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received from academia [2, 4, 20, 19, 14], and by industryls w
ingness to incorporate it into commercial processors [7{E{en

The key to high performance in Simultaneous Multithreaded the continued importance of chip-level multithreadingser@rch

(SMT) processors lies in optimizing the distribution of retaare-
sources to active threads. Existing resource distributiech-
niques optimize performance only indirectly. They infeteptial
performance bottlenecks by observing indicators, likérirtsion
occupancy or cache miss counts, and take actions to try & all
viate them. While the corrective actions are designed tadoxrg
performance, their actual performance impact is not knoimoes
end performance is never monitored. Consequently, palgyei-
formance gains are lost whenever the corrective actionsal@fi
fectively address the actual bottlenecks occurring in tipelne.

We propose a different approach to SMT resource distriloutio
that optimizes end performance directly. Our approach plese
the impact that resource distribution decisions have orfqrer
mance at runtime, and feeds this information back to theueso
distribution mechanisms to improve future decisions. Balev
ating many different resource distributions, our approacdhs to
learnthe best distribution over time. Because we perform learn-
ing on-line, learning time is crucial. We develophdl-climbing
algorithmthat efficiently learns the best distribution of resources
by following the performance gradient within the resourcstrit
bution space.

This paper conducts an in-depth investigation of learning-
based SMT resource distribution. First, we compare exdstex
source distribution techniques to an ideal learning-basech-
nique that performs learning off-line. This limit study afo

that improves SMT performance without increasing its poeaer-
sumption will remain highly relevant in future systems.

The key to high performance in SMT processors lies in opti-
mizing the distribution of resources to simultaneouslyceximg
threads. Several resource distribution techniques haee biid-
ied inthe past[2, 4, 20, 19, 14]. One shortcoming of theseipus
techniques is they optimize performance omiglirectly. As illus-
trated in Figure 1a, existing techniques make resourcallision
decisions based on hardware monitors of per-thread resaugc
age €.g, instruction occupancy or cache miss counts); the hard-
ware monitors do not reflect actual performance. From this re
source usage information, the resource distribution mashas
infer potential performance bottlenecks and take actiortsytto
alleviate them€.g, stop fetching a thread that has consumed too
many resources, or flush a thread that has suffered a cackg mis
While these actions are designed to improve performanes th
actual performance impact is not known since the resourste-di
bution mechanisms never directly monitor end performance.

Because resource distribution mechanisms optimize perfor
mance only indirectly, opportunities for performance gaimy be
missed for two reasons. First, resource distribution meisimas
are designed to target a small set of important performante b
tlenecks; however, SMT processors exhibit a myriad of biav
that are highly sensitive to workload mix. Existing resaudistri-
bution mechanisms cannot possibly anticipate all bottksdor

learning-based techniques can provide up to 19.2% gain over all workloads, missing performance opportunities in sorases.

ICOUNT, 18.0% gain over FLUSH, and 7.6% gain over DCRA
across 21 multithreaded workloads. Then, we present arinen-|
learning algorithm based on hill-climbing. Our evaluatishows
hill-climbing provides a 12.4% gain over ICOUNT, 11.3% gain
over FLUSH, and 2.4% gain over DCRA across a larger set of 42
multiprogrammed workloads.

1. Introduction

Simultaneous Multithreading (SMT) is an important arcbite
tural technique, as evidenced by the widespread attentibasi
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Second, resource distribution mechanisms are designetbrove
performance in general, but they are not designed to be aptim
for any specific case. Hence, even for the anticipated pegoce
bottlenecks, further performance gains might still be faes

We propose a different approach to SMT resource distributio
that optimizes end performanckrectly. Our approach observes
the impact that resource distribution decisions have otioper
mance at runtime and feeds this information back to the resou
distribution mechanisms to improve future decisions, lastitated
in Figure 1b. By successively applying and evaluating diffi re-
source distributions, our approach triesiéarn the best distribu-
tion over time. Learning is performed continuously to adapén-
ever the workload's resource needs change. Because ouraabpr
learns based on actual performance, the resource distribde-
cisions it makes are customized to the performance bottlenef
the workload, reducing missed performance opportunitiésre-
over, whenever learning for a particular workload behawoc-
ceeds, our approach finds the best resource distributiahdvbe-
havior. Our approach can also optimize for a specific peréoroe
goal (e.g, throughput, speedup, or fairness) by simply using the
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Figure 1. (a) Existing resource distribution tech-
niques optimize performance indirectly by mak-
ing decisions based on hardware monitors only.
(b) Learning-based resource distribution exam-
ines actual performanceto learn the best resource
distribution.
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Figure 2. IPC of mesa, vortex, and fma3d dur-
ing a 32K-cycle time interval as the fraction of re-
sources distributed to each thread is varied. The
X- and Y-axes show the resource distribution for
mesa and vortex (fma3d receives the remaining re-
sources). The arrow indicates the resource distri-
bution with peak performance.

appropriate performance metric for feedback.

Since we perform learning on-line, learning time is crucal
the success of our approach. A key observation enablin¢efast-
ing is that performance does not change randomly as a funofio
resource distribution; instead, the performance seiisitig of-
ten “hill-shaped.” For example, Figure 2 shows the perfarosa
of three applications—mesa, vortex, and fma3d—runningian
neously on an SMT processor during a time interval of 32K cy-
cles. The graph plots IPC as the fraction of resources digad
to individual threads is varied. In the figure, performanckofvs
a well-defined hill shape, with a clear performance peak.nfro
our experience, many workloads exhibit such hill-shapedubize
ior. We exploit this behavior by using faill-climbing algorithm
to learn the best resource distribution. Because learsiggided
by the slope of the hill, our hill-climbing algorithm reaché¢he
best resource distribution after sampling only a small iparof
the resource distribution space, thus leading to low |e@rtimes.

This paper investigates SMT resource distribution tealesq
that use hill-climbing to learn the best resource sharecifipally,
we apply learning to dynamically distribute key SMT proces-
sor hardware structures across simultaneously executiregds.
Our study begins by comparing an ideal off-line learningoalg
rithm against existing techniques to quantify the bestqrarince

improvements that learning-based techniques can achi€ue.
limit study reveals an ideal learning-based technique erfiopms
ICOUNT [20] by 19.2%, FLUSH [19] by 18.0%, and DCRA [2]
by 7.6% on 21 multiprogrammed workloads, demonstratingethe
is significant room for learning to improve performance. Nex
we present the hill-climbing algorithm for performing learg
on-line. Our evaluation reveals hill-climbing provides 52.4%,
11.3%, and 2.4% performance boost over ICOUNT, FLUSH, and
DCRA, respectively, on a comprehensive set of 42 multipro-
grammed workloads. Finally, we extend hill-climbing to foem
learning based on program phases, and report our prelignear
perience with this phase-based technique.

The rest of this paper is organized as follows. Section 2 dis-
cusses related work, and Section 3 studies the ideal le&grnin
based technique. Next, Section 4 presents and evaluatéslleur
climbing resource distribution technique, and Section &cdbes
its extension. Finally, Section 6 concludes the paper.

2. Related Work

Prior research has tried to boost SMT processor performance
by improving the distribution of hardware resources to &=
One important approach is to optimize the selection of tisda
fetch every cycle. ICOUNT [20] and FPG [10] are examples of
suchSMT fetch policies These techniques monitor indicators of
resource usage, such as resource occupancy (ICOUNT) aztbran
prediction accuracy (FPG). Every cycle, the threads usiair t
resources most efficientlg(g, with low occupancy or few branch
miss-predicts) are given fetch priority. By favoring fakteaads,
ICOUNT and FPG increase overall throughput.

