begins

execution
• Static priority-driven preemptive
– Traditional priority-driven scheduler is used
• Dynamic planning-based
– Feasibility determined at run time
• Dynamic best effort
– No feasibility analysis is performed

There are some challenges to design an operating system
for WSN: First of all we face restricted resources in wireless
sensor nodes to design an operating system. For instance
an operating system should provide necessary mechanisms
in order to consume the power in optimized way to extend

INTERNATIONAL JOURNAL OF TECHNOLOGY ENHANCEMENTS AND EMERGING ENGINEERING RESEARCH, VOL 1, ISSUE 5 14
ISSN 2347-4289

Copyright © 2013 IJTEEE.

the life of the WSN. Periodic sleeping of sensor nodes is
one of the mechanisms to conserve power. The second
resource limitation is limited processing power. Operating
system should properly schedule the processor according
to the priority of jobs. As a second challenge in designing
an operating system for WSN, portability should be
considered. It means the operating system should be
executable on every customized hardware platforms. The
operating system should be written in such a way that it is
easily portable to different hardware platforms with minimal
changes. Multitasking is the 3th challenge. At a given point
of time, nodes in the WSN could be doing more than one
task. In wireless sensor networks, sensor nodes are located
on remote-site and thus it is very difficult to re-gather them.
To update or add a program at run-time of the sensor
nodes, sensor operating system must support a dynamic
reconfiguration. Many kinds of different mechanisms for
reconfiguring sensor nodes have been developed ranging
from full image replacement to virtual machines.[4] Cite
that, Dynamic reconfiguration in operating system kernels
allow modifying a system during its execution, and can be
used to implement adaptive systems, dynamic
instrumentation and modules. Dynamic reconfiguration is
important in embedded systems, where one does not
necessarily have the luxury to stop a running system. This
paper proposes a real-time scheduling strategy (RTS) that
is includedmessage scheduling and scheduling strategy for
sensor network O.S, for this reason the researchers
analysed system architecture of TinyOS, FIFO scheduling
TinyOS, task mechanism and event-driven mechanism.
TinyOS is anevent-driven operating system designed for
sensor-networknodes that have limited memory and
computational resources.TinyOS enables developers to
access low-level hardware resources at theapplication
level, thus resulting in a level of data-acquisitionand
communications flexibility that is unavailable to other
existing mainstream wireless communications
technologies.TinyOS is available open-source and wireless-
enabled processor modules that operate with it are
commerciallyavailable [6]. On the other hand [3] said
TinyOS is designed for Wireless Sensor Network, and it is a
lightweight, low-power embedded operating system. The
programming language of TinyOS is NesC with modular
design method. The use of modular design makes it
capable to adapt to the diversity of hardware and makes the
applications reuse the general software services and
abstract. TinyOS is a typical Wireless Sensor Network
Operating System. Sensor networks are very active
research space, with ongoing work on networking,
application support, radio management, and security as a
partial list. A primary purpose of TinyOS is to enable and
accelerate this innovation [7]. Moreover [7] discussed four
requirement causes to design of TinyOS that they are
include:1- limited resource 2- reactive concurrency 3-
flexibility and 4- low power.

2. DESIGN CHARACTERISTICS

A. Flexible Architecture
Two things that are affected by the OS architecture are run-
time reconfigurability of the services, and size of the core
kernel. Facility of adding kernel services or updating them
depends on the architecture of the operating system. If the

architecture allows packing all the required services
together into a single system image, then size of the core
kernel will increases.

B. Efficient Execution Model
The execution model provides the abstraction of
computational unit and defines services like
synchronization, communication, and scheduling. These
abstractions are used by the programmer for developing
applications.

C. Clear Application Programming Interface (API)
APIs play vital role in providing clear separation between
the low level node functionalities and the application
program. Operating system should provide comprehensive
set of APIs to interact with system and it’s I/O.

D. Reprogramming
Reprogramming is a mandatory feature for OS and it
simplifies the management of software in sensor nodes. It is
the process of dynamically updating the software running
on the sensor nodes.

E. Resource Management
Resources available in a typical sensor node are processor,
program memory, battery, and etc. Efficient use of
processor involves using a scheduler with optimal
scheduling policy. Usage of memory involves memory
protection, dynamic memory allocation, etc. Figure 3 shows
the brief design characteristics of operating system in
wireless sensor network.

Figure 3 : Operating system in WSN

F. Real-time Nature
This is the optional design characteristic and is application
specific. Real-time applications of WSN can be classified
into periodic and non periodic, critical and non critical. The
classical example for the periodic task is monitoring
application, where the data is read from the environment or
habitat in a periodic manner. The critical and non critical
classification is based on whether the execution of the tasks
is in specific time or not.

