
THE IBY AND ALADAR FLEISCHMAN FACULTY OF ENGINEERING
The Zandman-Slaner School of Graduate Studies

Near-Deterministic Inference of
AS Relationships

A thesis submitted toward the degree of
Master of Science in Electrical and Electronic Engineering

by

Udi Weinsberg

August, 2007

THE IBY AND ALADAR FLEISCHMAN FACULTY OF ENGINEERING
The Zandman-Slaner School of Graduate Studies

Near-Deterministic Inference of
AS Relationships

A thesis submitted toward the degree of
Master of Science in Electrical and Electronic Engineering

by

Udi Weinsberg

This research was carried out in the
Department of Electrical Engineering - Systems,

under the supervision of Dr. Yuval Shavitt

August, 2007

Abstract

The discovery of Autonomous Systems (ASes) interconnections and the in-

ference of their commercial Type-of-Relationships (ToR) has been extensively

studied during the last few years. The main motivation is to accurately cal-

culate AS-level paths and to provide better topological view of the Internet.

An inherent problem in current algorithms is their extensive use of heuristics.

Such heuristics incur unbounded errors which are spread over all inferred re-

lationships. This work proposes a near-deterministic algorithm for solving the

ToR inference problem. The proposed algorithm uses as input the Internet

core, which is a dense sub-graph of top-level ASes. We evaluate several meth-

ods for creating such a core, and demonstrate the robustness of the algorithm

to the core’s size and density, the inference period, and errors in the core.

In this thesis we evaluate the proposed algorithm using AS-level paths

collected from RouteViews BGP paths and DIMES traceroute measurements.

Our proposed algorithm deterministically infers over 95% of the approximately

58,000 AS topology links. The inference becomes stable when using a week

worth of data and as little as 20 ASes in the core. The algorithm infers 2–3

times more peer-to-peer relationships in edges discovered only by DIMES than

in RouteViews edges, validating the DIMES promise to discover periphery AS

edges.

i

Contents

1 Introduction 1

1.1 Related Work . 3

2 AS Relationships Inference 5

2.1 Deterministic Classification . 5

2.2 Assigning Type-of-Relationship to Edges 8

2.3 Non-Deterministic Inference of Remaining Relationships 10

2.4 Internet Exchange Points Classification 12

2.5 Core Graph Construction . 13

3 Experimental Results 15

3.1 Data Sources . 15

3.2 Voting Threshold . 17

3.3 Sensitivity Analysis . 18

3.4 Time Aggregation Analysis . 21

3.5 Analysis of Non-Deterministically Inferred Relationships 23

4 Conclusion and Future Work 27

ii

List of Figures

2.1 Deterministic ToR inference algorithm 6

2.2 Non-Deterministic ToR inferences 11

2.3 Internet Exchange Point edges classification 13

3.1 Types-of-Relations voting distribution 18

3.2 Robustness of the algorithm to changes in the size of the core . 20

3.3 Non-Valley-Free paths . 21

3.4 Deterministically classified edges over an increasing time frame . 22

3.5 Percentage of deterministically inferred edges matching CAIDA

out of edges that are inferred by both algorithms 23

3.6 Robustness of the algorithm to errors in the core 24

3.7 Percentage of p2p, heuristically classified and unclassified edges 25

3.8 P2P inference method using GreedyMaxClique core 26

iii

Chapter 1

Introduction

Today’s Internet consists of thousands of networks administrated by various

Autonomous Systems (ASes). ASes are assigned with one or more blocks of

IP prefixes and communicate routing information to each other using Border

Gateway Protocol (BGP). Each AS uses a set of local policies for selecting the

best route for each reachable prefix. Typically, these policies are based on the

Type-of-Relationship (ToR) that exists between ASes and on a shortest path

criteria. In order to calculate the paths between ASes, one needs to obtain the

ToR between all neighboring ASes. Since ToRs are regarded as proprietary

information, deducing them is an important yet difficult problem.

Typically [18], there are three major commercial relationships between

neighboring ASes: customer-to-provider (c2p), peer-to-peer (p2p), and sibling-

to-sibling (s2s). In the c2p category, a customer AS pays a provider AS (usually

larger than the customer) for traffic that is sent between the two. In the p2p

category, two ASes freely exchange traffic between themselves and their cus-

tomers, but do not exchange traffic from or to their providers or other peers.

In s2s, two ASes administratively belong to the same organization and freely

exchange traffic between their providers, customers, peers, or other siblings.

Gao [12] was the first to study the AS relationships inference problem and

deduced that every BGP path must comply with the following hierarchical

pattern: an uphill segment of zero or more c2p or s2s links, followed by zero or

one p2p links, followed by a downhill segment of zero or more p2c or s2s links.

Paths with this hierarchical structure are called valley-free or valid. Paths

that do not follow this hierarchical structure are called invalid and may result

from BGP misconfigurations or from BGP policies that are more complex and

do not distinctly fall into the above classification. Most work in this field

(section 1.1) follows the valley free routing principle.

1

Current relationships inference algorithms attempt to solve the ToR prob-

lem either by using heuristic assumptions or by optimizing some aspects of the

ToR assignments. Optimization is usually achieved by minimizing the number

of paths that violate the valley free routing property [22] while not allowing

cycles to be created [8, 19] in the resulting directed relationships graph.

Using heuristic assumptions throughout the relationships inference process

causes the erroneous ToRs to be spread over all interconnecting ASes links.

The optimization models fail to capture the true Internet hierarchy [10] and

have a relatively low p2p inference accuracy [24]. The result is that both

solutions fail to provide an insight, or a bound on the inference errors.

Typically, AS relationships are not published by AS operators, hence the

validation of such results is done either by sending queries to the operators of

a small subset of ASes [9] or by comparing the results to partial information

that is available on the Internet [24]. Although these methods can give a good

approximation on the correctness of the results, one cannot assume a bounded

mistake.

