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Abstract—In this paper, we consider the design and anal-
ysis of generalized low-density parity-check (GLDPC) codes in
AWGN channels. The GLDPC codes are specified by a bipartite
Tanner graph, as with standard LDPC codes, but with the single
parity-check constraints replaced by general coding constraints.
In particular, we consider imposing Hadamard code constraints at
the check nodes for a low-rate approach, termed LDPC-Hadamard
codes. We introduce a low-complexity message-passing based it-
erative soft-input soft-output (SISO) decoding algorithm, which
employs the a posteriori probability (APP) fast Hadamard trans-
form (FHT) for decoding the Hadamard check codes at each
decoding iteration. The achievable capacity with the GLDPC
codes is then discussed. A modified LDPC-Hadamard code graph
is also proposed. We then optimize the LDPC-Hadamard code
ensemble using a low-complexity optimization method based
on approximating the density evolution by a one-dimensional
dynamic system represented by an extrinsic mutual information
transfer (EXIT) chart. Simulation results show that the optimized
LDPC-Hadamard codes offer better performance in the low-rate
region than low-rate turbo-Hadamard codes, but also enjoy a fast
convergence rate. A rate-0.003 LDPC-Hadamard code with large
block length can achieve a bit-error-rate (BER) performance of
10
�5 at �1.44 dB, which is only 0.15 dB away from the ultimate

Shannon limit (�1.592 dB) and 0.24 dB better than the best
performing low-rate turbo-Hadamard codes.

Index Terms—Code optimization, extrinsic mutual informa-
tion transfer (EXIT) chart, generalized low-density parity-check
(GLDPC) codes, low-complexity decoding, low-density parity-
check (LDPC)-Hadamard codes, low-rate.

I. INTRODUCTION

SINCE the discovery of turbo codes [1], error-correction
codes approaching the Shannon capacity have attracted

increasing interest. One of the important milestones has been
the rediscovery of low-density parity-check (LDPC) codes
[2], which were originally proposed by Gallager [3]. Irregular
LDPC codes were introduced in [4], and were shown to asymp-
totically achieve the capacity of a binary erasure channel under
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iterative message-passing decoding. The design and perfor-
mance analysis of irregular LDPC codes were treated in [5],
[6] for memoryless channels based on density evolution and
Gaussian approximation. It has also been shown that carefully
designed irregular LDPC codes achieve performance that is
very close to the Shannon capacity on additive white Gaussian
noise (AWGN) channels and many other types of channels [7].

A standard LDPC code is characterized by the random con-
nection of variable nodes and check nodes. This principle can
be generalized. As first described in [8], the long codes can be
constructed from different shorter subcodes other than single
parity check (SPC) codes using bipartite graphs. For example,
the SPC constraints at the check nodes in the standard LDPC
code can be replaced by constraints based on other block codes,
such as Hamming codes and BCH codes [8]–[13]. Such modi-
fied schemes will be referred to as generalized LDPC (GLDPC)
codes in this paper. With more powerful (compared with simple
SPC codes) block codes involved, GLDPC codes have many
potential advantages, including improved performance in very
noisy channels (i.e., low rate applications), fast convergence
speed and low error floor.

However, the design of a capacity approaching GLDPC code
remains a quite difficult issue. This may be attributed to two
factors. First, since more complex codes are used at the check
nodes, more complex a posteriori probability (APP) decoders
are necessary. Thus decoding complexity may become a se-
rious concern. Second, the code optimization techniques based
on density evolution [5], [6] or extrinsic mutual information
transfer (EXIT) charts [14] for the standard LDPC codes may
not be effective for GLDPC codes (as explained later in Sec-
tion IV). Note that the techniques studied in [4]–[7] are most
useful in improving asymptotic (code length ) perfor-
mance. On the other hand, combinatorial design approaches
[15]–[17] are powerful in improving error floor performance.

The focus of this paper is on asymptotic performance for very
low rate applications. We study a family of GLDPC codes that
use Hadamard codes at the check nodes. The complexity issue
mentioned above is solved by employing the fast APP decoding
technique for the Hadamard codes [18]. With regard to the code
optimization issue, we analyze the difficulties in directly ap-
plying density evolution and EXIT chart based design tech-
niques to GLDPC codes. Such difficulties include mismatching
of EXIT functions and the halting of mutual information (or
density) evolution caused by degree- variables nodes. We pro-
pose a solution to both difficulties by introducing the so-called
LDPC-Hadamard code structure. We demonstrate the optimiza-
tion procedure for LDPC-Hadamard codes using the low-cost
EXIT chart technique. (We expect that a similar procedure using
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density evolution can be developed, although we do not elabo-
rate this alternative approach in the present paper.)

We will focus on low-rate applications and demonstrate an
LDPC-Hadamard code with large block length that achieves

BER at 1.44 dB. This represents an im-
provement toward the Shannon limit, the ultimate Shannon ca-
pacity being 1.592 dB for the codes with rates ap-
proaching zero [18]–[20], with a remaining gap of only 0.15 dB.
(For comparison, the rate- turbo-Hadamard code reported
in [18] achieves a bit error rate (BER) of at 1.2
dB, yielding a gap of about 0.39 dB from the Shannnon limit).

A potential application of the proposed code is in code-di-
vision multiple-access (CDMA) systems. In [21], it is shown
that the capacity of a random waveform CDMA system can
be achieved when very low-rate capacity-achieving codes are
used for both error control and bandwidth expansion. Practical
transmission and detection methods have been developed in [22]
for such a low-rate coded CDMA scheme. The related spec-
trum efficiency is related to the performance of the low-rate
codes involved, and so the codes proposed in this paper can be
useful. Another possible application of such low-rate codes is
for short-range wireless communications using the ultrawide-
band (UWB) technologies [23]. The key for a UWB system
is the capability of providing reliable data transmission over
a very wide bandwidth with low power consumption to meet
regulatory specifications. The coding rate of a UWB system
can be low but its power efficiency must be high. The codes
discussed in this paper appear promising for such application.
A possible third application of the proposed codes is satellite
or deep space communications where transmission power is
strictly limited but bandwidth usage is more relaxed. Devices
that are battery powered may have tight constraints on power
consumption and/or size. This may limit the use of complex de-
coders (and encoders) and/or the maximum allowable iterations.
We will show that the encoder complexity of the proposed codes
is simple. It is then well suited to the downlink of satellite trans-
missions.

The remainder of this paper is organized as follows. In
Section II, we introduce the LDPC-Hadamard codes and graph
representations. Two different Hadamard codes, systematic
and nonsystematic codes, are considered for replacing the
SPC at check nodes. We present a message-passing decoding
algorithm employing low-complexity APP-FHT in Section III.
In Section IV, we consider the analysis and optimization of
LDPC-Hadamard codes. Numerical results are presented in
Section V and the conclusions are summarized in Section VI.