INTERNATIONAL JOURNAL OF TECHNOLOGY ENHANCEMENTS AND EMERGING ENGINEERING RESEARCH, VOL 1, ISSUE 5 15
ISSN 2347-4289

Copyright © 2013 IJTEEE.

3. EXECUTION MODEL
Based on the execution model of operating system in
wireless sensor network we can classify these operating
systems to three base kinds:

- Event-based O.S
- Thread based O.S
- Hybrid.

A. Event-based
TinyOS is an example of event driven operating system
which provides a programming framework for embedded
systems. It has component-based execution model
implemented in nesC. TinyOS concurrency model is based
on asynchronous events, tasks and split phase interfaces.
Event handlers may post a task, which is executed by the
TinyOS FIFO scheduler. These tasks are non preemptive
and run to completion. However tasks can be preempted by
events but not by other tasks. TinyOS event driven model
has obvious disadvantages like low programming flexibility,
non-preemption that are associated with event model. SOS
and EYES are other examples of event driven operating
system, that SOS was developed in C and follows event-
driven programming model, and EYES that started with the
motivation of meeting the goals like small size, power
awareness, distribution and ability of reconfigure. It adapted
event-driven execution model in order to achieve small size
of code and limited available energy.

B. Thread-based
MantisOS is thread-driven operating system model for
sensor networks. Thread is a simple computational entity
which has its own state. Network stack and scheduler are
implemented as threads just like an application. Apart from
these threads there is idle thread which runs when all other
threads are blocked. To maintain threads, kernel maintains
a thread table that consists of thread priority, pointer to
thread handler and other information about the thread.
Scheduling between the threads is done by means of
scheduler that follows priority based scheduling algorithm
with round-robin semantics. Race conditions are avoided by
using binary and counting semaphores.

C. Hybrid
CONTIKI is example of hybrid model; CONTIKI combines
the advantages of both events and threads. It is primarily an
event driven model but supports multi-threading as an
optional application level library. Application can link this
library if it needs multi-threading. Polling mechanism is
used to avoid race conditions.

4. RELATED WORKS:
Farshchi S, Nuyujukian P, PesterevA , have developed
awireless platform for small, low-power, and low-cost
embeddedSensors using COTS microcontrollers and
transceivers. They prove this effort led to the development
of nesC, an extension to theC programming language
designed to embody the structuring concepts and execution
model of TinyOS. They defined TinyOS is an event-driven
operating system designed for sensor-networknodes that
have limited memory and computational resources(e.g., 8
kB of program memory, 512 B of RAM). They also
said,TinyOS enables developers to access low-level
hardware resources at theapplication level, thus resulting in

a level of data-acquisitionand communications flexibility that
is unavailable to otherexisting mainstream wireless
communications technologies. ZHAO Zhi-bin and GAO
Fuxiangproposed a real-time scheduling strategy for
wireless sensor networks to enhance the communication
throughput and reduce the overload. They showed RTS
adopts two-layer priority scheduling strategy according to
the demand for real-time analysis, and solves the real-time
task scheduling problems in WSN commendably.They
divided all tasks into two layers and endued diverse
priorities. RTS utilizes a preemptive way to ensure hard
real-time scheduling. Their experimental results indicate
that RTS has a good communication throughput.

5. MESSAGESCHEDULING
According to message scheduling in operating system in
wireless sensor network, SOS uses cooperative scheduling
to share the processor between multiple lines of execution
by queuing messages for later execution. On the other
hand, TinyOS uses a streamlined scheduling FIFO
message queue that will be discussed later. This creates a
system with a very lean scheduling loop. SOS instead
implements priority queues, which can provide responsive
servicing of interrupts without operating in an interrupt
context and more general support for passing parameters
to components. To avoid tightly integrated modules that
carefully manage shared buffers, a result of the inability to
pass parameters through the messaging mechanism,
messaging in SOS is designed to handle the passing of
parameters. To mitigate memory leaks and simplify
accounting, SOS provides a mechanism for requesting
changes in data ownership when dynamically allocated
memory is passed between modules.

Figure 4 : Memory Layout of an SOS Message Queue

Figure 4 provides an overview of how message headers are
structured and queued. Message headers within a queue of
a given priority form a simple linked list. The information
included in message headers includes complete source and
destination information, allowing SOS to directly insert
incoming network messages into the messaging queue.
Messages carry a pointer to a data payload used to transfer
simple parameters and more complex data between
modules. The SOS header provides an optimized solution
to this common case of passing a few bytes of data
between modules by including a small buffer in the
message header that the data payload can be redirected to,
without having to allocate a separate piece of memory.