Unfortunately, fetch policies do not effectively handlendp
latency operations, especially cache-missing loads. @rthesad
suffers a long-latency cache-missing load, continuingetolf the
thread clogs the pipeline with stalled instructions, preire other
threads that would otherwise gainfully use the resouroes fire-
ceiving them. Fetch policies like ICOUNT reduce, but do riops
the fetch of stalled threads, so they cannot prevent resatlog).
Several techniques address resource clog by explicitliifignre-
source distribution to threads with long-latency memorgrap
tions. The first approach is to fetch-lock stalled threadsch¥
nigues in this category differ in how they detect the stahdie
tion. STALL [19] triggers fetch-lock when a load remains -out
standing beyond some threshold number of cycles; DG [4} trig
gers fetch-lock when the number of cache-missing loadseslsce
some threshold; and PDG [4] uses a cache-miss predictagto tr
ger fetch-lock.

One problem with fetch-locking is resource clog can still oc
cur because the stall condition is detected either too latenre-
liably. Instead of anticipating resource clog and fetctklag, a
second approach is to allow resource clog to occur but immedi
ately recover by flushing the stalled instructions. Thishis ap-
proach taken by FLUSH [19]. FLUSH is effective in preventing
resource clog; however, flushing is wasteful in terms oftfétand-
width and power consumption. Hybrid approacheg( STALL-
FLUSH [19]) minimize the number of flushed instructions bgffir
employing fetch-lock, and resorting to flushing only when re
sources are exhausted.

A third approach is to partition the processor resourcese Th
simplest is static partitioning [5, 13, 14], but these teghaes can-
not adapt to changing workload behavior. In contrast, DCRA [
partitions dynamically based on memory performance. Tdsea
with frequent L1 cache misses are given large partitionswal
ing them to exploit parallelism beyond stalled memory opera



tions. Threads that cache-miss infrequently are guardreeme
resource share since stalled threads are not allowed bepeird
partitions. Hence, DCRA prevents resource clog by containi
stalled threads. Moreover, DCRA computes partitions based
the threads’ anticipated resource needs, increasinghdison to
the threads that can use resources most efficiently.

Compared to previous techniques, learning-based SMT re-

source distribution is most similar to DCRA. Like DCRA, ouyr-a
proach also uses dynamic partitioning to address resoilogend
improve resource usage efficiency. However, a key distincis
learning-based SMT resource distribution makes pariitigdeci-
sions based on performance feedback, thus optimizing effiokpe
mance. In contrast, DCRA and other previous techniquespearf
resource distribution based on hardware monitors likerilesion
and cache miss counts. Hence, they optimize performange onl
indirectly, potentially missing opportunities for perfoance gains
as discussed in Section 1. Exploiting performance feedhsk
permits optimization to a user-definable performance dib&l—
throughput, per-thread speedup, or fairness—by simplyghg
the performance metric used to drive learning. Previous-tec
nigues cannot tailor their optimizations to a specific perfance
goal. Because it takes time for our learning algorithm tocpss
performance feedback, we update partitioning decisiom®die
cally. Thus, our technique lies somewhere in between DCRA (u
date every cycle) and static partitioning (fixed) in termstsfre-
sponsiveness to dynamic runtime behavior.

Finally, our approach borrows from program phase analy-
sis [16, 17]. Like these techniques, our approach breakgrano
execution into sequences of fixed-size epochs to facilpgatéor-
mance analysis and feedback for runtime optimization. higa
ular, Dynamic Back-end Assignment (DBA) [9] uses epochelas
feedback to drive partitioning of clustered multithreagedces-
sors. Like DBA, we also perform partitioning based on perfor
mance feedback; however, we control partitioning at a mugdr fi
granularity (per resource entry instead of per clusterd &e de-
sign and evaluate a detailed algorithm for performing fiarting
in an on-line fashion.

3. Limits of Learning-Based SMT Resource Distri-
butions

We begin our investigation with a limit study. To facilitatee
study, this section develops an ideal learning algorithat tleter-
mines a pseudo-optimal resource distribution off-line exhaus-
tive search. Our off-line learning algorithm incurs zereedwad
for computing the resource distributions.

3.1. Off-Line Exhaustive Learning

All of the SMT resource distribution techniques studiedhist
paper perform learning based @hases an approach borrowed
from existing phase detection and prediction techniqués 1Z].
We divide SMT execution into a linear sequenceepbchsor
fixed-size time intervals. For each epoch, the resourceildlision
mechanism specifies a partitioning of select shared process
sources across the simultaneous threads. During epochtsgc
threads are allowed to consume up to (but no more than) tbe all
ted resources within their partition. Hence, partitionqu@rantees
every thread receives some fraction of each shared resource

Normally, the resource distribution mechanism decideptire
titioning for each epoch based on performance feedbackirectju
via processor statistics counters from previously exatafochs.

In contrast, our off-line exhaustive learning algorithntidies the
partitioning based on performance feedback fromciingently ex-
ecuting epoch At the beginning of each epoch, we execute the
epoch once for every possible partitioning of the sharedue=®s.
Amongst these exhaustive trials, we select the trial withtigh-
est measured performance, and advance the machine statd-acc
ingly. The execution time of the best trial is charged to exien
time while the cost of sampling all other trials are ignoredd
then the process is repeated for subsequent epochs. Alitsoiog
off-line learning is impractical for real machines, its Biation via
simulation yields insights into the performance of leagibased
SMT resource distribution.

Unfortunately, simulating off-line exhaustive learnirggdom-
putationally expensive because of the exhaustive triale 1 ex-
cessive simulation times, we are able to study off-lineriewy for
SMT processors with 2 hardware contexts only. However, tthe i
sights derived from our study carry over to larger SMT maekin
Later in Section 4.4, we will evaluate learning-based téqines
on SMT processors with more hardware contexts. In the next tw
sections, we address several design issues pertaining¢cbgpnd
hardware resource partitioning that impact the perforreasfoff-
line exhaustive learning (as well as hill-climbing).

3.1.1. Epochs

Epoch Size. Epoch size, measured in processor cycles, is an im-
portant parameter for any phase-based technique becaffexts
adaptivity. If epoch size is too large, then learning may amtapt
quickly enough to changes in the workload'’s resource desdiid
epoch size is too small, then inter-epoch behavior may bedom
dynamic, making learning difficult. We ran several experitse

to measure the sensitivity of performance to epoch sizenaissu
our hill-climbing algorithm, which we will present in Seocti 4.
Based on these experiments, we found a 64K-cycle epoch size
consistently yields good performance. Smaller epochslekyto
provide higher performance for off-line exhaustive leamsince
dynamic inter-epoch behavior is not a concern when learaffig
line. However, for our limit study, we are interested in ceriz-
ing the limits ofon-linelearning algorithms, so we use a 64K-cycle
epoch size for all of the experiments in this section.

Epoch Performance. Learning-based SMT resource distribution
uses performance feedback to make resource partitioniog de
sions that optimize end performance. An important quesison
what performance metric should we choose to drive the lagrni
algorithms? In the past, three performance metrics have bsed

to characterize SMT performance: average IPC, averageheslg
IPC [18], and harmonic mean of weighted IPC [11]. These met-
rics are defined below, whe®PC; is the IPC of theith thread

in the SMT machineSinglel PC; is the IPC of the stand-alone
execution of theth thread, and’ is the number of threads.

Avg_lPC = Z;PCi (1)
_IPC;

Avg_Weighted_IPC = % )

Harmonic_Mean_of _IPC = W (3)

2

Each metric reflects a different performance goal. Aver&ge |
quantifies throughput improvement; average weighted IP&hqu
tifies execution time reduction; and harmonic mean of weidght
IPC quantifies both performance improvement and fairness. F
evaluating off-line exhaustive learning, we will use theeiage

TPC;
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Figure 3. Block-level diagram of our SMT processor model. Shaded boxes indicate shared hardware structures
that are partitioned by learning-based resource distribution. Dotted boxes indicate additional hardware needed

for our hill-climbing algorithm, presented in Section 4.

