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Abstract. This paper is the second part of our work on a priori error analysis for finite element
discretizations of parabolic optimal control problems. In the first part [SIAM J. Control Optim.,
47 (2008), pp. 1150–1177] problems without control constraints were considered. In this paper we
derive a priori error estimates for space-time finite element discretizations of parabolic optimal control
problems with pointwise inequality constraints on the control variable. The space discretization of
the state variable is done using usual conforming finite elements, whereas the time discretization is
based on discontinuous Galerkin methods. For the treatment of the control discretization we discuss
different approaches, extending techniques known from the elliptic case.
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1. Introduction. In this paper we develop a priori error analysis for space-time
finite element discretizations of parabolic optimization problems. We consider the
following linear-quadratic optimal control problem for the state variable u and the
control variable q involving pointwise control constraints:

(1.1a) Minimize J(q, u) =
1

2

∫ T

0

∫
Ω

(u(t, x) − û(t, x))2 dx dt +
α

2

∫ T

0

∫
Ω

q(t, x)2 dx dt

subject to

(1.1b)
∂tu− Δu = f + q in (0, T ) × Ω,

u(0) = u0 in Ω

and subject to

(1.1c) qa ≤ q(t, x) ≤ qb a.e. in (0, T ) × Ω,

combined with either homogeneous Dirichlet or homogeneous Neumann boundary
conditions on (0, T )×∂Ω. A precise formulation of this problem including a functional
analytic setting is given in the next section.
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1302 DOMINIK MEIDNER AND BORIS VEXLER

Although the a priori error analysis for finite element discretization of optimal
control problems governed by elliptic equations is discussed in many publications
(see, e.g., [10, 12, 1, 13, 21, 7]), there are only a few published results on this topic
for parabolic problems; see [19, 28, 16, 18, 23].

In the first part of our work on a priori error analysis of parabolic optimal control
problems [20], we developed a priori error estimates for problems without control
constraints. The consideration of control constraints (1.1c) leads to many additional
difficulties. In the absence of inequality constraints the regularity of the optimal
solution (q̄, ū) of (1.1a)–(1.1b) is restricted only by the regularity of the domain Ω;
by the regularity of the data f, u0, û; and possibly by some compatibility conditions.
Therefore, in this case it is reasonable to assume high regularity of (q̄, ū) leading
to a corresponding order of convergence of the finite element discretization; see the
discussion in [20].

The presence of control constraints (1.1c) leads to a stronger restriction of the
regularity of the optimal solution, which is often reflected in a reduction of the order
of convergence of the finite element discretization. For a discussion of the regularity
of solutions to parabolic optimal control problems with control constraints, we refer,
e.g., to [15].

In order to describe the claims and challenges of a priori error analysis for finite
element discretization of (1.1), we first recall some corresponding results in the elliptic
case. Using a finite element discretization with discretization parameter h, one can
define a discretized optimal control problem with the discrete solution (q̄h, ūh).

Many authors made an effort to analyze the behavior of ‖q̄− q̄h‖L2(Ω) with respect
to h: In the first papers concerning approximation of elliptic optimal control problems
(see [10, 12]), the convergence order O(h) was established using a cellwise constant
discretization of the control variable; see also [8, 1, 7]. For finite element discretization
of the control variable by (bi-/tri-)linear H1-conforming elements, the convergence

order O(h
3
2 ) can be shown; see, e.g., [5, 24, 2]. Recently, two approaches achieving

O(h2)-convergence for the error in the control variable have been established; see
[13, 21]. In [13] a variational approach is proposed, where no explicit discretization of
the control variable is used. The discrete control variable is obtained by the projection
of the discretized adjoint state on the set of admissible controls. In [21] a cellwise
constant discretization is utilized, and a postprocessing step is used to obtain the
desired accuracy. The latter technique is extended to optimal control of the Stokes
equations in [25].

For discretization of parabolic problems such as (1.1), the state variable has to be
discretized with respect to space and time leading to two discretization parameters
h, k; see section 3 for a detailed description. The solution of the discretized optimal
control problem is denoted by (q̄σ, ūσ), where σ = (k, h, d) is a general discretization
parameter and d denotes an abstract discretization parameter for the control space;
cf. [20].

The main purpose of this paper is to analyze the behavior of ‖q̄− q̄σ‖L2(0,T ;L2(Ω))

with respect to all involved discretization parameters. Our aim is to discuss the
following four approaches for the discretization of the control variable, which extend
some techniques known from the elliptic case:

1. Discretization using cellwise constant ansatz functions with respect to space
and time. In this case we obtain, similar to [16, 18], the order of convergence
O(h + k): The result is obtained under weaker regularity assumptions than
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in [16, 18]. Moreover, we separate the influences of the spatial and temporal
regularity on the discretization error; see Corollary 5.3.

2. Discretization using cellwise (bi-/tri-)linear, H1-conforming finite elements in
space, and piecewise constant functions in time: For this type of discretization

we obtain the improved order of convergence O(k+h
3
2−

1
p ); see Corollary 5.8.

Here, p depends on the regularity of the adjoint solution. In two space dimen-
sions we show the assertion for any p < ∞, whereas in three space dimensions
the result is proved for p ≤ 6. Under an additional regularity assumption,
one can choose p = ∞ leading to O(k + h

3
2 ). Again the influences of spatial

and temporal regularity as well as of spatial and temporal discretization are
clearly separated.

3. The discretization following the variational approach from [13], where no
explicit discretization of the control variable is used: In this case we obtain
an optimal result O(k + h2); see Corollary 5.11. The usage of this approach
requires a nonstandard implementation and more involved stopping criteria
for optimization algorithms, since the control variable does not lie in any
finite element space associated with the given mesh. However, there are no
additional difficulties caused by the time discretization.

4. The postprocessing strategy extending the technique from [21] to parabolic
problems: In this case we use the cellwise constant ansatz functions with re-
spect to space and time. For the discrete solution (q̄σ, ūσ), a postprocessing
step based on a projection formula is proposed leading to an approxima-

tion q̃σ with order of convergence ‖q̄ − q̃σ‖L2(0,T ;L2(Ω)) = O(k + h2− 1
p ); see

Corollary 5.17. Here, p can be chosen as discussed for the cellwise linear dis-
cretization. Under an additional regularity assumption, one can also choose
p = ∞ leading to O(k + h2).

The paper is organized as follows. In the next section, we present a functional
analytic setting for the optimal control problem (1.1) and discuss optimality conditions
and the regularity of optimal solutions. Section 3 is devoted to the discretization of
the considered optimal control problem. Therein, we address the temporal and spatial
discretizations of the state equation by Galerkin finite element methods. Moreover, we
give a detailed presentation of the four possibilities for discretizing the control variable
introduced above. In section 4 we provide basic results on stability and approximation
quality proved in the first part of this article [20]. In section 5 we develop our main
results on a priori error analysis for the four mentioned types of control discretizations.
Finally, we illustrate our theoretical results by numerical experiments.

2. Optimization. In this section we briefly discuss the precise formulation of the
optimization problem under consideration. Furthermore, we recall theoretical results
on existence, uniqueness, and regularity of optimal solutions as well as optimality
conditions.

To set up a weak formulation of the state equation (1.1b), we introduce the
following notation: For a convex polygonal domain Ω ⊂ R

n, n = 2, 3, we denote V to
be either H1(Ω) or H1

0 (Ω) depending on the prescribed type of boundary conditions
(homogeneous Neumann or homogeneous Dirichlet). Together with H = L2(Ω), the
Hilbert space V and its dual V ∗ build a Gelfand triple V ↪→ H ↪→ V ∗. Here and in
what follows, we employ the usual notion for Lebesgue and Sobolev spaces.

For a time interval I = (0, T ) we introduce the state space

X :=
{
v|v ∈ L2(I, V ) and ∂tv ∈ L2(I, V ∗)

}
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and the control space

Q = L2(I, L2(Ω)).

In addition, we use the following notation for the inner products and norms on L2(Ω)
and L2(I, L2(Ω)):

(v, w) := (v, w)L2(Ω), (v, w)I := (v, w)L2(I,L2(Ω)),

‖v‖ := ‖v‖L2(Ω), ‖v‖I := ‖v‖L2(I,L2(Ω)).

In this setting, a standard weak formulation of the state equation (1.1b) for given
control q ∈ Q, f ∈ L2(I,H), and u0 ∈ V reads as follows: Find a state u ∈ X
satisfying

(2.1)
(∂tu, ϕ)I + (∇u,∇ϕ)I = (f + q, ϕ)I ∀ϕ ∈ X,

u(0) = u0.

As in Proposition 2.1 in [20] the following result on existence and regularity holds.
Proposition 2.1. For fixed control q ∈ Q, f ∈ L2(I,H), and u0 ∈ V there

exists a unique solution u ∈ X of problem (2.1). Moreover, the solution exhibits the
improved regularity

u ∈ L2(I,H2(Ω) ∩ V ) ∩H1(I, L2(Ω)) ↪→ C(Ī , V ).

Furthermore, the stability estimate

‖∂tu‖I + ‖∇2u‖I ≤ C
{
‖f + q‖I + ‖∇u0‖

}
holds.

