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Abstract

We consider a cognitive radio system where the secondary transmitter varies its transmit power based on all the information
available from the spectrum sensor. The operation of the secondary user is governed by its peak transmit power constraint and an
average interference constraint at the primary receiver. Without restricting the sensing scheme (total received energy, or correlation
etc), we characterize the power adaptation strategies that maximize the secondary user’s SNR and capacity. We show that, in
general, the capacity optimal power adaptation requires decreasing the secondary transmit power from the peak power to zero in a
continuous fashion as the probability of the primary user being present increases. We find that that power control that maximizes
the SNR is binary, i.e., if there is any transmission, it takes place only at the peak power level. Numerical results for common
spectrum sensing schemes show that the SNR and capacity maximizing schemes can be very different. With an average transmit
power constraint at the secondary radio, both the SNR and capacity optimal power control schemes are observed to be non-binary.
Further, we find that with secondary channel knowledge at the cognitive transmitter, the optimal SNR with an average transmit
power constraint is unbounded.

I. INTRODUCTION

The widespread acceptance of diverse wireless technologies in recent years has resulted in a huge demand for more bandwidth.
The traditional ‘divide and set aside’ approach to spectrum regulation has ensured that the licensed (primary) users cause
minimal interference to each other. However, it has also created a crowded spectrum with most frequency bands already
assigned to different licensees [1]–[3]. The term ‘cognitive radio’ can be thought of as encompassing several techniques [4]–
[11] that seek to overcome the spectral shortage problem by allowing secondary (unlicensed) wireless devices to communicate
without interfering with the primary users. This paper will exclusively focus on the ‘interweave’ (interference avoidance)
approach [7]–[11] to cognitive radio, wherein the secondary radio periodically monitors and intelligently detects occupancy in
the different frequency bands and then opportunistically communicates over the spectrum holes with minimal interference to
the active primary users.

The main challenge to cognitive communication lies in striking a balance between the conflicting goals of minimizing the
interference to the primary users and maximizing the performance of the secondary users. This issue has been investigated
from a number of perspectives [9], [12]–[27]. In [12], the tradeoff between secondary user performance and primary user
interference is optimized by jointly designing the spectrum sensor, the sensing strategy (how the channels to be monitored
for primary users are chosen) and the access strategy (whether or not to access a channel given the sensing sensing outcome).
[12] discovers that the spectrum sensing strategy can be decoupled from the spectrum access strategy and the spectrum sensor
without any loss in performance. Considering queues at the primary and secondary users, [14] investigates the maximum stable
throughput of the cognitive link given the primary user’s throughput under both perfect and imperfect sensing. [15] explores
the capacities achievable by the secondary user with interference constraints at the primary receiver.

The interplay between protection to the primary users and the performance of the secondary users can be handled by
adapting the secondary user’s transmit power to ensure a certain quality of service (QoS) to the primary user [16]–[26]. Many
papers [17]–[21] consider cognitive communication in an interference channel setting, i.e., one where multiple users (some
designated ‘primary’ and the rest ‘secondary’) communicate simultaneously in the presence of mutual interference. Since all the
users transmit concurrently, there is no sensing involved. The power control optimization is formulated as a general multiuser
communication problem with different quality of service (QoS) constraints at the different (‘primary’ and ‘secondary’) users.
[17] proposes an algorithm for capacity optimum power control in the network under interference constraints at the primary
receivers. [18], [19] consider minimum SINR (signal to interference noise ratio) constraints at the primary and secondary users
and studies the secondary sum rate optimal power adaptation. [19] also considers the extended problem when the different
secondary users have different priorities. In a similar setting with the same kind of constraints [20], [21] investigate joint
power and admission control in cognitive radio networks. While [15] considers AWGN channels, [16] considers Rayleigh
and Nakagami fading channels with power control at the secondary transmitter. It is shown that fading channels allow higher
secondary user capacities for the same average primary user interference constraints. [22], [23] consider power spectrum shaping
to manage interference in orthogonal frequency division multiplexing (OFDM) and Direct Sequence Spread Spectrum (DSSS)
based cognitive radio networks. Defining the problem in terms of spectrum sharing games, [24]–[26] investigate power control
exploiting game theory concepts.
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Some recent works consider power control for the interweave flavor of cognitive radio, wherein the transmit power is adapted
based on information gathered from sensing. The primary user sensing is implemented as a binary hypothesis test, i.e., the
spectrum sensor (at the secondary user) outputs a binary decision (0 or 1) that indicates whether or not the primary user has
been detected. The secondary transmit power depends on the sensed signals only through this binary decision. This kind of
power adaptation is based on hard decisions. In the absence of secondary channel knowledge at the transmitter, it involves
transmitting at two power levels - zero when the primary user is detected and at the peak power when no primary radio is
deemed present - thereby simplifying implementation at the cognitive transmitter. With binary detection and binary power
control, protecting the primary users reduces to satisfying a missed detection probability constraint while maximizing the
secondary performance reduces to satisfying a false alarm probability constraint. This idea is used in [9], [27] to calculate the
peak secondary transmit power needed to satisfy constraints on the missed detection and false alarm probabilities.

