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Abstract

Cyber Physical Systems (CPSs) have grand visions
with great socio-economic impacts such as blackout-free
electricity supply and real-time disaster recovery. A
key challenge is providing real-time data services for
CPSs. Existing real-time data management techniques
and wireless sensor networks (WSNs) fall far short to
support timely, secure real-time data services for CPSs.
In this paper, we present a novel information-centric
approach to supporting these requirements in CPSs.
In our approach, network-enabled real-time embedded
databases (nRTEDBs) communicate with each other
and control and communicate with wireless sensors in a
secure, timely manner. Unlike sensor databases such as
TinyDB, nRTEDBs collaboratively derive global knowl-
edge of real world phenomena. Based on the collective
information, they actively control a WSN to extract im-
portant data directly relevant to an event of interest. In
this way, nRTEDBs considerably enhance the overall
timeliness, security, and efficiency.

1 Introduction

Cyber physical systems (CPSs) interconnect the cy-
ber world with physical world by embedding sensors
and computational nodes to the physical world. CPSs
envision significant socio-economic impacts. Applica-
tions of CPSs include, but are not limited to, electric
grid management, assisted living, transportation man-
agement, disaster recovery, factory automation, smart
spaces, military applications, and environmental sci-
ence research. CPSs not only have rosy visions but
also face challenges. One of the key challenges is pro-
viding real-time data services for CPSs: CPSs have to
deal with large amounts of data in a timely, secure fash-
ion. Although real-time data management and wireless
sensor networks (WSNs) have been well studied sepa-
rately, very little prior work has been done to integrate

the two for CPSs.
To shed light on this problem, we propose a novel ap-

proach for timely, secure information services in CPSs.
Specifically, we present network-enabled real-time em-
bedded databases (nRTEDBs) and describe how to in-
tegrate them with wireless sensors. nRTEDBs are dif-
ferent from sensor databases such as TinyDB [14] and
Cougar [3], since nRTEDBs actively derive value-added
information from raw sensor data and control WSNs
based on the observed real world phenomena. Also,
nRTEDBs are designed to consider security and time-
liness.

In this paper, we extend and integrate cutting-edge
real-time data service techniques as well as real-time
and secure routing protocols in WSNs. nRTEDBs have
more energy, computational power, and communica-
tion bandwidth than sensor nodes. They communicate
with each other to collectively detect important real
world events, if any, using raw sensor data. Wireless
sensors transmit data to one of the nRTEDBs in the
vicinity in a timely, secure way under the guidance of
nRTEDBs.

The expected benefits of our architecture for real-
time data services in CPSs and system requirements
are discussed in Section 2. Section 3 describes an ini-
tial high level system design for real-time data services
in CPSs. Related work is discussed in Section 4. Fi-
nally, Section 5 concludes the paper and discusses fu-
ture work.

2 System Requirements

By deploying multiple nRTEDBs in the field, the
number of hops from a sensor node to a nRTEDB is re-
duced. As a result, the end-to-end (E2E) packet trans-
mission delay and packet delivery rate can be consid-
erably improved. For example, if the one-hop delivery
rate is 95%, the end-to-end delivery rate drops below
60% after 10 hops. In contrast, the rate is over 77%
when the communication path between a sensor and
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nRTEDB has 5 hops. Further, a sensor node alter-
nates between multiple nRTEDBs in the neighborhood
for load balancing.

nRTEDBs extract information from raw sensor data
and exchange them with each other to build a global
view of real world phenomena. As a whole, nRTEDBs
and WSNs are information-centric rather than being
data-centric. Based on the derived knowledge, nRT-
EDBs significantly enhance the efficiency of sensing.
For example, nRTEDBs can derive the perimeter of a
fire and predict the movement of a fire based on sen-
sor data such as the temperature, humidity, and wind
direction to wake up sensors in areas to which the fire
is expected to move or expand.

Moreover, nRTEDBs enhance WSN security. Sur-
prisingly, a large body of WSN security protocols con-
sider a single base station, and simply assume that the
base station cannot be compromised. Thus, the base
station is a single point of failure/attack in these ap-
proaches. By collaborating with each other, nRTEDBs
alleviate this problem and other key security concerns.

To support these desirable features, nRTEDBs need
to meet the following system requirements:

• Real-Time Data Processing: Given sensor
data, a nRTEDB needs to process queries within
certain deadlines or response time bounds.