To formulate the optimal control problem we introduce the admissible set Qad,
collecting the inequality constraints (1.1c) as

Qad := {q ∈ Q|qa ≤ q(t, x) ≤ qb a.e. in I × Ω} ,

where the bounds qa, qb ∈ R fulfill qa < qb.
The weak formulation of the optimal control problem (1.1) is given as follows:

(2.2) Minimize J(q, u) :=
1

2
‖u− û‖2

I +
α

2
‖q‖2

I subject to (2.1) and (q, u) ∈ Qad ×X,

where û ∈ L2(I,H) is a given desired state and α > 0 is the regularization parameter.
Proposition 2.2. For given f, û ∈ L2(I,H), u0 ∈ V , and α > 0 the optimal

control problem (2.2) admits a unique solution (q̄, ū) ∈ Qad ×X.
For the standard proof we refer, e.g., to [17].
The existence result for the state equation in Proposition 2.1 ensures the existence

of a control-to-state mapping q �→ u = u(q) defined through (2.1). By means of this
mapping we introduce the reduced cost functional j : Q → R:

j(q) := J(q, u(q)).

The optimal control problem (2.2) can then be equivalently reformulated as follows:

(2.3) Minimize j(q) subject to q ∈ Qad.
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The first order necessary optimality condition for (2.3) reads as

(2.4) j′(q̄)(δq − q̄) ≥ 0 ∀δq ∈ Qad.

Due to the linear-quadratic structure of the optimal control problem, this condition
is also sufficient for optimality.

Utilizing the adjoint state equation for z = z(q) ∈ X given by

(2.5)
−(ϕ, ∂tz)I + (∇ϕ,∇z)I = (ϕ, u(q) − û)I ∀ϕ ∈ X,

z(T ) = 0,

the first derivative of the reduced cost functional can be expressed as

(2.6) j′(q)(δq) = (αq + z(q), δq)I .

The second derivative j′′(q)(·, ·) is independent of q and positive definite, i.e.,

(2.7) j′′(q)(p, p) ≥ α‖p‖2
I ∀p ∈ Q.

Using a pointwise projection on the admissible set Qad,

(2.8) PQad
: Q → Qad, PQad

(r)(t, x) = max(qa,min(qb, r(t, x))),

the optimality condition (2.4) can be expressed as

(2.9) q̄ = PQad

(
− 1

α
z(q̄)

)
.

It is well known that the projection PQad
possesses the following property:

(2.10)
‖∇(PQad

(v))(t)‖Lp(Ω) ≤ ‖∇v(t)‖Lp(Ω) ∀v ∈ L2(I,W 1,p(Ω)) and for a.a. t ∈ I.

Employing formulation (2.9) of the optimality condition, we obtain the following
regularity result.

Proposition 2.3. Let (q̄, ū) be the solution of the optimization problem (2.2)
and z̄ = z(q̄) be the corresponding adjoint state. Then there holds

ū, z̄ ∈ L2(I,H2(Ω)) ∩H1(I, L2(Ω)),

q̄ ∈ L2(I,W 1,p(Ω)) ∩H1(I, L2(Ω)) ∩ L∞(I × Ω)

for any p < ∞ when n = 2 and p ≤ 6 when n = 3.
Proof. The regularity of ū, z̄ follows directly from Proposition 2.1. The embedding

H2(Ω) ↪→ W 1,p(Ω) and property (2.10) imply the desired result for q̄.

3. Discretization. In this section we describe the space-time finite element dis-
cretization of optimal control problem (2.2).

3.1. Semidiscretization in time. At first, we present the semidiscretization
in time of the state equation by discontinuous Galerkin methods following along the
lines of the first part of this article [20]. We consider a partitioning of the time interval
Ī = [0, T ] as

(3.1) Ī = {0} ∪ I1 ∪ I2 ∪ · · · ∪ IM
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with subintervals Im = (tm−1, tm] of size km and time points

0 = t0 < t1 < · · · < tM−1 < tM = T.

We define the discretization parameter k as a piecewise constant function by setting
k
∣∣
Im

= km for m = 1, 2, . . . ,M . Moreover, we denote by k the maximal size of the
time steps, i.e., k = max km.

The semidiscrete trial and test space is given as

Xr
k =

{
vk ∈ L2(I, V )|vk

∣∣
Im

∈ Pr(Im, V ), m = 1, 2, . . . ,M
}
.

Here, Pr(Im, V ) denotes the space of polynomials up to order r defined on Im with
values in V . On Xr

k we use the notation

(v, w)Im := (v, w)L2(Im,L2(Ω)) and ‖v‖Im := ‖v‖L2(Im,L2(Ω)).

To define the discontinuous Galerkin approximation (dG(r)) using the space Xr
k ,

we employ the following definition for functions vk ∈ Xr
k :

v+
k,m := lim

t→0+
vk(tm + t), v−k,m := lim

t→0+
vk(tm − t) = vk(tm), [vk]m := v+

k,m − v−k,m

and define the bilinear form B(·, ·) for uk, ϕ ∈ Xr
k by

(3.2) B(uk, ϕ) :=

M∑
m=1

(∂tuk, ϕ)Im + (∇uk,∇ϕ)I +

M∑
m=2

([uk]m−1, ϕ
+
m−1) + (u+

k,0, ϕ
+
0 ).

Then, the dG(r) semidiscretization of the state equation (2.1) for given control q ∈ Q
reads as follows: Find a state uk = uk(q) ∈ Xr

k such that

(3.3) B(uk, ϕ) = (f + q, ϕ)I + (u0, ϕ
+
0 ) ∀ϕ ∈ Xr

k .

The existence and uniqueness of solutions to (3.3) can be shown by using Fourier
analysis; see [27] for details.

Remark 3.1. Using a density argument, it is possible to show that the exact
solution u = u(q) ∈ X satisfies the identity

B(u, ϕ) = (f + q, ϕ)I + (u0, ϕ
+
0 ) ∀ϕ ∈ Xr

k .

Thus, we have here the property of Galerkin orthogonality

B(u− uk, ϕ) = 0 ∀ϕ ∈ Xr
k ,

although the dG(r) semidiscretization is a nonconforming Galerkin method (Xr
k �⊂

X).
Throughout the paper we restrict ourselves to the case r = 0. The resulting dG(0)

scheme is a variant of the implicit Euler method. In this case the semidiscrete state
equation (3.3) can be explicitly rewritten as the following time-stepping scheme, using
the fact that uk is piecewise constant in time. We use the notation Um = uk

∣∣
Im

∈ V
and obtain

(U1, ψ) + k1(∇U1,∇ψ) = (f + q, ψ)Im + (u0, ψ) ∀ψ ∈ V,

(Um, ψ) + km(∇Um,∇ψ) = (f + q, ψ)Im + (Um−1, ψ) ∀ψ ∈ V, m = 2, 3, . . . ,M.
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The semidiscrete optimization problem for the dG(0) time discretization has the
following form:

(3.4) Minimize J(qk, uk) subject to (3.3) and (qk, uk) ∈ Qad ×X0
k .

As in Proposition 3.2 in [20] the following result holds.
Proposition 3.2. For α > 0, the semidiscrete optimal control problem (3.4)

admits a unique solution (q̄k, ūk) ∈ Qad ×X0
k .

Note that the optimal control q̄k is searched for in the subset Qad of the continuous
space Q, and the subscript k indicates the usage of the semidiscretized state equation.

Similarly to the continuous case, we introduce the semidiscrete reduced cost func-
tional jk : Q → R:

jk(q) := J(q, uk(q))

and reformulate the semidiscrete optimal control problem (3.4) as follows:

Minimize jk(qk) subject to qk ∈ Qad.

The first order necessary optimality condition reads as

(3.5) j′k(q̄k)(δq − q̄k) ≥ 0 ∀δq ∈ Qad,

and the derivative of jk can be expressed as

(3.6) j′k(q)(δq) = (αq + zk(q), δq)I .

Here, zk = zk(q) ∈ X0
k denotes the solution of the semidiscrete adjoint equation

(3.7) B(ϕ, zk) = (ϕ, uk(q) − û)I ∀ϕ ∈ X0
k .

As on the continuous level, the second derivative j′′k (q) is independent of q and
positive definite, i.e.,

(3.8) j′′k (q)(p, p) ≥ α‖p‖2
I ∀p ∈ Q.

Similarly to (2.9), the optimality condition (3.5) can be rewritten as

(3.9) q̄k = PQad

(
− 1

α
zk(q̄k)

)
.

This projection formula implies particularly that the optimal solution q̄k is piecewise
constant in time. We will make use of this fact in section 5.

3.2. Discretization in space. To define the finite element discretization in
space, we consider two or three dimensional shape-regular meshes; see, e.g., [9].
A mesh consists of quadrilateral or hexahedral cells K, which constitute a non-
overlapping cover of the computational domain Ω. The corresponding mesh is denoted
by Th = {K}, where we define the discretization parameter h as a cellwise constant
function by setting h

∣∣
K

= hK with the diameter hK of the cell K. We use the symbol
h also for the maximal cell size, i.e., h = maxhK .

On the mesh Th we construct a conform finite element space Vh ⊂ V in a standard
way:

V s
h =

{
v ∈ V |v

∣∣
K

∈ Qs(K) for K ∈ Th
}
.
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Here, Qs(K) consists of shape functions obtained via (bi-/tri-)linear transformations

of polynomials in Q̂s(K̂) defined on the reference cell K̂ = (0, 1)n; cf. section 3.2 in
[20].

