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2veri�able, and facilitate automated processing [3]. Reverse Engineering is the pro-cess of constructing high level representations from lower level instantiations of anexisting system. One method for introducing formal methods, and therefore takingadvantage of the bene�ts of formal methods, is through the reverse engineering ofexisting program code into formal speci�cations [10, 16, 19].This paper describes an approach to reverse engineering based on the formalsemantics of the strongest postcondition predicate transformer sp [7], and the par-tial correctness model of program semantics introduced by Hoare [13]. Previously,we investigated the use of the weakest precondition predicate transformer wp asthe underlying formal model for constructing formal speci�cations from programcode [4, 10]. The di�erence between the two approaches is in the ability to di-rectly apply a predicate transformer to a program (i.e., sp) versus using a predicatetransformer as a guideline for constructing formal speci�cations (i.e., wp).The remainder of this paper is organized as follows. Section 2 provides backgroundmaterial for software maintenance and formal methods. The formal approach toreverse engineering based on sp is described in Sections 3 and 4, where Section 3discusses the sp semantics for assignment, alternation, and sequence, and Section 4gives the sp semantics for iterative and procedural constructs. An example applyingthe reverse engineering technique is given in Section 5. Related work is discussed inSection 6. Finally, Section 7 draws conclusions, and suggest futures investigations.2. BackgroundThis section provides background information for software maintenance and formalmethods for software development. Included in this discussion is the formal modelof program semantics used throughout the paper.2.1. Software MaintenanceOne of the most di�cult aspects of re-engineering is the recognition of the func-tionality of existing programs. This step in re-engineering is known as reverseengineering. Identifying design decisions, intended use, and domain speci�c detailsare often signi�cant obstacles to successfully re-engineering a system.Several terms are frequently used in the discussion of re-engineering [5]. ForwardEngineering is the process of developing a system by moving from high level ab-stract speci�cations to detailed, implementation-speci�c manifestations [5]. Theexplicit use of the word \forward" is used to contrast the process with ReverseEngineering, the process of analyzing a system in order to identify system com-ponents, component relationships, and intended behavior [5]. Restructuring is theprocess of creating a logically equivalent system at the same level of abstraction [5].This process does not require semantic understanding of the system and is bestcharacterized by the task of transforming unstructured code into structured code.Re-Engineering is the examination and alteration of a system to reconstitute it in



3a new form, which potentially involves changes at the requirements, design, andimplementation levels [5].Byrne described the re-engineering process using a graphical model similar tothe one shown in Figure 1 [1, 2]. The process model appears in the form of twosectioned triangles, where each section in the triangles represents a di�erent levelof abstraction. The higher levels in the model are concepts and requirements. Thelower levels include designs and implementations. The relative size of each of thesections is intended to represent the amount of informationknown about a system ata given level of abstraction. Entry into this re-engineering process model begins withsystem A, where Abstraction (or reverse engineering) is performed to an appropriatelevel of detail. The next step is Alteration, where the system is constituted into anew form at a di�erent level of abstraction. Finally, Re�nement of the new forminto an implementation can be performed to create system B.
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Abstraction RefinementFigure 1. Reverse Engineering Process ModelThis paper describes an approach to reverse engineering that is applicable tothe implementation and design levels. In Figure 1, the context for this paper isrepresented by the dashed arrow. That is, we address the construction of formallow-level or \as-built" design speci�cations. The motivation for operating in suchan implementation-bound level of abstraction is that it provides a means of trace-ability between the program source code and the formal speci�cations constructedusing the techniques described in this paper. This traceability is necessary in orderto facilitate technology transfer of formal methods. That is, currently existing de-velopment teams must be able to understand the relationship between the sourcecode and the speci�cations.



42.2. Formal MethodsAlthough the waterfall development life-cycle provides a structured process for de-veloping software, the design methodologies that support the life-cycle (i.e., Struc-tured Analysis and Design [21]) make use of informal techniques, thus increasing thepotential for introducing ambiguity, inconsistency, and incompleteness in designsand implementations. In contrast, formal methods used in software developmentare rigorous techniques for specifying, developing, and verifying computer soft-ware [20]. A formal method consists of a well-de�ned speci�cation language witha set of well-de�ned inference rules that can be used to reason about a speci�ca-tion [20]. A bene�t of formal methods is that their notations are well-de�ned andthus, are amenable to automated processing [3].2.2.1. Program SemanticsThe notation Q f S g R [13] is used to represent a partial correctness model ofexecution, where, given that a logical condition Q holds, if the execution of programS terminates, then logical condition R will hold. A rearrangement of the braces toproduce f Q g S f R g, in contrast, represents a total correctness model of execution.That is, if condition Q holds, then S is guaranteed to terminate with condition Rtrue.A precondition describes the initial state of a program, and a postcondition de-scribes the �nal state. Given a statement S and a postcondition R, the weakestprecondition wp(S;R) describes the set of all states in which the statement S canbegin execution and terminate with postcondition R true, and the weakest liberalprecondition wlp(S;R) is the set of all states in which the statement S can beginexecution and establish R as true if S terminates. In this respect, wp(S;R) estab-lishes the total correctness of S, and wlp(S;R) establishes the partial correctnessof S. The wp and wlp are called predicate transformers because they take predicateR and, using the properties listed in Table 1, produce a new predicate.Table 1. Properties of thewp andwlp predicatetransformerswp(S;A) � wp(S; true) ^wlp(S;A)wp(S;A) ) :wlp(S;:A)wp(S; false) � falsewp(S;A ^B) � wp(S;A) ^wp(S;B)wp(S;A _B) ) wp(S;A) _wp(S;B)wp(S;A! B) ) wp(S;A)! wp(S;B)The context for our investigations is that we are reverse engineering systems thathave desirable properties or functionality that should be preserved or extended.Therefore, the partial correctness model is su�cient for these purposes.