INTERNATIONAL JOURNAL OF TECHNOLOGY ENHANCEMENTS AND EMERGING ENGINEERING RESEARCH, VOL 1, ISSUE 5 16
ISSN 2347-4289

Copyright © 2013 IJTEEE.

6. SCHEDULING STRATEGY
According to application of wireless sensor network, most of
the tasks are requested to run in a real-time way. Neither
Earliest Deadline First (EDF) nor First in First out(FIFO) can
ensure real-time scheduling in WSN. In [3] a real-time
scheduling strategy (RTS) is proposed. In this strategy, all
tasks are divided into two layers and endued diverse
priorities. RTS utilizes a preemptive way to ensure hard
real-time scheduling.

A. System Architecture of TinyOS
As I mentioned before TinyOS is developed for the
embedded System with high concurrency and is made in
NesC language supporting the Wireless Sensor Network
architecture. TinyOS adopts event-based concurrency
model. Event is corresponding to the emergency case such
as external interrupts, and it can preempt tasks or other
events and take preference to execute. In TinyOS there is a
widespread use of phased operation, which is dividing the
longer operation into some relatively short ones to avoid
busy-waiting. The basis of this division is the beginning and
end of the operation can be separated in time domain.

Figure 5 : The framework of TinyOS

Figure 5 shows the framework of TinyOS. To providing
favourable modular structure that supports the diversity in
wireless sensor designing and application, the system is
composed by component-based pattern, and primarily
consists of master components (including the scheduler),
application components, system service components and
hardware abstraction components. Hardware abstraction
components implement the abstraction of wireless sensor
hardware platform, including the sensor subsystem, the
wireless communication subsystem, the input/output
devices and the power control system on the bottom layer.
System Services components are composed of three parts
including communication services, sensor services and
power management.

B. FIFO Scheduling in TinyOS
In comparison of other category, TinyOS adopts the two-
level concurrent models based on the combination of tasks
and event-driven.

• Task Mechanism: In TinyOS’s task mechanism,
we have basic rules:

First, tasks are equal and there is no concept of priority and
no preemption between tasks. All tasks share one
executing space, which saves the memory overhead in run
time.

Second, Tasks are managed by a circular task queue in
system, and the task scheduling follows FIFO mode. Tasks
are scheduled by the simple FIFO queue. Resources are
distributed before, and currently there can only be seven
waiting tasks in the queue.

Task is defined by user application, and can be created by
applications or event handlers. After creating the task, it will
be posted to the queue.. The task scheduler in the core
scheduling algorithm returns as soon as it puts the task into
the task queue and the task will be carried out. When the
task queue is empty, the task can be submitted.

• Event-driven Mechanism:
Events are generated by hardware interruption such as
external interruptions and timer interruptions directly or
indirectly. When receiving event, TinyOS will execute the
event handler corresponding to the event immediately.
Event can preempt the running task. It is an asynchronous,
time response fast executive mode. In the TinyOS
scheduling mechanism, the task mechanism is not a real-
time one. It makes some more important or more real-time
tasks not be completed before the deadline and leads to
packet-loss, overload, decline of the throughput etc. So it is
applicable to non-preemptive, non-time-critical application.
Event handler can preempt the current running task and
this can be applicable to time-critical application.

• Disadvantage of FIFO Scheduling:
In some situations of this scheduling, TinyOS does not work
very well and may present overload, causes the conditions
of task-loss, communication throughput declining and
cannot guarantee real-time. In wireless sensor network,
when the processing speed of system tasks is lower than
the frequency of tasks occurring, the task queue will be
jammed up soon. It will lead to task losses. As for the local
sensor acquisition rate, we can artificially control, for
instance, decreasing the sampling frequency. Occurrence
of this phenomenon is mainly due to that packet sending
and receiving is restricted to the local tasks. When the
occurring frequency of local task is too high, the task queue
will be stuffed up soon, and then tasks of transmitting or
receiving could be lost, resulting in packet loss. Generally,
the following situations, TinyOS’s scheduling strategy may
also lead to problems. First, certain tasks (such as
encryption and decryption mission in security applications)
have very long implementing time. If some real-time
missions enter the task queue after the task at this time, the
real-time will be affected. For the receiving and transmitting
of packets, the baud rate will be affected. Secondly, when
the occurring frequency of local task is high, the task queue
will be stuffed up at a short time; other tasks could be lost;
besides, if there are many local tasks, this will also affect
the normal communications. finaly, when a certain task in
the queue is blocked or performs abnormally because of
suddenness, it will affect the subsequent task’s running;
even will cause the system go down.

