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Introduction to Tissue Engineering
As one of the major components of regenerative medicine,

tissue engineering follows the principles of cell transplantation,
materials science, and engineering toward the development of
biologic substitutes that can restore and maintain normal func-
tion. Tissue engineering strategies generally fall into two cat-
egories: acellular matrices, where matrices are used alone and
depend on the body’s natural ability to regenerate for proper
orientation and direction of new tissue growth, and matrices
with cells. Acellular tissue matrices are usually prepared by
removing cellular components from tissues via mechanical and
chemical manipulation to produce collagen-rich matrices (1–
4). These matrices tend to slowly degrade on implantation and
are generally replaced by the ECM proteins that are secreted by
the ingrowing cells.

When cells are used for tissue engineering, a small piece of
donor tissue is dissociated into individual cells. These cells are
either implanted directly into the host or are expanded in
culture, attached to a support matrix, and then reimplanted into
the host after expansion. The source of donor tissue can be
heterologous (such as bovine), allogeneic (same species, dif-
ferent individual), or autologous. Ideally, both structural and
functional tissue replacements will occur with minimal com-
plications. The most preferred cells to use are autologous cells,
where a biopsy of tissue is obtained from the host, the cells are
dissociated and expanded in culture, and the expanded cells are
implanted into the same host (4–21). The use of autologous
cells avoids rejection, and thus the deleterious side effects of
immunosuppressive medications can be avoided.

One of the limitations of applying cell-based regenerative
medicine techniques toward organ replacement has been the
inherent difficulty of growing specific cell types in large quan-
tities. Even when some organs, such as the liver, have a high
regenerative capacity in vivo, cell growth and expansion in
vitro may be difficult. By studying the privileged sites for
committed precursor cells in specific organs, as well as explor-
ing the conditions that promote differentiation, one may be

able to overcome the obstacles that could lead to cell expansion
in vitro. For example, urothelial cells could be grown in the
laboratory setting in the past, but only with limited expansion.
Several protocols were developed over the last two decades
that identified the undifferentiated cells, and kept them undif-
ferentiated during their growth phase (12,22–24). By use of
these methods of cell culture, it is now possible to expand a
urothelial strain from a single specimen that initially covers a
surface area of 1 cm2 to one covering a surface area of 4202 m2

(the equivalent area of one football field) within 8 wk (12).
These studies indicated that it should be possible to collect
autologous bladder cells from human patients, expand them in
culture, and return them to the human donor in sufficient
quantities for reconstructive purposes (12,13,23–32). Major
advances have been achieved within the last decade on the
possible expansion of a variety of primary human cells, with
specific techniques that make the use of autologous cells pos-
sible for clinical application.

For cell-based tissue engineering, the expanded cells are
seeded onto a scaffold synthesized with the appropriate bio-
material. In tissue engineering, biomaterials replicate the bio-
logic and mechanical function of the native ECM found in
tissues in the body by serving as an artificial ECM. As a result,
biomaterials provide a three-dimensional space for the cells to
form into new tissues with appropriate structure and function,
and also can allow for the delivery of cells and appropriate
bioactive factors (e.g., cell adhesion peptides, growth factors),
to desired sites in the body (33). Because the majority of
mammalian cell types are anchorage dependent and will die if
no cell-adhesion substrate is available, biomaterials provide a
cell-adhesion substrate that can deliver cells to specific sites in
the body with high loading efficiency. Biomaterials can also
provide mechanical support against in vivo forces such that the
predefined three-dimensional structure is maintained during
tissue development. Furthermore, bioactive signals, such as
cell-adhesion peptides and growth factors, can be loaded along
with cells to help regulate cellular function.

The ideal biomaterial should be biocompatible in that it is
biodegradable and bioresorbable to support the replacement of
normal tissue without inflammation. Incompatible materials
are destined for an inflammatory or foreign-body response that
eventually leads to rejection and/or necrosis. In addition, the
degradation products, if produced, should be removed from the
body via metabolic pathways at an adequate rate that keeps the
concentration of these degradation products in the tissues at a
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tolerable level (34). Furthermore, the biomaterial should pro-
vide an environment in which appropriate regulation of cell
behavior (e.g., adhesion, proliferation, migration, and differen-
tiation) can occur such that functional tissue can form. Cell
behavior in the newly formed tissue has been shown to be
regulated by multiple interactions of the cells with their mi-
croenvironment, including interactions with cell-adhesion li-
gands (35) and with soluble growth factors (36). In addition,
biomaterials provide temporary mechanical support that allows
the tissue to grow in three dimensions while the cells undergo
spatial tissue reorganization. The properly chosen biomaterial
should allow the engineered tissue to maintain sufficient me-
chanical integrity to support itself in early development,
whereas in late development, the properly chosen biomaterial
should have begun degradation such that it does not hinder
further tissue growth (33).