We emphasize that there is a loss of information in translating the (analog) sensed signals to a binary decision. The
motivation behind our work stems from the possibility that the soft information from sensing can be used through sophisticated
(continuous) power control to improve the system performance. For example, instead of the simple two level power switching
(zero or peak power), one can have a power adaptation scheme where the transmit power increases continuously from 0 to the
peak power Pmax as a function of the sensed information. With soft sensing based continuous power adaptation, the notions
of missed detection and false alarm probabilities are irrelevant. This generalized setting brings us back to the ultimate goals
of protecting the primary users and maximizing the performance (SNR or capacity) of the secondary users. With soft power
control, these reduce to the more fundamental constraints of minimizing some definition of interference at the primary receiver
(for ex. average interference power at the primary receiver) and maximizing some definition of secondary user performance (for
example, SNR or capacity of the secondary user). While binary detection and power control are interesting for their simplicity,
we explore soft sensing and continuous power adaptation in order to identify optimal cognitive radio design principles. The
differences between hard decision and soft decision based power control are summarized in summarized in Table I.

Cognitive Radio Goals Hard Decision (Conventional) Based Power Adaptation Soft Decision Based Power Adaptation
Protection for primary
users

Maximizing the probability of detection Minimizing some definition of ‘interference’ caused
to primary users

Performance of secondary
users

Minimizing the probability of false alarm Maximizing the SNR (or capacity) of the secondary
user

TABLE I: Hard decision vs soft decision based power control

We consider a cognitive radio system where the secondary transmitter varies its transmit power based on the value of the
sensing metric. The operation of the secondary radio is governed by an average interference constraint at the primary receiver.
Without limiting the kind of sensing scheme at the cognitive transmitter, we derive SNR and capacity optimal secondary
transmit power adaptation schemes with a peak secondary transmit power constraint. Other considerations such as an average
secondary transmit power constraint and availability of secondary channel knowledge at the cognitive transmitter are also
explored. The following is a summary of our main results:
• For a peak power constraint at the secondary transmitter, we characterize the power adaptation strategies that maximize

the SNR at the secondary receiver and the capacity of the secondary user. We find that binary (hard) power adaptation is
optimal for SNR regardless of the type of sensing metric, i.e., the SNR optimal power adaptation policy mandates that
transmissions take place only at the peak power. We show that this is true regardless of whether or not the secondary
transmitter has knowledge of the secondary channel.

• On the other hand, we find that the general capacity optimal power adaptation for a peak power constraint is not binary
and involves transmissions at non-boundary power levels between zero and the peak power. With numerical results, we
show that even for the commom energy sensing scheme, the SNR optimal and capacity optimal power adaptation schemes
are very different.

• With an average power constraint at the secondary transmitter, we find that the SNR optimal power adaptation is not
binary. Further, when the secondary transmitter has knowledge of the secondary channel, the resulting SNR is shown to
be unbounded.

We begin with assumptions about the system model in Section II.

II. SYSTEM MODEL

Consider a communication system with a primary transmitter (PT ) and primary receiver (PR) licensed to operate over a
certain frequency band as shown in Figure 1. The primary user (primary transmitter - receiver pair, PU) activity follows a
block static model with a coherence time Tc and an ON probability of α, i.e., the primary user switches to an independent
ON (or OFF) state (with a probability α of switching to the ON state) every Tc channel uses. We assume that the primary
transmitter uses a Gaussian codebook with an average power Pt for the primary transmissions.

To allow for higher spectral efficiencies, the channel is also open to be used by a cognitive user (secondary transmitter (ST )
- secondary receiver (SR) pair, SU) as Figure 1 shows.
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Fig. 1: System Model.

The channel coefficients between each of the primary and secondary nodes are considered to be independent Rayleigh
distributed variables with variances that depend on the distances between the nodes, i.e.,

hij = CN

(
0,

1
d2

ij

)
, (1)

where dij is the corresponding distance between the associated pair of nodes as shown in Figure 1. We assume no channel
state information (CSI) at the transmitting nodes and perfect CSI at the receivers.

Every block, the primary user detector at the secondary transmitter monitors the frequency band for primary transmissions
(Figure 1). Based on the signals received, the detector calculates a sufficient sensing metric γ as Figure 1 shows. To be as
general as possible, we do not restrict the type of primary user detector, i.e., γ can represent any sensing metric (for example, γ

can denote the total signal power observed, or the correlation between the observed signal and a known signal pattern, etc). We
assume that the statistics of γ conditioned on the primary user being ON/OFF are known a priori at the secondary transmitter.
We denote the distribution of γ given that the primary user is OFF by f0 (γ). Similarly, given that the primary user is ON,
γ ∼ f1 (γ).

The secondary transmitter adapts its transmit power depending on the value of γ, i.e., if the value of the sensing metric in a
certain block is γ, a power P (γ) is used to transmit the secondary signals for that block. We assume a peak power constraint
at the secondary transmitter, i.e.,

Peak Power Constraint:
P (γ) 6 Pmax ∀ γ. (2)

The secondary user is allowed to operate within the same frequency band as long as the average power received at the
primary receiver (when the primary user is ON) does not exceed a certain threshold I0, i.e.,

Average Interference Constraint:

EγEh21

[
P (γ) |h21|

2
∣∣∣PU ON

]
= Ef1 [P (γ)]

1
d2

21
6 I0, (3)

where Ef1 [· ] denotes an expectation over the distribution f1 (γ).

A. Problem Statement

The performance metrics of interest to us are the average SNR at the secondary receiver and the ergodic capacity of the
secondary user. For the system model presented above, we seek answers to the following:
• Does soft sensing help improve the secondary user’s SNR (or capacity)?
• What is the optimal power control strategy P∗ (γ) that maximizes the secondary user’s average SNR (or capacity)?