INTERNATIONAL JOURNAL OF TECHNOLOGY ENHANCEMENTS AND EMERGING ENGINEERING RESEARCH, VOL 1, ISSUE 5 17
ISSN 2347-4289

Copyright © 2013 IJTEEE.

C. Analysis on Improved Scheduling Policies in
Wireless Sensor Network operating System
According to results of analysis on the simple queue
scheduling, it has overload, task loss, low packet
throughput, etc. Also, there remains the need to design a
multitasking system due to poor throughput and CPU
utilization caused by the adoption of single task kernel. So,
to achieve real-time schedule, priority based preemptive
scheduling policy is often used. According to application
requirements many priority-based multitasking scheduling
algorithms are put forward, one of which may be that, for
example, each composing phase of the communication
route should work timely to ensure other tasks finish
properly. Tasks scheduling strategy in WSN will decide
whether the nodes finish the tasks in time or not. Priority-
based task scheduling strategy divides tasks into three
types: sending data packet, transmitting data packet, and
sensing local data according to the functions of different
tasks in network. Therefore, it guarantees the more
important task to be run in a priority way. Thus, throughput
of the system is improved. This scheduling strategy does
not behave well to meet the requirement of real-time.
Firstly, it may drop the task before running because the task
has exceeded the deadline; secondly, because of non-
preemption, the short-time tasks may be blocked to wait for
the long-time ones and it leads to the overload for short-
time tasks. Earliest Deadline First (EDF) is widely used in
real-time system. Preemptive EDF strategy is the most
optimal scheduling for single processor scheduling strategy.
That is, if preemptive EDF can’t schedule a set of tasks in
single processor, other scheduling strategy can’t either.
Substantively, it is a dynamic process. The algorithm allows
a relatively short task to be a preferential one, which makes
the system flexible and real-time performance improved.
Rate Monotonic scheduling strategy (RM) is a kind of fixed-
priority scheduling strategy. Once the priority of one task is
identified according to its periodicity, it will not change with
time. A task in smaller periodicity has higher priority. RM
can schedule tasks set while other fixed priority strategies
can. Fixed-priority strategy is suitable for wireless sensor
network operating system, because it needs to be
scheduled one time before running. This fixed-priority will
be able to ensure the cyclical behaviour, and the tasks are
scheduled only in one queue.

D. Real-time task scheduling
In RTS, tasks are divided into two priorities, static priority
and dynamic priority. To ensure real- time and major
network packets in the wireless network transmitted
reliably. First of all, in accordance with the function of task,
it adopts the two relatively static level of priority, which will
not change as the time passes, belonging to the fixed
priority. Secondly, tasks deadline and run time are the two
constraints of dynamic priority, which ensures the reliability
of real-time task.

• The static priority:
They divide the tasks into network communication routing
tasks and local data processing tasks, and give the tasks
two relatively static priorities, high and low. Network
communication routing tasks is prior to local data
processing tasks. Table 1 shows these priorities

Table 1: Static priority of tasks

The static priority of tasks is in top-layer priority. Tasks in
low or high static priority are set by different priorities in
bottom-layer, as shown in Table 2. The tasks with high
static priority in their top-layer priority have dynamic priority
in their bottom-layer priority, but the ones with low static
priority in their top level priority have fixed priority in their
bottom-layer priority.

Table 2: Two- layer priority of tasks

• The dynamic priority:
When new task comes, its attributes such as arriving time,
running time and relative deadline will be submitted. They
decide task’s dynamic priority by the attributes mentioned
above.

• The fixed priority:
Different fixed priority is divided according to arriving time,
running time and relative deadline. What different from
dynamic priority is the fixed priority is determined by
execution periodicity and running time for periodic tasks.
For non-periodic tasks, the fixed priority is determined by
relative deadline and running time. Fixed priority is
determined only when tasks are initialized. Analysing data
shows that the utilization ratio of processor is about 100%.
EDF is the optimized dynamic, preemptive priority
scheduling algorithm for single-processor real-time system,
that is, for any real time task set, once there is an algorithm
for scheduling, EDF will be there.

E. Scheduling strategy for real-time tasks
Scheduling while task queue is empty: According to figure
8 if there is more space, new task (&task5) will be inserted
to queue rear. We don’t think about the static priority and
use fixed priority to guarantee the task with lower static

INTERNATIONAL JOURNAL OF TECHNOLOGY ENHANCEMENTS AND EMERGING ENGINEERING RESEARCH, VOL 1, ISSUE 5 18
ISSN 2347-4289

Copyright © 2013 IJTEEE.

priority. This schedule will ease the starving case in local
data processing.