To obtain the fully discretized versions of the time discretized state equation (3.3),
we utilize the space-time finite element space

Xr,s
k,h =

{
vkh ∈ L2(I, V s

h )|vkh
∣∣
Im

∈ Pr(Im, V s
h )

}
⊂ Xr

k .

Remark 3.3. Here, the spatial mesh, and therefore also the space V s
h , is fixed for

all time intervals. We refer to [26] for a discussion of treatment of different meshes
T m
h for each of the subintervals Im.

The so-called cG(s)dG(r) discretization of the state equation for given control
q ∈ Q has the following form: Find a state ukh = ukh(q) ∈ Xr,s

k,h such that

(3.10) B(ukh, ϕ) = (f + q, ϕ)I + (u0, ϕ
+
0 ) ∀ϕ ∈ Xr,s

k,h.

Throughout this paper we will restrict ourselves to the consideration of (bi-/tri-)linear
elements, i.e., we set s = 1 and consider the cG(1)dG(0) scheme.

Then, the corresponding optimal control problem is given as follows:

(3.11) Minimize J(qkh, ukh) subject to (3.10) and (qkh, ukh) ∈ Qad ×X0,1
k,h,

and by means of the discrete reduced cost functional jkh : Q → R,

jkh(q) := J(q, ukh(q)),

it can be reformulated as follows:

Minimize jkh(qkh) subject to qkh ∈ Qad.

The uniquely determined optimal solution of (3.11) is denoted by (q̄kh, ūkh) ∈ Qad ×
X0,1

k,h.
The optimal control q̄kh ∈ Qad fulfills the first order optimality condition

(3.12) j′kh(q̄kh)(δq − q̄kh) ≥ 0 ∀δq ∈ Qad,

where j′kh(q)(δq) is given by

(3.13) j′kh(q)(δq) = (αq + zkh(q), δq)I

with the discrete adjoint solution zkh = zkh(q) ∈ X0,1
k,h of

(3.14) B(ϕ, zkh) = (ϕ, ukh(q) − û)I ∀ϕ ∈ X0,1
k,h.

For the second derivative of jkh we have, as before,

(3.15) j′′kh(q)(p, p) ≥ α‖p‖2
I ∀p ∈ Q.

3.3. Discretization of the controls. In this subsection, we describe four dif-
ferent approaches for the discretization of the control variable. Choosing a subspace
Qd ⊂ Q, we introduce the corresponding admissible set

Qd,ad = Qd ∩Qad.
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Note that in what follows, the space Qd will be either finite dimensional or the whole
space Q. The optimal control problem on this level of discretization is given as follows:

(3.16) Minimize J(qσ, uσ) subject to (3.10) and (qσ, uσ) ∈ Qd,ad ×X0,1
k,h .

The unique optimal solution of (3.16) is denoted by (q̄σ, ūσ) ∈ Qd,ad × X0,1
k,h, where

the subscript σ collects the discretization parameters k, h, and d. The optimality
condition is given using the discrete reduced cost functional jkh introduced before:

(3.17) j′kh(q̄σ)(δq − q̄σ) ≥ 0 ∀δq ∈ Qd,ad.

3.3.1. Cellwise constant discretization. The first possibility for the control
discretization is to use cellwise constant functions. Employing the same time parti-
tioning and the same spatial mesh as for the discretization of the state variable, we
set

Qd =
{
q ∈ Q|q

∣∣
Im×K

∈ P0(Im ×K), m = 1, 2, . . . ,M, K ∈ Th
}
.

The discretization error for this type of discretization will be analyzed in section 5.1.

3.3.2. Cellwise linear discretization. Another possibility for the discretiza-
tion of the control variable is to choose the same control discretization as for the state
variable, i.e., piecewise constant in time and cellwise (bi-/tri-)linear in space. Using
a spatial space

Qh =
{
v ∈ C(Ω̄)|v

∣∣
K

∈ Q1(K) for K ∈ Th
}
,

we set

Qd =
{
q ∈ Q|q

∣∣
Im

∈ P0(Im, Qh)
}
.

The state space X0,1
k,h coincides with the control space Qd in the case of homogeneous

Neumann boundary conditions and is a subspace of it, i.e., Qd ⊃ X0,1
k,h in the presence

of homogeneous Dirichlet boundary conditions.
The discretization error for this type of discretization will be analyzed in sec-

tion 5.2.

3.3.3. Variational approach. Extending the discretization approach presented
in [13], we can choose Qd = Q. In this case the optimization problems (3.11) and
(3.16) coincide, and therefore q̄σ = q̄kh ∈ Qad.

We use the fact that the optimality condition (3.12) can be rewritten employing
the projection (2.8) as

q̄kh = PQad

(
− 1

α
zkh(q̄kh)

)
,

and we obtain that q̄kh is a piecewise constant function in time. However, q̄kh is in
general not a finite element function corresponding to the spatial mesh Th. This fact
requires more care for the construction of algorithms for computation of q̄kh; see [13]
for details.

The discretization error for this type of discretization will be analyzed in sec-
tion 5.3.
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3.3.4. Postprocessing strategy. The strategy described in this section extends
the approach from [21] to parabolic problems. For the discretization of the control
space we employ the same choice as in section 3.3.1, i.e., cellwise constant discretiza-
tion. After the computation of the corresponding solution q̄σ, a better approximation
q̃σ is constructed by a postprocessing, making use of the projection operator (2.8):

(3.18) q̃σ = PQad

(
− 1

α
zkh(q̄σ)

)
.

Note that, similar to the solution obtained by the variational approach in section 3.3.3,
the solution q̃σ is piecewise constant in time and is generally not a finite element
function in space with respect to the spatial mesh Th. This solution can be simply
evaluated pointwise; however, the corresponding error analysis requires an additional
assumption on the structure of active sets; see the discussion in section 5.4.

4. Auxiliary results. In this section we recall some results provided in the first
part of this article [20], which will be used in what follows.

The first proposition provides a stability result for the purely time discretized
state and adjoint solutions. It follows from Theorems 4.1 and 4.3 and Corollaries 4.2
and 4.5 of [20] as well as from elliptic regularity.

Proposition 4.1. For q ∈ Q let the solutions uk(q) ∈ X0
k and zk(q) ∈ X0

k be
given by the semidiscrete state equation (3.3) and adjoint equation (3.7), respectively.
Then it holds that

‖∇2uk(q)‖I + ‖∇uk(q)‖I + ‖uk(q)‖I ≤ C
{
‖f + q‖I + ‖∇u0‖ + ‖u0‖

}
,

‖∇2zk(q)‖I + ‖∇zk(q)‖I + ‖zk(q)‖I ≤ C‖uk(q) − û‖I .

A similar result holds for the fully discretized solutions of the state and adjoint
equations; cf. Theorem 4.6 and Corollary 4.7 in [20].

Proposition 4.2. For q ∈ Q let the solutions ukh(q) ∈ X0,1
k,h and zkh(q) ∈ X0,1

k,h

be given by the discrete state equation (3.10) and adjoint equation (3.14), respectively.
Then it holds that

‖∇ukh(q)‖I + ‖ukh(q)‖I ≤ C
{
‖f + q‖I + ‖∇Πhu0‖ + ‖Πhu0‖

}
,

‖∇zkh(q)‖I + ‖zkh(q)‖I ≤ C‖ukh(q) − û‖I ,

where Πh : V → Vh denotes the spatial L2-projection.
In the following two propositions, we recall a priori estimates for the errors due to

temporal and spatial discretizations of the state and adjoint variables. The assertions
are proved in [20] by means of Theorems 5.1 and 5.5 as well as by Lemma 6.2 presented
therein.

Proposition 4.3. For q ∈ Q let the solutions u(q) ∈ X and z(q) ∈ X be
given by the state equation (2.1) and adjoint equation (2.5), respectively. Moreover,
let uk(q) ∈ X0

k and zk(q) ∈ X0
k be determined as solutions of the semidiscrete state

equation (3.3) and adjoint equation (3.7). Then the following error estimates hold:

‖u(q) − uk(q)‖I ≤ Ck‖∂tu(q)‖I ,

‖z(q) − zk(q)‖I ≤ Ck
{
‖∂tu(q)‖I + ‖∂tz(q)‖I

}
.

Proposition 4.4. For q ∈ Q let the solutions uk(q) ∈ X0
k and zk(q) ∈ X0

k be
given by the semidiscrete state equation (3.3) and adjoint equation (3.7), respectively.
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Moreover, let ukh(q) ∈ X0,1
k,h and zkh(q) ∈ X0,1

k,h be determined as solutions of the
discrete state equation (3.10) and adjoint equation (3.14). Then the following error
estimates hold:

‖uk(q) − ukh(q)‖I ≤ Ch2‖∇2uk(q)‖I ,

‖zk(q) − zkh(q)‖I ≤ Ch2
{
‖∇2uk(q)‖I + ‖∇2zk(q)‖I

}
.

Proposition 4.2 provides a stability result for the discrete adjoint solution with re-
spect to the norm of L2(I,H1(Ω)). For later use we additionally prove a corresponding
result with respect to the norm of L2(I, L∞(Ω)).