52.2.2. Strongest PostconditionConsider the predicate :wlp(S;:R), which is the set of all states in which thereexists an execution of S that terminates with R true. That is, we wish to describethe set of states in which satisfaction of R is possible [7]. The predicate :wlp(S;:R)is contrasted to wlp(S;R) which, is the set of states in which the computation of Seither fails to terminate, or terminates with R true.An analogous characterization can be made in terms of the computation statespace that describes initial conditions using the strongest postcondition sp(S;Q)predicate transformer [7], which is the set of all states in which there exists a com-putation of S that begins with Q true. That is, given that Q holds, execution ofS results in sp(S;Q) true, if S terminates. As such, sp(S;Q) assumes partial cor-rectness. Finally, we make the following observation about sp(S;Q) and wlp(S;R)and the relationship between the two predicate transformers, given the Hoare tripleQ f S g R [7]:Q ) wlp(S;R)sp(S;Q) ) RThe importance of this relationship is two-fold. First, it provides a formal basisfor translating programming statements into formal speci�cations. Second, thesymmetry of sp and wlp provides a method for verifying the correctness of a reverseengineering process that utilizes the properties of wlp and sp in tandem.2.2.3. sp vs. wpGiven a Hoare triple Q f S g R, we note that wp is a backward rule, in that aderivation of a speci�cation begins with R, and produces a predicate wp(S;R).The predicate transformer wp assumes a total correctness model of computation,meaning that given S and R, if the computation of S begins in state wp(S;R), theprogram S will halt with condition R true.We contrast this model with the sp model, a forward derivation rule. That is,given a precondition Q and a program S, sp derives a predicate sp(S;Q). The pred-icate transformer sp assumes a partial correctness model of computation meaningthat if a program starts in state Q, then the execution of S will place the program instate sp(S;Q) if S terminates. Figure 2 gives a pictoral depiction of the di�erencesbetween sp and wp, where the input to the predicate transformer produces the cor-responding predicate. Figure 2(a) gives the case where the input to the predicatetransformer is \S" and \R", and the output to the predicate transformer (given bythe box and appropriately named \wp") is \wp(S,R)". The sp case (Figure 2(b))is similar, where the input to the predicate transformer is \S" and \Q", and theoutput to the transformer is \sp(S,Q)".The use of these predicate transformers for reverse engineering have di�erentimplications. Using wp implies that a postcondition R is known. However, with
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{ Q } S { R }

wpwp(S,R) (a) { Q } S { R }

sp sp(S,Q)(b)Figure 2. Black box representation and di�erences between wp and sp: (a) wp (b) sprespect to reverse engineering, determiningR is the objective, therefore wp can onlybe used as a guideline for performing reverse engineering. The use of sp assumesthat a precondition Q is known and that a postcondition will be derived throughthe direct application of sp. As such, sp is more applicable to reverse engineering.3. Primitive ConstructsThis section describes the derivation of formal speci�cations from the primitiveprogramming constructs of assignment, alternation, and sequences. The Dijkstraguarded command language [6] is used to represent each primitive construct butthe techniques are applicable to the general class of imperative languages. Foreach primitive, we �rst describe the semantics of the predicate transformers wlpand sp as they apply to each primitive and then, for reverse engineering purposes,describe speci�cation derivation in terms of Hoare triples. Notationally, throughoutthe remainder of this paper, the notation f Q g S f R g will be used to indicate apartial correctness interpretation.3.1. AssignmentAn assignment statement has the form x:= e; where x is a variable, and e is anexpression. The wlp of an assignment statement is expressed as wlp(x:=e; R) = Rxe ,which represents the postcondition R with every free occurrence of x replaced bythe expression e. This type of replacement is termed a textual substitution of x bye in expression R. If x corresponds to a vector y of variables and e represents avector E of expressions, then the wlp of the assignment is of the form RyE , whereeach yi is replaced by Ei, respectively, in expression R. The sp of an assignmentstatement is expressed as follows [7]sp(x:=e; Q) = (9v :: Qxv ^ x = exv); (1)