Generally, three classes of biomaterials have been used for
engineering tissues: naturally derived materials (e.g., collagen
and alginate), acellular tissue matrices (e.g., bladder submu-
cosa and small intestinal submucosa), and synthetic polymers
(e.g., polyglycolic acid (PGA), polylactic acid (PLA), and
poly(lactic-co-glycolic acid) (PLGA). These classes of bioma-
terials have been tested in respect to their biocompatibility
(37,38). Naturally derived materials and acellular tissue matri-
ces have the potential advantage of biologic recognition. How-
ever, synthetic polymers can be produced reproducibly on a
large scale with controlled properties of their strength, degra-
dation rate, and microstructure.

Collagen is the most abundant and ubiquitous structural
protein in the body, and may be readily purified from both
animal and human tissues with an enzyme treatment and salt/
acid extraction (39). Collagen implants degrade through a
sequential attack by lysosomal enzymes. The in vivo resorption
rate can be regulated by controlling the density of the implant
and the extent of intermolecular cross-linking. The lower the
density, the greater the interstitial space and generally the
larger the pores for cell infiltration, leading to a higher rate of
implant degradation. Collagen contains cell-adhesion domain
sequences (e.g., RGD) that exhibit specific cellular interac-
tions. This may assist to retain the phenotype and activity of
many types of cells, including fibroblasts (40) and chondro-
cytes (41).

Alginate, a polysaccharide isolated from seaweed, has been
used as an injectable cell delivery vehicle (42) and a cell
immobilization matrix (43) because of its gentle gelling prop-
erties in the presence of divalent ions such as calcium. Alginate
is relatively biocompatible and approved by the US Food and
Drug Administration (FDA) for human use as wound dressing
material. Alginate is a family of copolymers of D-mannuronate
and L-guluronate. The physical and mechanical properties of
alginate gel are strongly correlated with the proportion and
length of polyguluronate block in the alginate chains (42).

Acellular tissue matrices are collagen-rich matrices prepared
by removing cellular components from tissues. The matrices
are often prepared by mechanical and chemical manipulation
of a segment of tissue (1–4). The matrices slowly degrade
upon implantation, and are replaced and remodeled by ECM

proteins synthesized and secreted by transplanted or ingrowing
cells.

Polyesters of naturally occurring �-hydroxy acids, including
PGA, PLA, and PLGA, are widely used in tissue engineering.
These polymers have gained FDA approval for human use in a
variety of applications, including sutures (44). The ester bonds
in these polymers are hydrolytically labile, and these polymers
degrade by nonenzymatic hydrolysis. The degradation prod-
ucts of PGA, PLA, and PLGA are nontoxic, natural metabo-
lites and are eventually eliminated from the body in the form of
carbon dioxide and water (44). The degradation rate of these
polymers can be tailored from several weeks to several years
by altering crystallinity, initial molecular weight, and the co-
polymer ratio of lactic to glycolic acid. Because these polymers
are thermoplastics, they can be easily formed into a three-
dimensional scaffold with a desired microstructure, gross
shape, and dimension by various techniques, including mold-
ing, extrusion (45), solvent casting (46), phase separation tech-
niques, and gas foaming techniques (47). Many applications in
tissue engineering often require a scaffold with high porosity
and ratio of surface area to volume. Other biodegradable syn-
thetic polymers, including poly(anhydrides) and poly(ortho-
esters), can also be used to fabricate scaffolds for tissue engi-
neering with controlled properties (48).

Stem Cells
Most current strategies for tissue engineering depend upon a

sample of autologous cells from the diseased organ of the host.
However, for many patients with extensive end-stage organ
failure, a tissue biopsy may not yield enough normal cells for
expansion and transplantation. In other instances, primary au-
tologous human cells can not be expanded from a particular
organ, such as the pancreas. In these situations, pluripotent
human embryonic stem cells are envisioned as a viable source
of cells because they can serve as an alternative source of cells
from which the desired tissue can be derived. Combining the
techniques learned in tissue engineering over the past few
decades with this potentially endless source of versatile cells
could lead to novel sources of replacement organs.

Embryonic stem cells exhibit two remarkable properties: the
ability to proliferate in an undifferentiated but pluripotent state
(self-renew), and the ability to differentiate into many special-
ized cell types (49). They can be isolated by immunosurgery
from the inner cell mass of the embryo during the blastocyst
stage (5 d after fertilization), and are usually grown on feeder
layers consisting of mouse embryonic fibroblasts or human
feeder cells (50). More recent reports have shown that these
cells can be grown without the use of a feeder layer (51), and
thus avoid the exposure of these human cells to mouse viruses
and proteins. These cells have demonstrated longevity in cul-
ture by maintaining their undifferentiated state for at least 80
passages when grown using current published protocols
(52,53).