Lemma 4.5. For q ∈ Q let the solutions ukh(q) ∈ X0,1
k,h and zkh(q) ∈ X0,1

k,h be
given by the discrete state equation (3.10) and adjoint equation (3.14), respectively.
Then it holds that

‖zkh(q)‖L2(I,L∞(Ω)) ≤ C‖ukh(q) − û‖I .

Proof. We define an additional adjoint solution z̃k ∈ X0
k as solution of

B(ϕ, z̃k) = (ϕ, ukh(q) − û)I ∀ϕ ∈ X0
k .

Since z̃k and zkh(q) are given by means of the same right-hand side ukh(q) − û, it is
possible to apply standard a priori error estimates to the discretization error zkh(q)−z̃k
similar to Proposition 4.4.

By inserting the solution z̃k and utilizing the embedding L2(I,H2(Ω)) ↪→ L2

(I, L∞(Ω)), we get

‖zkh(q)‖L2(I,L∞(Ω)) ≤ ‖zkh(q) − z̃k‖L2(I,L∞(Ω)) + ‖z̃k‖L2(I,L∞(Ω))

≤ ‖zkh(q) − z̃k‖L2(I,L∞(Ω)) + C‖z̃k‖L2(I,H2(Ω)).

For the first term we obtain, by inserting a spatial interpolation ihz̃k ∈ X0,1
k,h,

(4.1) ‖zkh(q)− z̃k‖L2(I,L∞(Ω)) ≤ ‖zkh(q)− ihz̃k‖L2(I,L∞(Ω)) +‖ihz̃k− z̃k‖L2(I,L∞(Ω)).

For the first term on the right-hand side of (4.1) we proceed by means of an inverse
estimate between L∞(Ω) and L2(Ω) for discrete functions, an estimate for the error
due to space discretization (cf. Theorem 5.1 of [20]), and an estimate for the spatial
interpolation error as

‖zkh(q) − ihz̃k‖2
L2(I,L∞(Ω)) =

M∑
m=1

km‖zkh(q)(tm) − ihz̃k(tm)‖2
L∞(Ω)

≤ Ch−n
M∑

m=1

km‖zkh(q)(tm) − ihz̃k(tm)‖2

≤ Ch−n
{
‖zkh(q) − z̃k‖2

I + ‖z̃k − ihz̃k‖2
I

}
≤ Ch4−n‖∇2z̃k‖2

I .

By standard interpolation estimates, we have for the second term on the right-hand
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side of (4.1),

‖ihz̃k − z̃k‖2
L2(I,L∞(Ω)) =

M∑
m=1

km‖ihz̃k(tm) − z̃k(tm)‖2
L∞(Ω)

≤ Ch4−n
M∑

m=1

km‖∇2z̃k(tm)‖2

= Ch4−n‖∇2z̃k‖2
I .

We complete the proof by collecting all estimates and application of the stability
result from Proposition 4.1:

‖zkh(q)‖L2(I,L∞(Ω)) ≤ Ch4−n‖∇2z̃k‖I + C‖z̃k‖L2(I,H2(Ω)) ≤ C‖ukh(q) − û‖I .

5. Error estimates. In this section we provide a priori error estimates for the
different discretization approaches described in section 3. We start with an assertion
of the error between the solution q̄ of the continuous problem (2.2) and the solution
q̄k of the semidiscretized problem (3.4).

Theorem 5.1. Let q̄ ∈ Qad be the solution of optimization problem (2.2) and
q̄k be the solution of the semidiscretized problem (3.4). Then the following estimate
holds:

‖q̄ − q̄k‖I ≤ 1

α
‖z(q̄) − zk(q̄)‖I .

Proof. Using the optimality conditions (2.4) and (3.5), we obtain the relation

−j′k(q̄k)(q̄ − q̄k) ≤ 0 ≤ −j′(q̄)(q̄ − q̄k).

From (3.8) we have with any p ∈ Q:

α‖q̄ − q̄k‖2
I ≤ j′′k (p)(q̄ − q̄k, q̄ − q̄k)

= j′k(q̄)(q̄ − q̄k) − j′k(q̄k)(q̄ − q̄k)

≤ j′k(q̄)(q̄ − q̄k) − j′(q̄)(q̄ − q̄k).

By means of the representations (2.6) and (3.6) of j′ and j′k, respectively, we obtain

α‖q̄ − q̄k‖2
I ≤ (z(q̄) − zk(q̄), q̄ − q̄k)I .

The desired assertion follows by Cauchy’s inequality.

5.1. Cellwise constant discretization. In this section we are going to prove
an estimate for the error ‖q̄− q̄σ‖I when the control is discretized by cellwise constant
polynomials in space and time; see section 3.3.1.

For doing so, we will extend the techniques presented in [8] to the case of parabolic
optimal control problems. This demands the introduction of the solution q̄d of the
following purely control discretized problem:

(5.1) Minimize j(qd) subject to qd ∈ Qd,ad.
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The uniquely determined solution q̄d fulfills the optimality condition

(5.2) j′(q̄d)(δq − q̄d) ≥ 0 ∀δq ∈ Qd,ad.

To formulate the main result of this section, we introduce the L2-projection πd : Q →
Qd and note that, due to the cellwise constant discretization, the following property
holds true:

πdQad ⊂ Qd,ad.

Theorem 5.2. Let q̄ ∈ Qad be the solution of the optimal control problem (2.2),
and let q̄σ ∈ Qd,ad be the solution of the discretized problem (3.16), where the cellwise
constant discretization for the control variable is employed. Moreover, let q̄d ∈ Qd,ad

be the solution of the purely control discretized problem (5.1). Then the following
estimate holds:

‖q̄ − q̄σ‖I ≤ ‖q̄ − πdq̄‖I +
1

α
‖z(q̄d) − πdz(q̄d)‖I +

1

α
‖z(q̄d) − zkh(q̄d)‖I .

Proof. We split the error

‖q̄ − q̄σ‖I ≤ ‖q̄ − q̄d‖I + ‖q̄d − q̄σ‖I

and estimate both terms on the right-hand side separately. For treating the first term,
we use the fact that πdq̄ ∈ Qd,ad and obtain from the optimality conditions (2.4) and
(5.2) the inequalities

j′(q̄)(q̄ − q̄d) ≤ 0 and − j′(q̄d)(πdq̄ − q̄d) ≤ 0.

Using (2.7) we proceed with any p ∈ Q:

α‖q̄ − q̄d‖2
I ≤ j′′(p)(q̄ − q̄d, q̄ − q̄d)

= j′(q̄)(q̄ − q̄d) − j′(q̄d)(q̄ − q̄d)

= j′(q̄)(q̄ − q̄d) − j′(q̄d)(q̄ − πdq̄) − j′(q̄d)(πdq̄ − q̄d)

≤ −j′(q̄d)(q̄ − πdq̄).

By means of the representation of the derivative j′ from (2.6) and the properties of
πd, we have

α‖q̄ − q̄d‖2
I ≤ −j′(q̄d)(q̄ − πdq̄)

= −(αq̄d + z(q̄d), q̄ − πdq̄)I

= (πdz(q̄d) − z(q̄d), q̄ − πdq̄)I ,

and by Young’s inequality we obtain the intermediary result

(5.3) ‖q̄ − q̄d‖2
I ≤ ‖q̄ − πdq̄‖2

I +
1

4α2
‖z(q̄d) − πdz(q̄d)‖2

I .

In order to estimate the term ‖q̄d − q̄σ‖I we exploit the optimality conditions (5.2)
and (3.17) leading to the following relation:

−j′kh(q̄σ)(q̄d − q̄σ) ≤ 0 ≤ −j′(q̄d)(q̄d − q̄σ).
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Using (3.15) and the representations (2.6) for j′ and (3.13) for j′kh, respectively, we
obtain

α‖q̄d − q̄σ‖2
I ≤ j′′kh(p)(q̄d − q̄σ, q̄d − q̄σ)

= j′kh(q̄d)(q̄d − q̄σ) − j′kh(q̄σ)(q̄d − q̄σ)

≤ j′kh(q̄d)(q̄d − q̄σ) − j′(q̄d)(q̄d − q̄σ)

≤ ‖z(q̄d) − zkh(q̄d)‖I‖q̄d − q̄σ‖I .

Thus, we achieve

(5.4) ‖q̄d − q̄σ‖I ≤ 1

α
‖z(q̄d) − zkh(q̄d)‖I .

Collecting estimates (5.3) and (5.4), we complete the proof.
This theorem directly implies the following result.
Corollary 5.3. Under the conditions of Theorem 5.2, the following estimate

holds:

‖q̄ − q̄σ‖I ≤ C

α
k {‖∂tq̄‖I + ‖∂tu(q̄d)‖I + ‖∂tz(q̄d)‖I}

+
C

α
h
{
‖∇q̄‖I + ‖∇z(q̄d)‖I + h

(
‖∇2uk(q̄d)‖I + ‖∇2zk(q̄d)‖I

)}
= O(k + h).

Proof. The assertion follows from Theorem 5.2 by interpolation estimates and
Propositions 4.3 and 4.4. Due to the fact that q̄, q̄d ∈ Qad, we obtain, using the
stability estimates from Proposition 4.1, that all norms involved in this estimate are
bounded by a constant independent of all discretization parameters.