7where Q is the precondition, v is the quanti�ed variable, and `::' indicates that therange of the quanti�ed variable v is not relevant in the current context.We conjecture that the removal of the quanti�cation for the initial values of avariable is valid if the precondition Q has a conjunct that speci�es the textualsubstitution. That is, performing the textual substitution Qxv in Expression (1) isa redundant operation if, initially, Q has a conjunct of the form x = v. Refer toAppendix A where this case is described in more depth. Given the imposition ofinitial (or previous) values on variables, the Hoare triple formulation for assignmentstatements is as follows:fQg /* precondition */x := e;f(xj+1 = exxj ) ^Qg /* postcondition */where xj represents the initial value of the variable x, xj+1 is the subsequent valueof x, Q is the precondition. Subscripts are added to variables to convey historicalinformation for a given variable.Consider a program that consists of a series of assignments to a variable x,\x := a; x:= b; x:= c; x:= d; x:= e; x:= f; x:= g; x:= h;" Despite its sim-f x = X gx := a;f x = a ^X = X gx := b;f x = b ^ a = a gx := c;f x = c ^ b = b gx := d;f x = d ^ c = c gx := e;f x = e ^ d = d gx := f;f x = f ^ e = e gx := g;f x = g ^ f = f gx := h;f x = h ^ g = g g...(a) Code with strictsp application
f x0 = X gx := a;f x1 = a gx := b;f x2 = b gx := c;f x3 = c gx := d;f x4 = d gx := e;f x5 = e gx := f;f x6 = f gx := g;f x7 = g gx := h;f x8 = h g...(b) Codewithhistoricalsubscripts

f x0 = X gx := a;f x1 = a ^ x0 = X gx := b;f x2 = b^ x1 = a^ : : : gx := c;f x3 = c ^ x2 = b ^ : : : gx := d;f x4 = d ^ x3 = c ^ : : : gx := e;f x5 = e^ x4 = d ^ : : : gx := f;f x6 = f ^x5 = e^ : : : gx := g;f x7 = g ^x6 = f ^ : : : gx := h;f x8 = h^ x7 = g^ : : : g...(c) Code with historicalsubscripts andpropagationFigure 3. Di�erent approaches to specifying the history of a variableplicity, the example is useful in illustrating the di�erent ways that the e�ects of



8an assignment statement on a variable can be speci�ed. For instance, Figure 3(a)depicts the speci�cation of the program by strict application of the strongest post-condition.Another possible way to specify the program is through the use of historical sub-scripts for a variable. A historical subscript is an integer number used to denote theith textual assignment to a variable, where a textual assignment is an occurrenceof an assignment statement in the program source (versus the number of times thestatement is executed). An example of the use of historical subscripts is given inFigure 3(b). However, when using historical subscripts, special care must be takento maintain the consistency of the speci�cation with respect to the semantics ofother programming constructs. That is, using the technique shown in Figure 3(b)is not su�cient. The precondition of a given statement must be propagated to thepostcondition, as shown in Figure 3(c). The main motivation for using histories isto remove the need to apply textual substitution to a complex precondition and toprovide historical context to complex disjunctive and conjunctive expressions. Thedisadvantage to using such a technique is that the propagation of the preconditioncan potentially be complex visually. Note that we have not changed the semanticsof the strongest postcondition, but, rather, in the application of strongest post-condition, extra information is appended that provides a historical context to allvariables of a program during some \snapshot" or state of a program.3.2. AlternationAn alternation statement using the Dijkstra guarded command language [6] is ex-pressed as if B1 ! S1;: : :jj Bn ! Sn;fi;where Bi ! Si is a guarded command such that Si is only executed if logicalexpression (guard) Bi is true. The wlp for alternation statements is given by [7]:wlp(IF; R) � (8i : Bi : wlp(Si; R));where IF represents the alternation statement. The equation states that the nec-essary condition to satisfy R, if the alternation statement terminates, is that givenBi is true, the wlp for each guarded statement Si with respect to R holds. The spfor alternation has the form [7]sp(IF; Q) � (9i :: sp(Si; Bi ^Q)): (2)The existential expression can be expanded into the following form