Processor Parameters
8-Fetch, 8-Issue, 8-Commit
32-IFQ, 80-Int 1Q, 80-FP 1Q, 256-LSQ
256-Int, 256-FP / 512 entry
6-Int Add, 3-Int Mul/Div, 4-Mem Port
3-FP Add, 3-FP Mul/Div

Branch Predictor Parameters
Hybrid 8192-entry gshare/2048-entry Bimd

Bandwidth
Queue size
Rename reg / ROB
Functional unit

o

Branch predictor

Meta table/BTB/RAS 8192 /2048 4-way / 64
Memory Parameters
IL1 config 64kbyte, 64byte block, 2 way, 1 cycle lat
DL1 config 64kbyte, 64byte block, 2 way, 1 cycle lat
UL2 config 1Mbyte, 64byte block, 4 way, 20 cycle lat
Mem config 300 cycle first chunk, 6 cycle inter chunk

Table 1. SMT simulator settings.

weighted IPC metric. Later, when we evaluate hill-climbimge
will use all three performance metrics.

3.1.2. Hardware Resour ce Partitioning

This paper applies learning-based resource distributioa tle-
tailed SMT processor model. Figure 3 illustrates the precewe
assume. Like other techniques that explicitly control vese dis-
tribution (e.g, DCRA), we dynamically partition several shared
hardware resources in the SMT pipeline that significantlpaat
performance. Specifically, we target the integer issue &),
integer rename registers, and reorder buffer (R&Bich are
shaded gray in Figure 3. In addition to controlling theseicstr
tures, distributing fetch bandwidth is also crucial to SMé&rp
formance. Unfortunately, it is infeasible to partitiondbtusing
learning-based resource distribution due to the high eqy in
which partitioning decisions must be made. Hence, we relghen
ICOUNT fetch policy [20] to distribute fetch bandwidth ass
threads.

One problem with applying learning to all of the shaded struc
tures in Figure 3 is the resource distribution space becames
tractably large. Giverb shared structuredy; entries for structure
1, andT threads, the number of unique ways to distribute the re-
sources id15_, B "), Off-line exhaustive learning must try all
of these unique cases for every epoch. To reduce the seach,sp
we observe that a thread’s usage of different hardware ressis
not independent; instead, the number of entries of each resourc

IMost SMT processors implement private ROBs to simplify fheead commit.
We assume a shared ROB to be consistent with DCRA [2]. Ouroagprwould
still work for private ROBs—we would ignore the ROBs, andtjt@n the remaining
shared resources only.

type a thread occupies is often related. (For example, adhcan
never use more rename registers than the number of ROB entrie
it holds). Hence, many cases do not need to be explored. We ex-
ploit this observation in two ways. First, we assume the nemolp
integer 1Q entries, integer rename registers, and ROBemnti¢-
cupied by a thread ari@ proportion to one anotherRather than
partition every resource independently, our learning ddlyo par-
titions a single resource only, and then applies the santéipar
proportionally to all other resources. Second, we do notiexly
partition the floating point 1Q and rename registers. Byifiart-
ing the integer 1Q, integer rename register, and ROB, wedatly
control how many floating point resources each thread coasum
making learning for these resources less critical.

These simplifications reduce the number of unique resource
distributions t0E .. T~ , where Epmae = maxs;(E;), mak-
ing off-line exhaustive learning significantly more traao® How-
ever, the resource distribution space is still very largmeeially
for largeT. Hence, we constrain our study of off-line exhaustive
learning to SMT machines with 2 hardware contexts.

3.2. Experimental Methodology

We conduct a limit study of learning-based SMT resource dis-
tribution using our off-line exhaustive learning algorihOur ex-
periments are performed on a detailed event-driven siroulatt
an SMT processor that models the pipeline illustrated inuf&d.

The simulator is derived from sim-ssmt [12], an extensiomhef
out-of-order processor model in SimpleScalar [1], and hesnb
used previously to study SMT techniques [3, 8]. For our evalu
ation, we model an 8-way issue SMT processor with 2 hardware
contexts and a 512-entry reorder buffer. The processor arm-m
ory system settings for our simulations are listed in Table 1

We extended sim-ssmt to support dynamic partitioning of the
integer 1Q, integer rename registers, and ROB. We keep a per-
thread count of the entries occupied in each resource, dow al
thread to fetch instructions as long as it hasn’'t exceedepaiti-
tion limit in any resource. If any resources become exhal,ste
corresponding thread is fetch-locked until it releases esafits
entries in the exhausted partition(s). In addition to reseyarti-
tioning, we also use ICOUNT to select the threads from which t
fetch every cycle.

To implement off-line exhaustive learning from Section,3.1
our simulator checkpoints every processor memory streditag-
ister file, pipeline registers, branch predictors, cachts) as well
as main memory at the beginning of each epoch. Then, we run a
simulation for every partitioning of the 256 integer renaragis-
ter across 2 threads (the integer IQ and ROB partitions arise



App Skip | Rsc | Freq Type App Skip | Rsc | Freq Type App Skip | Rsc | Freq Type
bzip2 | 1.1B| 72| No | Int ILP perlbbomk | 1.7B | 59| No | Int ILP eon 0.1B| 82| No | Int]| ILP
vortex | 0.1B | 102 | High | Int ILP gzip 0.2B | 83 | High | Int ILP parser | 1.0B | 90 | High | Int ILP
gap | 0.2B | 208 | No | Int ILP crafty | 0.5B | 125 | High | Int ILP gcce 2.1B | 112 | High | Int | ILP
apsi | 23B| 127| No | FP| ILP fma3d | 1.9B| 72| No | FP| ILP | wupwise| 3.4B| 161| No | FP| ILP
mesa | 0.5B | 110 | No | FP| ILP equake | 0.4B | 100 | No | FP | MEM vpr 0.3B | 180 | High | Int | MEM
mcf | 21B| 97| Low | Int | MEM twolf 2.0B | 184 | High | Int | MEM art 02B| 176 | No | FP | MEM
lucas | 0.8B | 64| No | FP | MEM ammp | 2.6B | 173 | High | FP | MEM swim 04B | 213 | No | FP | MEM
applu | 0.8B | 112 | No | FP | MEM
Table 2. SPEC CPU2000 benchmarks used to create our multiprogrammed workloads.
proportion to the integer rename register partition). Teessimu- ApPp | Rsc | 5 App | Rsc
lation time, we only try every other possible partitionimgducing i i
. - . apsi eon 209 apsi eon fma3d gcc 392
the number of exhaustlye trials to 127 per epoch. Each sirpula fm%3d gec | 184 agsi eon gzip vorgtex 303
starts from the checkpoint and lasts for 64K cycles, the lege. gzip vortex | 184 fma3d gcc gzip vortex | 368
After the exhaustive trials complete, we run one final sirtiofa W%devigze;%%c %gg mgéngt;ZillJD]?me:?’nd Czcipz ggg
using th(_a best partitioning to advar_lce to the next (_epoqh.b'élse fma3d mesa | 182 || crafty fma3d apsi vortex | 425
partitioning is chosen using the weighted IPC metric, Eiquai?) apsi gcc 239 || apsi gap wupwise perlbmk 555
from Section 3.1.1. In addition to off-line exhaustive lgiag, our MIX
simulator also models the ICOUNT, FLUSH, and DCRA policies applu vortex | 214 ammp applu apsieon | 493
to facilitate a comparison against existing techniques. art gzip 259 art mcf fma3d gcc 457
. - ’ wupwise twolf | 345 swim twolf gzip vortex | 581
Our experiments are driven by 42 multiprogrammed workloads lucas crafty | 189 gzip twolf bzip2 mcf 436
created from 22 SPEC CPU2000 benchmarks. Table 2 lists our mcfeon” | 179 mcf mesa lucas gzip | 354
benchmarks. We use the pre-compiled alpha binaries frorisChr et\alglfeag?il ) %g Svavirrtngf?ﬁa“é\’(;’g craly ggg
Weavef which are built with the highest level of compiler opti- 9 P VEM prozip
mization. All of our benchmarks use the reference inputantr applu ammp | 285 ammp applu art mcf | 558
the benchmarks, we created multiprogrammed workloads by fo art mcf 274 art mcf swim twolf 670
lowing the methodology in [2, 19]. We first categorized theEGP swim twolf | 396 || amm apPhJ swim twolf | 681
benchmarks into either high-ILP or memory-intensive peogs, mef twolf 281 mcf twolf vpr parser | 550
att o " " . . art vpr 356 art twolf equake mcf 558
labeled “ILP” and “MEM,” respectively, in Table 2. Then, we art twolf 360 || equake parser mcf lucas| 351
created 3 groups of 2-thread and 3 groups of 4-thread wadkloa swim mcf 310 art mcf vpr swim 666