5.2. Cellwise linear discretization. This section is devoted to the error anal-
ysis for the discretization of the control variable by piecewise constants in time and
cellwise (bi-/tri-)linear functions in space as described in section 3.3.2. To this end
we split the error

‖q̄ − q̄σ‖I ≤ ‖q̄ − q̄k‖I + ‖q̄k − q̄σ‖I

and use the result of Theorem 5.1 for the first part. For treating the error ‖q̄k − q̄σ‖I
we adapt the technique described in [4] and [6] to parabolic problems.

The analysis in this section is based on an assumption on the structure of the
active sets. For each time interval Im we group the cells K of the mesh Th depending
on the value of q̄k on K into three sets Th = T 1

h,m ∪ T 2
h,m ∪ T 3

h,m with T i
h,m ∩ T j

h,m = ∅
for i �= j. The sets are chosen as follows:

T 1
h,m := {K ∈ Th|q̄k(tm, x) = qa or q̄k(tm, x) = qb ∀x ∈ K} ,

T 2
h,m := {K ∈ Th|qa < q̄k(tm, x) < qb ∀x ∈ K} ,

T 3
h,m := Th \ (T 1

h,m ∪ T 2
h,m).

Hence, the set T 3
h,m consists of the cells which contain the free boundary between the

active and the inactive sets for the time interval Im.
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Assumption 1. We assume that there exists a positive constant C independent
of k, h, and m such that ∑

K∈T 3
h,m

|K| ≤ Ch

separately for all m = 1, 2, . . . ,M .
Remark 5.4. A similar assumption is used in [21, 25, 2]. This assumption is valid

if the boundary of the level sets

{x ∈ Ω|q̄k(tm, x) = qa} and {x ∈ Ω|q̄k(tm, x) = qb}

consists of a finite number of rectifiable curves.
We consider the usual nodal interpolation operator Id which maps into the space

of cellwise (bi-/tri-)linear functions Qh. It is defined for functions g ∈ C(Ω) by
pointwise setting

(5.5) Idg(xi) = g(xi) for each node xi of Th.

The operator Id will also be applied to time-dependent functions g by the setting
(Idg)(t) = Idg(t).

In the following theorem we provide an assertion on the error ‖q̄k − q̄σ‖I .
Theorem 5.5. Let q̄k ∈ Qad be the solution of the semidiscretized optimal control

problem (3.4) and q̄σ ∈ Qd,ad be the solution of the discrete problem (3.16), where the
cellwise (bi-/tri-)linear discretization for the control variable is employed. Then the
following estimate holds:

‖q̄k − q̄σ‖I ≤ C
(
1 +

1

α

)
‖Idq̄k − q̄k‖I

+
C

α
‖zk(q̄k) − zkh(q̄k)‖I +

C√
α

(
j′k(q̄k)(Idq̄k − q̄k)

) 1
2 .

Proof. We split

(5.6) ‖q̄k − q̄σ‖I ≤ ‖q̄k − Idq̄k‖I + ‖Idq̄k − q̄σ‖I

and estimate the term ‖Idq̄k− q̄σ‖I . Due to the optimality conditions (3.17) and (3.5),
and since Idq̄k ∈ Qd,ad, we have

−j′kh(q̄σ)(Idq̄k − q̄σ) ≤ 0 ≤ −j′k(q̄k)(q̄k − q̄σ),

and due to (3.15) we obtain for any p ∈ Q,

α‖Idq̄k − q̄σ‖2
I ≤ j′′kh(p)(Idq̄k − q̄σ, Idq̄k − q̄σ)

≤ j′kh(Idq̄k)(Idq̄k − q̄σ) − j′kh(q̄σ)(Idq̄k − q̄σ)

≤ j′kh(Idq̄k)(Idq̄k − q̄σ) − j′k(q̄k)(q̄k − q̄σ)

= j′kh(Idq̄k)(Idq̄k − q̄σ) − j′kh(q̄k)(Idq̄k − q̄σ)

+ j′kh(q̄k)(Idq̄k − q̄σ) − j′k(q̄k)(Idq̄k − q̄σ)

+ j′k(q̄k)(Idq̄k − q̄k).

(5.7)



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1316 DOMINIK MEIDNER AND BORIS VEXLER

The representations (3.6) of j′k and (3.13) of j′kh yield, by means of Proposition 4.2,
that for any p, q, r ∈ Q,

|j′kh(p)(r)− j′kh(q)(r)| ≤
{
α‖p− q‖I + ‖zkh(p)− zkh(q)‖I

}
‖r‖I ≤ (C +α)‖p− q‖I‖r‖I

and

|j′kh(q)(r) − j′k(q)(r)| ≤ ‖zk(q) − zkh(q)‖I‖r‖I .

Applying these inequalities to the right-hand side of (5.7) leads to

α‖Idq̄k − q̄σ‖2
I ≤ (C + α)‖Idq̄k − q̄k‖I‖Idq̄k − q̄σ‖I

+ ‖zk(q̄k) − zkh(q̄k)‖I‖Idq̄k − q̄σ‖I + j′k(q̄k)(Idq̄k − q̄k).

With Young’s inequality, we obtain

‖Idq̄k − q̄σ‖2
I ≤ C

(
1 +

1

α2

)
‖Idq̄k − q̄k‖2

I

+
C

α2
‖zk(q̄k) − zkh(q̄k)‖2

I +
C

α
j′k(q̄k)(Idq̄k − q̄k).

Inserting this estimate into (5.6) completes the proof.
In the following two lemmas we provide estimates for the terms j′k(q̄k)(Idq̄k − q̄k)

and ‖Idq̄k − q̄k‖I appearing on the right-hand side of the assertion of Theorem 5.5.
Lemma 5.6. Let q̄k ∈ Qad be the solution of the semidiscretized optimization

problem (3.4) and Idq̄k be the interpolation constructed by (5.5). Then, if Assump-
tion 1 is fulfilled, the following estimate holds for n < p ≤ ∞, provided zk(q̄k) ∈
L2(I,W 1,p(Ω)):

|j′k(q̄k)(Idq̄k − q̄k)| ≤
C

α
h3− 2

p ‖∇zk(q̄k)‖2
L2(I,Lp(Ω)).

Proof. Using representation (3.6) of j′k we have

j′k(q̄k)(Idq̄k − q̄k) = (αq̄k + zk(q̄k), Idq̄k − q̄k)I

=

M∑
m=1

∫
Im

(αq̄k(t) + zk(q̄k)(t), Idq̄k(t) − q̄k(t)) dt

=
M∑

m=1

km(αq̄k(tm) + zk(q̄k)(tm), Idq̄k(tm) − q̄k(tm)).

(5.8)

With the abbreviation dm := αq̄k(tm) + zk(q̄k)(tm) we obtain

(dm, Idq̄k(tm) − q̄k(tm)) =
∑

K∈Th

(dm, Idq̄k(tm) − q̄k(tm))L2(K)

=
∑

K∈T 3
h,m

(dm, Idq̄k(tm) − q̄k(tm))L2(K),
(5.9)

since it holds Idq̄k(tm) = q̄k(tm) on T 1
h,m by construction and dm = 0 on T 2

h,m due to
representation formula (3.9).
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In every cell K ∈ T 3
h,m there is a point xK with dm(xK) = 0. Thus, we get

|(dm, Idq̄k(tm) − q̄k(tm))L2(K)|

≤ |K|1− 2
p ‖dm‖Lp(K)‖Idq̄k(tm) − q̄k(tm)‖Lp(K)

= |K|1− 2
p ‖dm − dm(xK)‖Lp(K)‖Idq̄k(tm) − q̄k(tm)‖Lp(K)

≤ Ch2|K|1− 2
p ‖∇dm‖Lp(K)‖∇q̄k(tm)‖Lp(K).

Inserting this estimate into (5.9) yields, together with Assumption 1,

|(dm, Idq̄k(tm) − q̄k(tm))| ≤ Ch2
∑

K∈T 3
h,m

|K|1− 2
p ‖∇dm‖Lp(K)‖∇q̄k(tm)‖Lp(K)

≤ Ch2

⎛
⎝ ∑

K∈T 3
h,m

|K|

⎞
⎠

1− 2
p

‖∇dm‖Lp(Ω)‖∇q̄k(tm)‖Lp(Ω)

≤ Ch3− 2
p ‖∇dm‖Lp(Ω)‖∇q̄k(tm)‖Lp(Ω).

Then, the estimate

‖∇dm‖Lp(Ω) ≤ α‖∇qk(q̄k)(tm)‖Lp(Ω) + ‖∇zk(q̄k)(tm)‖Lp(Ω),

representation formula (3.9), and property (2.10) imply

|(dm, Idq̄k(tm) − q̄k(tm))| ≤ C

α
h3− 2

p ‖∇zk(q̄k)(tm)‖2
Lp(Ω).

Hence, by inserting this last estimate into (5.8) we obtain the proposed assertion

|j′(q̄k)(Idq̄k − q̄k)| ≤
C

α
h3− 2

p

M∑
m=1

km‖∇zk(q̄k)(tm)‖2
Lp(Ω)

=
C

α
h3− 2

p ‖∇zk(q̄k)‖2
L2(I,Lp(Ω)).