This work aims to improve on existing methods by providing a near-

deterministic inference algorithm for solving the ToR problem. The input for

our algorithm is the Internet Core, a sub-graph that consists of the globally

top-level providers of the Internet and their interconnecting edges with their

already inferred relationship types. Theoretically, given an accurate core with

no relationships errors, the algorithm deterministically infers most of the re-

maining AS relationships using the AS-level paths relative to this core, without

incurring additional inference errors. In real-world scenarios, where the core

and AS-level paths can contain errors (due to misconfigurations or measure-

ments mistakes), the algorithm introduces minimal inference errors. The core

can be approximated in several ways, as described in section 2.5, or extracted

from public databases. We show that our algorithm has relaxed requirements

from the core, and proves to be robust under changes in its definition, size

and density. Since the top-level ASes are a small and stable group, accurately

revealing the core members and their mutual types of relationships is fairly

easy. For the remaining set of relationships that cannot be inferred determin-

istically, a heuristic inference method is deployed. Since this group is relatively

small, it is possible to provide a strict bound on the inference error. In order

to increase the number of vantage points from which we see the Internet, we

use both RouteViews (RV) [2] BGP data and DIMES [21] AS-level traceroutes.

2

We expect that over time, the group of non-deterministic inferred relationships

will even further decrease.

The remaining of this paper is organized as follows. Section 1.1 provides

several related works concerning AS relationships inference. Section 2 provides

a detailed description of our deterministic inference algorithm and discusses the

methods used to infer on the remaining unclassified edges. Section 3 provides

a detailed evaluation of the proposed algorithms and Section 4 concludes the

paper and discusses future work.

1.1 Related Work

As mentioned above, Gao’s pioneering work [12] was the first to study the

AS relationships inference problem. Gao proposed an inference heuristic that

identified top providers and peering links based on AS size, which is propor-

tional to its degree (the number of immediate neighbors of a vertex), and the

valley-free nature of routing paths. Gao used this heuristic to infer relation-

ship between ASes in the Internet by traversing advertised BGP routes, locally

identifying the top provider for each path, and classifying edges (i.e., inferring

the relationships represented by the edges) as going uphill to the top provider

and downhill afterwards. Xia and Gao [24] later proposed to use partially

available information regarding AS relationships in order infer the unknown

relations. It is not clear that this information can be obtained and validated

periodically, unlike our suggestion to use the almost constant relationships in

the Internet core. Our sole reliance on the core produces simpler inference

rules that are less prone to inference errors.

Following Gao’s work, Subramanian et al. [22] formally defined the Type-of-

Relation (ToR) maximization problem that attempts to maximize the number

of valid (valley-free) routing paths for a given AS graph. Their approach takes

as input the BGP tables collected at different vantage points and computes a

rank for every AS. This rank is a measure of how close to the graph core an

AS lies (equivalent to vertex coreness [3]), and is heuristically used to infer AS

relationships by comparing ranks of adjacent ASes. If the ranks are similar,

the algorithm classifies the link as p2p, otherwise it is classified as c2p or p2c.

Battista et al. [6] showed that the decision version of the ToR problem

(ToR-D) is an NP-complete problem in the general case. Motivated by the

hardness of the general problem, they proposed approximation algorithms and

3

reduced the ToR-D problem to a 2SAT formula by mapping any two adjacent

edges in all input AS-level routing paths into a clause with two literals, while

adding heuristics based inference.

Dimitropoulos et al. [10] addressed a problem in current ToR algorithms.

They showed that although ToR algorithms produce a directed Internet graph

with a very small number of invalid paths, the resulting AS relationships are

far from reality. This led them to the conclusion that simply trying to max-

imize the number of valid paths (namely improving the result of the ToR

algorithms) does not produce realistic results. Later in [9] they showed that

ToR has no means to deterministically select the most realistic solution when

facing multiple possible solutions. In order to solve this problem, the authors

suggested a new objective function by adding a notion of ”AS importance”,

which is the AS degree ”gradient” in the original undirected Internet graph.

The modified ToR algorithm directs the edges from low importance AS to a

higher one. The authors showed that although they have high success rate in

p2c inference (96.5%) and in s2s inference (90.3%), the p2p inference success

rate (82.8%) is relatively low. Moreover, the authors surveyed some ASes op-

erators and mention that for some of them, the BGP tables, which are the

source for AS-level routing paths for most works in this research field, miss up

to 86.2% of the true relationships between adjacent ASes, most of which are

of p2p type.

Cohen and Raz [8] follow previous works [14, 13] and describe an algorithm

that attempts to minimize the number of invalid paths, while capturing the

true hierarchal structure of the Internet. Following the fact that the real Inter-

net graph cannot contain cycles, they defined the Acyclic Type of Relationship

(AToR) problem as an attempt to maximize the number of valid paths from a

given set of routing paths, while keeping the directed graph acyclic. A parallel

work that provided a very similar definition to the AToR problem, but was

very focused on the theoretical aspects of the problem was published by Kosub

et al. [19]. It was later applied to the Internet [17], showing that the acyclicity

assumptions are valid on the Internet graph.

The observations made by the works listed in this section, highly motivate

our work. They drive us not only to seek an algorithm that better captures the

true AS relationships in the Internet while reducing the usage of heuristics for

inference, but also adding a complementary data source, that has the ability

to capture much of the missing links.

4

Chapter 2

AS Relationships Inference

In this section we describe our ToR inference algorithm in details. We start

with explaining the deterministic algorithm, and proceed with the heuristics

we employ for edges that the deterministic algorithm fails to classify.

2.1 Deterministic Classification

Our deterministic algorithm receives as input two undirected AS-level graphs

and a set of AS-level routing paths, denoted by S. The first graph, denoted

by G(VG, EG), contains the set of vertices that represent all ASes, and the

interconnecting edges that need to be classified. The second graph, denoted

by Core(VC , EC), holds the vertices and interconnecting edges that represent

the core of G, and is assumed to contain all the top-level ASes.

Prior to starting the relationships inference algorithm, we infer s2s relation-

ships, since ignoring these relationships might cause proliferation of erroneous

inference [9]. We use s2s data collected from [1]. These s2s classifications are

obtained from IRR databases, namely RIPE, ARIN and APNIC. Although

these databases are not always up-to-date, they are reasonably steady and ac-

curate for the s2s inference. Once classified, the s2s edges are removed from

the edges set EG, and the two adjacent vertices are united to form a single

vertex that inherits the connectivity of both.