• Reliable Event Detection: nRTEDBs need to
support highly accurate event detection despite
potentially noisy, faulty, or compromised sensor
data.

• Real-Time Routing: Sensor data must be de-
livered to nRTEDBs in a timely fashion. Also,
nRTEDBs need to efficiently exchange information
with each other, while controlling sensors.

• Security and Robustness: nRTEDBs need to
avoid the single point of attack problem discussed
before in addition to data confidentiality, integrity,
and authenticity. Overall, it is required that time-
liness, security, and reliability requirements need
to be considered together at design time.

3 Real-Time Sensor Data Services

A nRTEDB supports query processing, data fusion,
routing, load balancing, and security. A nRTEDB has
random access memory and flash memory bigger than
sensor nodes by several orders of magnitude. For wire-
less communication, it supports spread spectrum tech-
niques such as frequency hopping. Thus, nRTEDBs
can communicate with each other, while avoiding in-
terference and radio jamming attacks. A nRTEDB

has much more energy than a sensor node and it may
recharge the battery using ambient energy such as solar
energy or vibration. To avoid interference, sensor nodes
use multiple wireless channels to transmit data to dif-
ferent nRTEDBs, similar to [11]. This approach is fea-
sible, since low-end sensors such as MICA-Z motes sup-
port multichannel wireless communication. Key com-
ponents for real-time data services are discussed next.

3.1 Real-Time Data Processing

Although real-time databases have been studied for
more than a decade, very few existing RTDB systems
can support the desired timeliness in the presence of
dynamic workloads [17]. To meet deadlines or response
time bounds for real-time data services in the presence
of dynamic workloads, we propose to apply feedback
control as shown in Figure 1.
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Figure 1. Feedback Control of Data Service
Delay in One nRTEDB

In our real-time data service model, continuous
queries and data fusion functions are registered. A
continuous query or fusion function is periodically exe-
cuted for a specified TTL (time to live). On the other
hand, the number of incoming data to process may vary
in time due to the dynamic network and real world
status. Thus, the number of data to process is essen-
tially disturbance to real-time data services as shown
in Figure 1. To support the desired data service de-
lay Ds such as 0.1s, the feedback controller in Figure 1
computes the required number of data adjustment δn.
When the measured delay Dm > Ds, δn < 0 to re-
duce the number of data to process and vice versa. We
have implemented a preliminary version of this control
model in our real-time database system called Chronos
[7]. We have verified that the model supports the de-
sired response time for bursty transactional workloads.

To actually adjust the number of data in a WSN,
a nRTEDB adapts the data similarity threshold [10].
For example, when the similarity threshold is 1%, a
sensor reading that is not different from its previous
version by more than 1% is dropped. This threshold is
raised according to the control signal, if necessary, to
support Ds under overload. Alternatively, a nRTEDB
may drop sensor data with relatively low confidence
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levels for event detection. Reliable event detection is
discussed in Section 3.2.

After adaptation via feedback control, a nRTEDB
disseminates a new similarity or confidence threshold
to sensor nodes in the physical world to let them avoid
unnecessary data transmissions in the first place. To
minimize the overhead, control messages to adapt be-
haviors of sensor nodes are piggybacked to periodic
beacon messages for real-time routing. Beacon mes-
sages are also used for load balancing. A detailed dis-
cussion is given in Section 3.3.

We will extend Chronos to support data and in-
formation storage in flash memory. Flash memory is
rapidly replacing disks not only in real-time embed-
ded systems, but also in high-performance servers [19].
Unlike disks, the access time to flash memory is not af-
fected by mechanical parts. Thus, flash memory is sev-
eral orders of magnitude faster than disks and highly
predictable. These desirable characteristics make flash
memory more suitable for nRTEDBs. However, flash
memory still has high access time compared to volatile
memory such as SRAM. Table 1 compares the overhead
of flash memory to SRAM.

Type Read Write Erase

SRAM 10ns 10ns N/A
NAND Flash 10µs 200µs 2ms

Table 1. Characteristics of memory devices
[15].