Human embryonic stem cells have been shown to differen-
tiate into cells from all three embryonic germ layers in vitro.
Skin and neurons have been formed, indicating ectodermal
differentiation (54–57). Blood, cardiac cells, cartilage, endo-
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thelial cells, and muscle have been formed, indicating meso-
dermal differentiation (58–60). And pancreatic cells have been
formed, indicating endodermal differentiation (61). In addition,
as further evidence of their pluripotency, embryonic stem cells
can form embryoid bodies, which are cell aggregations that
contain all three embryonic germ layers, while in culture, and
can form teratomas in vivo (62).

Therapeutic Cloning
Nuclear cloning, which has also been called nuclear trans-

plantation and nuclear transfer, involves the introduction of a
nucleus from a donor cell into an enucleated oocyte to generate
an embryo with a genetic makeup identical to that of the donor.

Although there has been tremendous interest in the field of
nuclear cloning since the birth of Dolly in 1997, the first
successful nuclear transfer was reported over 50 yr ago by
Briggs and King (63). Cloned frogs, which were the first
vertebrates derived from nuclear transfer, were subsequently
reported by Gurdon in 1962 (64), but the nuclei were derived
from nonadult sources. In the past 6 yr, tremendous advances
in nuclear cloning technology have been reported, indicating
the relative immaturity of the field. Dolly was not the first
cloned mammal to be produced from adult cells; in fact, live
lambs were produced in 1996 using nuclear transfer and dif-
ferentiated epithelial cells derived from embryonic discs (65).
The significance of Dolly was that she was the first mammal to
be derived from an adult somatic cell using nuclear transfer
(66). Since then, animals from several species have been grown
using nuclear transfer technology, including cattle (67), goats
(68,69), mice (70), and pigs (71–74).

Two types of nuclear cloning, reproductive cloning and
therapeutic cloning, have been described, and a better under-
standing of the differences between the two types may help to
alleviate some of the controversy that surrounds these revolu-
tionary technologies (75,76). Banned in most countries for
human applications, reproductive cloning is used to generate
an embryo that has the identical genetic material as its cell
source. This embryo can then be implanted into the uterus of a
female to give rise to an infant that is a clone of the donor. On
the other hand, therapeutic cloning is used to generate early
stage embryos that are explanted in culture to produce embry-
onic stem cell lines whose genetic material is identical to that
of its source. These autologous stem cells have the potential to
become almost any type of cell in the adult body, and thus
would be useful in tissue and organ replacement applications
(77). Some useful applications would be in the treatment of
diseases, such as end-stage kidney disease, neurodegenerative
diseases, and diabetes, for which there is limited availability of
immunocompatible tissue transplants.

Therefore, therapeutic cloning, which has also been called
somatic cell nuclear transfer, provides an alternative source of
transplantable cells that theoretically may be limitless. Figure 1
shows the strategy of combining therapeutic cloning with tis-
sue engineering to develop tissues and organs. According to
data from the Centers for Disease Control and Prevention, it
has been estimated that approximately 3000 Americans die
every day of diseases that could have been treated with em-
bryonic stem cell–derived tissues (78). With current allogeneic
tissue transplantation protocols, rejection is a frequent compli-
cation because of immunologic incompatibility, and immuno-

Figure 1. Strategy for thera-
peutic cloning and tissue
engineering.
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suppressive drugs are usually administered to treat and hope-
fully prevent graft-versus-host disease (77). The use of
transplantable tissue and organs derived from therapeutic clon-
ing may lead to the avoidance of immune responses that
typically are associated with transplantation of nonautologous
tissues. As a result, with therapeutic cloning, the variety of
serious and potentially life-threatening complications associ-
ated with immunosuppressive treatments may be avoided (79).

Current Limitations of Cloning Technology
Although promising, somatic cell nuclear transfer technol-

ogy has certain limitations that require further improvements
before therapeutic cloning can be applied widely in replace-
ment therapy.

Currently, the efficiency of the overall cloning process is
low. The majority of embryos derived from animal cloning do
not survive after implantation (80–82). In practical terms,
multiple nuclear transfers must be performed to produce one
live offspring for animal cloning applications. The potential for
cloned embryos to grow into live offspring is between 0.5% to
18% for sheep, cattle, pigs, and mice (83). However, greater
success (80%) has been reported in cattle (84), which may be
in part due to the availability of advanced bovine supporting
technologies, such as in vitro embryo production and embryo
transfer, which have been developed for this species for agri-
cultural purposes. To improve cloning efficiencies, further
improvements are required in the multiple complex steps of
nuclear transfer, such as enucleation and reconstruction, acti-
vation of oocytes, and cell cycle synchronization between
donor cells and recipient oocytes (85), that will more readily
produce viable sources of cells.