9sp(IF; Q) � (sp(S1; B1 ^Q) _ : : :_ sp(Sn; Bn ^Q)): (3)Expression (3) illustrates the disjunctive nature of alternation statements whereeach disjunct describes the postcondition in terms of both the precondition Q andthe guard and guarded command pairs, given by Bi and Si, respectively. Thischaracterization follows the intuition that a statement Si is only executed if Bi istrue. The translation of alternation statements to speci�cations is based on thesimilarity of the semantics of Expression (3) and the execution behaviour for alter-nation statements. Using the Hoare triple notation, a speci�cation is constructedas follows f Q gif B1 ! S1;: : :jj Bn ! Sn;fi;f sp(S1; B1 ^Q) _ : : :_ sp(Sn; Bn ^Q) g3.3. SequenceFor a given sequence of statements S1;: : :;Sn, it follows that the postcondition forsome statement Si is the precondition for some subsequent statement Si+1. Thewlp and sp for sequences follow accordingly. The wlp for sequences is de�ned asfollows [7]: wlp(S1;S2; R) � wlp(S1; wlp(S2; R)):Likewise, the sp [7] issp(S1;S2; Q) � sp(S2; sp(S1; Q)): (4)In the case of wlp, the set of states for which the sequence S1;S2 can execute withR true (if the sequence terminates) is equivalent to the wlp of S1 with respect tothe set of states de�ned by wlp(S2; R). For sp, the derived postcondition for thesequence S1;S2 with respect to the precondition Q is equivalent to the derivedpostcondition for S2 with respect to a precondition given by sp(S1; Q). The Hoaretriple formulation and construction process is as follows:f Q gS1;f sp(S1; Q)gS2;f sp(S2; sp(S1; Q)) g.



104. Iterative and Procedural ConstructsThe programming constructs of assignment, alternation, and sequence can be com-bined to produce straight-line programs (programs without iteration or recursion).The introduction of iteration and recursion into programs enables more compactnessand abstraction in program development. However, constructing formal speci�ca-tions of iterative and recursive programs can be problematic, even for the humanspeci�er. This section discusses the formal speci�cation of iteration and proce-dural abstractions without recursion. We deviate from our previous conventionof providing the formalisms for wlp and sp for each construct and use an opera-tional de�nition of how speci�cations are constructed. This approach is necessarybecause the formalisms for the wlp and sp for iteration are de�ned in terms ofrecursive functions [7, 11] that are, in general, di�cult to practically apply.4.1. IterationIteration allows for the repetitive application of a statement. Iteration, using theDijkstra language, has the formdo B1 ! S1;: : :jj Bn ! Sn;od;In more general terms, the iteration statement may contain any number of guardedcommands of the form Bi ! Si, such that the loop is executed as long as any guardBi is true. A simpli�ed form of repetition is given by \do B ! S od ".In the context of iteration, a bound function determines the upper bound on thenumber of iterations still to be performed on the loop. An invariant is a predicatethat is true before and after each iteration of a loop. The problem of constructingformal speci�cations of iteration statements is di�cult because the bound func-tions and the invariants must be determined. However, for a partial correctnessmodel of execution, concerns of boundedness and termination fall outside of theinterpretation, and thus can be relaxed.Using the abbreviated form of repetition \do B ! S od", the semantics for it-eration in terms of the weakest liberal precondition predicate transformer wlp isgiven by the following [7]:wlp(DO; R) � (8i : 0 � i : wlp(IFi; B _R)); (5)where the notation \IFi" is used to indicate the execution of \if B! S fi" i times.Operationally, Expression (5) states that the weakest condition that must hold inorder for the execution of an iteration statement to result with R true, providedthat the iteration statement terminates, is equivalent to a conjunctive expression



11where each conjunct is an expression describing the semantics of executing the loopi times, where i � 0.The strongest postcondition semantics for repetition has a similar but notablydistinct formulation [7]:sp(DO; Q) � :B ^ (9i : 0 � i : sp(IFi; Q)): (6)Expression (6) states that the strongest condition that holds after executing aniterative statement, given that condition Q holds, is equivalent to the conditionwhere the loop guard is false (:B), and a disjunctive expression describing thee�ects of iterating the loop i times, where i � 0.Although the semantics for repetition in terms of strongest postcondition andweakest liberal precondition are less complex than that of the weakest precondi-tion [7], the recurrent nature of the closed forms make the application of suchsemantics di�cult. For instance, consider the counter program \do i < n ! i:= i + 1 od". The application of the sp semantics for repetition leads to thefollowing speci�cation:sp(do i < n ! i := i + 1 od; Q) � (i � n) ^ (9j : 0 � j : sp(IF j ; Q)):The closed form for iteration suggests that the loop be unrolled j times. If j is setto n� start, where start is the initial value of variable i, then the unrolled versionof the loop would have the following form:1. i:= start;2. if3. i < n --> i:= i + 1;4. fi5. if6. i < n --> i:= i + 1;7. fi8. : : :9. if10. i < n --> i:= i + 1;11. fiApplication of the rule for alternation (Expression (2)) yields the sequence ofannotated code shown in Figure 4, where the goal is to derivesp(do i < n ! i := i + 1 od; (start < n) ^ (i = start)):In the construction of speci�cations of iteration statements, knowledge must beintroduced by a human speci�er. For instance, in line 19 of Figure 4 the inductiveassertion that \i = start + (n � start � 1)" is made. This assertion is based on aspeci�er providing the information that (n�start�1) additions have been performed