Lemma 5.7. Let q̄k ∈ Qad be the solution of the semidiscretized optimization
problem (3.4) and Idq̄k be the interpolation constructed by (5.5). Then, if Assump-
tion 1 is fulfilled, the following estimate holds for n < p ≤ ∞, provided zk(q̄k) ∈
L2(I,W 1,p(Ω)):

‖Idq̄k − q̄k‖I ≤ C

α

{
h2‖∇2zk(q̄k)‖I + h

3
2−

1
p ‖∇zk(q̄k)‖L2(I,Lp(Ω))

}
.

Proof. Since q̄k is piecewise constant in time we write

(5.10) ‖Idq̄k − q̄k‖2
I =

M∑
m=1

∫
Im

‖Idq̄k(t) − q̄k(t)‖2 dt =

M∑
m=1

km‖Idq̄k(tm) − q̄k(tm)‖2.
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For each m = 1, 2, . . . ,M , we split

‖Idq̄k(tm) − q̄k(tm)‖2 =
∑

K∈Th

‖Idq̄k(tm) − q̄k(tm)‖2
L2(K)

=
∑

K∈T 2
h,m

‖Idq̄k(tm) − q̄k(tm)‖2
L2(K)

+
∑

K∈T 3
h,m

‖Idq̄k(tm) − q̄k(tm)‖2
L2(K).

(5.11)

Here, the sum over K ∈ T 1
h,m vanishes since on T 1

h,m it holds that Idq̄k = q̄k.
The first term on the right-hand side of (5.11) can be estimated as∑

K∈T 2
h,m

‖Idq̄k(tm) − q̄k(tm)‖2
L2(K) ≤ Ch4

∑
K∈T 2

h,m

‖∇2q̄k(tm)‖2
L2(K)

≤ C

α2
h4‖∇2zk(q̄k)(tm)‖2,

since q̄k(tm) = − 1
αzk(q̄k)(tm) on all cells K ∈ T 2

h,m. For the second term on the
right-hand side of (5.11) we proceed by means of representation formula (3.9), prop-
erty (2.10), and Assumption 1:∑

K∈T 3
h,m

‖Idq̄k(tm) − q̄k(tm)‖2
L2(K) ≤

∑
K∈T 3

h,m

|K|1− 2
p ‖Idq̄k(tm) − q̄k(tm)‖2

Lp(K)

≤ Ch2
∑

K∈T 3
h,m

|K|1− 2
p ‖∇q̄k(tm)‖2

Lp(K)

≤ Ch2

⎛
⎝ ∑

K∈T 3
h,m

|K|

⎞
⎠

1− 2
p

‖∇q̄k(tm)‖2
Lp(Ω)

≤ C

α2
h3− 2

p ‖∇zk(q̄k)(tm)‖2
Lp(Ω).

Inserting the last two estimates into (5.11) and plugging (5.11) into (5.10) implies the
stated result.

Corollary 5.8. Under the conditions of Theorem 5.5 and Lemmas 5.6 and 5.7,
the following estimate holds:

‖q̄ − q̄σ‖I ≤ C

α
k
{
‖∂tu(q̄)‖I + ‖∂tz(q̄)‖I

}
+

C

α

(
1 +

1

α

){
h2‖∇2uk(q̄k)‖I

+ h2‖∇2zk(q̄k)‖I + h
3
2−

1
p ‖∇zk(q̄k)‖L2(I,Lp(Ω))

}
= O(k + h

3
2−

1
p ).

Proof. The result follows directly from Theorems 5.1 and 5.5, Lemmas 5.6 and 5.7,
and Proposition 4.4.

In what follows we discuss the result from Corollary 5.8 in more details. This
result holds under the assumption that zk(q̄k) ∈ L2(I,W 1,p(Ω)). From the stability
result in Proposition 4.1 and the fact that q̄k ∈ Qad, we know that

‖zk(q̄k)‖L2(I,H2(Ω)) ≤ C.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

FINITE ELEMENTS FOR PARABOLIC OPTIMAL CONTROL 1319

By a Sobolev embedding theorem we have H2(Ω) ↪→ W 1,p(Ω) for all p < ∞ in
two space dimensions and for p ≤ 6 in three dimensions. This implies the order of

convergence O
(
k + h

3
2−

1
p
)

for all 2 < p < ∞ in two dimensions and O
(
k + h

4
3

)
in

three dimensions, respectively. If in addition ‖zk(q̄k)‖L2(I,W 1,∞(Ω)) is bounded, then

we have in both cases the order of convergence O
(
k + h

3
2

)
.

Remark 5.9. The above result relies on Assumption 1. This assumption is valid
in the majority of practical cases; cf. Remark 5.4. In the absence of this assumption
a weaker result for the behavior of the spatial error can be shown, i.e.,

lim
h→0

1

h
‖q̄k − q̄σ‖I = 0.

The proofs in this section can simply be adapted to this situation. For the corre-
sponding result for elliptic optimal control problems, we refer to [4].

5.3. Variational approach. In this subsection we prove an estimate for the
error ‖q̄ − q̄σ‖I in the case of no control discretization; see section 3.3.3. In this case
we choose Qd = Q, and thus Qd,ad = Qad. This implies q̄σ = q̄kh.

Theorem 5.10. Let q̄ ∈ Qad be the solution of optimization problem (2.2) and
q̄kh ∈ Qad be the solution of the discretized problem (3.11). Then the following esti-
mate holds:

‖q̄ − q̄kh‖I ≤ 1

α
‖z(q̄) − zkh(q̄)‖I .

Proof. The proof is similar to the proof of Theorem 5.1. The optimality condi-
tions (2.4) and (3.12) lead to

−j′kh(q̄kh)(q̄ − q̄kh) ≤ 0 ≤ −j′(q̄)(q̄ − q̄kh).

Using (3.15) we have with any p ∈ Q,

α‖q̄ − q̄kh‖2
I ≤ j′′kh(p)(q̄ − q̄kh, q̄ − q̄kh)

= j′kh(q̄)(q̄ − q̄kh) − j′kh(q̄kh)(q̄ − q̄kh)

≤ j′kh(q̄)(q̄ − q̄kh) − j′(q̄)(q̄ − q̄kh)

= (z(q̄) − zkh(q̄), q̄ − q̄kh)I .

The desired assertion follows by Cauchy’s inequality.
This approach provides the optimal order of convergence stated in the following

corollary.
Corollary 5.11. Let the conditions of Theorem 5.10 be fulfilled. Then there

holds

‖q̄ − q̄kh‖I ≤ C

α
k
{
‖∂tu(q̄)‖I + ‖∂tz(q̄)‖I

}
+

C

α
h2

{
‖∇2uk(q̄)‖I + ‖∇2zk(q̄)‖I

}
= O(k + h2).

Proof. The proof follows directly from Theorem 5.10 and Propositions 4.3
and 4.4.
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5.4. Postprocessing strategy. In this section, we extend the postprocessing
techniques initially proposed in [21] to the parabolic case. As described in section 3.3.4
we discretize the control by piecewise constants in time and space. To improve the
quality of the approximation, we additionally employ the postprocessing step (3.18).

In what follows we will use the operator Rd defined for functions g ∈ C(Ω̄) cellwise
by

Rdg
∣∣
K

= g(SK), K ∈ Th,

where SK denotes the barycenter of the cell K. This operator allows for the following
interpolation estimates.

Lemma 5.12. Let K ∈ Th be a given cell. Then we have that
• for g ∈ H2(K),∣∣∣∣

∫
K

(g(x) − (Rdg)(x)) dx

∣∣∣∣ ≤ Ch2|K| 12 ‖∇2g‖L2(K);

• for g ∈ W 1,p(K) with n < p ≤ ∞,

‖g −Rdg‖Lp(K) ≤ Ch‖∇g‖Lp(K).

Proof. The proof is done by standard arguments using the Bramble–Hilbert
lemma; see [21] for details.

The operator Rd will also be used for time-dependent functions g by setting
(Rdg)(t) = Rdg(t). There holds the following lemma.

Lemma 5.13. For a function gk ∈ X0
k ∩ L2(I,H2(Ω)) and a cellwise constant

function pd ∈ Qd, the estimate

(pd, gk −Rdgk)I ≤ Ch2‖pd‖I‖∇2gk‖I

holds.
Proof. Using Lemma 5.12 we obtain

(pd, gk −Rdgk)I =

M∑
m=1

∫
Im

(pd(t), gk(t) −Rdgk(t)) dt

=

M∑
m=1

km(pd(tm), gk(tm) −Rdgk(tm))

=

M∑
m=1

km
∑

K∈Th

pd(tm, SK)

∫
K

(gk(tm, x) − (Rdgk)(tm, x)) dx

≤ Ch2
M∑

m=1

km
∑

K∈Th

|pd(tm, SK)| |K| 12 ‖∇2gk(tm)‖L2(K).

We complete the proof by Cauchy’s inequality.
Lemma 5.14. Let q̄k ∈ Qad be the solution of the semidiscrete optimization

problem (3.4) and q̄σ ∈ Qd,ad be the solution of the discrete problem (3.16), where the
cellwise constant control discretization is employed. Then the following relation holds:

(αRdq̄k + Rdzk(q̄k), q̄σ −Rdq̄k)I ≥ 0.
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Proof. From the optimality condition (3.5) for q̄k, we obtain

(αq̄k(tm, x) + zk(q̄k)(tm, x)) · (δq(tm, x) − q̄k(tm, x)) ≥ 0

for any δq ∈ Qd,ad pointwise a.e. in Ω and for m = 1, 2, . . . ,M . For an arbitrary cell
K ∈ Th we apply this formula for x = SK and δq = q̄σ:

(αq̄k(tm, SK) + zk(q̄k)(tm, SK)) · (q̄σ(tm, SK) − q̄k(tm, SK)) ≥ 0.