Furthermore, common abnormalities have been found in
newborn clones if they survive to birth, including enlarged size
with an enlarged placenta (large offspring syndrome) (86),
respiratory distress and defects of the kidney, liver, heart, and
brain (87), obesity (88), and premature death (89). These may
be related to the epigenetics of the cloned cells, which involve
the reversible modifications of the DNA or chromatin, while
the original DNA (genetic) sequences remain intact. Faulty
epigenetic reprogramming in clones, where the DNA methyl-
ation patterns, histone modifications, and the overall chromatin
structure of the somatic nuclei are not being reprogrammed to
an embryonic pattern of expression, may explain the above
abnormalities (77). Reactivation of key embryonic genes at the
blastocyst stage is usually not present in embryos cloned from
somatic cells, but embryos cloned from embryos consistently
express early embryonic genes (90,91). Proper epigenetic re-
programming to an embryonic state may help to improve the
cloning efficiency and reduce the incidence of abnormal cloned
cells.

Tissue Engineering of Specific Structures
Investigators around the world, including our laboratory,

have been working toward the development of several cell
types and tissues and organs for clinical application.

Urethra
Various biomaterials without cells, such as PGA and acel-

lular collagen-based matrices from small intestine and bladder,
have been used experimentally (in animal models) for the
regeneration of urethral tissue (1,92–96). Some of these bio-
materials, like acellular collagen matrices derived from bladder
submucosa, have also been seeded with autologous cells for
urethral reconstruction. Our laboratory has been able to replace
tubularized urethral segments with cell-seeded collagen
matrices.

Acellular collagen matrices derived from bladder submucosa
by our laboratory have been used experimentally and clini-
cally. In animal studies, segments of the urethra were resected
and replaced with acellular matrix grafts in an onlay fashion.
Histologic examination showed complete epithelialization and
progressive vessel and muscle infiltration, and the animals
were able to void through the neourethras (1). These results
were confirmed in a clinical study of patients with hypospadias
and urethral stricture disease (6,97). Decellularized cadaveric
bladder submucosa was used as an onlay matrix for urethral
repair in patients with stricture disease and hypospadias (Fig-
ure 2). Patent, functional neourethras were noted in these
patients with up to a 7-yr follow-up. The use of an off-the-shelf
matrix appears to be beneficial for patients with abnormal
urethral conditions and obviates the need for obtaining autol-
ogous grafts, thus decreasing operative time and eliminating
donor site morbidity.

Unfortunately, the above techniques are not applicable for
tubularized urethral repairs. The collagen matrices are able to
replace urethral segments only when used in an onlay fashion.
However, if a tubularized repair is needed, the collagen matri-
ces should be seeded with autologous cells to avoid the risk of
stricture formation and poor tissue development (98,99).
Therefore, tubularized collagen matrices seeded with autolo-
gous cells can be used successfully for total penile urethra
replacement.

Bladder
Currently, gastrointestinal segments are commonly used as

tissues for bladder replacement or repair. However, gastroin-
testinal tissues are designed to absorb specific solutes, whereas
bladder tissue is designed for the excretion of solutes. Because
of the problems encountered with the use of gastrointestinal
segments, numerous investigators have attempted alternative
materials and tissues for bladder replacement or repair.

The success of the use of cell transplantation strategies for
bladder reconstruction depends on the ability to use donor
tissue efficiently and to provide the right conditions for long
term survival, differentiation and growth. Urothelial and mus-
cle cells can be expanded in vitro, seeded onto polymer scaf-
folds, and allowed to attach and form sheets of cells (7). These
principles were applied toward the creation of tissue engi-
neered bladders in an animal model that required a subtotal
cystectomy with subsequent replacement with a tissue engi-
neered organ in beagle dogs (18). Urothelial and muscle cells
were separately expanded from an autologous bladder biopsy
sample and seeded onto a bladder-shaped biodegradable poly-
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mer scaffold. The results from this study showed that it is
possible to tissue-engineer bladders that are anatomically and
functionally normal.

Male Genital Tissues
Reconstructive surgery is required for a wide variety of

pathologic penile conditions, such as penile carcinoma, trauma,
severe erectile dysfunction, and congenital conditions such as
ambiguous genitalia, hypospadias, and epispadias. One of the
major limitations of phallic reconstructive surgery is the scar-
city of sufficient autologous tissue. Phallic reconstruction us-
ing autologous tissue, derived from the patient’s own cells,
may be preferable in selected cases.