II. CODE STRUCTURE

A. Hadamard Codes

An Hadamard matrix over can
be constructed recursively as

with (1)

A length- Hadamard codeword set is then formed by the
columns of the biorthogonal Hadamard matrix , denoted
by , in a binary form with

and . We call the order of the Hadamard

code. Each Hadamard codeword carries bits of in-
formation. In systematic encoding of a length- Hadamard
code, the information bit positions are indicated by indexes

. The other bits are parity bits. Denote
as a Hadamard encoder. Then, given the input information

sequence , the Hadamard encoding can be
represented by

(2)

where is the resulting codeword.
Clearly, is a column of either or . For systematic
Hadamard codes, we have and ,

. Hereafter, for simplicity, we will drop the subscript
in .

Based on the formation of the Hadamard matrix in (1), we
then obtain the Hadamard codewords with order recursively.
When , it is easy to verify that the Hadamard code is actu-
ally a single parity-check (SPC) code with the generator
matrix given by

(3)

Define . The Hadamard codeword of
is then obtained by

(4)

Given the Hadamard codeword obtained from , the
Hadamard codewords of order can be obtained by

(5)

where denotes the binary addition. Therefore, we can obtain
Hadamard codeword recursively by (5) starting from .
Similarly, we can form the generator matrix of the Hadamard
codes with order , , recursively, given by

(6)

where has the same size as , given by

...
...

(7)

Obviously, the complexity of the recursive Hadamard encoder
in (5) is less than directly encoding using the generator matrix,
i.e., .

We can also construct a nonsystematic Hadamard code as fol-
lows. First, let

(8)

Then, we perform the Hadamard encoding for , i.e.

(9)
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Fig. 1. Bipartite Tanner graph representations of a standard LDPC code and a GLDPC code with Hadamard constraints.

where , , . We will
discuss the application of nonsystematic Hadamard codes in
Sections III and IV.

B. LDPC and GLDPC Codes

We first consider standard LDPC codes. An LDPC code can
be represented by a bipartite Tanner graph, illustrated on the
left part of Fig. 1. The left nodes are called variable nodes and
the right nodes are called check nodes. A variable node with
degree- is a repetition code, while a check node with
degree- is a SPC code. An LDPC code can then be
specified by a graph with the edges connecting the left and right
nodes that satisfy both repetition code constraints at the variable
nodes and SPC constraints at the check nodes.

Based on the bipartite graph in Fig. 1, a GLDPC code can be
defined by replacing the right SPC codes in an LDPC code with
any other block codes, for example, Hamming codes or BCH
codes [11], [12], [24]. In this paper, we consider GLDPC codes
using Hadamard codes at the right check nodes. Such codes
have good performance in very noisy channels, as demonstrated
later. As illustrated in Fig. 1(b), we now call the right nodes
Hadamard check nodes. The Hadamard check nodes can ei-
ther be systematic Hadamard codes or nonsystematic Hadamard
codes, which will be discussed further in Section IV.

Note that we may also adopt general block codes for the left
nodes (other than the repetition codes, as with a standard LDPC
code) in a GLDPC code [25]. However, we will not consider
such generalization in this paper. Also note that other equivalent
low rate codes such as the balanced incomplete block (BIB)
designs [26] can also be used equivalently at check nodes. We
expect that the EXIT curve matching problem and its solution is
applicable to other block coding constraint at the check nodes.
However, due to space limitation, we will focus on Hadamard
constraints and will not consider general cases in detail in this
paper.

C. Exit Chart Analysis for LDPC Codes

The EXIT chart is a useful tool for analyzing the convergence
behavior of iterative processes and code optimization [12], [14],
[27]–[29]. We first define as the mutual informa-
tion between the transmitted bits and the extrinsic messages

. Assume is binary mapped. Given the conditional proba-
bility density functions (pdf) , , we then
have [14]

(10)

Assuming is a symmetric Gaussian distributed, i.e.,
, we then obtain

(11)

We define a function

(12)

The iterative decoding processes can be represented by an
EXIT chart with two EXIT curves. One is for the decoding of
repetition codes at the variable nodes, the other is for the code
constraint at the check node. Define and as the input
and output extrinsic mutual information of the decoding process
for variable nodes, respectively. Similarly define and
for the single parity check nodes. In [27], it is shown that to
approach capacity on erasure channels for an LDPC code, the
EXIT curve of the variable nodes must match with the EXIT
curve of the check nodes.
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Fig. 2. EXIT curves of variable nodes and check nodes of rate-0:5 and rate-0:05 irregular LDPC codes.

D. The Difficulty in Low-Rate LDPC Code Design

We now, based on EXIT chart analysis, briefly explain the dif-
ficulty in obtaining good low-rate LDPC codes. Fig. 2 illustrates
EXIT curves of the rate- and rate- irregular LDPC codes
using SPC codes at the check node. The optimized ensemble
profiles are obtained from [30]. The threshold from density evo-
lution, , is 0.25 dB for the rate- code with max-
imum left degree being . The gap to Shannon capacity is 0.07
dB. For the rate- irregular code, 1.19 dB,
and the gap to Shannon capacity is 0.25 dB.

The above designs are based on idealized assumptions of infi-
nite code length and unlimited number of iterations. In practice,
we have to use finite code length and limited number of iter-
ations and the required values will be higher than the
thresholds for both codes to work properly. A qualitative dis-
cussion on this issue is outlined below.

For each code ensemble, we consider two values, i.e.,
and 0.5 dB. It is seen from Fig. 2 that

for the rate- irregular LDPC codes, a 0.5 dB increase changes
the variable node curve so much that a large iterative decoding
tunnel exists between the variable and the check curves, indi-
cating that, due to such SNR increase, a code with a finite length
may still be able to work well. However, the 0.5 dB SNR barely
changes the variable curve for the rate- irregular LDPC
codes. The decoding tunnel is still very narrow. This implies
convergence difficulty for such a low-rate LDPC code even after
increasing the SNR value by 0.5 dB from the threshold.

The above observation is based on simulation results. The fol-
lowing discussion may provide more insight into the problem.
The EXIT function for the variable nodes of degree is given
by

(13)

where is the extrinsic mutual information from the channel.
For the AWGN channel, we have . The area
under the variable EXIT curve is then given by

(14)

Taking the derivative over , we obtain

(15)

Clearly, the area change of EXIT curve of variable nodes is a
function of coding rate . We are interested in capacity ap-
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Fig. 3. Ratio of the area change under the variable EXIT curve for two different rates.

proaching codes and so we will examine (15) at

where is capacity limit for code rate . Define

(16)

We then compare the area change for two different rates using
, as shown in Fig. 3. We find that the area

change rate over for is around 5 times of that
for , and 24 times of that for . The results
are quite uniform for various . This explains why we see little
change on the variable EXIT curve with a 0.5 dB increase from
the threshold value for a low rate code. It is worth noting that,
since the capacity limit for low rate codes is smaller than that
for medium rate, same value increase in decibels results smaller
change on the absolute value of at lower rate.

The above discussion indicates that lower rate LDPC codes
require larger SNR increase from the decoding threshold to ob-
tain similar conditions regarding decoding tunnels (or to ob-
tain the same area of the decoding tunnel) than their higher rate
counterparts, as indicated by the simulation results in Fig. 2.