Following the assumption that the input core consists of all the global top-

level ASes and using the valley-free model of Internet routing, the algorithm

classifies most of the edges in G(VG, EG) without using heuristic assumptions:

Phase 1. All paths that pass through the core are split into a segment

of zero or more uphill c2p edges towards the core, at most one p2p edge in

the core and a downhill segment of zero or more p2c edges from the core.

5

The algorithm, shown in Algorithm 0, traverses only paths that pass through

the core. It starts with the uphill segment of the path, classifying each edge

as c2p, until reaching the core. Once reached the core, the uphill segment

finishes and the core segment starts. Inside the core the algorithm classifies

edges that are not already classified as p2p (the default type for core edges).

The downhill segment starts with an AS that does not belong to the core, and

is traversed until the end of the path. Invalid paths are detected when an edge

is directed towards the core (uphill) during the downhill segment. Each path

that is classified in this phase is removed from the set of paths S. Note that

the algorithm does not use direct inference but a voting technique, which is

explained in section 2.2.

(a) Phase 1 (b) Phase 2

Figure 2.1: Deterministic ToR inference algorithm

An example for edges that are classified during this phase is illustrated

in Figure 2.1(a). Path P traverses the core and consists of seven AS hops,

numbered 1 to 7. The segment between hop 1 and hop 4 is identified as an

uphill segment, resulting in the classification of the edges (1,2), (2,3), and (3,4)

as c2p (illustrated as an arrow pointed from the customer to the provider).

ASes 4 and 5 are inside the core, therefore are already classified (by default

to p2p). The segment starting in AS 5 and ending in AS 7 is considered as a

downhill segment, resulting in the classification of the edges (5,6) and (6,7) as

p2c.

Since the remaining paths in S do not traverse the core, they do not provide

us with a direct method for classification. However, amongst these, there are

6

Algorithm 1 Phase 1 of ToR Inference Algorithm

Input: Graphs G(VG, EG), Core(VC , EC) ⊂ G, Paths set S
Output: Edges EG with votes for relationship types
1: foreach path ∈ S do
2: if ∃e ∈ path | e ∈ EC or ∃v ∈ path | v ∈ VC then
3: upHill ← TRUE
4: downHill ← FALSE
5: inCore ← FALSE
6: foreach edge ∈ Path do
7: AS1 ← edge.firstAS
8: AS2 ← edge.secondAS
9: if edge ∈ EC then

10: upHill ← FALSE
11: inCore ← TRUE
12: else if AS1 ∈ VC and AS2 6∈ VC then
13: upHill ← FALSE
14: inCore ← FALSE
15: downHill ← TRUE
16: else if downHill and AS2 ∈ VC then
17: voteForInvalid(edge)
18: end if
19: if upHill then
20: voteForCustomerToProvider(edge)
21: else if inCore and notClassified(edge) then
22: voteForPeerToPeer(edge)
23: else
24: voteForProviderToCustomer(edge)
25: end if
26: end for
27: S ← S \ path
28: end if
29: end for

7

paths that partly overlap other paths that traverse the core. Meaning that

some of the remaining paths already contain edges that were classified as either

c2p or p2c in the first phase of the algorithm. We use these edges for the second

phase of the algorithm:

Phase 2. For a given path, edges that precede a c2p edge must reside in

an uphill segment, and be of type c2p. Edges that follow a p2c edge must be in

a downhill segment, and be of type p2c. The algorithm, listed in Algorithm 0,

traverses one path at a time, and looks for an already inferred c2p or p2c edges.

If a c2p edge is detected, all unclassified edges in the path before this edge,

temporarily stored in the suspectC2P list, are classified as c2p. If a p2c edge is

detected, all unclassified edges in the path after this edge, temporarily stored

in the suspectP2C list, are classified as p2c.

Since this phase uses classified edges in order to classify unclassified edges,

it is repeated for all paths in S that still have unclassified edges, until there

are no more edges that can be classified using this method.

Figure 2.1(b) illustrates an example for a path that contains edges that

will be classified during Phase 2 of the algorithm. Path P does not traverse

the core but contain edges that are already classified. The edge (1,2) precedes

the edge (2,3) which is classified as c2p, therefore is classified as c2p. The

edge (6,7) follows a p2c edge, therefore is classified as p2c. The edges (3,4)

and (4,5) cannot be classified, since we are unable to determine which AS is

the top-level provider and whether the edges (3,4) and (4,5) represent a p2p

relationship.

2.2 Assigning Type-of-Relationship to Edges

The data we use might be ”noisy” and reflect transient routing effects or

changes in the commercial relationships between ASes, especially when per-

forming relationships inference over a long time frame. To avoid incorrect

inferences resulting from these effects, we use voting technique [12] instead

of direct relationship inference. Meaning, that the above methods vote for

the ToR of each traversed edge. Once the algorithm is finished, we count the

votes and assign each edge with the type that received a relative votes count

that passes a given threshold. The pseudo-code of this vote counting tech-

nique is provided in Algorithm 0. The algorithm simply calculates the relative

vote count for each type of relationship and returns the one that exceeds the

8

Algorithm 2 Phase 2 of Classification Algorithm

Input: Graph G(VG, EG), Remaining set of paths S
Output: Edges EG with votes for relationship types
1: foreach path ∈ S do
2: suspectC2P ← ∅
3: suspectP2C ← ∅
4: passedP2C ← FALSE
5: foreach edge ∈ Path do
6: if maxV otesC2P (edge) and suspectC2P 6= ∅ then
7: foreach e ∈ suspectC2P do
8: voteForCustomerToProvider(edge)
9: end for

10: suspectC2P ← ∅
11: else if maxV otesP2C(edge) then
12: suspectC2P ← ∅
13: passedP2C ← TRUE
14: end if
15: if noClassificationV otes(edge) then
16: if passedP2C = FALSE then
17: suspectC2P ← suspectC2P ∪ edge
18: else
19: suspectP2C ← suspectP2C ∪ edge
20: end if
21: end if
22: end for
23: if suspectP2C 6≡ ∅ then
24: foreach e ∈ suspectP2C do
25: voteForProviderToCustomer(edge)
26: end for
27: end if
28: end for

9

provided threshold.

The deterministic algorithm does not attempt to classify edges that have

a vote count that does not pass the threshold, but rather it employs the non-

deterministic methods discussed in section 2.3. The exact value of the thresh-

old is set to avoid incorrect inferences that can be the result of a relatively

close vote count, and is discussed in section 3.2. at received a relative votes

count that passes a given threshold.