The major components of the phallus are corporal smooth
muscle and endothelial cells. The creation of autologous func-
tional and structural corporal tissue de novo would be benefi-
cial. Autologous cavernosal smooth muscle and endothelial
cells were harvested, expanded and seeded on acellular colla-
gen matrices and implanted in a rabbit model (100,101). His-
tologic examination confirmed the appropriate organization of
penile tissue phenotypes, and structural and functional studies,
including cavernosonography, cavernosometry, and mating
studies, demonstrated that it is possible to engineer autologous
functional penile tissue. Our laboratory is currently working on
increasing the size of the engineered constructs.

Female Genital Tissues
Congenital malformations of the uterus may have pro-

found implications clinically. Patients with cloacal exstro-
phy and intersex disorders may not have sufficient uterine
tissue present for future reproduction. We investigated the
possibility of engineering functional uterine tissue using

autologous cells (102). Autologous rabbit uterine smooth
muscle and epithelial cells were harvested, then grown and
expanded in culture. These cells were seeded onto precon-
figured uterine-shaped biodegradable polymer scaffolds,
which were then used for subtotal uterine tissue replacement
in the corresponding autologous animals. Upon retrieval 6
mo after implantation, histologic, immunocytochemical, and
Western blot analyses confirmed the presence of normal
uterine tissue components. Biomechanical analyses and or-
gan bath studies showed that the functional characteristics
of these tissues were similar to those of normal uterine
tissue. Breeding studies that use these engineered uteri are
currently being performed.

Similarly, several pathologic conditions, including congen-
ital malformations and malignancy, can adversely affect nor-
mal vaginal development or anatomy. Vaginal reconstruction
has traditionally been challenging because of the paucity of
available native tissue. The feasibility of engineering vaginal
tissue in vivo was investigated (103). Vaginal epithelial and
smooth muscle cells of female rabbits were harvested, grown,
and expanded in culture. These cells were seeded onto biode-
gradable polymer scaffolds, and the cell-seeded constructs
were then implanted into nude mice for up to 6 wk. Immuno-
cytochemical, histologic, and Western blot analyses confirmed
the presence of vaginal tissue phenotypes. Electrical field
stimulation studies in the tissue-engineered constructs showed
similar functional properties to those of normal vaginal tissue.
When these constructs were used for autologous total vaginal
replacement, patent vaginal structures were noted in the tissue-
engineered specimens, whereas the non–cell-seeded structures
were noted to be stenotic (104).

Figure 2. Tissue engineering
of the urethra using a collagen
matrix. (A) Representative
case of a patient with a bulbar
stricture. (B) Urethral repair.
Strictured tissue is excised,
preserving the urethral plate
on the left side, and matrix is
anastomosed to the urethral
plate in an onlay fashion on
the right. (C) Urethrogram 6
mo after repair. (D) Cysto-
scopic view of urethra before
surgery on the left side and 4
mo after repair on the right side.
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Kidney
We applied the principles of both tissue engineering and

therapeutic cloning in an effort to produce genetically identical
renal tissue in a large animal model, cattle (Bos taurus) (105).
Bovine skin fibroblasts from adult Holstein steers were ob-
tained by ear notch, and single donor cells were isolated and
microinjected into the perivitelline space of donor enucleated
oocytes (nuclear transfer). The resulting blastocysts were im-
planted into progastrin-synchronized recipients to allow for
further in vivo growth. After 12 wk, cloned renal cells were
harvested, expanded in vitro, and seeded onto biodegradable
scaffolds. The constructs, which consisted of the cells and the
scaffolds, were then implanted into the subcutaneous space of
the same steer from which the cells were cloned to allow for
tissue growth.

The kidney is a complex organ with multiple cell types and
a complex functional anatomy that renders it one of the most
difficult to reconstruct (5,106). Previous efforts in tissue engi-
neering of the kidney have been directed toward the develop-
ment of extracorporeal renal support systems made of biologic
and synthetic components (107–113), and ex vivo renal re-
placement devices are known to be life-sustaining. However,

there would be obvious benefits for patients with end-stage
kidney disease if these devices could be implanted long term
without the need for an extracorporeal perfusion circuit or
immunosuppressive drugs.

Cloned renal cells were seeded on scaffolds consisting of
three collagen-coated cylindrical polycarbonate membranes
(Figure 3A). The ends of the three membranes of each scaffold
were connected to catheters that terminated into a collecting
reservoir. This created a renal neo-organ with a mechanism for
collecting the excreted urinary fluid (Figure 3B). These scaf-
folds with the collecting devices were transplanted subcutane-
ously into the same steer from which the genetic material
originated and retrieved 12 wk after implantation.

Chemical analysis of the collected urinelike fluid, including
urea nitrogen and creatinine levels, electrolyte levels, specific
gravity, and glucose concentration, revealed that the implanted
renal cells possessed filtration, reabsorption, and secretory
capabilities.