III. THE DECODER STRUCTURE

A. Generalized Message-Passing Algorithm

Similarly to the LDPC decoding algorithm, we can decode
a GLDPC code iteratively by applying generalized message-
passing based on the Tanner graph representation. The extrinsic
messages are iteratively exchanged between the left nodes and
the right nodes as the input and output of the decoders. Con-
sider a GLDPC code in the presence of AWGN channel distor-
tion and define the log-likelihood ratios (LLRs) of the bits as

the messages. Denote as the extrinsic message output
from a check node passed along the th edge to a variable node
and as the extrinsic message output from a variable node
passed along the th edge to a check node. Denote as the
message of the th variable node from the AWGN channel. De-
fine as the set of the edges that are connected to the th vari-
able node and as the set of the edges that are connected to
the th check node. Then based on the message-passing algo-
rithm [7], the extrinsic messages updated from the th stage to
the -th stage can be obtained by

(17)

with

(18)

where denotes the APP decoding process of the th vari-
able node and denotes the APP decoding process of the

th check node. For the LDPC-Hadamard codes, the iterative
decoding process is then given by

(19)

(20)

where denotes the APP Hadamard decoding process
with the inputs being the extrinsic LLRs of all the bits of the
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Hadamard code and the outputs being the APP LLRs;
denotes the output LLR along the th edge from the decoding
process of the th Hadamard check node; and is number of
edges connected to the th Hadamard check nodes with order

, i.e., .

B. Fast APP Decoding of Hadamard Codes

As mentioned above, during each decoding iteration APP
decoding is performed at the check nodes and variable nodes.
Therefore, fast APP decoding algorithms for general code con-
straints at both nodes are essential to reduce the GLDPC de-
coding complexity. Fast APP algorithms are available for SPC,
Reed-Muller, and Hadamard codes [18], [31]. It is also pos-
sible to devise fast APP decoding for Hamming codes based
on minimum trellis structures [32]. We briefly outline the APP
decoding of Hadamard codes and its fast algorithm.

Denote as the received
sequence of Hadamard code bits corrupted by AWGN with
variance . Given the a priori LLRs of the Hadamard coded
bits, , the LLRs
from the APP decoding over are obtained by [18]

(21)

where

(22)

and denotes the inner product. The extrinsic LLR is then
given by

(23)

Some details are given in Appendix A.
Direct calculation of the LLR in (21) has a high computa-

tional complexity, i.e., . The fast Hadamard transform
(FHT) [18] can be employed to reduce the complexity of
the inner product in (21) based on the butterfly graph of
the Hadamard matrix. We first segment into two subvec-
tors, i.e., . To compute for

, we have

(24)

where , is an identity matrix. It is
seen that we can recursively factorize and in the
same way and stop at , . It can be
seen that the process of computing is similar to the fast Fourier
transform (FFT) computation.

The summations in the numerator and denominator in (21) for
computing , , can be efficiently com-
puted by the APP-FHT algorithm [18]. With the APP-FHT algo-
rithm, the complexity for calculating (21) is reduced to .

C. App Decoding of Nonsystematic Hadamard Codes

With the APP-FHT algorithm, we can easily obtain the APP
LLRs for each code bit in a systematic Hadamard codeword.
For nonsystematic Hadamard codes, directly applying the
APP-FHT algorithm will only yield the APP LLR for . In
order to get the APP decoding of information bits using
the APP-FHT algorithm, we can employ the following data
preprocessing on the input LLRs before decoding.

Let us compare the nonsystematic Hadamard codewords with
the corresponding systematic Hadamard codewords of the same
order . When , the codeword set of the nonsystematic
Hadamard codes is exactly the same as that of the systematic
codes. Those codewords are formed from the positive Hadamard
matrix , i.e., , . When , the
nonsystematic codeword with the input is equal to
the systematic codeword , i.e., the binary complemen-
tary sequence of input . Therefore, the APP decoding
of nonsystematic Hadamard code can be obtained by (21) with

replaced by pre-processed following the rules
below:

• , .
• , where is the binary complementary

of .
It should be noted that the above preprocessing is necessary

only for the information bits, , i.e., ,
, since only these bits have undergone special treat-

ments in the encoder, (see (9)). We can obtain other by
directly applying APP-FHT decoding algorithm in the decoder
of the nonsystematic Hadamard codes without preprocessing.

IV. GLDPC CODE DESIGN AND ANALYSIS

The density evolution method [6] has been successfully ap-
plied to the analysis and design for standard LDPC codes. A
closely related method is the EXIT chart technique [29], which
is a low complexity one dimensional approach to characterize
the iterative detection process. In this section, we discuss two
difficulties in applying the EXIT chart technique to GLDPC
code design, i.e., the problems caused by mismatching of the
EXIT functions and the existence of degree- nodes. We then
proceed to devise solutions to these two problems.

A. The EXIT Function Mismatching Problem

For LDPC codes, the code ensemble can be opti-
mized to have asymptotic performance approaching the channel
capacity [6], [33]. However, it is still an open question as to
whether GLDPC codes can be optimized to approach capacity
with the check nodes formed by block codes other than SPC
codes. The answer seems negative if the standard LDPC struc-
ture is directly adopted. We will explain the reason below and
explore potential solutions.

In this paper, we will assume that repetition codes are always
used at the variable nodes. As demonstrated in [6] for LDPC
codes, the SPC codes can be used at the check nodes in order
to approach capacity. Next, we investigate the performance of
GLDPC codes with Hadamard codes at the check nodes using
EXIT chart analysis.

For the two EXIT curves, the curve for the variable nodes is
the same as that discussed in Section II-D. The other one for the
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check nodes can be generated based on simulation involving
Hadamard codes. Define and for the Hadamard
check nodes. The EXIT functions for the variable nodes of
degree- and Hadamard check nodes of order are denoted by

and , respectively. The values

of and can be computed from
the output extrinsic conditional pdfs by (10). For binary codes,
the EXIT curve of the extrinsic messages from the codes
consisting of different component codes, e.g., the SPC codes
with deferent degrees, is an average of the EXIT curves of its
component codes [27], [34]. We specify the LDPC-Hadamard
code ensemble by profiles of and , where

denotes the order of the Hadamard check nodes. The average
output extrinsic mutual information is then given by

(25)

(26)

The conditional pdf of the input LLRs from AWGN channels
at the variable nodes is symmetric Gaussian with mean

. Since the variable nodes are repetition codes, from (19),
we then have [29]

(27)

The EXIT functions of SPC check nodes can be approximated
as [29]

(28)

where and are the input and output extrinsic mutual
information of SPC decoding.

Fig. 4 shows the EXIT curves for GLDPC codes in AWGN
channels. The upper plot illustrates the EXIT curves for vari-
able nodes. The lower one illustrates the EXIT curves for SPC
and Hadamard check nodes. The variable transfer curves are ob-
tained from (27) with 11.28 dB, the capacity limit
for a rate-0.1 channel code. The EXIT curves for SPC are ob-
tained from (28). The Hadamard check node curves are obtained
from the APP Hadamard decoding in (21) and (23) using the
Monte Carlo method. The input of the EXIT curves for the vari-
able nodes is along the -axis and the output is along the -axis,
and vice versa for the check node curves.