Algorithm 3 Type-of-Relationship inference using vote count

Input: Edge e, threshold
Output: Type-of-Relationship for edge e
1: p2c ← 0
2: c2p ← 0
3: p2p ← 0
4: sum ← (e.p2p + e.p2c + e.c2p)
5: if sum 6= 0 then
6: p2c ← e.p2c/sum
7: c2p ← e.c2p/sum
8: p2p ← e.s2s/sum
9: if p2c ≥ threshold then

10: Return provider − to− customer
11: else if c2p ≥ threshold then
12: Return customer − to− provider
13: else if p2p ≥ threshold then
14: Return peer − to− peer
15: else
16: Return heuristicsInference(e)
17: end if
18: else
19: Return unclassified
20: end if

2.3 Non-Deterministic Inference of Remain-

ing Relationships

The deterministic algorithm fails to classify several types of edges. The first

type are edges that appear in paths that do not traverse the core, and reside

between a c2p edge and a p2c edge (see Figure 2.2(a)). This can be a result

of a path that does not traverse the core and has no overlapping edges with

10

other paths, or overlaps other paths in edges that are close to the beginning or

end of the path. Alternatively, the path may have a p2p relationship between

its two top-level vertices.

(a) Peer-to-Peer (b) Non-Valley-Free

Figure 2.2: Non-Deterministic ToR inferences

In order to infer relationships related to these edges we use the following

assumption (which is backed from observations, as we show in section 3.5): a

c2p or p2c edges should participate in, at least, one path that pass through

the core. For this not to happen the following should occur: 1) a client will

rarely route through a certain edge to its provider and thus may not expose

this link in a DIMES measurement path that passes through the core, and

2) at the same time the paths through the core that contain this edge will

be filtered by BGP in the direction of the speakers sampled by RouteViews.

Thus, we assume that most c2p and p2c edges are already classified by our

deterministic algorithm. Following this assumption we can infer that in paths

that do not pass through the core, and have a single remaining unclassified

edge (which must reside between a c2p and a p2c edges), this edge should be

classified as a p2p edge (this is illustrated as the edge between ASes 3 and 4 in

Figure 2.2(a)). In case there is more than a single edge between the c2p and

the p2c (as illustrated in Figure 2.1(b)), we leave the edges unclassified, since

we cannot determine which of the vertices is the provider.

The second type of unclassified edges are the ones that have a similar

number of votes for two or more types of relationships. This can be the result

of changes in the commercial relationship between adjacent ASes over the

11

measurements period, or due to more complex peering agreements that can

cause the same edge to behave differently as seen from different view points in

the Internet [9].

To resolve these ambiguities, we use heuristic-based methods suggested by

other works. Although we chose to use the AS degree in the graph [12], and

the k-shell index [23, 7], any other method can be employed. Analysis of this

inference technique is further discussed in the experimental results in section 3.

The third type of unclassified edges are edges that appear in non-valley-free

paths (Figure 2.2(b)), possibly the result of valid paths that pass a malformed

core, or invalid paths that pass an accurate core. Since these invalid paths

occur in only a small fraction of paths (less than 1% on average from the

investigated paths per week), we leave the classification of these ”valley edges”

to future work.

2.4 Internet Exchange Points Classification

An Internet exchange point (IXP) is a physical infrastructure that allows

different ASes to exchange traffic between them by means of mutual peering

agreements. IXPs operate either in Layer-2, as a switching fabric, or in Layer-3

as a router. In the first case, the IXP does not have an AS number, therefore it

will not be visible in our set of paths and the AS-graph. Although traditionally

IXPs were used to allow transit between peering ASes with no cost, nowadays

IXPs are a convenient method to create other types of interconnections between

ASes, namely p2c and c2p.

The main challenge that IXPs pose when performing ToR inference, is that

the edges connecting an IXP to adjacent ASes can exhibit different ToR de-

pending on the AS-level path they participate in. An example to this difficulty

is given in Figure 2.3. The figure shows two paths, P1 and P2, that traverse

the same edge (IXP,6). In P1 this edge appears to be a valley edge since in

goes downhill from AS4 to the IXP and then uphill to AS6. On the other

hand, in P2 this edge is simply a c2p edge. However, realizing that the IXP

is an exchange point, we result in two ”virtual” edges - (4,6) and (10,6), the

first should be classified as p2p while the latter should be classified as c2p.

ASes that indirectly interconnect via an IXP have a virtual edge that con-

nects the two. These virtual edges exhibit quite quite complex relationships,

since IXPs route at different networking layers. Although it is claimed that

12

Figure 2.3: Internet Exchange Point edges classification

IXPs should not be visible in either BGP or traceroutes paths, our observa-

tions shows otherwise. We are able to see IXPs in various paths, both in BGP

and traceroutes that we collect. However, since there are no previous works

that attempt to infer these relationships, it is impossible to compare results

in order to determine their accuracy. Thus, we leave the analysis of these

complex relationships to future work.

2.5 Core Graph Construction

Motivated by the need to capture the true global hierarchal structure of the

Internet we looked for an accurate global decomposition of the Internet AS-

level graph. There have been several attempts to characterize the core of the

Internet AS graph [22, 23, 7, 16, 15]. We use three core construction methods,

that result in cores that vary in size and density. We analyze the effect that

each core has on the classification algorithm.

Tauro et al. [23] proposed the Jellyfish conceptual model in which they

identified a topological center and classified vertices into layers with respect

to the center. The authors defined core as a clique of high-degree vertices,

and constructed it by sorting the vertices in non-increasing degree order. The

first vertex in the core is the one with the highest degree. Then, they examine

each vertex in that order; a vertex is added to the vertex only if it forms a

clique with the vertices already in the core. The resulting core is a clique

but not necessarily the maximal clique of the graph. We refer to this core as

13

GreedyMaxClique .

