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Abstract

In ad-hoc networks, location estimation must be de-
signed for mobility and zero-configuration. A peer-to-
peer relative location system uses pair-wise range esti-
mates made between devices and their neighbors. De-
vices are not required to be in range of fixed base sta-
tions, instead, a few known-location devices in the net-
work allow the remaining devices to calculate their loca-
tion using a maximum-likelihood (ML) method derived
in this paper. This paper presents simulations using
both a standard channel model and actual indoor chan-
nel measurements for verification. Both simulation and
measurements show that a peer-to-peer relative location
system can provide accurate location estimation using
received signal strength (RSS) as a ranging method.

1. Introduction

In many proposed applications for wireless peer-to-
peer and ad-hoc networks, knowing the location of the
devices in the network is key. For ad-hoc networking,
researchers have proposed using location information
for routing purposes [6]. For military, police, or fire-
man radio networks, knowing the precise location of
each person with a radio can be critical. In offices and
in warehouses, object location and tracking applica-
tions are possible with large-scale ad-hoc networks of
wireless tags. Finally, for wireless sensor networks that
have a variety of home, industrial, and agricultural ap-
plications, knowledge of sensor location is critical.

Motorola has introduced the concept of
NeuRFonTM systems to describe a wireless sen-
sor network in which distributed RF devices operate
in analogy to human neurons. These systems are
composed of devices that sense, process, transceive,
and act in a distributed, low power network. Devices

communicate with neighboring devices to pass around,
condense, and make decisions based on information
they have collected. NeuRFonTM devices, to be fault
tolerant, are deployed more densely than necessary in
the environment of interest. Location information in
these systems will be critical both for identification,
information fusion, and localized reactions to stimuli.
The location of a sensor may replace ID numbers as
the means for addressing sensors [10].

1.1. Exisiting Positioning Systems

The Global Positioning System (GPS) has been sug-
gested as a means to obtain location information in
ad-hoc networks [6]. For outdoor applications in which
device density is low, and cost is not a major concern,
GPS is a viable option. However, adding GPS capabil-
ity to each device in a dense network is expensive. Fur-
thermore, achieving high accuracy from GPS requires
use of differential techniques.

Local positioning systems (LPS) deploy a grid of
RF base stations that communicate with devices and
then triangulate to determine their locations based on
received signal strength (RSS), time difference of ar-
rival (TDOA), or time-of-arrival (TOA) technologies
[13]. In LPS, devices communicate only with fixed
base stations. When one device is to be located, all
other devices are ignored, and the network of base sta-
tions calculates the position of the single device based
on the measurements (RSS or TOA) made in one or
more device-to-base station links. Such an idea could
be used in a large scale sensor network in combination
with GPS. Since the cost of including GPS capability
in every node would be too expensive, GPS could be
included in just a fraction of devices [8]. Devices with-
out GPS would range themselves to the devices with
GPS functionality. However, as the fraction of GPS
functionality decreases, the range of the devices must



be larger, and the power drain at the GPS-functional
device increases.

2. Peer-to-Peer Relative Location

Another way to obtain relative location in a net-
work is to use pair-wise range estimates made between
all devices. In [1] and [2] range estimates are used to
draw lines between pairs of devices. One difficulty us-
ing these geometric methods is that as more and more
devices are added into the location map, the range er-
rors can add onto each other. In [2], a residual weight-
ing algorithm from [3] is used to remove TOA ranges
that appear to be due to non-line-of-sight (NLOS) er-
rors. All possible combinations of estimated ranges are
tested to find a MSE solution. But in a peer-to-peer
network, the possible combinations of pair-wise ranges
will rise very rapidly with increasing numbers of de-
vices.

In this paper, we consider the use of ML techniques
to accurately locate all devices in the network. First,
we define devices in the network as either reference
devices, which have an independent estimate of their
coordinates, or blindfolded devices, those that do not.
Reference devices might obtain these coordinates from
GPS if they have that capability and they have a clear
view of the sky. In an indoor system, some reference
devices could be fixed as beacons throughout a build-
ing. Or, a stationary device with a high degree of confi-
dence in its location estimate could become a reference
device. When a device is incapable of being a reference
device, it reverts to being a blindfolded device. Blind-
folded devices cannot ’see’ their location, but they are
capable of calculating their range to other blindfolded
and reference devices, and transmitting and receiving
pair-wise range estimates to and from other devices.
With the combined range information between many
pairs of devices and the known locations of a few ref-
erence devices, a ML solution for the location of all of
the blindfolded devices is determined.

Four components must be present in order to make
location estimates in a peer-to-peer relative location
system. First, some of the devices must be reference de-
vices, so there must be an independent method for ab-
solute location. Second, all of the devices must be able
to estimate the range between themselves and their
neighbors. Third, there must be an ad-hoc network
protocol by which the devices can pass along range
and location estimates to other devices. Finally, there
must be a location mapping algorithm that estimates
the locations of the blindfolded devices given the pair-
wise range estimates and the known coordinates of the
reference devices. This paper assumes that the first

three parts exist and focuses on the location mapping
algorithm. However, derivation of the algorithm begins
with statistics of the ranging method.