Table 3 lists our multiprogrammed workloads. The ILP2 anB4L
workloads group high-ILP benchmarks; the MEM2 and MEM4
workloads group memory-intensive benchmarks; and the MIX2
and MIX4 workloads group both high-ILP and memory-inteesiv
benchmarks. Since we simulate only 2 hardware contextsffor o
line exhaustive learning, we use the 2-thread workloads ffa-
ble 3. Later in Section 4.4, when we evaluate hill-climbing
will also use the 4-thread workloads as well.

We selected simulation regions for our multithreaded work-
loads in the following way. First, we used SimPoint [15] to an
alyze the first 16 billion instructions (or the entire exeonj of
each benchmark, and picked the earliest representativenregr
ported by SimPoint. In our SMT simulations, we fast-forward
each benchmark in the multithreaded workload to its reprase
tive region. Table 2 reports the number of skipped instoriin
each benchmark during fast forwarding. Finally, we turn ea d
tailed multithreaded simulation, and simulate for 100 imill“on-
line” instructions {.e., not including the “off-line” exhaustive trials
needed to find the best partitionings). Due to the cost of ksitimg
the exhaustive trials, we are unable to simulate more ingtmis
for our limit study; however, the regions we simulate araespn-
tative thanks to the SimPoint analysis. When evaluatingjran-
learning in Section 4.4, we will use larger simulation regief 1
billion instructions. (The “Rsc” and “Freq” columns in Taisl 2
and 3 will be discussed in Section 4.4.2).

3.3. Off-Line Learning Results

Figure 4 compares off-line exhaustive learning (labele&FO
LINE") against ICOUNT, FLUSH, and DCRA. The figure plots
weighted IPC versus different resource distribution téghes ap-
plied to the 2-thread multiprogrammed workloads. Comggarin

2These SPEC CPU2000 alpha binaries are available at the &Seglar website.

Table 3. Multiprogrammed workloads used in the
experiments.

OFF-LINE and DCRA, we see OFF-LINE outperforms DCRA in
all but two workloads (equake-bzip2 and applu-ammp), mrovi
ing a performance gain of 7.6% on average. Comparing OFF-
LINE, FLUSH, and ICOUNT, we see OFF-LINE outperforms
ICOUNT and FLUSH in all 21 workloads, providing an average
performance gain of 19.2% and 18.0%, respectively. Theektrg
performance gains are achieved for the MEM workloads where
OFF-LINE outperforms ICOUNT, FLUSH, and DCRA by 21.9%,
39.4%, and 13.2%, respectively. Figure 4 demonstrate tiser
significant headroom for learning-based SMT resource ibistr
tion to improve performance over existing techniques. Mueg,
this performance potential exists across a wide range dfloads.

Because each multithreaded workload in Figure 4 execuges at
different rate across the different techniques, it is harddmpare
them directly. To facilitate a more thorough side-by-sideme
parison, we “synchronized” all the techniques by explagitthe
checkpoints acquired in OFF-LINE for the exhaustive triafs
the beginning of every epoch, we simulate ICOUNT, FLUSH, and
DCRA for 64K cycles starting from the same checkpoint used by
OFF-LINE, and record the resulting IPCs. This yields a time-
varying performance profile for each technique, as illustlan
Figure 5. Comparing IPCs from the same epoch in Figure 5
is meaningful because all the techniques are synchronized t
common execution point. (We also verified that synchroirat
does not noticeably alter the end-to-end performance ofU8Q
FLUSH, and DCRA compared to Figure 4).

We performed synchronized versions of the experiments in
Figure 4, and compared time-varying performance acrodsrdif
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ent techniques. For all 21 workloads, OFF-LINE outperforms
ICOUNT and FLUSH in 100% of the epochs. OFF-LINE also

partition space). Insights can be gained by quantifying'sharp-
ness” of the performance peak containing the best pariitipriVe
definehill-width x to be the width of the hill containing the maxi-
mal peak at some performance leval, In Figure 6, we indicate
hill-width ; for N = 0.95, 0.97, and0.99. Peak sharpness can
be assessed by examining hill-widttacross differenfV: a small
hill-width 5 value for a smallV indicates a sharp peak, while a
large hill-widthy value for a largeV indicates a dull peak.

Figure 7 reports hill-width, across severaN (between 0.99
and 0.90) for our 2-thread multiprogrammed workloads; ezah
represents a hill-width value averaged across all epochs from its
corresponding workload. In Figure 7, we see 5 workloadsgkeu
bzip2, mcf-eon, fma3d-mesa, gzip-bzip2, and lucas-crafthibit
very dull peaks. For these workloads, partitionings thaiate by
32-64 registers og-ﬁth of the total integer rename registers away
from the best partitioning still achieve 99% of peak perfarme
(hill-widthg.99 > 32), and partitionings that deviate by roughly 96

registers or%th of the integer rename registers away from the best
still achieve 98% of peak performance (hill-widtfs =~ 96). Due
to dull peaks, these 5 workloads are insensitive to nonmagtpar-
titionings. Hence, as illustrated in Figure 4, OFF-LINE imvles
comparable performance to existing techniqueg,(DCRA) in
these workloads because there is very little performane@rad
tage for learning the best partitioning. Two other workls#gzip-
vortex and apsi-eon) exhibit moderately dull peaks, andaem
strate similarly small OFF-LINE performance gains in Figdr

In contrast, the remaining 14 workloads in Figure 7 exhibit
sharp peaks. To achieve 99% of peak performance for thede wor
loads, we cannot deviate by more than 8 integer rename eegjist
from the best partitioning (hill-widthee < 8), and for 8 of these

outperforms DCRA in 97.2% of the epochs averaged across all 14 workloads, we lose 5% of peak performance when we devi-

the workloads. OFF-LINE is effective all the time. Even tgbu
OFF-LINE uses a fixed resource partitioning over each 64&lecy
epoch (the other techniques update resource distribugoisidns
every cycle), it still achieves higher performance in picaity ev-
ery epoch. These results show phase-based learning is gary g
eral, and has the potential to consistently make higheritguat
source distribution decisions compared to existing tempines.

3.3.1. Hill Peak Analysis

In this and the following section, we investigate the sowfd®@FF-
LINE'’s performance gains. We begin by studying performance
sensitivity inside individual epochs. Since OFF-LINE euba
tively searches over all resource partitionings, we noy dmlow
the best partitioning, but we also know exactly how perfanoe
varies with partitioning for every epoch. Figure 6 shows ttala-
tionship for a hypothetical epoch, plotting IPC (normatize the
maximum IPC) as a function of different partitionings of ih&e-
ger rename registers. As illustrated in Figure 6, the pertorce
variation is typically hill shaped, with one or more peako{
tice the maximal peak may not occur at the middle of the resour

ate by roughly 48 registers from the best (hill-wiglth ~ 4%).