This can be done because of the spatial continuity of zk(q̄k), q̄k, and q̄σ. Due to the
definition of Rd, this is equivalent to

(αRdq̄k(tm, SK) + Rdzk(q̄k)(tm, SK)) · (q̄σ(tm, SK) −Rdq̄k(tm, SK)) ≥ 0.

Then, integration over K and Im, summation over all K ∈ Th, and m = 1, 2, . . . ,M
lead to the proposed relation.

Lemma 5.15. Let q̄k ∈ Qad be the solution of the semidiscrete optimization
problem (3.4) and let ψkh ∈ X0,1

k,h. Moreover, let Assumption 1 be fulfilled and n <
p ≤ ∞. Then, it holds that

(ψkh, q̄k −Rdq̄k)I ≤ C

α
h2

{
‖∇ψkh‖I‖∇zk(q̄k)‖I + ‖ψkh‖L2(I,L∞(Ω))‖∇2zk(q̄k)‖I

}

+
C

α
h2− 1

p ‖ψkh‖L2(I,L∞(Ω))‖∇zk(q̄k)‖L2(I,Lp(Ω)),

provided that zk(q̄k) ∈ L2(I,W 1,p(Ω)).
Proof. By means of the L2-projection πd : Q → Qd, we split

(ψkh, q̄k −Rdq̄k)I = (ψkh, q̄k − πdq̄k)I + (ψkh, πdq̄k −Rdq̄k)I .

Using the optimality condition (3.9) and property (2.10) of the projection operator
PQad

, we have for the first term

(ψkh, q̄k − πdq̄k)I = (ψkh − πdψkh, q̄k − πdq̄k)I ≤ Ch2‖∇ψkh‖I‖∇q̄k‖I

≤ C

α
h2‖∇ψkh‖I‖∇zk(q̄k)‖I .

(5.12)

For the second term we obtain

(ψkh, πdq̄k −Rdq̄k)I =

M∑
m=1

∫
Im

(ψkh(t), πdq̄k(t) −Rdq̄k(t)) dt

=

M∑
m=1

km(ψkh(tm), πdq̄k(tm) −Rdq̄k(tm)).

Utilizing the fact that πdq̄k(tm) as well as Rdq̄k(tm) are constant on each cell K, we
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proceed with

(ψkh(tm), πdq̄k(tm) −Rdq̄k(tm))

=
∑

K∈Th

∫
K

ψkh(tm, x)(πdq̄k(tm, x) − (Rdq̄k)(tm, x)) dx

=
∑

K∈Th

1

|K|

∫
K

ψkh(tm, x) dx

∫
K

(πdq̄k(tm, x) − (Rdq̄k)(tm, x)) dx

≤ ‖ψkh(tm)‖L∞(Ω)

∑
K∈Th

∣∣∣∣
∫
K

(q̄k(tm, x) − (Rdq̄k)(tm, x)) dx

∣∣∣∣ .

(5.13)

As in section 5.2, we split the last sum using the separation Th = T 1
h,m ∪ T 2

h,m ∪ T 3
h,m

for m = 1, 2, . . . ,M . For the sum over T 1
h,m∪T 2

h,m we obtain by means of Lemma 5.12

and the fact that q̄k(tm) equals either qa, qb, or − 1
αzk(q̄k)(tm):

∑
K∈T 1

h,m∪T 2
h,m

∣∣∣∣
∫
K

(q̄k(tm, x) −Rdq̄k(tm, x)) dx

∣∣∣∣
≤ Ch2

∑
K∈T 1

h,m∪T 2
h,m

|K| 12 ‖∇2q̄k(tm)‖L2(K)

≤ C

α
h2‖∇2zk(q̄k)(tm)‖.

(5.14)

For the part of the sum over T 3
h,m, the estimate of Lemma 5.12, Assumption 1, the

optimality condition (3.9), and property (2.10) lead to

∑
K∈T 3

h,m

∣∣∣∣
∫
K

(q̄k(tm, x) −Rdq̄k(tm, x)) dx

∣∣∣∣ ≤ ∑
K∈T 3

h,m

|K|1− 1
p ‖q̄k(tm) −Rdq̄k(tm)‖Lp(K)

≤ Ch
∑

K∈T 3
h,m

|K|1− 1
p ‖∇q̄k(tm)‖Lp(K)

≤ C

α
h2− 1

p ‖∇zk(q̄k(tm))‖Lp(Ω).

(5.15)

Inserting (5.14) and (5.15) into (5.13) and collecting the estimates (5.12) and (5.13)
completes the proof.

The following theorem provides a supercloseness result on the difference Rdq̄k−q̄σ.
Theorem 5.16. Let q̄k ∈ Qad be the solution of the semidiscretized optimization

problem (3.4) and q̄σ ∈ Qd,ad be the solution of the discrete problem (3.16), where
the cellwise constant discretization for the control variable is employed. Moreover, let
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Assumption 1 be fulfilled and n < p ≤ ∞. Then, it holds that

‖Rdq̄k − q̄σ‖I ≤ C

α
h2

{
‖∇2uk(q̄k)‖I +

1

α
‖∇zk(q̄k)‖I +

(
1 +

1

α

)
‖∇2zk(q̄k)‖I

}

+
C

α2
h2− 1

p ‖∇zk(q̄k)‖L2(I,Lp(Ω)),

provided that zk(q̄k) ∈ L2(I,W 1,p(Ω)).
Proof. As before, we proceed with an arbitrary p ∈ Q,

α‖Rdq̄k − q̄σ‖2
I ≤ j′′kh(p)(Rdq̄k − q̄σ, Rdq̄k − q̄σ)

= j′kh(Rdq̄k)(Rdq̄k − q̄σ) − j′kh(q̄σ)(Rdq̄k − q̄σ).

By means of the inequality

−j′kh(q̄σ)(Rdq̄k − q̄σ) ≤ 0 ≤ −(αRdq̄k + Rdzk(q̄k), Rdq̄k − q̄σ)I ,

which is implied by the optimality of q̄σ and Lemma 5.14, and by means of the explicit
representation of j′kh from (3.13), we obtain

α‖Rdq̄k − q̄σ‖2
I ≤ (zkh(Rdq̄k) −Rdzk(q̄k), Rdq̄k − q̄σ)I

≤ (zkh(Rdq̄k) − zk(q̄k), Rdq̄k − q̄σ)I

+ (zk(q̄k) −Rdzk(q̄k), Rdq̄k − q̄σ)I .

(5.16)

For the first term on the right-hand side of (5.16), we have by Cauchy’s inequality,

(zkh(Rdq̄k) − zk(q̄k), Rdq̄k − q̄σ)I ≤ ‖zkh(Rdq̄k) − zk(q̄k)‖I‖Rdq̄k − q̄σ‖I .

By insertion of zkh(q̄k), the term ‖zkh(Rdq̄k) − zk(q̄k)‖I is further estimated as

(5.17) ‖zkh(Rdq̄k) − zk(q̄k)‖I ≤ ‖zkh(Rdq̄k) − zkh(q̄k)‖I + ‖zkh(q̄k) − zk(q̄k)‖I .

Due to the stability estimate of the fully discrete adjoint solution (see Proposition 4.2),
the first term is bounded by

(5.18) ‖zkh(Rdq̄k) − zkh(q̄k)‖I ≤ C‖ukh(Rdq̄k) − ukh(q̄k)‖I .

Further, we have by means of the discrete state equation (3.10) and the discrete
adjoint equation (3.14),

‖ukh(Rdq̄k) − ukh(q̄k)‖2
I = (zkh(q̄k) − zkh(Rdq̄k), q̄k −Rdq̄k)I .

With ψkh = zkh(q̄k) − zkh(Rdq̄k) in Lemma 5.15, we have

‖ukh(Rdq̄k) − ukh(q̄k)‖2
I ≤ C

α
h2

{
‖∇(zkh(q̄k) − zkh(Rdq̄k))‖I‖∇zk(q̄k)‖I

+ ‖zkh(q̄k) − zkh(Rdq̄k)‖L2(I,L∞(Ω))‖∇2zk(q̄k)‖I
}

+
C

α
h2− 1

p ‖zkh(q̄k) − zkh(Rdq̄k)‖L2(I,L∞(Ω))‖∇zk(q̄k)‖L2(I,Lp(Ω)),
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and the stability estimates from Proposition 4.2 and Lemma 4.5,

‖∇(zkh(qk) − zkh(Rdqk))‖I ≤ C‖ukh(Rdqk) − ukh(qk)‖I ,

‖zkh(qk) − zkh(Rdqk)‖L2(I,L∞(Ω)) ≤ C‖ukh(Rdqk) − ukh(qk)‖I ,

yield the following intermediary result:

‖ukh(Rdq̄k) − ukh(q̄k)‖I ≤ C

α
h2

{
‖∇zk(q̄k)‖I + ‖∇2zk(q̄k)‖I

}

+
C

α
h2− 1

p ‖∇zk(q̄k)‖L2(I,Lp(Ω)).