In [27], it is shown that to approach capacity on erasure
channels for an LDPC code, the EXIT curve of the variable
nodes must match with the EXIT curve of the check nodes.
We conjecture that this is also true for GLDPC codes on the
AWGN channel. Based on this conjecture, we now examine
the EXIT curves in Fig. 4. The set of curves for repetition
codes are concave and do not have saddle points. The EXIT
curves for SPC codes are also concave and so they may be

Fig. 4. EXIT curves for GLDPC codes. Upper plot: EXIT curves for variable
nodes of degree-j . E =N = �11.28 dB. Bottom plot: EXIT curves for check
nodes. Dashed lines: SPC nodes of degree-j; solid lines: Hadamard check nodes
of order-r.

optimized for matching. (Note: These curves are drawn with
the abscissa as output. Therefore, the curves are concave but
the input-output functions are actually convex.) However, the
EXIT curves for the Hadamard codes are neither concave or
convex. They have saddle points (except for , which is
equivalent to a length- SPC code). Also, it is easy to verify
that any linear combinations of the curves for Hadamard codes
of have saddle points. Thus we cannot use these codes
for matching (except using only codes which results
in standard LDPC codes). Therefore, the EXIT curves of the
variable and Hadamard check nodes cannot be optimized to
match with each other. This constitutes the first problem in
designing optimized GLDPC codes.
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B. The Degree- Nodes Problem

We now explain another problem for GLDPC design which
is caused by degree- nodes.

1) Code Rate of GLDPC Codes: Consider a GLDPC code
with variable nodes formed by repetition codes, and

check nodes formed by block codes. Define, respectively,
, , and , , for the block codes at the

check nodes. Denote , , as the repetition times
(degrees) at the variable nodes. The total number of edges is
then

(29)

Each check code contributes constraints. Assuming
that these constraints are all independent, the total number of
constraints is

(30)

The code rate of GLDPC is then given by

(31)

Define the average rates of variable nodes and check nodes as

(32)

(33)

The code rate of GLDPC in (31) can also be written as

(34)

We assume that in a GLDPC code , the repetition codes at
the left nodes and the block codes at the right nodes are formed
from the codes of rate with fraction and the codes of rate

with fraction , respectively. The code rate of GLDPC in
(31) can then be written as

with

(35)

When , we obtain the expression of the LDPC code
rate

(36)

Now we consider a GLDPC code with Hadamard constraints,
shown in Fig. 1(b). From (35), the code rate of such a code is
given by

(37)

A Hadamard code with is equivalent to a single parity-
check code of degree- . If , the LDPC-Hadamard code
becomes a standard LDPC code with right degree .

2) The Degree- Nodes Problem for GLDPC Codes: Let
be the fraction of edges connected to the degree- nodes in a
GLDPC code. Degree- nodes represent the bits that are directly
connected to check nodes with no repetition. From the GLDPC
code rate given in (35), we have

(38)

Since , we have

(39)

Then

(40)

Assuming , we then have the following theorem
from (40).

Theorem 4.1: For any GLDPC codes with the left nodes
being the repetition codes, if the average code rate at check
nodes, , is smaller than , then the code contains a nonnegli-
gible portion of degree- nodes, i.e., is bounded away from

.
Since and ,

we have the following corollary.

Corollary 4.1: For any GLDPC codes with the left nodes
being the repetition codes, if or ,

is bounded away from .
For a GLDPC code with Hadamard constraints, when ,

from the code rate given in (37), we have

(41)

Therefore, based on Theorem 4.1, there exist a nonnegligible
portion of degree- nodes in such a code. In particular, when
the Hadamard check nodes are regular, i.e., all of the Hadamard
codes at the check nodes have the same order , we have
bounded by

(42)

Therefore, for , we have
. As increases, the proportion of

degree- nodes increases.
From the standard EXIT chart analysis of LDPC codes, we

know that the outbound extrinsic messages of degree-1 nodes
will not be updated during the iterative decoding process. This
indicates that when is bounded away from zero, we cannot
use the EXIT chart technique to obtain a threshold where the
EXIT information converges to 1 since the outbound extrinsic
messages from degree- nodes remain unchanged. It should be
noted that the discussion above does not mean that a threshold
does not exist by iterative decoding. It only states that we cannot



1066 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 53, NO. 3, MARCH 2007

Fig. 5. Graph representations of super check nodes with systematic and
nonsystematic Hamadard code constraints. For an augmented nonsystematic
Hadamard code, the degree-1 node should include all coded bits except c(0)
and c(2 � 1).

get the threshold, if it exists, by the EXIT chart technique. The
reason is that the mutual information used in the EXIT chart
method is averaged over all edges. Global convergence in actual
decoding can be achieved even if only some of the messages
converge.

In summary, the degree- problem mentioned above is a
problem caused by the combination of the EXIT chart analysis
method and the code structure. Some structural changes are
necessary before we can successfully apply the EXIT chart
method to GLDPC code design.

C. LDPC-Hadamard Code

1) Treatment of Degree- Nodes: We now propose a
new code structure for LDPC-Hadamard codes to solve
the two problems mentioned above. The code graph of
the new LDPC-Hadamard code is illustrated in Fig. 6. An
LDPC-Hadamard code is generated using a two-step
approach.

• Step 1) Construct a LDPC code without any degree-1
variable nodes.

• Step 2) Use the variable bits connected to each SPC check
node in to encode a Hadamard code.

The LDPC-Hadamard code is then formed by the union of
and the Hadamard codes generated in Step 2).

There are two approaches to using the variable bits con-
nected to a check node in generating the Hadamard codes in
Step 2). In a straightforward way, the variable bits connected
to a common check node can be used as the information bits to
encode an order- Hadamard code with , following
the definition in Section II-A. However, this is not an efficient
method, since there is an SPC constraint imposed on these
variable bits, and they are not independent. We can improve

Fig. 6. Modified bipartite Tanner graph representation of an LDPC-Hadamard
code.

efficiency by using the variable bits to encode an order-
Hadamard code with based on the next theorem.

Theorem 4.2: In a systematic Hadamard code with even order
, and a nonsystematic Hadamard code with any order ,

we have the following SPC constraint

(43)

where denotes binary addition and denotes binary sum-
mation. Moreover, the SPC constraint in (43) is not satisfied by
systematic Hadamard codes with odd .

The proof is given in Appendix B.
With Theorem 4.2, we can build the check nodes for an

LDPC-Hadamard code using a super check node as shown in
Fig. 5. We first construct a standard LDPC code . We then
replace each check node by a Hadamard check node consisting
of a Hadamard check node together with the attached degree-1
nodes. The edges connected to a super check node are the same
as those connected to the corresponding check node in , and
thus the variable nodes on the left side remain unchanged. The
degree- nodes inside a super check node represent the extra
bits generated during the Hadamard encoding. These degree-
nodes include all the parity bits of except . (See
(43).)