III. OPTIMAL POWER ADAPTATION WITH A PEAK POWER CONSTRAINT

In this section, we consider the problem of secondary radio SNR and capacity optimization under the average interference
(equation (2)) and peak power (equation (3)) constraints.
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A. SNR Maximization

The average SNR at the secondary receiver ξs can be written as in equation (4). θ is a binary random variable that denotes
whether the PU is ON (θ = 1, Prob [θ = 1] = α) or OFF (θ = 0, Prob [θ = 0] = 1 − α = ᾱ). Conditioning on θ, we can

write equation (4) as equation (5). Further simplification follows from the fact that Eh12

[
1

1+Pt|h12|
2

]
=

d2
12

Pt
e

d2
12

Pt Γ
(

0, d2
12

Pt

)
,

where Γ (· , · ) is the incomplete Gamma function. Collecting the constants in a0 = ᾱ
d2

22
, a1 = α

ᾱ and ν = Eh12

[
1

1+Pt|h12|
2

]
=(

d2
12

Pt
Γ

(
0, d2

12
Pt

)
e

d2
12

Pt

)
, the average SNR can be expressed as in equation (7).

ξs = Eh12,h22,γ,θ

[
P (γ) |h22|

2

1 + θPt |h12|
2

]
= EθEh12Eγ|θ


P (γ) Eh22

[
|h22|

2
]

1 + θPt |h12|
2


 (4)

= Eh22

[
|h22|

2
](

Prob [θ = 0] Eγ|θ=0 [P (γ)] + Prob [θ = 1] Eγ|θ=1 Eh12

[
P (γ)

1 + Pt |h12|
2

])
(5)

= Eh22

[
|h22|

2
](

ᾱEf0 [P (γ)] + αEf1

[
P (γ) Eh12

[
1

1 + Pt |h12|
2

]])
(6)

=
ᾱ

d2
22

[
Ef0 [P (γ)] +

(
α

ᾱ

d2
12

Pt
Γ

(
0,

d2
12

Pt

)
e

d2
12

Pt

)
Ef1 [P (γ)]

]

= a0 (Ef0 [P (γ)] + a1νEf1 [P (γ)]) (7)

The SNR maximization problem can be written as

max
Ef1 [P(γ)]6I′0 , 06P(γ)6Pmax

Ef0 [P (γ)] + a1νEf1 [P (γ)] , (8)

where I′0 = I0d2
21. For the optimization problem of equation (8), we identify the power adaptation strategy P (γ) that maximizes

the average SNR in the following theorem:
Theorem 1 (SNR Optimal Power Control): For a secondary user operating under the peak transmit power (equation (2))

and average interference (equation (3)) constraints, the power adaptation strategy that maximizes the secondary user’s average
SNR is binary valued, i.e.,

P∗ (γ) =

{
Pmax if f0 (γ) > (λ1 − a1ν) f1 (γ)

0 if f0 (γ) < (λ1 − a1ν) f1 (γ)
, (9)

where γ is the soft information available from sensing and λ1 is chosen such that equation (9) satisfies the average interference
constraint (equation (3)).

Proof: See Section VI-A.
Theorem 1 shows that a binary power control scheme is optimal, i.e., the secondary transmitter simply transmits at either of

the boundary points (0 or the peak power Pmax) based on the roots of the equation f0 (γ)−(λ1 − a1ν) f1 (γ) = 0. Transmission
does not take place at any intermediate power values. This result is somewhat surprising since it establishes that there is no
SNR advantage to the soft information available from primary user sensing regardless of the sensing scheme or the form of
the a priori probabilities. The soft sensing metric output from the sensing block can be replaced with a binary output without
any loss in the average SNR while maintaining the interference level at the primary receiver.

B. Capacity Maximization

The ergodic capacity of the secondary user can be written as in equation (10) by conditioning on the value of θ.

Cs = Eh12,h22,γ,θ log

[
1 +

P (γ) |h22|
2

1 + θPt |h12|
2

]
= Eh22,γ|θ=0 log

[
1 + P (γ) |h22|

2
]
ᾱ + Eh12,h22,γ|θ=1 log

[
1 +

P (γ) |h22|
2

1 + Pt |h12|
2

]
α

(10)
The capacity optimization problem is: max

Ef1 [P(γ)]6I′0 , 06P(γ)6Pmax

Cs. The power adaptation scheme that maximizes the capacity

is characterized in the following theorem:
Theorem 2 (Capacity Optimal Power Control): For a secondary user operating under the peak transmit power (equation

(2)) and average interference (equation (3)) constraints, the power adaptation strategy that maximizes the ergodic capacity of
the secondary receiver is given by equation (11), where γ is the sensing metric. λ1 is chosen to satisfy the average interference
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constraint.

P∗ (γ) =





0 if ᾱ
d2

22
f0 (γ) + αf1 (γ) 1

d2
22

Eh12,h22

[
1

1+Pt|h12|
2

]
− λ1f1 (γ) 6 0

Pmax if Eh22

[
ᾱ

f0(γ)|h22|
2

1+Pmax|h22|
2

]
+ Eh12,h22

[
α

f1(γ)|h22|
2

1+Pt|h12|
2+Pmax|h22|

2

]
− λ1f1 (γ) > 0

P (γ) elsewhere. P (γ) is the solution to Eh22

[
ᾱ

f0(γ)|h22|
2

1+P(γ)|h22|
2

]
+ Eh12,h22

[
α

f1(γ)|h22|
2

1+Pt|h12|
2+P(γ)|h22|

2

]
− λ1f1 (γ) = 0

(11)
Proof: See Section VI-B.