121. f (i = I) ^ (start < n) g2. i:= start;3. f (i = start) ^ (start < n) g4. if i < n -> i:= i + 1 fi5. f sp(i := i+ 1; (i < n) ^ (i = start) ^ (start < n))6. _7. ((i >= n) ^ (i = start) ^ (start < n))8. �9. ((i = start + 1) ^ (start < n)) g10. if i < n -> i:= i + 1 fi11. f sp(i := i+ 1; (i < n) ^ (i = start+ 1) ^ (start < n))12. _13. ((i >= n) ^ (i = start+ 1) ^ (start < n))14. �15. ((i = start + 2) ^ (start + 1 < n))16. _17. ((i >= n) ^ (i = start+ 1) ^ (start < n)) g18. : : :19. f ((i = start+ (n� start� 1)) ^ (start+ (n� start� 1)� 1 < n))20. _21. ((i >= n)^(i = start+(n�start�2))^(start+(n�start�2)�1 < n))22. �23. ((i = n� 1) ^ (n� 2 < n)) g24. if i < n -> i:= i + 1 fi25. f sp(i := i+ 1; (i < n) ^ (i = n� 1) ^ (n � 2 < n))26. _27. ((i >= n) ^ (i = n� 1) ^ (n � 2 < n))28. �29. (i = n) gFigure 4. Annotated Source Code for Unrolled Loop



13if the loop were unrolled at least (n � start � 1) times. As such, by using loopunrolling and induction, the derived speci�cation for the code sequence is((n� 1 < n) ^ (i = n)).For this simple example, we �nd that the solution is non-trivial when applyingthe formal de�nition of sp(DO; Q). As such, the speci�cation process must rely ona user-guided strategy for constructing a speci�cation. A strategy for obtaining aspeci�cation of a repetition statement is given in Figure 5.4.2. Procedural AbstractionsThis section describes the construction of formal speci�cations from code containingthe use of non-recursive procedural abstractions. A procedure declaration can berepresented using the following notationproc p ( value x; value-result y; result z );fPgh body ifQgwhere x, y, and z represent the value, value-result, and result parameters for theprocedure, respectively. A parameter of type value means that the parameter isused only for input to the procedure. Likewise, a parameter of type result indicatesthat the parameter is used only for output from the procedure. Parameters thatare known as value-result indicate that the parameters can be used for bothinput and output to the procedure. The notation h body i represents one or morestatements making up the \procedure", while fPg and fQg are the preconditionand postcondition, respectively. The signature of a procedure appears asproc p : (input type)� ! (output type)� (7)where the Kleene star (*) indicates zero or more repetitions of the preceding unit,input type denotes the one or more names of input parameters to the procedure p,and output type denotes the one or more names of output parameters of procedurep. A speci�cation of a procedure can be constructed to be of the formf P: U gproc p : E0 ! E1hbodyif Q: sp(body,U) ^U gwhere E0 is one or more input parameter types with attribute value or value-result, and E1 is one or more output parameter types with attribute value-resultor result. The postcondition for the body of the procedure, sp(body,U), is con-structed using the previously de�ned guidelines for assignment, alternation, se-quence, and iteration as applied to the statements of the procedure body.



141. The following criteria are the main characteristics to be identi�ed during thespeci�cation of the repetition statement:� invariant (P): an expression describing the conditions prior to entry andupon exit of the iterative structure.� guards (B): Boolean expressions that restrict the entry into the loop. Exe-cution of each guarded command, Bi ! Si terminates with P true, so thatP is an invariant of the loop.fP ^BigSifPg; for 1 � i � nWhen none of the guards is true and the invariant is true, then thepostcondition of the loop should be satis�ed (P ^ :BB ! R, whereBB = B1 _ : : :_Bn and R is the postcondition).2. Begin by introducing the assertion \Q ^BB" as the precondition to the bodyof the loop.3. Query the user for modi�cations to the assertion made in step 2. This guidedinteraction allows the user to provide generalizations about arbitrary iterationsof the loop. In order to verify that the modi�cations made by a user are valid,wlp can be applied to the assertion.4. Apply the strongest postcondition to the loop body Si using the preconditiongiven by step 3.5. Using the speci�cation obtained from step 4 as a guideline, query the user fora loop invariant. Although this step is non-trivial, techniques exist that aid inthe construction of loop invariants [15, 11].6. Using the relationship stated above (P ^:BB ! R), construct the speci�cationof the loop by taking the negation of the loop guard, and the loop invariant.Figure 5. Strategy for constructing a speci�cation for an iteration statementGries de�nes a theorem for specifying the e�ects of a procedure call [11] using atotal correctness model of execution. Given a procedure declaration of the aboveform, the following condition holds [11]fPRT : P x;ya;b ^ (8u; v :: Qy;zu;v ) Rb;cu;v)g p(a; b; c) fRg (8)