Note: According to the encoding process outlined in Sec-
tion II-A, the parity positions for a systematic Hadamard
code are given by , i.e., the in-
teger set obtained by excluding from

. For a nonsystematic Hadamard code
, we define an augmented code formed by the union of

and , where is the set of information bits for . In this way,
the parity bits of are all the coded bits in except ,
which is the only common bit in both and .
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As a brief summary, an LDPC-Hadamard code described
above can be viewed as a standard LDPC code cascaded with
a special form of Hadamard coding. Graphically, the extra
parity bits generated by the Hadamard encoding form the
degree- variable nodes as each of them is connected only to
one super check node. Thus the factor graph for is obtained
simply replacing the check nodes for by super check nodes,
as shown in Fig. 6. With the structure shown, the degree-
nodes carry the information received from the communication
channel. However, unlike with standard LDPC codes, we do not
include the messages from the degree- nodes in calculating the
mutual information of the variable nodes during the iterative
process since iterative decoding with a degree- node results
in that node transmitting the same message on every iteration.
Note that we DO use the information carried by the degree-1
nodes (obtained from the observations of these bits) in the APP
decoding at the super check nodes, thus such APP decoding not
only involves the information from the extrinsic channel, but
also the information directly from the communication channel.
However, the average mutual information for the EXIT curves
is only based on the messages from the nondegree- nodes. If a
code is designed using the EXIT function based optimization as
described in Section IV-C2, the EXIT information so generated
can converge to , as also demonstrated in Section IV-C2.

Note that the common early stopping technique is still ap-
plicable here. Recall that an LDPC-Hadamard code is obtained
by appending degree- Hadamard parity bits to an underlying
LDPC core , as shown in Fig. 6. After the APP decoding of
the Hadamard constraints at the super check nodes in an itera-
tion, we obtain the messages from the super nodes (on the edges
at the left hand side in Fig. 6). We can then apply parity check to
the super nodes (ignoring their the appended degree- nodes).
The iterative decoding stops if the parity check at every super
node is satisfied.

The other issue is how the degree- nodes affect convergence
rate. For generalized LDPC codes, we can replace the SPC con-
strains at check nodes by different block coding constraints.
This may result in different options with more, less or no de-
gree- node. (The last option can simply be a standard LDPC
code.) The convergence comparison of these different options
is a very interesting issue for future research and can be useful
in exploring new code structures. However, we will not dis-
cuss this issue in detail in this paper, since for the very low rate
LDPC-Hadamard codes under consideration, the portion of de-
gree- nodes are determined by the rate of the overall code and
the order of Hadamard codes involved.

Encoding complexity: In a straightforward way to construct
a systematic LDPC code of , where and are
the information and parity lengths respectively, we need to con-
vert a parity matrix into a generator matrix and store the
parity part of (size ). When rate is very low, is rela-
tively large. Then both computational and storage costs related
in is high. For an LDPC-Hadamard encoder , the com-
plexity involved in Step 2) described above is very low. (See
Section II-A.) For Step 1), we use a generator matrix for the
LDPC core . The size of its parity part is , where
is the number of nondegree- parity nodes. Usually for

a low rate code, and so the complexity for encoding is much
lower than for directly encoding a standard LDPC code of the
same rate and length as . Efficient LDPC encoding techniques
have been extensively studied recently (although whether or not
these new techniques can be applied to the low-rate codes still
needs careful study). Any fast LDPC code structure that admits
low encoder complexity can potentially be employed to con-
struct . Thus we can see the advantage of low-encoding cost
for the proposed scheme, which is particularly useful for satel-
lite or deep space communications where devices are battery
powered and may have tight constraints on power consumption
and size.

2) EXIT Analysis: With the above LDPC-Hadamard struc-
ture and the APP decoding procedure described in Section III,
the decoding at a super check node is now based on two
pieces of information: the channel outputs as the extrinsic in-
puts from degree- nodes, , and the extrinsic information
from nondegree-1 variable nodes on the left hand side in Fig. 6
connected to , . In the EXIT chart analysis presented
below, the average mutual information is computed only from
the second part, i.e., the extrinsic information from nondegree-
variable nodes. Empirically, we observed that the EXIT curves
so obtained are almost concave, making curve matching pos-
sible. Therefore, the modified graph simultaneously solves both
the difficulties associated with degree- nodes and those asso-
ciated with curve matching. A rigorous proof of the concavity
property of the EXIT curves appears to be a difficult issue, and
we can only provide experimental results at this stage.

Since the check nodes in LDPC-Hadamard codes receive in-
formation from the communication channel, the EXIT function
in (26) now becomes

(44)

The EXIT function for the variable nodes in (25) remains un-
changed. The function in (27) can be approximated by a
closed form expression with an exponential function [29]. With
this approximation, we can obtain the EXIT curves for the vari-
able nodes directly from calculating (27) and the average output
from (25). For EXIT curves of super check nodes, we have
to rely on Monte Carlo simulations to obtain the output ex-
trinsic pdf first, and then compute the output extrinsic mutual
information.

We first evaluate the component EXIT curves,
and , of LDPC-

Hadamard codes through an AWGN channel with
18.51 dB, i.e., the noise variance for

unit signal power. This is the Shannon capacity limit for a
rate- code through an AWGN channel with binary inputs.
The component EXIT curves for the variable nodes and super
check nodes with various degrees or orders are illustrated in
the upper part of Fig. 7. The left plot shows the EXIT curves
for the decoding at the variable nodes. The right plot show the
EXIT curves for the Hadamard decoding at super check nodes
for systematic Hadamard codes. It can be seen that for the
systematic Hadamard code with even , the extrinsic mutual
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Fig. 7. EXIT charts for extrinsic input/output at the variable nodes (left) and Hadamard check nodes (right) with E =N = �18.51 dB (up) and E =N =

�26.8 dB (bottom).

information evolves to one as the input increases to one.
We also find that because degree- nodes attached at the super
check nodes receive the information from the communication
channel, there is an initial offset even when the input extrinsic
information is zero. As shown in Appendix A, this initial offset
is a function of and Hadamard order . Next we evaluate the
component EXIT curves of LDPC-Hadamard codes at another
SNR, 26.8 dB, as shown in the lower part of Fig. 7.
The following observations are made in our experimental study.

• For a fixed , the offset is higher for a larger .
• For a certain , when is small enough, the EXIT

curves of the super check nodes are concave with small
initial offsets.

• For a certain , when increases, their initial offsets
increase, and the EXIT curves of the super check nodes
gradually change from concave to convex (except that the
curve for always remains concave). Such change is
faster for a curve with a larger .

• The EXIT curves of the variable nodes remain concave for
all values.