In Figure 4, we see OFF-LINE achieves its largest performanc
gains for these 14 workloads. The hill peak analysis in Fig-
ure 7 shows that the performance of most workloads is seesiti
to small resource partitioning changes due to sharp pednom
peaks within individual epochs. Learning-based SMT reseur
distribution techniques that can find the best partitiorimthese
performance-sensitive epochs will achieve the majoritthefpo-
tential performance gains reported in Figure 4.

3.3.2. Qualitative Analysis

The previous section provides a quantitative analysis oF-OF
LINE’s performance gains. An important question ¢jalita-
tively, what is the source of the performance variations within
epochs, and why do existing techniques miss opportunitiésd
the performance peaks? We found several important casegwhe
existing techniques miss performance that OFF-LINE exploi
First, OFF-LINE exploitscache-miss clusteringCache-miss
clustering occurs whenever multiple memory loads from trae
thread appear in the instruction window and trigger cach&ses
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Figure 7. Hill-width measurements.

simultaneously. Existing techniques rarely exploit caotiss
clustering because they avoid fetching too far past a cadhke n
to prevent clogging resource®.¢, FLUSH flushes after each
cache miss and DCRA prevents fetch into other threads’-pa
tions). However, aggressively fetching past a cache miskeis
sirable if independent cache-missing loads can be brought
the instruction window to exploit memory parallelism. OERNE
learns the best action (contract a thread’s partition tugaeclog-
ging or aggressively increase a thread’s partition to exphem-
ory parallelism) via performance feedback. Existing téghas
conservatively try to prevent resource clogging, possihlgsing
performance in epochs with memory parallelism.

Second, OFF-LINE exploitscompute-intensive low-ILP
threads ICOUNT, FLUSH, and DCRA tend to distribute re-
sources to threads that cache-miss infrequernitly, that are
compute-intensive.  Existing techniques naively assuneh si
threads always exhibit high ILP and will efficiently use the r
sources given to them. However, some compute-intensieadlsr
exhibit low ILP even though they incur very few cache misse
We found two examples in our workloads: threads with long il
struction dependence chains, and threads with poor braneclicp
tion. OFF-LINE contracts partitions containing computéensive
low-ILP threads because it learns that doing so does notcesd
their performance, freeing up larger partitions for threéuht can
gainfully exploit them. Existing techniques provide toonyae-
sources to compute-intensive low-ILP threads becausettieay
all non-cache-missing threads the same, leading to sub{pea
formance.

4. Hill-Climbing SMT Resource Distribution

The limit study from Section 3 shows phase-based
performance-feedback learning applied to SMT resourctidis
bution has the potential to outperform existing SMT techpig
In this section, we try to realize these potential perforogan
gains by developing a technique that performs learningiros-I
A key point motivating our approach is illustrated in Figuze
and discussed in Section 3.3.1: within epochs, SMT perfooaa
varies with partitioning in a hill-shaped manner. Hence,use a
hill-climbing algorithmto follow the slope of performance hills to
directly reach the performance peaks.

4.1. Hill-Climbing Algorithm

Our hill-climbing algorithm builds on top of the off-line ex
haustive algorithm presented in Section 3.1. Like the iof
algorithm, hill-climbing performs learning based on epscand
partitions SMT hardware resources using the approach frem S
tion 3.1.2. However, instead of relying on perfect off-liméor-
mation to choose the best partitioning for an epoch, hithbing

1. #define Epoch_Size 64k
2. #define N Total number of running threads
3. #define Delta 4
4.  #define eval_perf(X) Evaluate the performance of SMT during the epoch X.
5. #define max(A, n)  Get the index of the maximum value in the array A[O : n]
6.  For every Epoch_Size cycles{ /I invoked at the epoch boundary
7. perflepoch_id % N] = eval_perf(epoch_id);

/I evaluate the performance of the previous epoch (a)
8. if (epoch_id % N == (N - 1)) {

/I move the anchor_partition every N-th epochs
9. gradient_thread = max(perf, N);
10. for i=0;i<N;i++)
11. if (i == gradient_thread)

/I move the anchor_partition in favor of gradient_thread
12. anchor_partition[i] += Delta * (N — 1);
13. else
14. anchor_partition[i] -= Delta;
15. }
16. epoch_id++;
17. for i=0;i<N;i++) (b)
18. if (i==epoch_id % N)
/I try giving favor to thread (epoch_id % N)

19. trial_partition[i] += anchor_partition[i] + Delta * (N — 1);
20. else
21. trial_partition[i] -= anchor_partition[i] — Delta;

Figure 8. Hill-climbing algorithm pseudo-code.
Shaded box (a) chooses a new partitioning based
on samples acquired by shaded box (b) along all
possible directions from the current best partition-

ing.

guides partitioning using performance samples acquiretinen
during the execution of previous epochs.

Figure 8 presents the hill-climbing algorithm. The algionit
consists of two parts: a sampling sequence, called a “ro(lime's
16-21), and partition selection at the end of every roumkfi7-
15). An array variable, callednchor _partiti on, stores the
best-performing partition setting currently fouhdDuring each
round, the performance of several partition settings “hear-
chor partition are sampled to determine the local shape of
the performance hill. For each sample, we shift the partitio
ing away fromanchor _parti ti on slightly by giving a sin-
gle thread some resources from the otfier 1 threads (lines
17-21). The amount taken from each of tiie— 1 threads,
Delta, determines how far each sample shifts away fram
chor partition;we useDelta = 4. (In Figure 8, we assume
Delta specifies the number of shifted integer rename registers; a
proportional number of IQ and ROB entries are also shifted).
total, 7" samples are taken, allowing each of fhiehreads to take
turns receiving additional resources.

At the end of a round, the best-performing partitioning agon
the T' samples is identified (line 9). This best partition set-
ting lies along the direction of thpositive gradient(i.e., maxi-
mal performance increase) from taachor _parti ti on. Our

3In the very first roundanchor _parti t i on defaults to an equal partition for
every thread.



algorithm moves in this positive gradient direction by iseft 4.3. Methodology Issues
anchor _parti ti on to the best-performing partitioning found

(lines 10-14). Then, the process repeats as another round be oy evaluation of hill-climbing SMT resource distributioses

gins to determine the positive gradient direction for the reen- the SMT simulator described in Section 3.2. The simulatawig-
chor partition. ] ) . . mented with the hardware and runtime support for hill-clingb
Compared to off-line exhaustive learning, our hill-climbi  gescribed in Section 4.2. To drive our simulations, we ust bo
SMT resource distribution has two limitations. First, fdlimbing the 2- and 4-thread multiprogrammed workloads from Table 3.
incurs learning timeto flnd.t.he.best partition settings. During e pick simulation windows using the methodology described
learning, non-optimal partitionings are used, sacrificpegfor- in Section 3.2, but we extend their duration to 1 billion st

mance opportunities. Second, hill-climbing may be limited tions. However, comparisons against off-line learniagy( Sec-
local maxima When performance hills contain multiple peaks, - tjon 4.4.1) use the smaller simulation windows of 100 millia-

it may be possible for hill-climbing to reach a non-optimalai sty ctions due to the complexity of simulating OFF-LINE stlg,
and become trapped. In Section 4.4, we will study the efféct o \ye evaluate performance using all 3 performance metrics fro

both learning time and local maxima on the performance &f hil  gection 3.1.1. When calculating end performance with aimetr

climbing. that requiresSinglel PC;, we use theSinglel PC; value from an
end-to-end run of each application. When learning with arimet
4.2. Implementation that requiresSinglel PC;, hill-climbing algorithm uses a dynam-

ically sampledSingleI PC; value, as described in Section 4.2.