Carmi et al. [7] indicated that using the popular vertex’s degree (which was

encouraged by the finding of the Internet’s power-law distribution [11]) as an

indicator of the vertex’s importance can be misleading. The authors presented

the new Medusa model, that uses a k-pruning algorithm to decompose the

Internet AS graph and extract a nucleus (the Kmax-Core) which is a very well

connected globally distributed subgraph. Note that this algorithm extracts a

core by looking at the entire graph, unlike GreedyMaxClique that takes a local

approach. The properties listed for this model are useful for AS relationship

inference, mainly due to the finding that the nucleus plays a critical role in

BGP routing, since its vertices lie in a large fraction of the paths that connect

different ASes. We refer to this core as k -Core.

The last core we use is constructed from most of the ASes and intercon-

necting edges that exhibit p2p relationship under the inference method in [9].

We use the Automated AS ranking provided by CAIDA [1] and constructed a

graph that contains all the edges classified as p2p (tagged with 0 in the files

downloaded from http : //as−rank.caida.org) and their adjacent AS vertices.

We then selected the largest connected component that contains some of the

largest tier-1 ASes, namely AS701 (UUNET) and AS7018 (AT&T). We refer

to this core as CP (CAIDA Peers).

The three core types vary in size and density as an attempt to capture

different inference behaviors. Using a small, dense core reduces the probability

that a non-top-level AS is wrongfully considered as a top-level AS for all paths

that pass through it, thus causing incorrect inferences. However, a small core

might miss top-level ASes, thus cause non-valley-free paths. On the other

hand, when using a large core, a trace might have several hops in the core.

In this case we follow [22] and assume that two ASes may have an ”indirect

peering” relation, meaning they have p2p relationship through an intermediate

AS, such as an exchange point. Traces with more than three hops in the core

are considered invalid.

14

Chapter 3

Experimental Results

In this section we evaluate the deterministic algorithm and the additional

heuristics inferences using data from the first five weeks of 2007. We evaluate

its accuracy by comparing the results to the classification algorithm proposed

in [9], referred to as CAIDA. We start by discussing the data sources, and the

three different type of cores we use as inputs to the algorithm. We then analyze

the effect of the core size (number of vertices) and density (the number of edges

divided by the full clique size) on the algorithm, and check the transient effects

caused by aggregating data for changing time frames. Finally we check the

sensitivity of the algorithm to increasing mistake in the core.

3.1 Data Sources

For this work we combined data from the RouteViews (RV) [2] and DIMES [21]

projects to maximize the size of our AS topology. We used BGP paths collected

by the RV project, similar to most other previous work [10, 13, 14, 23, 11, 22,

20]. We created weekly batches of AS-level paths by downloading one RV file

that was generated daily at 20:00, and merged all 7 files, making sure that

each path appears exactly once. We parse RV’s files and use only AS paths

marked as ”valid”. Some of the paths advertised in BGP contain a repeating

AS. This is caused due to routers that prepend their AS number multiple times

to make the route longer, thus discourage the route being selected as the best

route [20]. We process these paths and drop repeating ASes.

Since BGP paths miss many of the actual links (primarily of type p2p)

caused by non-advertised links in BGP [9, 8] we use additional data from

DIMES. DIMES is a large-scale distributed measurements effort that measures

and tracks the evolution of the Internet from hundreds of different view-points,

15

in an attempt to overcome the ”law of diminishing returns” [5]. DIMES daily

collects over 2 million traceroute and ping measurements targeted at a set of

over 5 million IP addresses, which are spread over all the allocated IP prefixes.

In order to create AS-level paths from the IP-level traceroutes provided

by DIMES agents, we preform AS resolution for each hop in all paths. AS

resolution is done by first performing longest-prefix-matching against BGP ta-

bles obtained from RV archive. This resolves approximately 98% of the IP

addresses. For the remaining 2%, we query against two WhoIs databases,

namely RIPE and RADB, that resolves additional 1.5% of the IP addresses.

The remaining 0.5% unresolved IP addresses are discarded and do not partic-

ipate in the inference algorithm.

It is reasonable to assume that the resulting AS-level traceroutes behave

according to the valley-free model, since, except unique routing schemes, they

mostly follow the routing paths determined by the advertised BGP paths

(shortest paths) or by manually configured (and not advertised) routes.

The raw DIMES data was filtered in order to reduce inference mistakes

and inclusion of false links. We filtered for some measurements artifacts by

only including edges which were seen from at least two agents. In addition

we trimmed all traces that exhibit known traceroute problems [4], namely

routing loops and destination impersonation, keeping only the section of the

path preceding the identified problem.

Using AS paths gathered from DIMES gives us the ability to identify and

classify edges that might not be advertised in BGP, thus enabling us to obtain a

complete AS-level Internet graph, as seen by numerous vantage points, located

at various types and sizes of ASes.

Using this data, we have the ability to construct the inputs required by

our algorithm: the path set, S, consists of all paths from both data sources

gathered in the examined time frame and passed the filtering rules; the AS

Internet graph, G, is the directed graph consists of both directions of every edge

that is contained in some RouteViews or DIMES path during the examined

time frame; the core graph Core construction is discussed in the following

section.

Table 3.1 shows the number of ASes and interconnecting links gathered

during the first five weeks of 2007, obtained by using both RouteViews and

DIMES. On average, the data set consists of over 24,000 AS vertices and

approximately 58,000 links (undirected edges). Approximately 44% of the

16

edges exist only in RV paths, about 12% exist only in the filtered DIMES

paths and the remaining 44% of the edges exist in both RV and DIMES. In

section 3.5 we analyze the edges seen only by DIMES in order to understand

the type of these additional links.

Table 3.1: ASes and links collected by Dimes and RouteViews during the first
five weeks of 2007

Week ASes Links RV links DIMES
links

RV&DIMES
links

1 24391 57875 24282 6964 26629
2 24451 57920 24313 6986 26621
3 24492 57921 24609 6630 26682
4 24581 59058 24913 7288 26857
5 24716 59779 25528 7331 26920

On a weekly average, we filtered approximately 5,100 DIMES edges that

were measured only once, which is over 15% of the edges measured by DIMES.

Around half of these edges appear in RouteViews, providing a testimony to

our conservatism.

3.2 Voting Threshold

In order to validate the usage of the voting technique described in section 2.2

and set a proper threshold value, we tested the distribution of votes to inference

types. For each edge we calculated the ratio of p2c votes. Figure 3.1 shows

the number of edges for each p2c ratio. Clearly, the vast majority of the edges

are uniquely classified as either p2c or c2p. This remains true when running

the algorithm on longer time frames.