Such gaps in access time are critical for nRTEDBs,
because high I/O overheads for flash memory access
may incur deadline misses, if data objects are not prop-
erly managed. System designers may provide buffer
memory to mitigate the high overhead of flash mem-
ory accesses. However, in many cases, workloads are
unknown at design time and they may change dynam-
ically. Thus, it may not be feasible to provide enough
buffer space to satisfy all timing constraints. In par-
ticular, embedded systems cannot afford to have large
buffers due to cost and space constraints.

We have developed a deadline miss ratio manage-
ment architecture where a feedback control loop pre-
vents overload both for I/O and CPU [8]. A key is-
sue in real-time data processing with different kinds
of resources, e.g. I/O and CPU, is to find out which
resource is the bottleneck causing deadline misses.
A straightforward approach would be to build sepa-
rate models for I/O and CPU. However, our experi-
ments show that CPU and I/O deadline miss ratios
are coupled and affect each other, requiring multiple-
input multiple-output (MIMO) modeling of the sys-
tem. Thus, we model a nRTEDB as a MIMO system

to capture this coupling of control inputs and system
outputs. The current MIMO model is verified via sim-
ulations. This will be actually implemented and eval-
uated in Chronos. Further, we will extend the MIMO
model to consider wireless link deadline miss ratio in
addition to CPU and I/O deadline miss ratios. For
real-time sensor data services, we also support event
detection, real-time routing, and security as follows.

3.2 Reliable Event Detection

Due to noisy, faulty sensor readings in the physical
world, event detection could be error prone. A way
to address this problem is for sensor nodes to com-
pute the confidence level of a detected event, e.g., a
wild fire, in a certain range such as [0,1] [12]. In this
paper, sensor nodes forward sensor data related to the
event to a nearby nRTEDB, only if the confidence level
exceeds the threshold, e.g., 0.7, specified by the nRT-
EDB. nRTEDBs receiving event data collaboratively
derive an event map such as the perimeter of a fire.
In contrast, sensors detecting no event or events with
low confidence may sleep, periodically waking up to
receive control messages from nRTEDBs. In this way,
they save precious energy, while reducing unnecessary
contention for wireless medium. The confidence func-
tion developed in [12] is specialized for fire detection.
We will investigate data fusion algorithms for reliable
event detection in more general WSN applications. As
data fusion algorithms such as the Kalman filter and
Bayesian networks are computationally more demand-
ing than simple confidence functions [12], a low-end
sensor node may not be able to fully execute data fu-
sion algorithms. In this case, partially processed data
or aggregated raw sensor data are forwarded to a nRT-
EDB, which finishes data fusion to derive more reliable
information from sensor data.

3.3 Efficient Real-Time Routing

In our approach, there are two categories of wire-
less communications: (1) communication between sen-
sor nodes or communication between a nRTEDB and
sensors; and (2) communication between nRTEDBs.
These two categories of communications need to use
different frequency bands to avoid interference.

3.3.1 Communication between Sensors and

nRTEDBs

A number of real-time routing protocols in WSNs such
as SPEED [5] and MMSPEED [4] rely on greedy geo-
graphic forwarding (GF) [9], which is lightweight and
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scalable. Unfortunately, GF fails in the presence of a
void. Back-pressure routing is supported in SPEED
and MMSPEED. However, back propagations in the
presence of a void could be too late, incurring dead-
line misses. Also, simply implementing void traversal
is inappropriate for real-time routing due to the high
computational cost.

In our approach, multiple nRTEDBs are deployed
in the area of sensing to reduce the number of hops,
and therefore, enhance the E2E timeliness and reliabil-
ity as discussed before. nRTEDBs periodically broad-
cast beacon messages to let sensors build or repair
shortest paths to nRTEDBs in the proximity, similar
to TinyOS’s shortest routing protocol. When a sen-
sor node receives a beacon message with the shortest
delay, it marks the sending node as the parent and re-
broadcasts the beacon message with an incremented
hop count. In this way, each node knows to which par-
ent it has to forward a packet to reach the correspond-
ing nRTEDB via the shortest path. When a nRTEDB
is overloaded, it increases the beacon period. As a re-
sult, paths from sensors to this nRTEDB will expire
early, reducing loads for this nRTEDB. Workloads are
distributed to other nRTEDBs in the vicinity, which
broadcast beacons frequently. In this way, load bal-
ancing is performed between nRTEDBs in a close area
without requiring centralized control.