Notice that unlike the SNR optimal power adaptation policy, the power adaptation that maximizes the capacity is, in general,
not a binary one, i.e., it can involve transmission at non-boundary power levels between 0 and Pmax.

IV. POWER BASED SENSING

In this section, we consider a power based sensing scheme and characterize the SNR maximizing power control strategy.
The sensing metric is the total primary signal power in a number of independent signal samples, i.e.,

γ (N) =

N−1∑

n=0

|y (n)|2 , (12)

where N is the observation time. We assume that N is small compared to the primary user coherence time Tc. We consider
the case of fast fading, i.e., where the channel coefficients change every sample. The received signal at the detector y (n) is
of the form

y (n) =

{
h00 (n) xp (n) + z (n) PU is ON

z (n) PU is OFF
(13)

where xp (n) is the primary signal, h00 (n) the coefficient of the channel between the primary and secondary transmitters,
z (n) the unit variance white Gaussian noise at the primary detector and n is the sample index.

Notice that conditioned on the presence/absence of the primary user, γ (N) is a sum of independent and identically distributed
random variables. When a primary signal is present, the sensing metric of equation (12) can be approximated by a Gaussian
random variable (Central Limit Theorem) for large N with a distribution

f1 (γ) =
1

σ1
√

2π
exp

(
−

(γ − µ1)
2

2σ2
1

)
(14)

where µ1 and σ1 are given by

µ1 = NE
[
|y (0)|2

]
= N

(
Pt

d2
00

+ 1
)

(15)

σ2
1 = N

(
E

[
|y (0)|4

]
−

(
E

[
|y (0)|2

])2
)

= 2N

(
Pt

d2
00

+ 1
)2

(16)

Similarly when there is no primary signal, the distribution f0 (γ) can be written as

f0 (γ) =
1

σ0
√

2π
exp

(
−

(γ − µ0)
2

2σ2
0

)
, (17)

where µ0 = N and σ2
0 = 2N.

To obtain the SNR optimal power adaptation policy, we consider the roots of the LHS of equation (37). Substituting equations
(14) and (17) into equation (37), we have

(γ − µ0)
2

2σ2
0

−
(γ − µ1)

2

2σ2
1

+ ln
(

σ0 (λ1 − a1ν)

σ1

)
6 0. (18)

Based on the discussion in Section III-A, the power adaptation can be calculated as follows:

P (γ) =

{
P∗max γ ∈ [ρ1 (λ1) , ρ2 (λ1)]

0 elsewhere , (19)

where ρ1 (λ1) and ρ2 (λ1) > ρ1 (λ1) are given by equation (20).

ρ1 (λ1) , ρ2 (λ1) =

(
µ0
σ2

0
− µ1

σ2
1

)
±

√(
µ0
σ2

0
− µ1

σ2
1

)2
− 2

(
1

σ2
0
− 1

σ2
1

)(
µ2

0
2σ2

0
−

µ2
1

2σ2
1
+ ln

(
σ0(λ1−a1ν)

σ1

))

(
1

σ2
0
− 1

σ2
1

) (20)
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The value of λ1 is calculated based on the interference constraint at the primary receiver (equation (3)), i.e.,

I0d2
21 = Pmax

(∫ρ2(λ1)

ρ1(λ1)

f1 (γ) dγ

)
= Pmax

(
Q

(
ρ1 (λ1) − µ1

σ1

)
− Q

(
ρ2 (λ1) − µ1

σ1

))

The resulting SNR at the secondary receiver can be written as

ξs = a0Pmax

(
a1νI0d2

21 +

(
Q

(
ρ1 (λ1) − µ0

σ0

)
− Q

(
ρ2 (λ1) − µ0

σ0

)))

It is difficult to analytically determine the capacity optimal power adaptation from equation (11). We instead provide numerical
results comparing the optimal power adaptation strategies for SNR and capacity.

A. Numerical Results

We consider a scenario where the primary user is ON for half the time, i.e., the average ON time is α = 0.5. The power
based sensing scheme at the secondary user calculates the total power in N = 20 samples of the primary signal. We assume
that the primary transmit power Pt = 1 and that the peak secondary transmit power constraint Pmax = 1.

We first examine the case where the primary and secondary nodes are located such that d11 = d22 = d00 = 1, d12 = d21 =
√

2
and the tolerable interference at the primary user is I0 = 0.075 (15% of ᾱPmax

d2
21

). The SNR optimal power adaptation is plotted
in Figure 2(a). Notice that the optimal adaptation is a step function, with γ1 = 0 and γ2 = 26.93. The dependence of the SNR

on the observation time N is explored in Figure 2(b). It can be seen that as N increases, the secondary transmitter has more
accurate knowledge of whether or not the primary user is active. Consequently, the SNR increases while the interference to
the primary user is maintained at I0.
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Fig. 2: Figure 2(a) shows the SNR optimal power adaptation with 15% (w.r.t Pmax
d2

22
) interference tolerance at the primary receiver.

We next consider a case with d00 = 4, d12 =
√

17, d21 = 1 and d22 = 1 and I0 = 0.05 (10% of Pmax
d2

21
). The SNR optimal and

capacity optimal power adaptation policies in Figure 3. The first interesting observation from Figure 3 is that the SNR optimal
power adaptation, unlike the previous case, is a step function. Second, the SNR and capacity optimal power adaptation policies
are very different. While the SNR optimal power adaptation policy is a binary strategy, i.e. mandates transmission either at
zero power or at the peak power Pmax, the capacity optimal strategy involves transmission at intermediate power values.