3. Range Estimation

In a network of asynchronous devices, TOA range
estimation is made by using two-way delay methods [4]
and [7]. In two-way TOA, the range estimate will be
degraded by the multipath and noise in the channel and
the inaccuracies of device reference clocks. The errors
due to multipath can be reduced by using very wide
bandwidths or radar-like technologies such as ultra-
wideband (UWB). However, the range estimate is lim-
ited by clock inaccuracies, which can be brought down
by using expensive low parts-per-million (PPM) and
low phase noise oscillators. For dense networks of low
cost, low power wireless devices, it would be advanta-
geous if RSS could be used to make range measure-
ments. RSS can be implemented in simple devices. Al-
though traditionally seen as a crude distance estimator,
RSS is less inaccurate at short ranges. A frequently re-
ported model for the fading channel gives the mean dB
received power at device i that was transmitted from
device j as:

pi,j = p0 − 10n log10

(
di,j

d0

)
(1)

di,j =
√

(xi − xj)2 + (yi − yj)2 + (zi − zj)2,

where p0 is the received power in dB at a reference dis-
tance d0 and n is the path loss exponent [5]. The mea-
sured power, in error due to fading, is p̂i,j = pi,j + Xσ.
The random variable, Xσ, represents the medium-scale
fading in the channel and is typically reported to be
zero-mean and Normal (in dB) with variance σ2

dB in-
variant with range [5]. In such a channel, we assume
that small scale fading effects have been diminished by
use of time-averaging or spread-spectrum techniques
such that they do not significantly change the distri-
bution of Xσ from the log-normal distribution of the
medium-scale fading. Thus the range estimate, d̂, is

d̂i,j = d0 · 10
p0−p̂i,j

10n = di,j · 10
Xσ
10n . (2)

The error in range estimation, d̂i,j−di,j , is proportional
to range. To take advantage of the accuracy of RSS at
short ranges, a traditional LPS would have to deploy
a dense grid of base stations. A peer-to-peer relative
location system takes advantage of this characteristic
when devices estimate the distance to their neighbors.
In a dense network (in which inter-device distances are
smaller than the desired location accuracy), RSS range
estimation works well.



4. Maximum Likelihood Formulation

In an RSS relative location system, each device mea-
sures the received powers from the devices with which
it communicates. The device averages these over time
and periodically updates a network computer when a
received power changes significantly. This network pro-
cessor compiles the pairwise received power estimates
into a matrix P with elements p̂i,j representing the
power received by device i that was transmitted from
device j. For the ML formulation, one first postulates
the coordinates of the N devices and then calculates
the posulated received power, pi,j , based on Eq. 1. The
likelihood Lin is the probability, given that the postu-
lated location estimates are correct, that the received
power matrix P would be received (within some ∆p):

Lin =
N∏

i=1

∏
j∈Hi
j 6=i

{
exp

[
−1

2

(
pi,j − p̂i,j

σdB

)2
]
∆p

}
, (3)

where Hi is the set of neighboring devices that device
i detected. It is assumed that if a received power goes
below a threshold pthr, then the device will not be de-
tected. This information is also useful for a location
algorithm. The likelihood function Lout is the proba-
bility, given that the postulated location estimates are
correct, that the received powers for j 6 ∈Hi were below
pthr:

Lout =
N∏

i=1

∏
j 6∈Hi
j 6=i

{
Q

[
pi,j − p̂thr

σdB

]}
, (4)

where Q[x] is the area in the tail of the normal dis-
tribution x standard deviations away from the mean.
The overall likelihood function is the product of Lin

and Lout. To simplify this product, plug in Eqs. 1 and
2, take the negative logarithm of the result and find
the minimum. The ML coordinates are given by

{X, Y, Z} = arg min
X,Y,Z

[f(xk, yk, zk)] (5)

f(xk, yk, zk) = (6)

b2

8

N∑
i=1

∑
j∈Hi
j 6=i

ln2 d̂2
i,j

d2
i,j

−
N∑

i=1

∑
j 6∈Hi
j 6=i

ln

[
Q

(
b

2
ln

d2
thr

d2
i,j

)]

b = 10n/(ln(10)σdB)
dthr = d0 · 10(p0−pthr)/(10n). (7)

To find the minimum of Eq. 6, a conjugate gradient
algorithm is used [9]. The algorithm is aided by the
fact that Eq. 6 is readily differentiable.

5. Simulation

The performance of peer-to-peer relative location is
simulated for an indoor factory area in 2-D using Mat-
lab. Reference devices are positioned in the corners of
a 15m by 15m area, and N blindfolded devices are po-
sitioned randomly (uniformly distributed) within the
area. The simulation then randomly generates the re-
ceived power between all pairs of devices in the area.
Eq. 1 with n = 2.6 and a dB standard deviation of
σdB = 7.1 is used to simulate a factory environment
[11]. Any received powers below pthr are erased from
the received power matrix P to simulate the range limit
dthr of the devices. The simulations are run for both
dthr = 20m and dthr = ∞ (when all devices are in
range of each other).