Even in the absence of a void, we have experimen-
tally shown that shortest path routing outperforms GF
in terms of the E2E deadline miss ratio [13]. Essen-
tially, GF is not optimal but greedy. A drawback of
shortest path routing is that it implicitly assumes link
bidirectionality: A node assumes that it can reach the
parent node with the shortest delay, since the parent
forwarded it the beacon message first. However, link
bidirectionality does not necessarily hold in wireless
networks. To address this problem, we extend short-
est path routing via link quality estimation. A nRT-
EDB periodically broadcasts a beacon message. When
a sensor node receives k(> 1) duplicate beacon mes-
sages from the nRTEDB, it records all the k one hop
neighbors that forwarded the beacons to itself. When
the node transmits a packet towards the nRTEDB, the
node randomly forwards a data packet to one of the k
one hop neighbors and measures the actual delay and
reliability, i.e., delivery ratio, of the link from itself to
the selected one hop neighbor. After sending a cer-
tain number of packets to these neighbors, the node
forwards data to a neighbor, which provides a high
quality link, with a high probability. We consider a
probabilistic approach to support resilience to network
dynamics, while distributing loads between links.

To measure the link quality, we extend a well known

link quality metric called ETX (Expected Transmission
Count) [2]. ETX indicates how many (re)transmissions
are necessary to deliver a single packet through the
observed link. The higher is the ETX, the lower is the
network throughput. The ETX of a path consisted of n
links l1, l2, ..., ln is equal to

∑n

i=1 ETXi where ETXi is
the ETX of li. A limitation of ETX is that it does not
consider the delay but only considers the delivery ratio.
Thus, for real-time routing, we compute the estimated
transmission delay ETDi for link i:

ETDi = delay · ETXi (1)

where the delay is the exponentially weighted moving
average of one hop transmission delay of li. We ignore
the propagation delay, since radio signals travel at the
speed of light. The one hop speed supported by li is:

Si = 1/ETDi (2)

and the required speed for a link on the path with n
hops is:

Sr = n/E2E deadline. (3)

A node probabilistically chooses a neighbor node i if
Si ≥ Sr as the next hop. If Si is higher, then node i is
more likely to be selected.

In addition, our information-centric approach is dif-
ferent from most existing real-time routing protocols
where data or event semantics are not considered:

• nRTEDBs serve as proxies for sensor nodes. They
answer certain queries based on the derived data
and information rather than flooding every query
to sensor nodes and collecting data from them.

• Based on the real world status, sensor nodes ad-
just reporting periods. A set of nRTEDBs in a
region indicates which sub-regions are important
for event detection. This control information is
piggybacked to beacon messages from nRTEDBs.
Thus, sensors in unimportant areas increase their
reporting periods or sleep in a distributed manner.

• The speed of packet delivery is differentiated, sim-
ilar to MMSPEED [4]. However, unlike MM-
SPEED, packets are differentiated according to
the importance and confidence of the detected
event. Unimportant or low confidence data are
dropped at the source. In contrast, an important
event data with high confidence is transmitted us-
ing high quality links. Further, a critical data is
forwarded to more than one nRTEDB in the prox-
imity.

Thus, nRTEDBs significantly increase the efficiency
of event detection and network lifetime (or time-to-
recharge), while reducing variations in service delays.
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3.3.2 Communication between nRTEDBs

To derive information from raw sensor data, nRTEDBs
communicate with each other via an on demand ad
hoc routing protocol. In our approach, when a nRT-
EDB detects an event, it communicates with the closest
nRTEDBs first. Thus, the nRTEDBs in only one hop
range are invited in the first phase. It incrementally ex-
tends the communication scope to two hop nRTEDB
neighbors after exchanging a certain number of event
messages with one hop neighbors and so on. A vari-
ation of this protocol disseminates event information
in a differentiated manner. If a detected event such
as a fire is more critical, the information is dissemi-
nated faster among nRTEDBs by increasing the scope
in proportion to the criticality such as the intensity of
the detected fire. In this way, nRTEDBs collaborate
as necessary considering the importance of detected
events, if any. Also, this protocol supports mobility of
nRTEDBs. When a nRTEDB in an important region
fails, for example, another nRTEDB in a region with
no interesting event may move to the important area.
If nRTEDBs cannot communicate with each other due
to network problems, nRTEDBs locally process sen-
sor data and store extracted event information to sup-
port real-time information services when the network
recovers. During the network partition time, a nRT-
EDB directly transmits locally processed information
to a nearby user (if any) such as a rescue person with
a personal digital assistant in a disaster area or an un-
manned aerial vehicle flying over a battlefield. Thus,
real-time information can be available even when the
network is partitioned.