We now return to the first scenario (d11 = d22 = d00 = 1, d12 = d21 =
√

2 and I0 = 0.075 (15% of ᾱPmax
d2

21
)). Figure 4(a) shows

the SNR and capacity optimal power adaptation policies for different values of Pmax while fixing the interfernce constraint.
Notice that the width of the SNR optimal power adaptation policy decreases with Pmax to maintain the same interference I0.
Therefore the optimal SNR increases with Pmax. On the other hand, we observe that the secondary user’s capacity does not
increase beyond Pmax = 3. Figure 4(b) compares the capacities of the SNR optimal and capacity optimal power adaptation
policies. It is interesting to note that the capacity of the SNR optimal policy decreases with Pmax. This is due to the fact that
the SNR optimal policy dictates transmission only at zero power of the peak power Pmax.
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Fig. 3: Figure 3 compares the SNR and capacity optimal power adaptation with 16% (w.r.t Pmax
d2

22
) interference tolerance at the

primary receiver.

V. EXTENSIONS

In this section we discuss extensions of the SNR optimal power adaptation result of Section III-A to cognitive radio systems
with an average power constraint. We also explore SNR optimal power control policies to more complex models with secondary
channel knowledge at both the secondary transmitter and receiver with both peak and average power constraints. While we
exclusively focus on the SNR optimal policies in this section, capacity optimal policies similar to those in Section III-B can
also be derived.

A. Average Power Constraint

We now consider the case when the power constraint at the transmitter follows:
Average Power Constraint:

E [P (γ)] = ᾱEf0 [P (γ)] + αEf1 [P (γ)] 6 Pavg (21)

The SNR maximization problem can be written as

max
Ef1 [P(γ)]6I′0 , 06P(γ), E[P(γ)]6Pavg

Ef0 [P (γ)] + a1νEf1 [P (γ)] , (22)

where I′0 = I0d2
21. The optimization problem of equation (22) is solved in Theorem 3:

Theorem 3 (SNR Optimal Power Control with an Average Power Constraint): For a secondary user operating under
an average transmit power (equation (21)) and average interference (equation (3)) constraints, the optimal SNR is given by

ξs = max
x:x>0

min

{
I′0a0 (a1ν + x) ,

Pavga0

ᾱ

(
α
ᾱν + x

)
(

α
ᾱ + x

)
}

. (23)

The SNR optimal power adaptation strategy is given by

P∗ (γ) =

K∑

i=0

P (γi) δ (γ − γi) , (24)

where γi are the roots of the equation

f0 (γ)

f1 (γ)
= arg max

x:x>0
min

{
I′0a0 (a1ν + x) ,

Pavga0

ᾱ

(
α
ᾱν + x

)
(

α
ᾱ + x

)
}

. (25)

Proof: See Section VI-C.
Theorem 3 shows that in a cognitive system with an average power constraint and an average interference constraint at the

primary transmitter, the soft information provides an SNR advantage. Therefore, unlike the peak power constraint case, soft
information helps the secondary user achieve a higher SNR.
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Fig. 4: Figure 4(a) shows the SNR and capacity optimal power adaptations with increasing Pmax. Figure 4(b) shows the
capacities of the SNR and capacity optimal power adaptation policies.

B. Secondary Channel Knowledge At The Cognitive Transmitter

We now consider a more involved model where the cognitive transmitter also has secondary channel knowledge, i.e., h22 is
known to the secondary transmitter. The secondary transmitter therefore adapts its transmit power based on both γ and h22,
i.e., by using a power P (γ, h22) in a time block where the sensing metric is γ and the secondary channel gain is h22. As
before, we assume perfect CSI at the receivers. We consider both a peak and an average power constraint and analyze the
SNR optimal power control schemes.

1) Peak Power Constraint: We first consider a peak power constraint at the secondary transmitter, i.e.,

P (γ, h22) 6 Pmax ∀ γ, h22. (26)

Theorem 4 shows that with a peak power constraint, the optimal power adaptation is binary valued regardless of the
availability of channel information at the secondary transmitter:

Theorem 4: For a secondary user with channel knowledge operating under the peak transmit power (equation (2)) and
average interference (equation (3)) constraints, the power adaptation strategy that maximizes the secondary user’s average SNR

is binary valued, i.e.,

P∗ (γ, ω) =

{
Pmax if f0 (γ) 6 f1 (γ)

[
λ1−a1νω

ω

]
0 if f0 (γ) > f1 (γ)

[
λ1−a1νω

ω

] , (27)

where γ is the soft information available from sensing, ω = h2
22 is the secondary channel gain. λ1 is chosen such that equation

(27) satisfies the average interference constraint (equation (3)).
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Proof: See Section VI-D.
2) Average Power Constraint: We now consider an average power constraint of the form:

E [P (γ, h22)] = ᾱEf0,h22 [P (γ, h22)] + αEf1,h22 [P (γ, h22)] 6 Pavg, (28)

and prove that the optimal SNR in this case is infinite in Theorem 5.
Theorem 5: For a secondary user with channel knowledge operating under an average transmit power (equation (21)) and

average interference (equation (3)) constraints, the optimal SNR is unbounded.
Proof: See Section VI-E.