Note that convexity and large offset of the EXIT curves for
the super check nodes make matching difficult. Therefore we
can conclude that the proposed LDPC-Hadamard codes are
most suitable for designing good low-rate in the very-low SNR
region. For higher rate codes working in higher SNR region
where the EXIT curves of the LDPC-Hadamard codes with the
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smallest still have a large offset, other alternatives (such as
the standard LDPC codes) may offer better solutions.

A similar design strategy can be developed for nonsystematic
Hadamard codes, but we will omit the details.

3) Code Rate: With the modified code graph, the
LDPC-Hadamard codeword consists of all the variable nodes
and degree- nodes attached at the check nodes. We now rede-
fine the profiles of the code ensemble for the LDPC-Hadamard
codes built on the modified code graph as follows. We only
consider the proportions of the edges connected to the nonde-
gree- nodes. Define as the fraction of the edges connected
to the nodes of degree- over all the edges connected to the
nondegree-1 nodes and as the fraction of edges that are
connected to the check nodes. Once the profiles of
are fixed, the proportion of degree- nodes is determined. It is
easily seen that the newly defined profiles are in fact the profiles
of the LDPC precode.

The rates of LDPC-Hadamard codes built with systematic
or nonsystematic Hadamard check nodes are then, respectively,
given by

(45)

(46)

For an LDPC-Hadamard code with nonsystematic check
nodes, if we transmit the Hadamard coded bits attached at the
check nodes including , we can avoid the transmission of
the variable nodes corresponding to the information bits .
However, it is possible that a variable node which connected
to the position of at one check node is also connected to
the position of at another check node while
the nodes connected to positions of should
be transmitted. An ad hoc solution to solve this problem is to
puncture the nondegree- nodes. The code rate for punctured
nonsystematic LDPC-Hadamard codes is then given by

(47)

where is the puncture rate. For a check node of order- , there
should be of edges punctured. Therefore, a reasonable
puncture rate for the nondegree-1 variable nodes is given by

(48)

For the sake of simplicity on the code design and analysis, we
can also set . More details on the derivation of code rates
in (45) to (47) are described in Appendix C. Note that although
we treat the LDPC-Hadamard codes with the systematic and
nonsystematic check nodes separately, they can both exist in one
LDPC-Hadamard code.

D. Code Optimization

Now we consider the optimization of the LDPC-Hadamard
code ensemble for AWGN channels. We adopt a low-com-
plexity optimization method based on approximating the
density evolution as a one-dimensional dynamic system repre-
sented by an EXIT chart [14].

The EXIT chart of an LDPC-Hadamard code contains the
average EXIT curves for the Hadamard check nodes, i.e., the
functions and in (25) and (44),
respectively. If there is no crossover between these two curves
in the EXIT chart this ensures that the extrinsic mutual informa-
tion can approach one. All the nondegree-1 nodes are then
successfully decoded, indicating that all the information bits are
also correctly decoded. We consider an example of a ( , )
LDPC-Hadamard code, i.e., in such code all the variable nodes
are of degree- , and all the check nodes are of order- . The
check nodes are systematic Hadamard codes. The EXIT curves
are shown in Fig. 8. We set 18.51 dB, i.e.,

. The EXIT curves for , , and are illus-
trated. It can be seen that there is a crossover between the EXIT
curves of and before approaching one, indicating
that there exists a decoding error for the LDPC-Hadamard
codes at this SNR. However, there is no crossover between the
EXIT curves of and before approaching one.
Thus, the ( , ) LDPC-Hadamard codes can asymp-
totically achieve the threshold of 18.51 dB. Notice
that this is the capacity limit of the code rate- . The rate of
the ( , ) LDPC-Hadamard codes is .
This means with the LDPC-Hadmard codes in a regular form,
we can only achieve the limit of rate- by a lower rate code,
indicating there is a rate loss for the regular LDPC-Hadamard
code ensemble.

We next consider optimizing LDPC-Hadamard code ensem-
bles with an irregular form. Code optimization can be achieved
in principle by applying the standard density evolution based op-
timization procedure as in [6] to the modified LDPC-Hadamard
code graph similarly to the design of LDPC codes. However, in
practice this is quite difficult because of the extremely high com-
putational complexity of the design procedure in the low-rate
regime. It is also difficult to design the code ensemble with a
good threshold from the density evolution with Gaussian
approximation as in [5]. Here, we present a low-complexity
code design method based on the EXIT chart.

In order to avoid tracking the evolution of EXIT curves during
the optimization, we assume that the decoding input at the vari-
able nodes is symmetric Gaussian with the same extrinsic mu-
tual information as that from the output of the check node de-
coding. The same assumption is made for the EXIT curve of
check nodes. With this assumption, we can evaluate the two
curves in the EXIT chart separately and process the optimiza-
tion without simulating the iterative decoding. The complexity
of code ensemble optimization is then significantly reduced.
Such a strong assumption has been proved to be valid for the
LDPC optimization in many single link channels, as well as in
ergodic multiple-input–multiple-output (MIMO) channels [12],
[29]. We now utilize it for LDPC-Hadamard code optimization
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Fig. 8. EXIT charts for a (� = 1, � = 1) LDPC-Hadamard code, r = 6.

with both nodes in the bipartite graph receiving information
from the communication channels. We also assume that the
Hadamard check nodes are regular, i.e., all the Hadamard check
nodes have the same order. This assumption may limit the
search space of the code ensemble, but further simplifies the
code design.

Using the convergence property [14] and the area property
[27] of the EXIT chart, we can form the design rules for LDPC-
Hadamard codes. Given , the LDPC-Hadamard code en-
semble can be designed by enforcing the EXIT transfer function
of the decoder to satisfy and max-
imizing the code rate. It is easy to verify from (45)–(47) that with
a fixed , maximizing the code rate can be equivalently achieved
by maximizing . Hence, the optimization problem can
be summarized as follows:

maximize

s.t.

with (49)

Given the capacity limit of a certain code rate, we can
obtain using Monte Carlo simulations. We then
obtain the optimized by solving the above optimization
problem, which can be easily solved using linear programming
[35]. Two optimization results are shown in Fig. 9. The upper
one is for the systematic codes at the check nodes with .
The designed rate is and the designed threshold is

1.35 dB. The lower one is for the nonsystematic codes with

. In this case, we set the puncture rate . The
code rate is and the threshold from EXIT chart
optimization is 1.50 dB. It can be seen that in both cases, the
optimized EXIT curve of function matches very

well with that of function . The resulting curve of

is always below that of function . The
performance of designed codes will be evaluated in Section V.

V. SIMULATION RESULTS

In this section, we present performance results of the opti-
mized LDPC-Hadamard codes from computer simulations.

A. Approaching the Low-Rate Limit

We consider several examples to demonstrate that the
optimized LDPC-Hadamard codes exhibit performance ap-
proaching the low-rate Shannon limit.