Histologic examination of the retrieved implants revealed
extensive vascularization and self-organization of the cells into
glomeruli- and tubulelike structures. A clear continuity be-
tween the glomeruli, the tubules, and the polycarbonate mem-

Figure 3. Combining therapeutic cloning and tissue engineering to produce kidney tissue. (A) Illustration of the tissue-engineered renal unit.
(B) Renal unit seeded with cloned cells, 3 mo after implantation, showing the accumulation of urinelike fluid. (C) There was a clear
unidirectional continuity between the mature glomeruli, their tubules, and the polycarbonate membrane. (D) ELISPOT analyses of the
frequencies of T cells that secrete IFN-� after primary and secondary stimulation with allogeneic renal cells, cloned renal cells, or nuclear donor
fibroblasts.
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brane was noted that allowed the passage of urine into the
collecting reservoir (Figure 3C). Immunohistochemical analy-
sis with renal-specific antibodies revealed the presence of renal
proteins, RT-PCR analysis confirmed the transcription of renal
specific RNA in the cloned specimens, and Western blot anal-
ysis confirmed the presence of elevated renal-specific protein
levels.

Because previous studies have shown that bovine clones
harbor the oocyte mtDNA (114–116), the donor egg’s mtDNA
was thought to be a potential source of immunologic incom-
patibility. Differences in mtDNA-encoded proteins expressed
by cloned cells could stimulate a T cell response specific for
mtDNA-encoded minor histocompatibility antigens when the
cloned cells are implanted back into the original nuclear donor
(117). We used nucleotide sequencing of the mtDNA genomes
of the clone and fibroblast nuclear donor to identify potential
antigens in the muscle constructs. Only two amino acid sub-
stitutions were noted to distinguish the clone and the nuclear
donor, and as a result, a maximum of two minor histocompat-
ibility antigens could be defined. Given the lack of knowledge
regarding peptide-binding motifs for bovine MHC class I mol-
ecules, there is no reliable method to predict the effect of these
amino acid substitutions on bovine histocompatibility.

Oocyte-derived mtDNA was also thought to be a potential
source of immunologic incompatibility in the cloned renal
cells. Maternally transmitted minor histocompatibility antigens
in mice have been shown to stimulate both skin allograft
rejection in vivo and cytotoxic T lymphocytes expansion in
vitro (117), which could prevent the use of these cloned con-
structs in patients with chronic rejection of major histocom-
patibility matched human renal transplants (118,119). We
tested for a possible T cell response to the cloned renal devices
using delayed-type hypersensitivity testing in vivo and ELIS-
POT analysis of IFN-�–secreting T cells in vitro. Both analy-
ses revealed that the cloned renal cells showed no evidence of
a T cell response, suggesting that rejection will not necessarily
occur in the presence of oocyte-derived mitochondrial DNA
(Figure 3D). This finding may represent a step forward in
overcoming the histocompatibility problem of stem cell ther-
apy (106).

These studies demonstrated that cells derived from nuclear
transfer can be successfully harvested, expanded in culture, and
transplanted in vivo with the use of biodegradable scaffolds on
which the single suspended cells can organize into tissue
structures that are genetically identical to that of the host.
These studies were the first demonstration of the use of ther-
apeutic cloning for regeneration of tissues in vivo.

Blood Vessels
Xenogenic or synthetic materials have been used as replace-

ment blood vessels for complex cardiovascular lesions. How-
ever, these materials typically lack growth potential and may
place the recipient at risk for complications such as stenosis,
thromboembolization, or infection (120).

Tissue-engineered vascular grafts have been constructed us-
ing autologous cells and biodegradable scaffolds and have been
applied in dog and lamb models (121–125). The key advantage

from the use these autografts is that they degrade in vivo and
thus allow the new tissue to form without the long-term pres-
ence of foreign material (120).

Application of these techniques from the laboratory to the
clinical setting have begun, where autologous vascular cells
were harvested, expanded, and seeded onto a biodegradable
scaffold (126). The resultant autologous construct was used to
replace a stenosed pulmonary artery that had been previously
repaired. Seven months after implantation, no evidence of graft
occlusion or aneurysmal changes were noted in the recipient.

Cartilage—Articular Cartilage and Trachea
Full-thickness articular cartilage lesions have limited healing

capacity and thus represent a difficult management issue for
the clinicians who treat adult patients with damaged articular
cartilage (127,128). Large defects can be associated with me-
chanical instability and may lead to degenerative joint disease
if left untreated (129,130). Chondrocytes were expanded and
cultured onto biodegradable scaffolds to create engineered
cartilage for use in large osteochondral defects in rabbits (131).
When sutured to a subchondral support, the engineered carti-
lage was able to withstand physiologic loading and underwent
orderly remodeling of the large osteochondral defects in adult
rabbits. Thus, the engineered cartilage was able to provide a
biomechanically functional template that was able to undergo
orderly remodeling when subjected to quantitative structural
and functional analyses.