Looking at the data backing up this graph, we see that on average over

94% of the edges have votes for exactly one relationship type, and almost 99%

of the edges have over 80% of the votes casted for a single relationship type,

which provides a very high level of confidence for this selected type. Thus, a

threshold value of 0.8 covers almost 99% of the edges, and leaves approximately

1% of the edges to be classified using heuristic methods, or remain unclassified.

17

0 0.2 0.4 0.6 0.8 1
0

10,000

20,000

30,000

40,000

50,000

Provider−to−Costumer vote ratio

N
um

be
r

of
 e

dg
es

1 Week
2 Weeks
3 Weeks
4 Weeks
5 Weeks

Figure 3.1: Types-of-Relations voting distribution

3.3 Sensitivity Analysis

Since the construction of the core graph is a major building block for the

algorithm, we evaluate the effect that the core has on the inference process.

We start by examining the overall algorithm performance and stability over

consecutive weeks. We then evaluate the optimal core size, i.e., a core that

results in a minimal inference mistake while achieving a high classification

percentage. Finally, we test the sensitivity of the algorithm to errors in the

core by randomly replacing core vertices.

We start by looking at the result of executing the algorithm using the first

five weeks of 2007, each time with a different core type. As expected, most

of the AS relationships are inferred in phase 1 of the deterministic algorithm

using paths that traverse the core. These paths comprise a large percentage of

all available paths, ranging from over 98% for k -Core and CP to 81% for the

smaller GreedyMaxClique core.

Table 3.2 shows the structure of the different core types used and the ef-

fect it has on the deterministic inference algorithm. The percent of classified

edges and edges matching CAIDA’s inference is calculated out of the total

number of edges (including edges that are unclassified by CAIDA). It shows

that the smallest GreedyMaxClique core results in the lowest deterministic

inference percentage while the largest CP core have the highest percentage.

This is the result of the larger cores having more paths that traverse them,

18

therefore can be deterministically inferred. k -Core provides an excellent over-

all inference percentage (over 95% deterministically inferred and around 75%

matching CAIDA). Additionally, the results are stable over the measured fix

weeks period. The drop in the percentage of edges matching CAIDA in week

5 is caused due to a decrease in the number of edges classified by CAIDA.

Table 3.2: Structure of input cores and its effect on the deterministic inference
algorithm
Core Week→ 1 2 3 4 5
k -Core Core Vertices 57 56 54 58 54

Core Edges 2260 2198 2076 2344 2134
Classified 95.59% 95.76% 95.34% 95.24% 94.22%
Match CAIDA 75.23% 75.32% 75.08% 73.76% 62.76%

Greedy Core Vertices 17 17 17 18 17
Max Core Edges 272 272 272 306 272
Clique Classified 89.64% 89.87% 89.77% 89.62% 88.87%

Match CAIDA 73.73% 73.82% 73.60% 72.56% 61.68%
CP Core Vertices 1067 1053 1068 1056 1087

Core Edges 6158 6110 6012 5844 6138
Classified 98.29% 98.55% 98.45% 98.0% 97.39%
Match CAIDA 79.77% 79.78% 79.43% 77.93% 67.19%

Although CP core seems to result in the best overall performance, con-

structing the CP core revealed that only a few p2p edges out of the approxi-

mately 6,000 edges were not a part of the largest connected component. This

suggests that CAIDA incorrectly infers AS relationships as p2p, since it is

highly unlikely that all p2p edges are connected. This causes a bias, resulting

in more inference errors.

Table 3.3 shows that less than 6% of the edges were differently classified us-

ing two cores in each week, and the difference between k -Core and GreedyMax-

Clique is much smaller. This shows that the algorithm results are relatively

consistent regardless of the input core.

Table 3.3: Percentage of edges that change classification comparing different
core types

Cores | Week→ 1 2 3 4 5
k -Core - GreedyMaxClique 1.77% 1.66% 1.58% 1.8% 1.64%
k -Core - CP 5.94% 5.89% 5.84% 5.7% 5.81%
GreedyMaxClique - CP 3.53% 3.45% 3.37% 3.34% 3.51%

19

10 20 30 40 50 60 70 80 90
65

70

75

80

85

90

95

100

Core size (|V|)

P
er

ce
nt

ag
e

of
 e

dg
es

Classified
Deterministic
Matching CAIDA

(a) k-Core

0 20 40 60 80 100 120
65

70

75

80

85

90

95

100

Core size (|V|)

P
er

ce
nt

ag
e

of
 e

dg
es

Classified
Deterministic
Matching CAIDA

(b) GreedyMaxClique

Figure 3.2: Robustness of the algorithm to changes in the size of the core

In order to find the best core size, we run the algorithm with a growing

core size starting at four vertices. We do this for two of our core types - k -Core

and GreedyMaxClique, using the first week of 2007. We start with the highest

degree vertices and add vertices in a non-increasing degree order. Using k -

Core, we first add vertices from the Kmax − Core and then proceed to shells

with lower indexes.

Figure 3.2 shows the robustness of the algorithm relative to the size of the

20

input core. The vertical dashed line marks the true core size. For both cores,

it shows that for more than 20 vertices in the core the algorithm classifica-

tion success and similarity to CAIDA do not significantly change, while the

number of deterministically classified edges increases. However, this increase

comes with an increase in the percentage of non-valley-free paths as shown in

Figure 3.3. This implies that the core must be kept small enough to decrease

the number of invalid paths.

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Core size (|V|)

P
er

ce
nt

ag
e

of
 p

at
hs

GreedyMaxClique
kCore

Figure 3.3: Non-Valley-Free paths

Overall we showed that the algorithm is consistent over time and vari-

ous cores. Additionally, a core containing approximately 20 top-level ASes is

sufficient to obtain excellent inference results.

3.4 Time Aggregation Analysis

We wish to find a time frame for which the algorithm captures best the rela-

tionships between ASes. A short time frame results in a fast running algorithm

but might miss AS links and AS paths, especially in the DIMES data. This

results in a low vote count, possibly decreasing the success of the algorithm.