The modules in dotted lines from Figure 3 show the additional  Part of our evaluation compares hill-climbing to ideal bffe
hardware on top of an SMT processor needed to implement ourl€@rning algorithms. ~ For the 2-thread workloads, we corapar
hill-climbing SMT resource distribution technique. Firsurtech-  against OFF-LINE from Section 3. For the 4-thread workloads
nique requires committed instruction counters per thrahdsg e develop a new off-line algorithm based on hill-climbioglled
counters are available in most SMT processors already) hgsve ~ RAND-HILL. Like OFF-LINE, RAND-HILL uses’check-po[ntlrjg
the number of shared resources—integer IQ entries, integame (see Section 3.2) to search the current epoch’s resourtiéodis
registers, and ROB entries—occupied by each thread. Sgoand tion space with zero overhead.to find a partition setting Far t
technique requires a set of resource partitioning registeat spec- ~ Sameepoch. Instead of exhaustive search, however, RAND-HILL
ify the size of each thread’s partition in each of the thregipa  Performs hill-climbing multiple times. Each hill-climbgpass ex-
tioned shared resources. These partitioning registersiadated ~ €cutes the algorithm in Figure 8 starting from the checkpaird
every epoch by the hill-climbing algorithm. Third, our tedue terminates when a peak is found. Every outer-loop iteratibn
requires fetch logic that compares the resource occupaney-c  the algorithm (line 6 in Figure 8), we restore machine statthe
ters against the partitioning registers, and fetch-loakg thread ~ checkpoint so that the search optimizes for the currentiepaty.
that reaches its partition limit in one or more of the pavtitd When a peak is found, we start a new hill-climbing pass from a
shared resources. randomly choseranchor _partiti on. By performing multi-

In addition, our technique also requires implementing tle h ~ Pl€ hill-climbing passes initiated from random points ire tfe-
climbing algorithm in Figure 8 for updating the resourcetpar ~ Source distribution space, RAND-HILL can find good partifitg
tioning registers every epoch. Because the hill-climbilggathm solutions even when multiple peaks and local maxima gxﬂae T
is invoked only once per epoch, we believe it can be performed S€arch for the current epoch ends after 128 total iteratiéribe
in software. For a software implementation, we envisiomgsi  @lgorithm’s outer-loop (line 6).

a hardware counter to deliver an interrupt to one of the appli

tion threads at the end of each epoch, and use its context to ex4.4. Hill-Climbing Results

ecute the hill-climbing algorithm. In this paper, we accofor

the software implementation’s runtime cost by stalling éméire Figure 9 compares hill-climbing (labeled “HILL-WIPC”)
SMT.propesgor for ZQO cycles. We found a single invocation of against ICOUNT, FLUSH, and DCRA on our 42 workloads. The
the hill-climbing algorithm costs roughly 26 cycles, so 28@les  comparison is made using the weighted IPC metric; hill-biing
should be sufficient, even when factoring in the time to e 550 uses weighted IPC as the performance feedback metric fo

and save/restore the few registers needed by the hill-atignal- learning. Comparing HILL-WIPC, ICOUNT, and FLUSH, we see
gorithm. In any case, our accounting is conservative b&caes )| .WIPC outperforms both ICOUNT and FLUSH in all but
need not stall the entire machine, only one thread. 4 of our 42 workloads, providing an average performance boos

_ Finally, of the 3 performance metrics discussed in Sec- 4 12 494 and 11.3%, respectively. Comparing HILL-WIPC and

tion 3.1.1, average weighted IPC and harmonic mean of weight pcRA, we see HILL-WIPC outperforms DCRA by 2.4% aver-

IPC (Equations 2 and 3) require the stand-alone IPC of eachageq over the 42 workloads. This overall performance gain is

thread,Singlel PC'. Becauseinglel PC; values are notknown  achieved non-uniformly across the different workload grmuPer-

a priori, the hill-climbing algorithm must learn them alomgth formance gains are larger for the 2-thread workloads (3.366)-

the best partitioning. We continuously sample the standalPC pared to the 4-thread workloads (0.4%). Furthermore, withi

of each thread by periodically disabling the other— 1 threads  thread workloads, performance gains are larger for the MEM ¢

for a single epoch and measuring the resulting IPC. To mizeémi egory (5.1%) compared to the ILP and MIX categories (3.4%

overhead, we acquire a sample every 40 epochs only; hertt®, ea gnq 2,704, respectively). However, HILL-WIPC outperforms o

thread'sSinglel PC; is sampled once ever0 T epochs. This matches DCRA acrossl (6 total) categories in Figure 9, which is

sampling cost is included in all of our experiments. a positive result given the size and diversity of our workict.

Figure 10 compares all the techniques using different met-

rics both for measuring performance and for learning. Thiegh
graphs report performance in terms of (a) weighted IPC, (b)
average IPC, and (c) harmonic mean of weighted IPC. Within
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Figure 10. Hill-Climbing versus ICOUNT, FLUSH, and DCRA under the (a) weighted IPC, (b) average IPC, and (c)
harmonic mean of weighted IPC metrics. Hill-Climbing uses average IPC (HILL-IPC), weighted IPC (HILL-WIPC),
and harmonic mean of weighted IPC (HILL-HWIPC) as the performance feedback metric.

each graph, hill-climbing uses either average IPC (HILIG)P HWIPC and DCRA in Figure 10c, we see hill-climbing outper-
weighted IPC (HILL-WIPC), or harmonic mean of weighted IPC forms DCRA by 2.3% under harmonic mean of weighted IPC.
(HILL-HWIPC) as the performance feedback metric for leagi
Results are summarized by workload group to conserve spacey 4 1. Comparing Against Off-Line L earning Algorithms
Comparing HILL-IPC, HILL-WIPC, and HILL-HWIPC across
the graphs, we see hill-climbing achieves its best perfocea  Figure 11 compares HILL-WIPC against our ideal off-linerfea
under a given metric when using the same metric to drive fearn ing algorithmsj.e. OFF-LINE for 2-thread workloads and RAND-
ing. When both evaluation and learning metrics are matchiéle, HILL for 4-thread workloads, under the weighted IPC metiide
climbing performs 5.9% better then when they are not matched note that while OFF-LINE represents the best that hill-tling
This demonstrates one of the strengths of learning-based i8M can do for 2-thread workloads, a similar performance uppend
source distribution: the ability tdirectly optimizahe performance  does not exist for 4-thread workloads since RAND-HILL does n
metric most important to the user. Existing techniques oaop- search exhaustively. To quantify how well RAND-HILL doess w
timize for a particular performance goal. include results for DCRA in the bottom half of Figure 11. Camp
Figures 10b and ¢ show hill-climbing achieves a performance ing RAND-HILL and DCRA, we see RAND-HILL outperforms
gain under the average IPC and harmonic mean of weighted IPCDCRA in all but one 4-thread workload, achieving a 7.4% perfo
metrics in addition to the gains already demonstrated utiter ~ mance boost on average. We also ran synchronized timengaryi
weighted IPC metric in Figure 9. Comparing HILL-IPC against experiments similar to Figure 5, and found RAND-HILL beats
ICOUNT and FLUSH in Figure 10b, we see hill-climbing outper- DCRA in 96.4% of all epochs simulated. Consequently, we find
forms ICOUNT and FLUSH under average IPC in all the workload RAND-HILL consistently performs very well.
groups, providing an average performance boost of 24.2% and Comparing HILL-WIPC and OFF-LINE in Figure 11, we see
7.7%, respectively. Comparing HILL-HWIPC against ICOUNT hill-climbing achieves 96.6% of ideal performance, and pam
and FLUSH in Figure 10c, we see hill-climbing outperforms ing HILL-WIPC and RAND-HILL, we see hill-climbing achieves
ICOUNT and FLUSH under harmonic mean of weighted IPC 94.1% of RAND-HILL's performance, averaged across all work
in all the workload groups as well, providing an average per- loads. The largest performance differences occur in the MEM
formance boost of 19.9% and 13.3%, respectively. Comparing workloads, with some in the MIX workloads as well. For ILP
HILL-IPC and DCRA in Figure 10b, we see hill-climbing outper ~ workloads, HILL-WIPC performs very close to the off-linegat
forms DCRA by 5.1% under average IPC, and comparing HILL- rithms.
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Figure 11. Comparison of HILL-WIPC and OFF-LINE for 2-thread workloads (top graph). Comparison of DCRA,
HILL-WIPC, and RAND-HILL for 4-thread workloads (bottom graph).