Few treatment options are currently available for patients
who have severe congenital tracheal pathology, such as steno-
sis, atresia, and agenesis, because of the limited availability of
autologous transplantable tissue in the neonatal period. Tissue
engineering in the fetal period may be a viable alternative for
the surgical treatment of these prenatally diagnosed congential
anomalies because cells could be harvested and grown into
transplantable tissue in parallel with the remainder of gestation.
Chondrocytes from both elastic and hyaline cartilage speci-
mens have been harvested from fetal lambs, expanded in vitro,
then dynamically seeded onto biodegradable scaffolds (132).
The constructs were then implanted as replacement tracheal
tissue in fetal lambs. The resultant tissue-engineered cartilage
was noted to undergo engraftment and epithelialization while
maintaining its structural support and patency. Furthermore, if
native tracheal tissue is unavailable, engineered cartilage may
be derived from bone marrow–derived mesenchymal progen-
itor cells as well (133).

Cellular Therapies
Bulking Agents. Injectable bulking agents can be endo-

scopically used in the treatment of both urinary incontinence
and vesicoureteral reflux. The advantages in treating urinary
incontinence and vesicoureteral reflux with this minimally
invasive approach include the simplicity of this quick outpa-
tient procedure and the low morbidity associated with it. Sev-
eral investigators are seeking alternative implant materials that
would be safe for human use (16).

The ideal substance for the endoscopic treatment of reflux
and incontinence should be injectable, nonantigenic, nonmi-
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gratory, volume stable, and safe for human use. Toward this
goal, long-term studies were conducted to determine the effect
of injectable chondrocytes in vivo (134). It was initially deter-
mined that alginate, a liquid solution of gluronic and mannu-
ronic acid, embedded with chondrocytes, could serve as a
synthetic substrate for the injectable delivery and maintenance
of cartilage architecture in vivo. Alginate undergoes hydrolytic
biodegradation and its degradation time can be varied depend-
ing on the concentration of each of the polysaccharides. The
use of autologous cartilage for the treatment of vesicoureteral
reflux in humans would satisfy all of the requirements for an
ideal injectable substance.

Chondrocytes derived from an ear biopsy can be readily
grown and expanded in culture. Neocartilage formation can be
achieved in vitro and in vivo by using chondrocytes cultured on
synthetic biodegradable polymers. In these experiments, the
cartilage matrix replaced the alginate as the polysaccharide
polymer underwent biodegradation. This system was adapted
for the treatment of vesicoureteral reflux in a porcine model
(9). These studies showed that chondrocytes can be easily
harvested and combined with alginate in vitro, the suspension
can be easily injected cystoscopically, and the elastic cartilage
tissue formed is able to correct vesicoureteral reflux without
any evidence of obstruction.

Two multicenter clinical trials were conducted by using the
above engineered chondrocyte technology. Patients with vesi-
coureteral reflux were treated at 10 centers throughout the
United States. The patients had a similar success rate as with
other injectable substances in terms of cure (Figure 4). Chon-
drocyte formation was not noted in patients who experienced
treatment failure. The patients who were cured would suppos-
edly have a biocompatible region of engineered autologous
tissue present, rather than a foreign material (135). Patients
with urinary incontinence were also treated endoscopically

with injected chondrocytes at three different medical centers.
Phase 1 trials showed an approximate success rate of 80% at
both 3 and 12 mo postoperatively (136).

Injectable Muscle Cells. The potential use of injectable,
cultured myoblasts for the treatment of stress urinary inconti-
nence has been investigated (137,138). Labeled myoblasts
were directly injected into the proximal urethra and lateral
bladder walls of nude mice with a microsyringe in an open
surgical procedure. Tissue harvested up to 35 d after injection
contained the labeled myoblasts, as well as evidence of differ-
entiation of the labeled myoblasts into regenerative myofibers.
The authors reported that a significant portion of the injected
myoblast population persisted in vivo. Similar techniques of
sphincteric derived muscle cells have been used for the treat-
ment of urinary incontinence in a pig model (139). The fact
that myoblasts can be labeled and survive after injection and
begin the process of myogenic differentiation further supports
the feasibility of the use of cultured cells of muscular origin as
an injectable bioimplant.