C. Multiple primary users

In previous sections, we have derived SNR optimal power control schemes assuming a single primary user in the frequency
band. We now consider a scenario with multiple primary users in the same frequency band and show that the previous results
are applicable to this case. For the sake of simplicity, consider two primary users (user 1 and user 2) with different transmit
powers P

[1]
t and P

[2]
t ; and different average interference constraints I1 and I2. The spectrum sensor at the secondary user (user

3) calculates the sensing metric γ based on the received signals. We assume that the statistics of γ conditioned on the activity
of the two primary users is known apriori to the secondary user. The probability distributions are denoted by f00 (γ), f10 (γ),
f01 (γ) and f11 (γ) depending on whether the two primary users are ON or OFF. The interference constraint of equation (3)
will be replaced by the following two interference constraints:

q1Ef10 [P (γ)] + q2Ef11 [P (γ)] 6 I1 (29)
r1Ef01 [P (γ)] + r2Ef11 [P (γ)] 6 I2, (30)

where qi and ri are known constants. It can further be shown that the average SNR expression is of the form s1Ef00 [P (γ)] +
s2Ef01 [P (γ)] + s3Ef10 [P (γ)] + s4Ef11 [P (γ)], where the si are constants that depend on the channel distributions. We observe
that the fundamental form of the SNR optimization will remain the same, and therefore results similar to Theorems 1, 3, 4
and 5 can be derived for the two user case. This also extends to the case with more than two primary users.

VI. PROOFS

A. Proof of Theorem 1

The Lagrangian LS [P (γ) , λ1, {λ2 (γ)} , {λ3 (γ)}] for the objective function in the SNR maximization of equation (8) can be
written as in equation (31), where λ1, λ2 (γ) and λ3 (γ) are the Lagrangian variables.

LS [P (γ) , λ1, {λ2 (γ)} , {λ3 (γ)}] =

[
Ef0 [P (γ)] + a1νEf1 [P (γ)] − λ1

(
Ef1 [P (γ)] − I′0

)
+

∫∞

0
λ2 (γ) P (γ) dγ −

∫∞

0
λ3 (γ) (P (γ) − Pmax) dγ

]

(31)
It is easy to show that the objective function is concave in P (γ) and that the constraint set (equation (3)) is convex. Taking

the derivative of LS [P (γ) , λ1, {λ2 (γ)} , {λ3 (γ)}] with respect to P (γ) and setting it to zero, the necessary and sufficient KKT
conditions are:

f0 (γ) + a1νf1 (γ) − λ1f1 (γ) + λ2 (γ) − λ3 (γ) = 0 (32)

λ1

(
Ef1 [P (γ)] − I′0

)
= 0 (33)

λ2 (γ) P (γ) = 0 ∀ γ (34)
λ3 (γ) (P (γ) − Pmax) = 0 ∀ γ (35)

For each value of γ, the optimal power adaptation P∗ (γ) can be 0, Pmax or take a value in the open interval (0, Pmax). This
directly gives rise to the following three cases:
• Case 1: Suppose P∗ (γ) = 0 for some γ, equation (35) requires that λ3 (γ) = 0. Substituting this into equation (32), this

is possible when (since λ2 (γ) > 0),

f0 (γ) + (a1ν − λ1) f1 (γ) 6 0. (36)

• Case 2: Suppose P∗ (γ) = Pmax for some γ, equation (34) requires that λ2 (γ) = 0. Substituting this into equation (32)
and noting that λ3 (γ) > 0, we have

f0 (γ) + (a1ν − λ1) f1 (γ) > 0. (37)

Therefore P∗ (γ) = Pmax for all γ satisfying equation (37).
• Case 3: Suppose 0 < P∗ (γ) < Pmax for some γ. From equations (34) and (35), we have λ2 (γ) = λ3 (γ) = 0. From

equation (32), we require
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f0 (γ) = (λ1 − a1ν) f1 (γ) (38)

In general, the solution set to equation (38) (for a given value of λ) will have a measure of zero. The power allocation
at the roots of equation (38) will have to be expressed as impulse functions (i.e., of the form P (γ0) δ (γ − γ0)), that are
excluded by definition because they do not satisfy the peak power constraint.

The optimal power allocation policy can therefore be written as in equation (9), where the value of λ1 is dictated by the average
interference constraint (equation (3)).

B. Proof of Theorem 2

The Lagrangian for maximizing the capacity function of equation (10) can be written as in equation (39).

LC [P (γ) , λ1, {λ2 (γ)} , {λ3 (γ)}] = ᾱEh22,γ|θ=0 log
[
1 + P (γ) |h22|

2
]

+ αEh12,h22,γ|θ=1 log

[
1 +

P (γ) |h22|
2

1 + Pt |h12|
2

]
−

λ1

(
Ef1 [P (γ)] − I′0

)
+

∫∞

0
λ2 (γ) P (γ) dγ −

∫∞

0
λ3 (γ) (P (γ) − Pmax) dγ (39)

The derivative of the Lagrangian with respect to P (γ) in equation (40) and the complementary slackness conditions of
equations (42)-(44) form the KKT conditions for this optimization.