Example of an LDPC-Hadamard code with : In the
first example, we consider the LDPC-Hadamard code with sys-
tematic Hadamard check nodes of order , i.e., .
The designed LDPC-Hadamard code has the rate .
The profile of the variable nodes from the edge perspective is
given by

. The threshold from EXIT chart op-
timization is 1.35 dB. The BER performance is illustrated
in Fig. 10. The BER is measured by counting errors on nonde-
gree- variable nodes. We apply the same way to measure the
BER for all other examples in this section. The performance of
LDPC codes with and low-rate turbo Hadamard codes
[18] with various orders is also illustrated in the same figure
for comparison. The degree distributions of the rate- LDPC
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Fig. 9. EXIT charts for optimized LDPC-Hadamard codes.

code are

and
, obtained from [30] by setting max-

imum left degree 30. The number of concatenated component
codes in the turbo Hadamard codes is . The rates of turbo
Hadamard codes with and are and , respec-
tively. For a fair comparison, we set the information length for
all these codes to be approximately equal, i.e., . The
numbers of iterations for message-passing decoding of LDPC-

Hadamard codes and LDPC codes are set to be and , re-
spectively. The number of iterations we set for THC is . The
results show that the LDPC-Hadamard code has a BER
performance at 1.18 dB, outperforming the turbo
Hadamard code with the closest rate ( , ) by 0.48
dB and LDPC codes with the same rate by 1.67 dB. It is seen
that the designed LDPC-Hadamard code even performs 0.23 dB
better than the turbo Hadamard code ( , ) with
lower rate. This threshold from the simulation is only 0.17 dB
from the designed threshold. Moreover, it is only 0.26 dB shy
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Fig. 10. BER performance of designed LDPC-Hadamard code with r = 4 and turbo Hadamard codes with M = 3, r = 5; 6. K � 65536.

Fig. 11. EXIT curves of variable nodes and check nodes of a rate-0:05 LDPC-Hadamard code ensemble.

of the Shannon capacity for with binary input
( 1.44 dB) and 0.41 dB away from the ultimate low-rate limit.
Notice that in this example, the order of the Hadamard check
nodes is , which is less than that of the turbo Hadamard
codes shown in the same figure; thus, the decoding complexity
is much lower.

We can see that the simulation result of the LDPC-Hadamard
code matches very well with the designed threshold. To explain
this, we use the EXIT chart analysis similarly as before. The
EXIT curves of the variable nodes and check nodes of above
optimized LDPC-Hadamard code ensemble are illustrated in
Fig. 11. Similar to the discussion for Fig. 2, we examine two
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Fig. 12. BER performance of designed LDPC-Hadamard code with r = 5, turbo Hadamard codes with M = 3, r = 6; 7, and the SOTC with M = 2, r = 5.
K � 65536.

SNR values, i.e., and 0.5 dB. Since the
Hadamard check nodes receive the information from the com-
munication channel, the EXIT curve of Hadamard check nodes
also changes with the SNR increase. From Fig. 11, it is seen
that though there is little change for the variable curve, a more
noticeable change takes place for the Hadamard check curve
with the SNR increase. A wide iterative decoding tunnel is ob-
tained by increasing SNR, which indicates that the performance
of LDPC-Hadamard codes with finite block length from the
simulations will approach the optimized threshold. Compared
with Fig. 2, we can clearly see the advantage of the proposed
LDPC-Hadamard code over the conventional LDPC code at low
rate.

Example of an LDPC-Hadamard code with : We
now consider an LDPC-Hadamard code with the check nodes
having an odd order, . In this case, according to Theorem
4.2, the check nodes have to be the nonsystematic Hadamard
codes. We set the puncture rate . The profile of the opti-
mized LDPC-Hadamard code ensemble is

.
The rate and the designed threshold from
EXIT chart is 1.50 dB. The BER performance of the LDPC-
Hadamard code, the turbo Hadamard codes with ,

and , , and the superorthogonal turbo
codes (SOTC) [36] is shown in Fig. 12. We set ,
for the superorthogonal turbo codes. The rate is then .
It can be seen that the threshold at BER of the
LDPC-Hadamard code is 1.26 dB, 0.24 dB from designed
threshold. It performs 0.52 and 0.3 dB better than that of the
SOTC code and the turbo Hadamard code with , respec-
tively. It performs 0.08 dB better than the best turbo Hadamard

code with . The gap from the capacity threshold for
rate- codes is only 0.25 dB.

Examples of LDPC-Hadamard codes with high orders:
We now consider the design of LDPC-Hadamard codes with
higher orders and lower rates to push the performance closer
to the ultimate Shannon limit. Codes with , ,
and , , are designed and the resulting
optimized code ensemble profiles are

and
with the designed thresholds from EXIT

charts are 1.53 dB and 1.55 dB, respectively. Fig. 13
illustrates the BER performance of these LDPC-Hadamard
codes with various code lengths, as well as the best perfor-
mance that low-rate turbo Hadamard codes can achieve. It is
seen that the threshold of the ( , )
LDPC-Hadamard code with is 1.36 dB, 0.17 dB
from the designed threshold and improving the best threshold
of the turbo Hadamard, 1.18 dB, by 0.18 dB. The
gap between performance of this LDPC-Hadamard code and
the ultimate low-rate limit is now only 0.23 dB. By increasing
the code length to , the threshold is improved
to 1.38 dB, and the gap to the Shannon limit is reduced
to 0.21 dB. As shown in Fig. 13, with an extremely low-rate
approach, i.e., , , and extremely long code,
i.e., , the threshold from the simulation
is 1.44 dB, 0.11 dB from the designed threshold, which is
only 0.15 dB from the theoretical Shannon limit for the code
rate approaching zero. To the best of our knowledge, the per-
formance reported in Fig. 13 is the best among those reported
in the literature.
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Fig. 13. BER performance of designed LDPC-Hadamard codes and turbo Hadamard codes with M = 3 and r = 7.

It is known that Hamming and BCH codes [11], [24] can
be used to construct the GLDPC codes. However, as discussed
earlier, there are some difficulties about GLDPC codes, such
as efficient APP decoding techniques, the EXIT mismatching
problem and the existence of degree- nodes. We have resolved
these difficulties for the proposed LDPC-Hadamard codes by
exploiting some nice properties of Hadamard codes, such as the
efficient APP-FHT decoding algorithm and the underlying SPC
constraints shown in Theorem 4.2 and Appendix B. Similar or
different solutions may also be possible for other block codes,
but more research work is required on this issue.

B. Convergence Rate and Decoding Complexity

We now investigate the convergence rate of decoding LDPC-
Hadamard codes. We consider an LDPC-Hadamard code with
rate and . The code ensemble is the same
as that in the first example in Section V-A.

Fig. 14 illustrates the evolution of the bit-error rate as a
function of the iteration number for , 1.15
dB, 1.00 dB, and 0 dB. The results are the averages from
20 simulations. We can see that it takes 217 iterations for
LDPC-Hadamard decoding to converge for 1.18
dB. Note that there is a gap of 0.22 dB between the op-
erating point of 1.18 dB and the capacity of

1.44 dB for code rate of . The convergence
rate of 217 iterations for the LDPC-Hadamard code is quite
similar to a standard LDPC code of rate- operating at
value at about 0.22 dB from the corresponding capacity of 0.2
dB. This indicates that the iteration number required for both

standard LDPC and LDPC-Hadamard codes are determined by
their relative distances toward the individual capacity values.