3.4 Security and Robustness

By taking an information-centric approach, we ad-
dress several security issues. In our approach, multi-
ple nRTEDBs in a region derive a consensus for event
detection based on sensor data received from a set of
sensor nodes in the region. If a nRTEDB gives a signif-
icantly different result from others in event detection,
this nRTEDB could be under attack. As long as a ma-
jority of nRTEDBs are not compromised, this approach
can detect malfunctioning nRTEDBs, if any.

Similarly, nRTEDBs can alleviate the problem of
false data injection by compromised or malicious sensor
nodes. For example, consider that a small set of sensors
continuously reports a fire, but nearby sensors do not
detect the reported fire or spread of the fire for a long
period of time. In this case, the set of sensors could be
faulty or colluding for false event reports.

The problem of single point of attack is alleviated
by our approach, as load balancing is performed un-

der failure or attack by adapting the beacon period.
Also, another nRTEDB, if available, takes over when
a nRTEDB in an important area fails as discussed be-
fore. nRTEDBs rely on spread spectrum techniques to
communicate with each other. Also, sensor nodes use
different radio frequencies to communicate with differ-
ent nRTEDBs as discussed before. Thus, an adversary
has to jam and overhear the entire broadband for jam-
ming and traffic analysis.

By reducing the number of hops between a source
and sink, nRTEDBs reduce the chance of information
leakage. nRTEDBs reduce the overhead due to repeti-
tive link-layer encryption and decryption at intermedi-
ate nodes needed for in-network data aggregation. As
a result, the timeliness of secure routing is enhanced.
Further, via an authenticated broadcast protocol such
as µTESLA [16], nRTEDBs securely broadcast queries
and their deadlines. Each node can verify that a query
and its deadline are actually originated from a nRT-
EDB without being altered in transit. Thus, it is hard
for an adversary to make sensor nodes misbelieve it as
a nRTEDB or increase/decrease deadlines to disrupt
real-time routing.

Further, we observe that WSN security support can
be optimized by considering application data semantics
[18]. For example, there is usually no need to support
confidentiality of sensor data for scientific research such
as a study of global warming, while the confidential-
ity of data must be supported for battlefield monitor-
ing. False data injection, jamming, and traffic analysis
are unlikely to happen for environmental science re-
search too. Thus, excessive security measures should
be avoided for timeliness and energy efficiency. De-
spite the importance, the key research issues described
in this section have rarely been studied in WSNs.

4 Related Work

Real-time data management has been studied for
more than a decade, producing fruitful research results
[17]. However, most existing work only considers cen-
tralized real-time data management techniques. Very
little prior work has been done for distributed real-time
data management. Also, timely, secure communication
is not considered.

Most existing sensor databases such as TinyDB
[14], Cougar [3], and SINA [20] focus on the database
metaphor and in-network processing. They do not con-
sider security and real-time issues.

A plenty of work has been done for real-time rout-
ing including [1, 5, 4, 6, 13]. However, these protocols
do not consider the information-centric approach and
security issues discussed in this paper. On the other

5



hand, WSN security schemes such as [16] do not con-
sider real-time requirements. Hence, they cannot be
directly applied to real-time data services in CPSs. In
contrast, nRTEDBs enhance security in several ways,
while improving the real-time performance and energy
efficiency as discussed before.

5 Conclusions and Future Work

In this paper, we present a novel information-centric
approach for timely, secure real-time data services in
CPSs. In our approach, to derive global knowledge of
real world phenomena, network-enabled real-time em-
bedded databases communicate with each other, while
controlling and communicating with WSNs in a se-
cure, timely manner. Based on the collective informa-
tion, WSNs are controlled to extract important data
directly related to an event of interest. By taking the
information-centric approach, nRTEDBs can consider-
ably enhance the efficiency of sensing, while improving
timeliness and security. In the future, we will inves-
tigate more efficient routing, event detection, data fu-
sion, and security protocols.
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