Eh22

[
ᾱ

f0 (γ) |h22|
2

1 + P (γ) |h22|
2

]
+ Eh12,h22

[
α

f1 (γ) |h22|
2

1 + Pt |h12|
2
+ P (γ) |h22|

2

]
− λ1f1 (γ) + λ2 (γ) − λ3 (γ) = 0 (40)

b0 (γ) f0 (γ) + b1 (γ) f1 (γ) − λ1f1 (γ) + λ2 (γ) − λ3 (γ) = 0 (41)

λ1

(
Ef1 [P (γ)] − I′0

)
= 0 (42)

λ2 (γ) P (γ) = 0 ∀ γ (43)
λ3 (γ) (P (γ) − Pmax) = 0 ∀ γ (44)

As in the case of SNR, we consider the the three cases (P∗ (γ) = 0, P∗ (γ) = Pmax and 0 < P∗ (γ) < Pmax):
• Case 1: Suppose P∗ (γ) = 0 for some γ, equation (44) requires that λ3 (γ) = 0. Substituting this into equation (40), this

is possible when (since λ2 (γ) > 0),

ᾱf0 (γ)
1

d2
22

+ αf1 (γ)
1

d2
22

Eh12,h22

[
1

1 + Pt |h12|
2

]
− λ1f1 (γ) 6 0. (45)

• Case 2: Suppose P∗ (γ) = Pmax for some γ. From equation (43) we know that λ2 (γ) = 0. Further since λ3 (γ) > 0, this
is possible if

Eh22

[
ᾱ

f0 (γ) |h22|
2

1 + Pmax |h22|
2

]
+ Eh12,h22

[
α

f1 (γ) |h22|
2

1 + Pt |h12|
2
+ Pmax |h22|

2

]
− λ1f1 (γ) > 0. (46)

Therefore P∗ (γ) = Pmax for all γ satisfying equation (37).
• Case 3: Suppose 0 < P∗ (γ) < Pmax for some γ. From equations (43) and (44), we have λ2 (γ) = λ3 (γ) = 0. From

equation (32), we require

Eh22

[
ᾱ

f0 (γ) |h22|
2

1 + P (γ) |h22|
2

]
+ Eh12,h22

[
α

f1 (γ) |h22|
2

1 + Pt |h12|
2
+ P (γ) |h22|

2

]
− λ1f1 (γ) = 0. (47)

Equations (45) - (47) directly yield Theorem 2.

C. Proof of Theorem 3

The Lagrangian L
avg
S [P (γ) , λ1, {λ2 (γ)} , λ3] for the objective function in the SNR maximization of equation (22) can be

written as:

LS [P (γ) , λ1, {λ2 (γ)} , λ3]

=

[
Ef0 [P (γ)] + a1νEf1 [P (γ)] − λ1

(
Ef1 [P (γ)] − I′0

)
+

∫∞

0
λ2 (γ) P (γ) dγ − λ3 (ᾱEf0 [P (γ)] + αEf1 [P (γ)] 6 Pavg)

]
(48)
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The derivative of L
avg
S [P (γ) , λ1, {λ2 (γ)} , λ3] and the associated KKT constraints can be written as

f0 (γ) + a1νf1 (γ) − λ1f1 (γ) + λ2 (γ) − λ3 (ᾱf0 (γ) + αf1 (γ)) = 0 (49)

λ1

(
Ef1 [P (γ)] − I′0

)
= 0 (50)

λ2 (γ) P (γ) = 0 ∀ γ (51)
λ3 (ᾱEf0 [P (γ)] + αEf1 [P (γ)] 6 Pavg) = 0 (52)

If P (γ) > 0 for some γ, equation (51) implies that λ2 (γ) = 0. From equation (49), we have

f0 (γ) =
[λ1 + λ3α − a1ν]

[1 − λ3ᾱ]
f1 (γ) = g (λ1, λ3) f1 (γ) . (53)

Since λ1 and λ3 are independent of γ, the roots of equation (53) determine the points at which the secondary transmit power
is non-zero. The transmit power can therefore be expressed as

P (γ) =

K∑

j=0

P (γj) δ (γ − γj) , (54)

where {γj, 1 6 j 6 K} are the roots of equation (53). Notice that impulse functions are not excluded since there is no peak
power constraint. The average power and interference constraints can be written as

Pavg >
K∑

j=0

P (γj) (αf1 (γj) + ᾱf0 (γj)) =




K∑

j=0

P (γj) f1 (γj)


 (α + ᾱg (λ1, λ3)) (55)

I′0 >




K∑

j=0

P (γj) f1 (γj)


 (56)

Equations (55) and (56) can be used to obtain an upperbound on the average SNR:

ξs =




K∑

j=0

P (γj) f1 (γj)


 a0 (a1ν + g (λ1, λ3)) (57)

6 min
{
I′0a0 (a1ν + g (λ1, λ3)) ,

Pavga0 (a1ν + g (λ1, λ3))

(α + ᾱg (λ1, λ3))

}
(58)

= min

{
I′0a0 (a1ν + g (λ1, λ3)) ,

Pavg

d2
22

(
α
ᾱν + g (λ1, λ3)

)
(

α
ᾱ + g (λ1, λ3)

)
}

. (59)

Since Γ (0, x) exx 6 1 ∀ x > 0, we have ν 6 1. The first term inside the minimum increases with g (λ1, λ3). On the other
hand, the second term decreases with g (λ1, λ3). Consequently,

ξs = max
g(λ1,λ3)

min

{
I′0a0 (a1ν + g (λ1, λ3)) ,

Pavga0

ᾱ

(
α
ᾱν + g (λ1, λ3)

)
(

α
ᾱ + g (λ1, λ3)

)
}

, (60)

and the SNR is bounded.