The use of injectable muscle precursor cells has also been
investigated for use in the treatment of urinary incontinence
due to irreversible urethral sphincter injury or maldevelop-
ment. Muscle precursor cells are the quiescent satellite cells
found in each myofiber that proliferate to form myoblasts and
eventually myotubes and new muscle tissue. Intrinsic muscle
precursor cells have previously been shown to play an active
role in the regeneration of injured striated urethral sphincter
(140). In a subsequent study, autologous muscle precursor cells
were injected into a rat model of urethral sphincter injury, and
both replacement of mature myotubes as well as restoration of
functional motor units were noted in the regenerating sphinc-
teric muscle tissue (141). This is the first demonstration of the
replacement of both sphincter muscle tissue and its innervation
by the injection of muscle precursor cells. As a result, muscle

Figure 4. Autologous chondrocytes for the treatment of vesicoureteral reflux. (Left) Preoperative voiding cystourethrogram of a patient with
bilateral reflux. (Right) Postoperative radionuclide cystogram of the same patient 6 mo after injection of autologous chondrocytes.
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precursor cells may be a minimally invasive solution for uri-
nary incontinence in patients with irreversible urinary sphincter
muscle insufficiency.

Endocrine Replacement:. Patients with testicular dys-
function and hypogonadal disorders are dependent on androgen
replacement therapy to restore and maintain physiologic levels
of serum testosterone and its metabolites, dihydrotestosterone
and estradiol (142). Currently available androgen replacement
modalities, such as testosterone tablets and capsules, depot
injections, and skin patches, may be associated with fluctuating
serum levels and complications such as fluid and nitrogen
retention, erythropoiesis, hypertension, and bone density
changes (143). Because Leydig cells of the testes are the major
source of testosterone in men, implantation of heterologous
Leydig cells or gonadal tissue fragments has previously been
proposed as a method for chronic testosterone replacement
(144,145). But these approaches were limited by the failure of
the tissues and cells to produce testosterone.

Encapsulation of cells in biocompatible and semipermeable
polymeric membranes has been an effective method to protect
against a host immune response as well as to maintain viability
of the cells while allowing the secretion of desired therapeutic
agents (146,147). Alginate-poly-L-lysine–encapsulated Leydig
cell microspheres were used as a novel method for testosterone
delivery in vivo (142). Elevated stable serum testosterone lev-
els were noted in castrated adult rats over the course of the
study, suggesting that microencapsulated Leydig cells may be
a potential therapeutic modality for testosterone
supplementation.

Angiogenic Agents. The engineering of large organs will
require a vascular network of arteries, veins, and capillaries to
deliver nutrients to each cell. One possible method of vascu-
larization is through the use of gene delivery of angiogenic
agents such as vascular endothelial growth factor (VEGF) with
the implantation of vascular endothelial cells to enhance neo-
vascularization of engineered tissues. Skeletal myoblasts from
adult mice were cultured and transfected with an adenovirus
encoding VEGF and combined with human vascular endothe-
lial cells (148). The mixtures of cells were injected subcuta-
neously in nude mice, and the engineered tissues were re-
trieved up to 8 wk after implantation. The transfected cells
were noted to form muscle with neovascularization by histol-
ogy and immunohistochemical probing with maintenance of
their muscle volume, whereas engineered muscle of nontrans-
fected cells had a significantly smaller mass of cells with loss
of muscle volume over time, less neovascularization, and no
surviving endothelial cells. These results indicate that a com-
bination of VEGF and endothelial cells may be useful for
inducing neovascularization and volume preservation in engi-
neered tissue.

Antiangiogenic Agents. The delivery of antiangiogenic
agents may help to slow tumor growth for a variety of neo-
plasms. Encapsulated hamster kidney cells transfected with the
angiogenesis inhibitor endostatin were used for local delivery
on human glioma cell line xenografts (111). The release of
biologically active endostatin led to significant inhibition of
endothelial cell proliferation and substantial reduction in tumor

weight. Continuous local delivery of endostatin via encapsu-
lated endostatin-secreting cells may be effective therapeutic
option for a variety of tumor types.

Conclusion:
Tissue engineering efforts are currently underway for virtu-

ally every type of tissue and organ within the human body.
Because tissue engineering incorporates the fields of cell trans-
plantation, materials science, and engineering, personnel who
have mastered the techniques of cell harvest, culture, expan-
sion, transplantation, and polymer design are essential for the
successful application of this technology. Various engineered
tissues are at different stages of development, with some al-
ready being used clinically, a few in preclinical trials, and some
in the discovery stage. Recent progress suggests that engi-
neered tissues may have an expanded clinical applicability in
the future because they represent a viable therapeutic option for
those who require tissue replacement. More recently, major
advances in the areas of stem cell biology, tissue engineering,
and nuclear transfer techniques have made it possible to com-
bine these technologies to create the comprehensive scientific
field of regenerative medicine.
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