On the other hand, we may be interested in the convergence
rate for a fixed value for different codes. (Note that this
may not be a fair comparison, since LDPC-Hadamard codes
usually have lower rates and so require more redundancy. How-
ever, such a comparison may be useful when power efficiency
and decoding complexity are primary concerns and spectrum ef-
ficiency is less an issue, such as for UWB and deep space appli-
cations.) From Fig. 14, we can see that with increased to
0 dB, the number of iterations to converge dramatically reduces
to only 38. This observation is very interesting. Since for a stan-
dard LDPC code, many more iterations are required to operate
at 0 dB. (We have built a rate 0.33 LDPC code using
the ensemble from [30]. We simulated this code for information
length . We observed that at 0 dB, it took
95 iterations to converge.)

For extremely low-rate LDPC-Hadamard codes with high or-
ders, e.g., or , we can further reduce the decoding com-
plexity. Because of the special structure of the LDPC-Hadamard
code in Fig. 5, among edges in each Hadamard code, only

extrinsic messages are updated during each decoding iteration.
Others are all degree- nodes and their outbound extrinsic mes-
sages remain unchanged during the whole decoding process.
Therefore, the overall complexity of decoding LDPC-Hadamard
codes can be reduced if we only compute for the edges
in the set , where . This
can be achieved via reduced APP fast Hadamard transforms.
The number of additions in APP-FHT is reduced from
to . The details are provided in Appendix D.
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Fig. 14. Decoding convergence of LDPC-Hadamard illustrated by BER evolution as a function of the iteration number K � 65536, R = 0:05.

VI. CONCLUSION

In this paper, we have introduced generalized low-density
parity-check (GLDPC) codes. In particular, we have studied
GLDPC codes with Hadamard constraints, referred to as LDPC-
Hadamard codes. We have presented a message-passing-based
low-complexity soft-input soft-output (SISO) decoding algo-
rithm for LDPC-hadamard codes that employs fast APP-FHT
decoding for Hadamard check nodes. The performance of the
GLDPC codes are discussed, based on which a modified LDPC-
Hadamard code graph is proposed in order to obtain perfor-
mance approaching the Shannon limit. We also presented a low-
complexity optimization method for LDPC-Hadamard code en-
sembles based on the EXIT chart characteristics. Simulation
results show that optimized LDPC-Hadamard codes perform
better than low-rate turbo Hadamard codes while also having a
fast convergence rate. A rate-0.003 LDPC-Hadamard code with

long block length has performance only 0.15 dB away from the
ultimate Shannon limit and 0.24 dB better than the best low-rate
turbo-Hadamard codes.

APPENDIX A
APP DECODING OF HADAMARD CODE

Define
. From (21), can then be written

as shown in (A1) at the bottom of the page.
Now consider decoding of Hadamard check nodes described

in Section IV-C. Define as a length- vector with
nonzero entries for ,

, and zero entries elsewhere. Similarly, define
with nonzero entries except that

(A1)
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(A3)

. Obviously, are extrinsic in-

puts of SPC part and are extrinsic inputs from degree-
nodes. We then have

(A2)

For the check nodes, . Also the extrinsic input
from the degree- nodes is a constant vector. With some manip-
ulations, the extrinsic output can be written as shown in
(A3) at the top of the page, where and are some variables

only depends on and , is a vector with unit entries
for positions and . It is
seen that for , above equation is
exact for computing extrinsic output of SPC. When

, indicating extrinsic input is zero, we have

(A4)
We know are actually channel outputs, thus the pdf of
each nonzero entry only depends on or . Then the
initial offset of the EXIT curve for Hadamard check nodes is
only a function of , and the number of nonzero entries in

, in other words, the Hadamard order .

APPENDIX B
PROOF OF THEOREM 4.2

Proof: Theorem 4.2 is proved by induction. First, consider
a systematic Hadamard code. We have ,

and . Hence, (43) can be written as

(B1)

It is easy to verify that (B1) is satisfied by a systematic
code since it is an SPC code. Now we assume (B1) is also true
for , i.e.

(B2)

Then, the Hadamard matrix in binary form with order
is given by

(B3)

where and is denotes the binary complementary
matrix of . We can show in that and

are in the same position as in maxtrix for any column,
similarly for and . From (B3), for all the columns
or the codeword obtained from , we have

(B4)

Then, we have

(B5)

Then, it is satisfied for . For odd , we can simply check a
special case of and find that it is not satisfied for . With
similar induction procedures, we can prove (B1) is not satisfied
for all odd .

Now we consider the nonsystematic Hadamard codes. From
(8), we have for .
Then . Since , (43) can then
be written as

(B6)
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The above equation is easily verified for . Assume (B6) is
true for , i.e.

(B7)

Now consider . We have

(B8)

For every column in and , we have

(B9)

Then, we have

(B10)

APPENDIX C
CODE RATE OF LDPC-HADAMARD CODES

Assume that the total number of edges is , excluding the
edges connected to the degree- nodes. The total number of
check nodes, the total number of constraints, and the number
of the nondegree- nodes is then , ,
and , respectively. For an LDPC-Hadamard code with
systematic Hadamard check nodes of even order , the number
of the degree- nodes is . The code rate
is then given by

(C1)

We can also obtain the code rate of the LDPC-Hadamard code
from the corresponding LDPC pre-code. Denote by , ,
and the code rate of the LDPC, length of the LDPC, and
the length of the LDPC-Hadamard code, respectively. We have

with (C2)

(C3)

(C4)

The code rate of the LDPC-Hadamard code is then given by

(C5)

In an LDPC-Hadamard code with nonsystematic
check nodes, the total number of constraints is now

since there are an additional SPC constraints
for . The number of degree- nodes is

. Similarly, we obtain the code rate, given by

(C6)

We can also obtain the code rate through the expansion of the
LDPC pre-code. Given the LDPC pre-code with rate in (C4),
the code rate of the LDPC-Hadamard code is given by

(C7)

Now consider the punctured LDPC-Hadamard with nonsys-
tematic check nodes. Given the puncture rate of the nondegree-
nodes , assuming the puncture rate is the same for any de-
gree- nodes, the length of coded bits is

. The code rate is then given by

(C8)

If , can be written as

(C9)
For a check node of order , the puncture rate is set as
. The total number of punctured edges is given by .

Then we have

(C10)
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Fig. 15. Flow graph of length-16 reduced output APP-FHT, where only the
branches leading to the r + 2 outputs are kept.

APPENDIX D
REDUCED APP FAST HADAMARD TRANSFORMS

In the LDPC-Hadamard decoding, we only need to com-
pute extrinsic messages at each check node. There-
fore, the outputs of APP-FHT are required only at the
information positions and the last bit. Define the index set

. As shown in Fig. 15, the ad-
ditions are only required for the bits/edges with indexes

at level . Note
that in each transition, the nodes in Fig. 15 need two additions.
Therefore, the total number of these dual-additions involved is

(D1)
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