To gain further insight, we compared the time-varying behav
ior of HILL-WIPC and OFF-LINE across all of the 2-thread werk
loads. Figure 12 illustrates 5 representative cases aafbgkthe
epochs. This data was generated by running synchronizestiexp
ments using the methodology from Section 3.3. Howevereatst
of synchronizing existing technigues to OFF-LINE (Figujevse
synchronize OFF-LINE to HILL-WIPC. Each graph in Figure 12
plots the partitioning found for the integer rename reggs(the in-
teger IQ and ROB are partitioned proportionally) by HILL-RC
(“+" symbols) and OFF-LINE (white dots) as a function of epoc
ID. In addition, for every epoch, we plot the weighted IPC &ir
possible partitionings (these are visited by OFF-LINEbaxstive
search) using a gray scale: lighter shades represent losvéarp
mance while darker shades represent higher performanasce;ie
by following the change in gray scale along any vertical liwe
can determine the shape of the performance hill within theeeo
sponding epoch.

Figure 12a shows thiemporally-stabl€TS) case. In TS, OFF-
LINE partitioning doesn’t change over time, and there ardob
tlenecks that limit hill-climbing’s movement; hence, afteshort
time, hill-climbing reaches the best partitioning and réamahere
to enjoy the highest possible performance. Figure 12b slibes
spatially-stablgSS) case. In SS, OFF-LINE partitioning changes
rapidly over time, so fast that hill-climbing cannot tradk As a
result, hill-climbing settles in between the fluctuatingsbparti-
tionings. However, in Figure 12b, the different best pamiings
perform similarly, as indicated by the “band” of similar grecales
that encompass the best partitionings. In other words ethes
wide hills, and have a large hill-widthvalue (see Section 3.3.1).
Hence, HILL-WIPC and OFF-LINE achieve similar performance
even though hill-climbing cannot find the absolute best.

Figure 12c shows théemporally-limited(TL) case. In TL,
OFF-LINE partitioning is stable over relatively short peds of
time, experiencing sudden large changes occasionallyeXan-
ple, Figure 12c shows a long period of low performance fodw
by a short period of high performance. Hill-climbing effively
tracks the best partitioning in the low-performing periogedo

its long duration. When the best partitioning changes, i&sdo
not remain stable long enough for hill-climbing to adjusénbe,
hill-climbing misses significant performance opportusstiduring
the high-performing period. The TL case illustrates theitim
tions of finite learning time in hill-climbing. Figure 12d als
the spatially-limited (SL) case. In SL, OFF-LINE partitioning
is relatively stable over time; however, there are multipéaks,
as indicated by the multiple bands of non-monotonicallyyivay
gray scales. Hill-climbing gets “stuck” on one of the nonxinaal
peaks, again missing performance opportunities. The Sé itas
lustrates the limitations of local maxima in hill-climbing

Finally, Figure 12e shows thiitter-limited (JL) case. In JL,
OFF-LINE partitioning is relatively stable. Furthermoig,Fig-
ure 12e, there is a single maximal peale.( no local max-
ima). However, hill-climbing has trouble moving towarde thest
partitioning because of inter-epoch jitter. Although thasipive
gradient within each epoch always points towards the maxima
peak, inter-epoch jitter creates transient positive graidbetween
epochs that temporarily point away from the maximal pealeseh
bogus gradients fool the hill-climber, causing it to reeec®urse
occasionally and move away from the best partitioning.

In Figure 11, we label each of the 2-thread workloads with the
case(s) from Figure 12 that dominate the workload’s timeyring
behavior in the row marked “Observed behavior.” Figure 1dveh
HILL-WIPC closely matches OFF-LINE in TS and SS workloads,
where hill-climbing finds very good partitionings. Fortuely, SS
is quite common, allowing HILL-WIPC to perform well in many
workloads. In contrast, Figure 11 shows a noticeable perdoice
difference between HILL-WIPC and OFF-LINE in TL, SL, and JL
workloads, where hill-climbing has trouble finding good titam-
ings. Interestingly, SL appears in only one workload{ - ntf .
Further investigation revealed that local maxima do ocounany
of our workloads; however, they rargbersistat the same partition
setting for more than 3 or 4 epochs. We find there is some level
of jitter in all our workloads that allows the hill-climbeo tescape
from local maxima.
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Figure 12. Five representative time-varying behaviors of HILL-WIPC and OFF-LINE from the 2-thread workloads:
(a) temporally-stable (TS), (b) spatially-stable (SS), (c) temporally-limited (TL), (d) spatially-limited (SL), and (e)

jitter-limited (JL).

4.4.2. Per-Application Analysis

Unfortunately, we cannot perform Figure 12’s analysis ia th

thread workloads due to the intractability of simulatingFOEINE

for more than 2 threads. In this section, wedictthe 4-thread
workload behaviors by analyzing individual applications.

Two application characteristics affect hill-climbing far
mance:resource requiremerdnd itstime variation We quantify
resource requirements for our benchmarks by executing threm
the SMT simulator stand-alone (without other threads), rzied-
suring IPC as we vary the number of integer rename regigtens f
100% down to 10%. In the column labeled “Rsc” in Table 2, we
report the number of integer rename registers needed t@\achi
95% of the maximum single-thread performance for each bench
mark. Then, in the column labeled “Rsc” in Table 3, we reploet t
sum of the per-application integer rename register requergs
across each workload. This estimates each workload’s resou
requirement to perform “well.” To quantify resource reaarirent
time variation, we perform the same experiment, but we i toe
resource requirement periodically—every 64K cycles—aleahtify
changes between epochs. This analysis reveals 3 behavighs:
frequency variation (a change every 1 or 2 epochs), lowtfeagy
variation (a change after several epochs), or no appreciable
variation. Each benchmark’s time variation behavior isdated
in the column labeled “Freq” in Table 2.

For the 2-thread workloads in Figure 11, we label each work-
load at the row marked “Derived characteristics from indivi
ual application” based on its composite application charis:
tics. Workloads whose resource requirements dare256 are
small, labeled “SM;” workloads whose resource requirersent
exceed256 are large, labeled “LG.” Large workloads are fur-
ther labeled with “H” or “L” whenever a high-frequency or lew

frequency benchmark, respectively, participates in thekigad.
We find good correlation between the labels and workload\beha
iors. Small workloads (SM) almost always exhibit SS behavio
These workloads “fit” within the SMT’s 256 rename registensl a
512-entry ROB. Such resource slack leads to similar perdioce
between widely varying partitionings, as in Figure 12b. &m¢
trast, large workloads exhibit either TL or JL behavior. Wedfi
high-frequency workloads (LG(H)) exhibit JL behavior basa
the frequent inter-epoch resource requirement changesedhe
jitter in Figure 12c; we find low-frequency workloads (LGjlex-
hibit TL behavior because the periodic resource changesin
(the only “Low” benchmark in Table 2) lead to the TL case inFig
ure 12c. Exceptional cases includapw se- gcc, wupwi se-
twol f,twol f-apsi,andappl u- amp, which are large (LG)
but exhibit SS behavior. After close examination, we fowugb-

Wi se, apsi , andappl u are insensitive to partitioning across a
wide range of partition settings. Even in small partitiotieese
benchmarks achieve close to 90% of their maximum singleatthr
performance. Hence, they effectively have smaller resoneeds
then indicated in Table 2.