D. Proof of Theorem 4

Let ω = |h22|
2. The Lagrangian LS [P (γ, ω) , λ1, {λ2 (γ, ω)} , {λ3 (γ, ω)}] is

LS [P (γ, ω) , λ1, {λ2 (γ, ω)} , {λ3 (γ, ω)}] =
[
Ef0,ω [ωP (γ, ω)] + a1νEf1,ω [ωP (γ, ω)] − λ1

(
Ef1,ω [P (γ, ω)] − I′0

)
+

Eω

[∫∞

0
λ2 (γ, ω) P (γ, ω) dγ

]
− Eω

[∫∞

0
λ3 (γ, ω) (P (γ, ω) − Pmax) dγ

]]
(61)

Derivative of Lagrangian yields

f (ω) [ωf0 (γ) + a1νωf1 (γ) − λ1f1 (γ) + λ2 (γ, ω) − λ3 (γ, ω)] = 0 (62)

λ1

(
Ef1,ω [P (γ, ω)] − I′0

)
= 0 (63)

λ2 (γ, ω) P (γ, ω) = 0 ∀ γ, ω (64)
λ3 (γ, ω) (P (γ, ω) − Pmax) = 0 ∀ γ, ω (65)
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For each value of γ, the optimal power adaptation P∗ (γ) can be 0, Pmax or take a value in the open interval (0, Pmax). This
directly gives rise to the following three cases:
• Case 1: Suppose P∗ (γ, ω) = 0 for some γ and ω, equation (65) requires that λ3 (γ, ω) = 0. Substituting this into

equation (62), this is possible when

f0 (γ) > f1 (γ)

[
λ1 − a1νω

ω

]
. (66)

• Case 2: Suppose P∗ (γ, ω) = Pmax for some γ and ω, equation (64) requires that λ2 (γ, ω) = 0. Substituting this into
equation (62) and noting that λ3 (γ, ω) > 0, we have

f0 (γ) 6 f1 (γ)

[
λ1 − a1νω

ω

]
. (67)

Therefore P∗ (γ) = Pmax for all γ satisfying equation (67).
• Case 3: Suppose 0 < P∗ (γ, ω) < Pmax for some γ and ω. From equations (64) and (65), we have λ2 (γ, ω) = λ3 (γ, ω) =

0. From equation (62), we require

f0 (γ) = f1 (γ)

[
λ1 − a1νω

ω

]
. (68)

Since this involves impulse functions, this case will have to be excluded owing to the peak power constraint.
The optimal power allocation policy is therefore binary valued.

E. Proof of Theorem 5

Let ω = |h22|
2. Consider a power allocation policy of the form

P (γ, ω) = P (γ0, ω0) δ (γ − γ0) δ (ω − ω0) . (69)

The average power and interference constraints can be expressed as

I′0 > f1 (γ0) f (ω0) P (γ0, ω0) (70)
Pavg > αf1 (γ0) f (ω0) P (γ0, ω0) + ᾱf0 (γ0) f (ω0) P (γ0, ω0) = P (γ0, ω0) f (ω0) [αf1 (γ0) + ᾱf0 (γ0)] (71)

The constraints of both equations (70) and (71) will be satisfied if we choose

P (γ0, ω0) =
1

f (ω0)
min

{
I′0

f1 (γ0)
,

Pavg

αf1 (γ0) + ᾱf0 (γ0)

}
. (72)

Further, from equation (72), the average SNR can be expressed as

ξs = a0ω0 [ανf1 (γ0) f (ω0) P (γ0, ω0) + ᾱf0 (γ0) f (ω0) P (γ0, ω0)]

= a0ω0f (ω0) P (γ0, ω0) [ανf1 (γ0) + ᾱf0 (γ0)]

= a0ω0 min
{
I′0 [αf1 (γ0) + ᾱf0 (γ0)]

f1 (γ0)
,

Pavg [ανf1 (γ0) + ᾱf0 (γ0)]

(αf1 (γ0) + ᾱf0 (γ0))

}

= a0ω0 min



I

′
0α

[
1 +

ᾱ

α

f0 (γ0)

f1 (γ0)

]
,

Pavg

[
ν + ᾱ

α
f0(γ0)
f1(γ0)

]
[
1 + ᾱ

α
f0(γ0)
f1(γ0)

]




It is easy to see that as w0 → ∞, the average SNR becomes unbounded.

VII. DISCUSSION AND CONCLUSION

We consider a cognitive radio system where the secondary transmitter adapts its transmit power depending on the soft
information obtained from the spectrum sensor. We have a peak power constraint at the secondary transmitter and an average
interference constraint at the primary receiver. We characterize the SNR and capacity optimal power adaptation strategies for
arbitrary sensing schemes. Binary power control is SNR optimal, which shows that one can simultaneously obtain the dual
benefits of optimum SNR performance and low power control complexity. On the other hand, the capacity optimal power
adaptation scheme is, in general, not binary and dictates transmission at power levels other than 0 and Pmax.

We point out here that past work has considered different kinds of interference constraints to protect the primary users
[13], [19], [28]. For the average interference constraint considered in equation (3), a natural question that arises is: From
the primary user’s perspective, is it better to have binary power control, based on sensing; or have the secondary transmitter
employ continuous power adaptation such that the primary user sees the same average interference? Suppose we are interested
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in the primary user’s rate, notice that the logarithmic form of the capacity expression implies that variable interference power
is preferred to constant interference power [29]. While continuous power adaptation ensures that the secondary user’s capacity
is maximized, binary power adaptation at the secondary transmitter therefore is primary user friendly because it ensures that
the interference seen at the primary receiver is varying.

For a power based spectrum sensing scheme, we find that the SNR optimal power control scheme directs transmission at
peak power if the sensing metric lies within a certain range, regardless of the availability of secondary channel knowledge at
the secondary transmitter. With an average secondary transmit power constraint, we show that the optimal SNR is unbounded
with channel state information at the secondary transmitter.
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