15for a procedure call p(a; b; c), where a, b, and c represent the actual parameters oftype value, value-result, and result, respectively. Local variables of procedurep used to compute value-result and result parameters are represented using uand v, respectively. Informally, the condition states that PRT must hold before theexecution of procedure p in order to satisfy R. In addition, PRT states that theprecondition for procedure p must hold for the parameters passed to the procedureand that the postcondition for procedure p implies R for each value-result andresult parameter. The formulation of Equation (8) in terms of a partial correctnessmodel of execution is identical, assuming that the procedure is straight-line, non-recursive, and terminates. Using this theorem for the procedure call, an abstractionof the e�ects of a procedure call can be derived using a speci�cation of the proceduredeclaration. That is, the construction of a formal speci�cation from a procedure callcan be performed by inlining a procedure call and using the strongest postconditionfor assignment. A procedure call p(a; b; c) can be represented by the program block[11] found in Figure 6, where hbodyi comprises the statements of the proceduredeclaration for p, f PR g is the precondition for the call to procedure p, f P g isthe speci�cation of the program after the formal parameters have been replaced byactual parameters, f Q g is the speci�cation of the program after the procedure hasbeen executed, f QR g is the speci�cation of the program after formal parametershave been assigned with the values of local variables, and f R g is the speci�cation ofthe program after the actual parameters to the procedure call have been \returned".By representing a procedure call in this manner, parameter binding can be achievedthrough multiple assignment statements and a postcondition R can be establishedby using the sp for assignment. Removal of a procedural abstraction enables theextension of the notion of straight-line programs to include non-recursive straight-line procedures. Making the appropriate sp substitutions, we can annotate the codesequence from Figure 6 to appear as follows:f PR gx,y := a,b;f P: (9�; � :: PRx;y�;� ^ x = ax;y�;� ^ y = bx;y�;�) ghbodyif Q gy,z := u,v;f QR: (9; � :: Qy;z;� ^ y = uy;z;� ^ z = vy;z;� ) gb,c := y,z;f R: (9#; ' :: QRb;c#;' ^ b = yb;c#;' ^ c = zb;c#;') gwhere �, �, , � , #, and ' are the initial values of x, y (before execution of theprocedure body), y (after execution of the procedure body), z, b, and c, respectively.Recall that in Section 3.1, we described how the existential operators and thetextual substitution could be removed from the calculation of the sp. Applying that



16 begin: : :f PR gp(a; b; c)f R g: : :end +begindeclare x, y, z, u, v;: : :f PR gx,y := a,b;f P ghbodyif Q gy,z := u,v;f QR gb,c := y,z;f R g: : :endFigure 6. Removal of procedure call p(a; b; c) abstractiontechnique to assignments and recognizing that formal and actual result parametershave no initial values, and that local variables are used to compute the values of thevalue-result parameters, the above sequence can be simpli�ed using the semanticsof sp for assignments to obtain the following annotated code sequence:f PR gx,y := a,b;f P: PR ^ x = a ^ y = b ghbodyif Q gy,z := u,v;f QR: Q ^ y = uy ^ z = vy gb,c := y,z;f R: QR ^ b = y ^ c = z gwhere Q is derived using sp(hbodyi; P ).



175. ExampleThe following example demonstrates the use of four major programming constructsdescribed in this paper (assignment, alternation, sequence, and procedure call)along with the application of the translation rules for abstracting formal speci�ca-tions from code. The program, shown in Figure 7, has four procedures, includingthree di�erent implementations of \swap". AutoSpec [4, 9, 10] is a tool that wehave developed to support the derivational approach to the reverse engineering offormal speci�cations from program code.Figures 8, 9, and 10 depict the output of AutoSpec when applied to the programcode given in Figure 7 where the notation idfscopeginstance is used to indicatea variable id with scope de�ned by the referencing environment for scope. Theinstance identi�er is used to provide an ordering of the assignments to a variable.The scope identi�er has two purposes. When scope is an integer, it indicatesthe level of nesting within the current program or procedure. When scope is anidenti�er, it provides information about variables speci�ed in a di�erent context.For instance, if a call to some arbitrary procedure called foo is invoked, thenspeci�cations for variables local to foo are labeled with an integer scope. Uponreturn, the speci�cation of the calling procedure will have references to variableslocal to foo. Although the variables being referenced are outside the scope of thecalling procedure, a speci�cation of the input and output parameters for foo canprovide valuable information, such as the logic used to obtain the speci�cation forthe output variables to foo. As such, in the speci�cation for the variables localto foo but outside the scope of the calling procedure, we use the scope label So.Therefore, if we have a variable q local to foo, it might appear in a speci�cationoutside its local context as qffoog4, where \4" indicates the fourth instance ofvariable q in the context of foo.In addition to the notations for variables, we use the notation `|' to denote alogical-or, `&' to denote a logical-and, and the symbols `(* *)' to delimit comments(i.e., speci�cations).In Figure 8, the code for the procedure FindMaxMin contains an alternation state-ment, where lines I, J, K, and L specify the guarded commands of the alternationstatement (I and J), the e�ect of the alternation statement (K), and the e�ect ofthe entire procedure (L), respectively.Of particular interest are the speci�cations for the swap procedures given in Fig-ure 9 named swapa and swapb. The variables X and Y are speci�ed using thenotation described above. As such, the �rst assignment to Y is written using Yf0g1,where Y is the variable, `f0g' describes the level of nesting (here it is zero), and `1'is the historical subscript, the `1' indicating the �rst instance of Y after the initialvalue. The �nal comment for swapa (Line M), which gives the speci�cation for theentire procedure, reads as:(* (Y{0}2 = X0 & X{0}1 = Y0 & Y{0}1 = Y0 + X0) & U *)