On the other hand, a long time frame captures two effects that can also cause

a decrease in the algorithm’s success: 1) commercial relationships can change

and complex routing behaviors may occur over long durations, and 2) possible

measurements mistakes can pile up and skew the results.

21

We executed the algorithm on an increasing time frame. We started with

the first day of 2007 and aggregated single days until the end of the first

week (for this experiment we took three RouteViews files a day). Then, we

aggregated a week at a time, until reaching 10 consecutive weeks. DIMES

provides approximately 1.5M non-unique tracroutes each day, reaching over

100M traceroutes for the 10 weeks period. RouteViews provides approximately

1.2M unique paths regardless of the time frame used.

The percentage of deterministically inferred edges over the aggregated time

frame is shown in Figure 3.4. Using data from a single week (marked as the

vertical dashed line) results in over 90% of the edges being classified for all

core types, having CP obtaining the best percentage and GreedyMaxClique

the worst. This is directly related to the size of the core, since a larger core

results in more paths that traverse through it, yielding more deterministically

inferred relationships.

0 5 10 15 20 25 30 35 40
80

85

90

95

100

Time (days)

P
er

ce
nt

ag
e

of
 e

dg
es

CAIDA Peers
kCore
GreedyMaxClique

Figure 3.4: Deterministically classified edges over an increasing time frame

We evaluate the deterministic algorithm over this time frame by looking

at the edges that are identically classified by the deterministic algorithm and

CAIDA, out of the edges that are classified by both. Figure 3.5 shows that for

all cores and any time frame, the algorithms agree on over 92% of the edges.

Obviously, using CP gives the best match to CAIDA’s inference. It is inter-

esting to see that although k -Core has better overall deterministic inference

success than GreedyMaxClique (shown in Figure 3.4), it results in a lower

match rate. This is probably due to the relatively small, local and degree-

based GreedyMaxClique core, which is more related to the heuristic used by

CAIDA’s inference methods.

22

0 5 10 15 20 25 30 35 40 42
85

90

95

100

Time (days)

P
er

ce
nt

ag
e

of
 e

dg
es

CAIDA Peers
GreedyMaxClique
kCore

Figure 3.5: Percentage of deterministically inferred edges matching CAIDA
out of edges that are inferred by both algorithms

Finally, we looked at the consistency of the inference results over the time

frame by comparing edges that are classified in both time frames. We found

that over 98% of the inferences remain constant between consecutive time

frames. This suggests that there are only a few commercial relationships that

change over time. Short-term routing changes have very little effect, since they

statistically ”disappear” as the more common routes become dominant over

time.

3.5 Analysis of Non-Deterministically Inferred

Relationships

Edges that the deterministic algorithm fails to classify are classified using

the two heuristic-based inference methods described is section 2.3. The first

method breaks voting ties and the second infers p2p relationships.

To break voting ties we compared adjacent AS degrees (similar to [12]) and

inferred the relationship between them as p2p if the degrees ratio is between

0.8 and 1.2, or p2c otherwise (marking the provider as the AS with the higher

degree). For k -Core we also compared the k-Shell index, and inferred the

relationship to be p2p if the two ASes have the same k-Shell index, or p2c

otherwise (marking the provider as the AS with the higher k-Shell index) and

note very little difference between the two heuristics.

We estimate the accuracy and robustness of the algorithm by intentionally

increasing the mistake in the core. We do this by randomly replacing ASes in

23

the core and see how the number of relationships inferred and their correlation

with CAIDA’s inference change. We start by replacing one core AS with one

random AS (that is connected to at least one of the remaining core ASes) and

gradually replace more ASes until we have a core that consists of completely

random but still connected ASes.

10 20 30 40 50
65

70

75

80

85

90

95

100

Random vertices in core

P
er

ce
nt

ag
e

of
 e

dg
es

Classified
Deterministic
Matching CAIDA

(a) k-Core

2 4 6 8 10 12 14
65

70

75

80

85

90

95

100

Random core vertices

P
er

ce
nt

ag
e

of
l e

dg
es

Classified
Deterministic
Matching CAIDA

(b) GreedyMaxClique

Figure 3.6: Robustness of the algorithm to errors in the core

Figure 3.6 shows the percentage of classified edges, deterministically classi-

fied edges and the percentage of edges that match CAIDA’s inference using k -

Core and GreedyMaxClique. Interestingly, while the algorithm’s performance

24

decreases as we increase the randomness of the core, the overall degradation

is not as high as one would expect. However, Figure 3.7 shows a rising trend

of the percentage of unclassified, p2p and tie-breaking heuristic edges as we

inject errors to the core. As more errors are injected, the algorithm needs to

use more heuristics. Particulary, when there are approximately 50% random

vertices in the core, the effect of the increasing mistake becomes more notice-

able. However, even with a completely random core, the overall heuristically

inferred edges account for less than 20% of all edges.

10 20 30 40 50
0

2

4

6

8

10

12

14

Random vertices in core

P
er

ce
nt

ag
e

of
 e

dg
es

Peer−to−Peer
Tie−Breaker
Unclassified

(a) k-Core

2 4 6 8 10 12 14
2

4

6

8

10

12

14

Random vertices in core

P
er

ce
nt

ag
e

of
 e

dg
es

Peer−to−Peer
Tie−Breaker
Unclassified

(b) GreedyMaxClique

Figure 3.7: Percentage of p2p, heuristically classified and unclassified edges

25

These results indicate that although the algorithm seems quite robust to

the mistake in the core, it is still significantly affected once there are more

than 50% incorrect core vertices. Figure 3.8 provides a focus on p2p edges. It

shows us that as we inject more errors, the percentage of p2p edges that are

classified differently by CAIDA increases from around 16% to over 40%.

0 5 10 15
0

10

20

30

40

50

60

70

80

90

100

Random core vertices

P
er

ce
nt

ag
e

of
 p

2p
 e

dg
es

Unseen by CAIDA
Not equal CAIDA
Equal CAIDA

Figure 3.8: P2P inference method using GreedyMaxClique core

Finally, we analyzed the distribution of relationship types for edges that

appear only in DIMES, and are not seen in the BGP routing tables, to un-

derstand what are the types of relationships that DIMES discovers. We found

that while on average the p2p relationships comprise 4-5% of the total number

of edges, it goes up to around 12% of the edges that appear only in DIMES.