We label the 4-thread workloads in Figure 11 at the row marked
“Derived characteristics from individual application” & simi-
lar fashion. We choose the SM or LG labels based on resource
requirements from Table 3. However, instead of using 25&
threshold, we increase the threshold4@ to reflect the larger
number of threads in each workload. Then, we add the time vari
ation labels (“H” and “L") to large workloads based on the-par
ticipating benchmarks. Finally, from the “Derived chaexistics
from individual application” labels in Figure 11, waredict the
workload behavior in the row marked “Predicted behaviorM S
workloads yield SS behavior, LG(H) workloads yield JL bebav
and LG(L) workloads yield TL behavior. We find the predicted



workload behaviors correlate to observed performance. drkw
loads with SS behaviors, HILL-WIPC closely matches RAND-
HILL. In workloads with TL or JL behaviors, HILL-WIPC does
not achieve all of the potential performance exhibited byN®A
HILL, just like in the 2-thread workloads.

(3]

(4]

5. Phase Detection and Prediction
(6]

One of the limitations of hill-climbing is finite learningntie.

A natural approach to attack the finite learning time probisto
exploit existing phase detection and prediction techréquhase
detection [15] can be used to determine which epochs ardasimi
Instead of re-learning a partitioning for such an epoch, ae c
simply use a previously learned partitioning to save thenieg
time. Phase prediction [17] can be used to predict a futuoetep
so that we can apply a previously learned partitioning.

We implemented Sherwood’s Basic Block Vector (BBV) sig-
nature analysis technique [15] to perform phase detectioaus
epochs. We use a BBV with 64 entries per SMT context. We also
implemented Sherwood's phase prediction technique [1pf¢e
dict the phase ID of the next epoch. Our phase predictor store
128 unique phase IDs, and uses a 2048-entry run-length edcod
(RLE) Markov predictor. With phase detection and predictiove
are able to boost hill-climbing performance by only 0.4%ossr
all 42 of our multiprogrammed workloads. Interestinglymalst
all of the performance benefit comes from speeding up woddoa
exhibiting the TL behavior, the one that exposes hill-cling’s
learning time problem. Considering only TL workloads, we se
2.1% performance boost. We believe this is a promising agaro
to improve hill-climbing, and plan on pursuing it as futurenk.

El
[10]
[11]

[12]

6. Conclusion

[13]

This paper investigates learning-based SMT resourcelalistr

tion techniques. We present an ideal off-line exhaustiarcte
technique that enables a limit study. Our limit study shows
learning-based SMT techniques have the potential to ingopev-
formance by 19.2% over ICOUNT, 18.0% over FLUSH, and 7.5%
over DCRA. We also present a novel hill-climbing SMT res@&urc
distribution technique which varies the resource share wfipie
threads towards the direction that improves end perfor@a®ur
evaluation shows hill-climbing improves performance by4?%2a
over ICOUNT, 11.3% over FLUSH, and 2.4% over DCRA. Be- [16]
cause our approach learns based on actual performancee-the r
source distribution decisions it makes are customized eéoptr-
formance bottlenecks of the workload. Moreover, whenevarri-
ing for a particular behavior succeeds, our approach finelbést
resource distribution for that behavior. Finally, our amgeh can
optimize for a specific performance goal by using the appaogr
performance feedback metric. Due to these advantages, we be 18]
lieve feedback-based learning is a promising approach K6f S
resource distribution.

(14]

[15]

[17]

[19]
References

[1] D. Burger and T. M. Austin. The SimpleScalar Tool Set, afen
2.0. CS TR 1342, University of Wisconsin-Madison, June 1997

[2] F. J. Cazorla, A. Ramirez, M. Valero, and E. Fernandez ndwi-
cally Controlled Resource Allocation in SMT Processors.Pho-
ceedings of the 37th International Symposium on Microdechire
pages 171-182. IEEE Computer Society, December 2004.

[20]

G. K. Dorai and D. Yeung. Transparent Threads: Resourte- A
cation in SMT Processors for High Single-Thread Perforrearia
Proceedings of the 11th Annual International Conferenc®aral-
lel Architectures and Compilation Techniquesharlottesville, VA,
September 2002.

A. EI-Moursy and D. H. Albonesi. Front-End Policies fanproved
Issue Efficiency in SMT Processors. Pmoceedings of the 9th Inter-
national Conference on High Performance Computer Architegc
February 2003.

R. Goncalves, E. Ayguade, and a. P. O. A. N. M. Valero. @&erf
mance Evaluation of Decoding and Dispatching Stages in ISimu
taneous Multithreaded Architectures. Rroceedings of the 13th
Symposium on Computer Architecture and High Performanca-Co
puting September 2001.
http://www.intel.com/design/Pentium4/index.htmntdl Pentium 4
Processor. 2002.

R. N. Kalla, B. Sinharoy, and J. M. Tendler. IBM Power5 ghi
A Dual-Core Multithreaded ProcessolEEE Micro, 24(2):40-47,
2004.

D. Kim and D. Yeung. Design and Evaluation of Compiler &dg
rithms for Pre-Execution. IfProceedings of the 10th International
Conference on Architectural Support for Programming Leaggs
and Operating Systems (ASPLOS-3an Jose, CA, October 2002.
F. Latorre, J. Gonzalez, and A. Gonzalez. Back-end Assignt
Schemes for Clustered Multithreaded Processor®raceedings of
the 18th Annual International Conference on Supercompufiages
316-325, July 2004.

K. Luo, M. Franklin, S. S. Mukherjee, and A. Seznec. Bous
SMT Performance by Speculation Control. Pmoceedings of the
International Parallel and Distributed Processing Symipos San
Francisco, CA, April 2001.

K. Luo, J. Gummaraju, and M. Franklin. Balancing Thrbpgt
and Fairness in SMT Processors. Pmoceedings of the Interna-
tional Symposium on Performance Analysis of Systems and Sof
ware, November 2001.

D. Madon, E. Sanchez, and S. Monnier. A Study of a Simul-
taneous Multithreaded Processor Implementation.Pioceedings
of EuroPar '99 pages 716-726, Toulouse, France, August 1999.
Springer-Verlag.

D. T. Marr, F. Binns, D. Hill, G. Hinton, D. Koufaty, J. AMiller,
and M. Upton. Hyper-threading Technology Architecture &iel
croarchitecture. Irintel Technology Journal, 6(1February 2002.

S. E. Raasch and S. K. Reinhardt. The Impact of Resolartéiéh-
ing on SMT processors. IRroceedings of the 12th International
Conference on Parallel Architectures and Compilation Teghes
September 2003.

T. Sherwood, E. Perelman, and B. Calder. Basic Blockribis-
tion Analysis to Find Periodic Behavior and Simulation Rsim
Applications. InProceedings of the 10th International Conference
on Parallel Architectures and Compilation Techniqu&eptember
2001.

T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. oAuatti-
cally Characterizing Large Scale Program BehavioPtaceedings
of 10th International Conference on Architectural SupgdortPro-
gramming Languages and Operating SysteSan Jose, CA, Octo-
ber 2002. ACM.

T. Sherwood, S. Sair, and B. Calder. Phase Tracking aedié
tion. In Proceedings of the 30th Annual International Symposium
on Computer Architecturgpages 336—347, June 2003.

A. Snavely, D. M. Tullsen, and G. Voelker. Symbiotic $ohedul-
ing with Priorities for a Simultaneous Multithreading Pessor. In
Proceedings of the International Conference on Measuréraed
Modeling of Computer Systepdine 2002.

D. M. Tullsen and J. A. Brown. Handling long-latency dzain a
simultaneous multithreading processor. Hroceedings of the 34th
annual ACM/IEEE international symposium on Microarchitee,
pages 318-327. IEEE Computer Society, 2001.

D. M. Tullsen, S. J. Eggers, J. S. Emer, H. M. Levy, J. L, bad
R. L. Stamm. Exploiting Choice: Instruction Fetch and Issne
an Implementable Simultaneous Multithreading ProceskoPro-
ceedings of the 1996 International Symposium on Computhi-Ar
tecture Philadelphia, May 1996.