Once the received powers are generated for the de-
vices, the central processor guesses the initial coordi-
nates for each blindfolded device. This simulation uses
the range estimates between blindfolded and reference
devices and the method of [12]. If a blindfolded de-
vice is not in range of at least 3 reference devices, the
simulation generates a random guess (although accu-
rate initial postulated coordinates may speed up the
minimization, it is not essential). After the conjugate
gradient algorithm finds a maximum in the likelihood
function (minimum in Eq. 6), the location estimates
are compared with the actual locations and the errors
are recorded. These location estimates are sometimes
not the global maximum, however, from closely ana-
lyzing several of the simulation runs, it seems that the
errors due incorrectly identifying a local maximum are
not severe. For N = 1, 5, 10, 15, 20, 25, 30, 35, and 40,
the number of trials is 1000, 800, 400, 250, 200, 160,
100, 100, and 100, respectively (at low N more trials
are necessary to generate as many location errors). The
67th percentile of the blindfolded device location errors
is plotted in Fig. 1.

6. Measurement Verification

It is assumed in the simulation that the fading Xσ

between a device and each of its neighbors is statis-
tically independent, since we are aware of no channel
model in the literature that addresses link fading cor-
relations in a peer-to-peer network. Thus verification
of the simulation requires actual RSS channel measure-
ments, which are conducted in the Motorola facility in
Plantation, Florida. The measurement system consists
of a HP 8644A signal generator transmitting a CW sig-
nal at 925 MHz at an output level of 0.1 mW and a
Berkeley Varitronics Fox receiver. A λ/4 dipole with
Roberts balun resonant at 925 MHz is positioned at a
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Figure 1. Simulated 67th percentile errors

height above the floor of 1 meter at both the trans-
mitter and receiver. The antennas are both stationary
during each measurement and have an omnidirectional
radiation pattern in the horizontal plane and a vertical
beamwidth of 30o. The Fox receiver was set to average
received power over one second. The campaign is con-
ducted during evenings and on weekends to ensure that
the channel is mostly static during the measurements.
Two meter tall Hayworth partitions and ceiling-height
interior walls divide the area into cubicles, lab space,
and offices. To simulate a system in which reference
devices are placed approximately every 15 m in the in-
door environment, they are placed in a 4 by 4 grid in
the measurement area (see map in Fig. 2).

Forty locations are chosen for the blindfolded de-
vices in the center quadrant (16 m by 14 m). The cen-
ter quadrant consists of four columns of cubicles and
the hallways that separate them. Two or three blind-
folded device locations are chosen for each cubicle, and
a few locations put into the hallways. This density or
greater would be expected in a location and tracking
system in which each employee places a tag on two or
three valuable things that he or she works with, such as
computers and accessories, electronic equipment, brief-
cases, wireless phones, notebooks, tools, or key rings.
Together, there are 56 reference and blindfolded device
locations.

First, the transmitter is placed at location 1, and
received power readings are taken and recorded at lo-
cations 2 through 56. Next, the transmitter is moved to
location 2, and power readings are taken at locations 1
and 3 through 56. This process continues until power
measurements have been made between each pair of

Figure 2. Floor plan of measurement area

devices, for a total of 3080 RSS measurements. The
measured received powers, plotted in Fig. 4, fit the
channel model of Eq. 1 with a d0 of 1 m, n of 2.98.
The histogram of Xσ shows a Gaussian PDF with a
standard deviation of σdB = 7.38.

The ML location is calculated using the measured
matrix P by the method in Section 4 and the results
are shown in Fig. 3. The RMS location error for all
40 blindfolded devices is 2.1 meters. Of the 33 devices
located in cubicles, 22 are estimated to be within the
correct cubicle, and the remaining 11 are estimated
to be either in the immediate neighboring cubicle or
in the hallway just outside the correct cubicle. The
maximum error is 4.2 m, the median error is 1.8 m,
and the minimum error is 0.12 m.

7. Conclusions

Relative location has several advantages over LPS.
Higher density of blindfolded devices actually increases
the accuracy of the location system. High reference de-
vice density, however, is not necessary. In fact, blind-
folded devices not in range of any reference devices can
be located. As a result, devices can use low transmit
power for purposes of detection avoidance, low inter-
ference and high capacity, or for extending battery life.
Reference devices, if they are fixed at known locations,
do not need to be any more complicated or expensive
than the transceiver devices that serve as tags for the
items being tracked. Even if reference devices use GPS,
then the ratio of devices that need to be GPS-capable
can be very low without increasing the load on the
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Figure 3. True location (T) and relative loca-
tion system estimate (R)

GPS-capable devices.
This paper has presented a ML method to calcu-

late device locations given pair-wise received power
measurements and reference device coordinates. This
method has been used in simulations to show the re-
lationships between device densities and location accu-
racy. It has been demonstrated using RSS measure-
ments in a cluttered office environment to show that a
simple indoor location and tracking system can locate
devices to within the correct cubicle 67% of the time.
Although RSS range estimates are often in error, short
range operation and built-in redundancies help correct
them. With higher device densities, or with more accu-
rate two-way TOA ranging methods, relative location
could bring even higher accuracies.
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