Figure 6: Tasks sorted by fixed priority in the queue

Scheduling when task queue is full:
At first, we need sort the task by static priority. In task
queue, the two-layer priority for each task is shown in Table
5. If the two-layer priority of current task is higher than the
rear, exchange them. Then, insert the rear task into
appropriate location of the queue. At last, abandon current
task.

Figure7. Tasks sorted by two-layer priority while queue is
full

Table5: two-layer priority of tasks in the queue

F. Discussion
In order to evaluate RTS (real time scheduling) strategy, the
algorithm is simulated, compared with TinyOS’s own task

scheduling strategy FIFO and task scheduling algorithm
EDF is proposed. The performance is improved significantly
for EDF scheduling algorithm. It can ease instantaneous
overload phenomenon effectively. Thus, in RTS, task set’s
dropping rate doesn’t go up obviously though the utilization
rate of processor rising. 7.

CONCLUSION
The Main Aim of this paper is to mainly discuss about
message scheduling and scheduling strategy for sensor
network O.S &we analyzed the system architecture of
TinyOS, FIFO scheduling TinyOS, task mechanism and
event-driven mechanism. The performance should be
increased. RTS scheduling strategy proposed in these
papers reserves the advantage of high utilization ratio of
processor in EDF scheduling strategy. According to RTS,
the task with high static priority will be responded and
executed prior to other task. At the same time, RTS
absorbs the high efficiency of RM in dealing with
instantaneous overload problem. Therefore instantaneous
overload, which is often happened to low-priority tasks, is
solved in RTS.

8. REFERENCE
[1]. Acharya, A., Uysal, M., Saltz, J.: Active Disks:

Program-ming Model, Algorithms and Evaluation.
In Proceedings of the Eight International
Conference on Architectural Support for
Programming Languages and Operating Systems
(ASP-LOS VIII). (1998) 81–91

[2]. Andrade, N., Cirne, W., Brasileiro, F., Roisenberg,

P.: Our-Grid: An Approach to Easily ssemble Grids
with Equitable Resource Sharing. Job Scheduling
Strategies for Parallel Pro-cessing. (2003)

[3]. Batat, A., Feitelson, D.: Gang Scheduling with

Memory Con-siderations. IEEE International
Parallel and Distributed Pro-cessing Symposium.
(2000) 109-114

[4]. N. Audsley and A. Burns,” Real-time system

scheduling”, Department of Computer
Science,University of York, UK.,2005

[5]. A. Reddy, P. Kumar, D. Janakiram, and G. Ashok

Kumar, Operating Systems for Wireless Sensor
Networks: A Survey Technical Report, May 3,
2007.

[6]. Z. Zhi-bin and G. Fuxiang, Study on Preemptive

Real-Time Scheduling Strategy for Wireless
Sensor Networks, September 2009.

[7]. J. Polakovic and J. Stefani, Architecting

reconfigurable component-based operating
systems, 15 January 2008

[8]. S. Yi , H. Min, Y. Cho, and J. Hong, An adaptive

dynamic reconfiguration scheme for sensor
operating systems, 26 October 2007

INTERNATIONAL JOURNAL OF TECHNOLOGY ENHANCEMENTS AND EMERGING ENGINEERING RESEARCH, VOL 1, ISSUE 5 19
ISSN 2347-4289

Copyright © 2013 IJTEEE.

[9]. Farshchi S, Nuyujukian P, Pesterev A, et al . “A
tinyOS-based wireless neural sensing, archiving,
and hosting system”, IEEE transactions on neural
systems and rehabilitation engineering, vol. 18, no.
2, april 2010

[10]. Werner W, M. Rabaeyj , Emile H. L, “ Ambient

intelligence”.Nov 9, 2010

[11]. Coleri s , Cheung s.y and Varaiya p , “Sensor
Networks for Monitoring Traffic”August 5, 2004

Authors:

1. M.Sirisha, Asst.prof. Dept .IT ,M.Tech CSE NAGOLE
INST’S, A.P, INDIA.
Experience: 3+ years Her research areas include data
mining, wireless mobile communication and network
security.

2. S. SWETHA, Asst. Prof. Dept. IT, M.Tech, CSE
NAGOLE INST’S, A.P, INDIA.
Experience: 2+ years Interesting areas: Data warehousing
and Data Minig, Computer Networks, Image Processing