We proceed by inserting this in (5.18) and in (5.17). Together with an estimate for
the second term on the right-hand side of (5.17) from Proposition 4.4, this leads to

(5.19) ‖zkh(Rdq̄k) − zk(q̄k)‖I ≤ Ch2

{
‖∇2uk(q̄k)‖I +

1

α
‖∇zk(q̄k)‖I

+
(
1 +

1

α

)
‖∇2zk(q̄k)‖I

}
+

C

α
h2− 1

p ‖∇zk(q̄k)‖L2(I,Lp(Ω)).

By applying Lemma 5.13 with pd = Rdq̄k − q̄σ to the second term on the right-hand
side of (5.16), we get

(zk(q̄k) −Rdzk(q̄k), Rdq̄k − q̄σ)I ≤ Ch2‖Rdq̄k − q̄σ‖I‖∇2zk(q̄k)‖I .

The asserted result is obtained by insertion of the last two estimates into (5.16).
Based on this theorem, we state the main result of this section concerning the

order of convergence of the error between q̄ and q̃σ, where q̃σ is defined using the
postprocessing step (3.18).

Corollary 5.17. Let the conditions of Theorem 5.16 be fulfilled. Then, there
holds

‖q̄ − q̃σ‖I ≤ C

α

(
1 +

1

α

)
k
{
‖∂tu(q̄)‖I + ‖∂tz(q̄)‖I

}

+
C

α

(
1 +

1

α

)
h2

{
‖∇2uk(q̄k)‖I +

1

α
‖∇zk(q̄k)‖I +

(
1 +

1

α

)
‖∇2zk(q̄k)‖I

}

+
C

α2

(
1 +

1

α

)
h2− 1

p ‖∇zk(q̄k)‖L2(I,Lp(Ω)) = O
(
k + h2− 1

p
)
.

Proof. From the optimality condition (2.9) and the definition (3.18) of q̃σ we have
the representation

‖q̄ − q̃σ‖I =

∥∥∥∥PQad

(
− 1

α
z(q̄)

)
− PQad

(
− 1

α
zkh(q̄σ)

)∥∥∥∥
I

.

By means of the Lipschitz continuity of PQad
on L2(I, L2(Ω)), this leads to

(5.20) α‖q̄ − q̃σ‖I ≤ ‖z(q̄) − zkh(q̄σ)‖I ≤ ‖z(q̄) − zk(q̄k)‖I + ‖zk(q̄k) − zkh(q̄σ)‖I .
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The first term is controlled by means of Proposition 4.1, Theorem 5.1, and Proposi-
tion 4.3 as

‖z(q̄) − zk(q̄k)‖I ≤ ‖z(q̄) − zk(q̄)‖I + ‖zk(q̄) − zk(q̄k)‖I

≤ ‖z(q̄) − zk(q̄)‖I + C‖uk(q̄) − uk(q̄k)‖I

≤ ‖z(q̄) − zk(q̄)‖I + C‖q̄ − q̄k‖I

≤
(
1 +

C

α

)
‖z(q̄) − zk(q̄)‖I

≤ C
(
1 +

1

α

)
k
{
‖∂tu(q̄)‖I + ‖∂tz(q̄)‖I

}
.

The second term can be estimated by means of the stability result of Proposition 4.2
as

‖zk(q̄k) − zkh(q̄σ)‖I ≤ ‖zk(q̄k) − zkh(Rdq̄k)‖I + ‖zkh(Rdq̄k) − zkh(q̄σ)‖I

≤ ‖zk(q̄k) − zkh(Rdq̄k)‖I + C‖ukh(Rdq̄k) − ukh(q̄σ)‖I

≤ ‖zk(q̄k) − zkh(Rdq̄k)‖I + C‖Rdq̄k − q̄σ‖I .

Inserting the two last inequalities into (5.20) and applying the estimates from (5.19)
and Theorem 5.16 yield the stated assertion.

The choice of p in Corollary 5.17 follows the description in section 5.2 requiring
zk(q̄k) ∈ L2(I,W 1,p(Ω)). Due to the fact that ‖zk(q̄k)‖L2(I,H2(Ω)) is bounded indepen-
dently of k, the result in Corollary 5.17 holds for any n < p < ∞ in the two dimensional

case, leading to the order of convergence O
(
k+ h2− 1

p
)
. In the three dimensional case

we obtain p = 6 and therefore O
(
k + h

11
6

)
. If in addition ‖zk(q̄k)‖L2(I,W 1,∞(Ω)) is

bounded, then we have in both cases the order of convergence O(k + h2).

6. Numerical results. In this section, we are going to validate the a priori error
estimates for the error in the control, state, and adjoint state numerically. To this
end, we consider the following concretion of the optimal control problem (2.2) with
known exact solution on Ω×I = (0, 1)2×(0, 0.1) and homogeneous Dirichlet boundary
conditions. According to the first part of this article [20], the right-hand side f , the
desired state û, and the initial condition u0 are given in terms of the eigenfunctions

wa(t, x1, x2) := exp(aπ2t) sin(πx1) sin(πx2), a ∈ R,

of the operator ±∂t − Δ as

f(t, x1, x2) := −π4wa(t, x1, x2) − PQad

(
−π4{wa(t, x1, x2) − wa(T, x1, x2)}

)
,

û(t, x1, x2) :=
a2 − 5

2 + a
π2wa(t, x1, x2) + 2π2wa(T, x1, x2),

u0(x1, x2) :=
−1

2 + a
π2wa(0, x1, x2),

with PQad
given by (2.8) with qa = −70 and qb = −1. For this choice of data and

with the regularization parameter α chosen as α = π−4, the optimal solution triple
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(q̄, ū, z̄) of the optimal control problem (2.2) is given by

q̄(t, x1, x2) := PQad

(
−π4{wa(t, x1, x2) − wa(T, x1, x2)}

)
,

ū(t, x1, x2) :=
−1

2 + a
π2wa(t, x1, x2),

z̄(t, x1, x2) := wa(t, x1, x2) − wa(T, x1, x2).

We are going to validate the estimates developed in the previous section by sepa-
rating the discretization errors. That is, we consider at first the behavior of the error
for a sequence of discretizations with decreasing size of the time steps and a fixed
spatial triangulation with N = 1089 nodes. Second, we examine the behavior of the
error under refinement of the spatial triangulation for M = 2048 time steps.

The state discretization is chosen as cG(1)dG(0), i.e., r = 0, s = 1. For the control
discretization we use the same temporal and spatial meshes as for the state variable
and present results for two choices of the discrete control space Qd: cG(1)dG(0)
and dG(0)dG(0). For the following computations, we choose the free parameter a to
be −

√
5.

The optimal control problems are solved by the optimization library RoDoBo

[22] and the finite element toolkit Gascoigne [11] using a primal-dual active set
strategy (cf. [3, 14]) in combination with a conjugate gradient method applied to the
reduced problem (3.16).

Figure 6.1(a) depicts the development of the error under refinement of the tempo-
ral step size k. Up to the spatial discretization error it exhibits the proven convergence
order O(k) for both kinds of spatial discretization of the control space.
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100
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100 101 102 103
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constant control
bilinear control

O(k)

(a) Refinement of the time steps for N =
1089 spatial nodes.

101 102 103 104
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100

101

N

constant control
bilinear control

O(h)
O(h

3
2 )

(b) Refinement of the spatial triangulation
for M = 2048 time steps.

Fig. 6.1. Discretization error ‖q̄ − q̄σ‖I .
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(a) Refinement of the time steps for N =
1089 spatial nodes.
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(b) Refinement of the spatial triangulation
for M = 2048 time steps.

Fig. 6.2. Discretization error ‖ū− ūσ‖I .
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(a) Refinement of the time steps for N =
1089 spatial nodes.
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(b) Refinement of the spatial triangulation
for M = 2048 time steps.

Fig. 6.3. Discretization error ‖z̄ − z̄σ‖I .
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For piecewise constant control (dG(0)dG(0) discretization), the discretization error is
already reached at 128 time steps, whereas in the case of bilinear control (cG(1)dG(0)
discretization), the number of time steps could be increased up to M = 1024 until
reaching the spatial accuracy. This illustrates the convergence results from sections 5.1
and 5.2 with respect to the temporal discretization.

In Figure 6.1(b) the development of the error in the control variable under spa-
tial refinement is shown. The expected order O(h) for piecewise constant control

(dG(0)dG(0) discretization) and O(h
3
2 ) for bilinear control (cG(1)dG(0) discretiza-

tion) are observed. This illustrates the convergence results from sections 5.1 and 5.2
with respect to the spatial discretization.

Figures 6.2 and 6.3 show the errors in the state and in the adjoint variables,
‖ū− ūσ‖I and ‖z̄− z̄σ‖I , for separate refinement of the time and space discretization.
Thereby, we observe convergence of order O(k + h2) regardless of the type of spatial
discretization used for the controls. This is consistent with the results proved in the
previous section. Since the postprocessing strategy presented in section 5.4 relies
essentially on the convergence properties of the adjoint variable, Figure 6.3 confirms
the proven order of convergence of the error ‖q̄ − q̃σ‖I .
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