Moreover, approximately 40% of the p2p edges inferred by our algorithm, do

not appear in the RV tables. This means that utilizing DIMES significantly

improves the ability to detect p2p links between ASes, mainly since DIMES

agents are spread over the Internet and contribute AS links that are either

not collected by the RouteViews routers or even not published in the BGP

protocol.

26

Chapter 4

Conclusion and Future Work

The common weakness of previously proposed AS relationships inference algo-

rithms is their lack of guarantee on inference errors introduced during the pro-

cess. This work improves on existing methods by providing a near-deterministic

algorithm that, given a classified error-free input core, does not introduce ad-

ditional inference errors. We investigate various input cores and show that the

proposed algorithm provides accurate inferences that are robust under changes

in the core’s size and creation technique. We show that a core containing as

little as 20 almost fully-connected ASes is sufficient for good inference results.

Additionally, we show that heuristic methods can still play an important role

in inferring the remaining relationships. Using data collected from a single

week (containing approximately 1.2M BGP paths and over 10M DIMES AS-

level traceroutes), the algorithm runs for only about 2 hours and yields over

95% deterministically inferred relationships.

As the Internet grows larger, many providers interconnect at multiple lo-

cations for traffic engineering and embrace the usage of exchange points. The

relationships and policies used in these interconnection points might not con-

form to either provider-to-customer or peer-to-peer relationships. Moreover,

it might not even conform to the valley-free property. The data provided from

the DIMES project can reveal these complex relationships and seed other large

scale Internet analysis work.

27

Bibliography

[1] CAIDA. Automated Autonomous System (AS) ranking. Research Project.

http://as-rank.caida.org.

[2] University of Oregon RouteViews Project (http://www.routeviews.org/).

[3] Jose Ignacio Alvarez-Hamelin, Luca Dall’Asta, Alain Barrat, and Alessan-

dro Vespignani. k-core decomposition: a tool for the analysis of large scale

internet graphs, 2005.

[4] Brice Augustin, Xavier Cuvellier, Benjamin Orgogozo, Fabien Viger,

Timur Friedman, Matthieu Latapy, Clémence Magnien, and Re-

nata Teixeira. Avoiding traceroute anomalies with paris traceroute. In

IMC’06, pages 153–158, 2006.

[5] Paul Barford, Azer Bestavros, John Byers, and Mark Crovella. On the

marginal utility of network topology measurements. In IMW’01: the 1st

ACM SIGCOMM Workshop on Internet Measurement, pages 5–17, 2001.

[6] G. Di Battista, M. Patrignani, and M. Pizzonia. Computing the types

of the relationships between autonomous systems. Technical Report RT-

DIA-73-2002, Dipartimento di Informatica e Automazione, Universita di

Roma Tre, 2002., 2002.

[7] Shai Carmi, Shlomo Havlin, Scott Kirkpatrick, Yuval Shavitt, and Eran

Shir. A model of Internet topology using k-shell decomposition. Proceed-

ings of the National Academy of Sciences USA (PNAS), 104(27):11150–

11154, July 3 2007.

[8] Rami Cohen and Danny Raz. Acyclic type of relationships between au-

tonomous systems. In IEEE INFOCOM, 2007.

28

[9] Xenofontas Dimitropoulos, Dmitri Krioukov, Marina Fomenkov, Bradley

Huffaker, Young Hyun, kc claffy, and George Riley. As relationships:

Inference and validation. ACM SIGCOMM Computer Communications

Review, 37:2007, 2006.

[10] Xenofontas Dimitropoulos, Dmitri Krioukov, Bradley Huffaker, kc claffy,

and George Riley. Inferring as relationships: Dead end or lively beginning?

LNCS, 3503:113, 2005.

[11] Michalis Faloutsos, Petros Faloutsos, and Christos Faloutsos. On power-

law relationships of the internet topology. SIGCOMM Comput. Commun.

Rev., 29(4):251–262, 1999.

[12] Lixin Gao. On inferring autonomous system relationships in the internet.

IEEE/ACM Transactions on Networking, 9(6):733–745, 2001.

[13] Lixin Gao, Timothy Griffin, and Jennifer Rexford. Inherently safe backup

routing with BGP. In INFOCOM, pages 547–556, 2001.

[14] Lixin Gao and Jennifer Rexford. Stable internet routing without global

coordination. In Measurement and Modeling of Computer Systems, pages

307–317, 2000.

[15] Z. Ge, D. Figueiredo, S. Jaiwal, and L. Gao. On the hierarchical structure

of the logical internet graph. In SPIE ITCOM, August 2001.

[16] Ramesh Govindan and Anoop Reddy. An analysis of internet inter-domain

topology and route stability. In INFOCOM, pages 850–857, 1997.

[17] Benjamin Hummel and Sven Kosub. Acyclic Type-of-Relationship Prob-

lems on the Internet: An Experimental Analysis. Technical report, Tech-

nische Universität München, 2007.

[18] Geoff Huston. Interconnection, peering, and settlements. In INET, San

Jose, CA, USA, June 1999.

[19] Sven Kosub, Moritz G. Maaß, and Hanjo Täubig. Acyclic type-of-

relationship problems on the internet. In The 3rd Workshop on Combina-

torial and Algorithmic Aspects of Networking (CAAN’06), volume 4235

of LNCS, pages 98–111. Springer-Verlag, July 2006.

29

[20] Z. Morley Mao, Lili Qiu, Jia Wang, and Yin Zhang. On as-level path

inference. In SIGMETRICS’05, pages 339–349, 2005.

[21] Yuval Shavitt and Eran Shir. Dimes: let the internet measure itself. ACM

SIGCOMM Computer Communications Review, 35(5):71–74, 2005.

[22] Lakshminarayanan Subramanian, Sharad Agarwal, Jennifer Rexford, and

Randy H. Katz. Characterizing the internet hierarchy from multiple van-

tage points. In IEEE INFOCOM 2002, New York, NY, USA, April 2002.

[23] L. Tauro, C. Palmer, G. Siganos, and M. Faloutsos. A simple conceptual

model for the internet topology.

[24] Jianhong Xia and Lixin Gao. On the evaluation of as relationship infer-

ences. In IEEE Globecom, Dallas, TX, USA, November 2004.

30