18 program MaxMin ( input, output );var a, b, c, Largest, Smallest : real;procedure FindMaxMin(NumOne, NumTwo:real; var Max, Min:real );beginif NumOne > NumTwo thenbeginMax := NumOne;Min := NumTwo;endelsebeginMax := NumTwo;Min := NumOne;endend;procedure swapa( var X:integer; var Y:integer );beginY := Y + X;X := Y - X;Y := Y - X;end;procedure swapb( var X:integer; var Y:integer );vartemp : integer;begintemp := X;X := Y;Y := tempend;procedure funnyswap( X:integer; Y:integer );vartemp : integer;begintemp := X;X := Y;Y := tempend;begina := 5;b := 10;swapa(a,b);swapb(a,b);funnyswap(a,b);FindMaxMin(a,b,Largest,Smallest);c := Largest;end.Figure 7. Example Pascal programwhere Yf0g2 = X0 is the speci�cation of the �nal value of Y, and Xf0g1 = Y0 isthe speci�cation of the �nal value of X. In this case, the intermediate value of Y,denoted Yf0g1, with value Y0 + X0 is not considered in the �nal value of Y.



19
I:J:K:L:

program MaxMin( input, output );vara, b, c, Largest, Smallest : real;procedure FindMaxMin( NumOne, NumTwo:real; var Max,Min:real );beginif (NumOne > NumTwo) thenbeginMax := NumOne;(* Max{2}1 = NumOne0 & U *)Min := NumTwo;(* Min{2}1 = NumTwo0 & U *)end(* (Max{2}1 = NumOne0 & Min{2}1 = NumTwo0) & U *)elsebeginMax := NumTwo;(* Max{2}1 = NumTwo0 & U *)Min := NumOne;(* Min{2}1 = NumOne0 & U *)end(* (Max{2}1 = NumTwo0 & Min{2}1 = NumOne0) & U *)(* (((NumOne0 > NumTwo0) &(Max{0}1 = NumOne0 & Min{0}1 = NumTwo0)) |(not(NumOne0 > NumTwo0) &(Max{0}1 = NumTwo0 & Min{0}1 = NumOne0))) & U *)end(* (((NumOne0 > NumTwo0) &(Max{0}1 = NumOne0 & Min{0}1 = NumTwo0)) |(not(NumOne0 > NumTwo0) &(Max{0}1 = NumTwo0 & Min{0}1 = NumOne0))) & U *)Figure 8. Output created by applying AutoSpec to exampleProcedure swapb uses a temporary variable algorithm for swap. Line N is thespeci�cation after the execution of the last line and reads as:(* (Y{0}1 = X0 & X{0}1 = Y0 & temp{0}1 = X0) & U *)where Yf0g1 = X0 is the speci�cation of the �nal value of Y, and Xf0g1 = Y0 is thespeci�cation of the �nal value of X.Although each implementation of the swap operation is di�erent, the code in eachprocedure e�ectively produces the same results, a property appropriately capturedby the respective speci�cations for swapa and swapb with respect to the �nal valuesof the variables X and Y.In addition, Figure 10 shows the formal speci�cation of the funnyswap procedure.The semantics for the funnyswap procedure are similar to that of swapb. However,the parameter passing scheme used in this procedure is pass by value.The speci�cation of the main begin-end block of the program MaxMin is givenin Figure 10. There are eight lines of interest, labeled I, J, K, L, M, N, O, andP, respectively. Lines I and J specify the e�ects of assignment statements. Thespeci�cation at line K demonstrates the use of identi�er scope labels, where in this
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M:N:O:

procedure swapa( var X:integer; var Y:integer );beginY := (Y + X);(* (Y{0}1 = (Y0 + X0)) & U *)X := (Y - X);(* (X{0}1 = ((Y0 + X0) - X0)) & U *)Y := (Y - X);(* (Y{0}2 = ((Y0 + X0) - ((Y0 + X0) - X0))) & U *)end(* (Y{0}2 = X0 & X{0}1 = Y0 & Y{0}1 = Y0 + X0) & U *)procedure swapb( var X:integer; var Y:integer );vartemp : integer;begintemp := X;(* (temp{0}1 = X0) & U *)X := Y;(* (X{0}1 = Y0) & U *)Y := temp;(* (Y{0}1 = X0) & U *)end(* (Y{0}1 = X0 & X{0}1 = Y0 & temp{0}1 = X0) & U *)procedure funnyswap( X:integer; Y:integer );vartemp : integer;begintemp := X;(* (temp{0}1 = X0) & U *)X := Y;(* (X{0}1 = Y0) & U *)Y := temp;(* (Y{0}1 = X0) & U *)end(* (Y{0}1 = X0 & X{0}1 = Y0 & temp{0}1 = X0) & U *)Figure 9. Output created by applying AutoSpec to example (cont.)case, we see the speci�cation of variables X and Y from the context of swapa. LineL is another example of the same idea, where the speci�cation of variables from thecontext of swapb (X and Y), are given. In the main program, no variables local tothe scope of the call to funnyswap are a�ected by funnyswap due to the pass byvalue nature of funnyswap, and thus the speci�cation shows no change in variablevalues, which is shown by line M of Figure 10. The e�ects of the call to procedureFindMaxMin provides another example of the speci�cation of a procedure call (lineN). Finally, line P is the speci�cation of the entire program, with every preconditionpropagated to the �nal postcondition as described in Section 3.1. Here, of interestare the �nal values of the variables that are local to the program MaxMin (i.e., a,b, and c). Thus, according to the rules for historical subscripts, the af0g3, bf0g3,



21I:J:K:L:M:N:O:P:
(* Main Program for MaxMin *)begina := 5;(* a{0}1 = 5 & U *)b := 10;(* b{0}1 = 10 & U *)swapa(a,b)(* (b{0}2 = 5 &(a{0}2 = 10 &(Y{swapa}2 = 5 &(X{swapa}1 = 10 & Y{swapa}1 = 15)))) & U *)swapb(a,b)(* (b{0}3 = 10 &(a{0}3 = 5 &(Y{swapb}1 = 10 &(X{swapb}1 = 5 & temp{swapb}1 = 10)))) & U *)funnyswap(a,b)(* (Y{funnyswap}1 = 5 & X{funnyswap}1 = 10 &temp{funnyswap}1 = 5) & U *)FindMaxMin(a,b,Largest,Smallest)(* (Smallest{0}1 = Min{FindMaxMin}1 &Largest{0}1 = Max{FindMaxMin}1 &(((5 > 10) &(Max{FindMaxMin}1 = 5 &Min{FindMaxMin}1 = 10)) |(not(5 > 10) &(Max{FindMaxMin}1 = 10 &Min{FindMaxMin}1 = 5)))) & U *)c := Largest;(* c{0}1 = Max{FindMaxMin}1 & U *)end(* ((c{0}1 = Max{FindMaxMin}1) &(Smallest{0}1 = Min{FindMaxMin}1 &Largest{0}1 = Max{FindMaxMin}1 &(((5 > 10) &(Max{FindMaxMin}1 = 5 &Min{FindMaxMin}1 = 10)) |(not(5 > 10) &(Max{FindMaxMin}1 = 10 &Min{FindMaxMin}1 = 5))))) &( Y{funnyswap}1 = 5 & X{funnyswap}1 = 10 &temp{funnyswap}1 = 5 ) &( b{0}3 = 10 &a{0}3 = 5 &(Y{swapb}1 = 10 & X{swapb}1 = 5 &temp{swapb}1 = 10)) &( b{0}2 = 5 &a{0}2 = 10 &(Y{swapa}2 = 5 & X{swapa}1 = 10 &Y{swapa}1 = 15)) &(b{0}1 = 10 & a{0}1 = 5) & U *)Figure 10. Output created by applying AutoSpec to example (cont.)and cf0g1 are of interest. In addition, by propagating the preconditions for eachstatement, the logic that was used to obtain the values for the variables of interestcan be analyzed.



226. Related WorkPreviously, formal approaches to reverse engineering have used the semantics ofthe weakest precondition predicate transformer wp as the underlying formalism oftheir technique. The Maintainer's Assistant uses a knowledge-based transforma-tional approach to construct formal speci�cations from program code via the useof a Wide-Spectrum Language (WSL) [19]. A WSL is a language that uses bothspeci�cation and imperative language constructs. A knowledge-base manages thecorrectness preserving transformations of concrete, implementation constructs in aWSL to abstract speci�cation constructs in the same WSL.REDO [16] (Restructuring, Maintenance, Validation and Documentation of Soft-ware Systems) is an Espirit II project whose objective is to improve applications bymaking them more maintainable through the use of reverse engineering techniques.The approach used to reverse engineer COBOL involves the development of generalguidelines for the process of deriving objects and speci�cations from program codeas well as providing a framework for formally reasoning about objects [12].In each of these approaches, the applied formalisms are based on the semantics ofthe weakest precondition predicate transformer wp. Some di�erences in applying wpand sp are that wp is a backward rule for program semantics and assumes a totalcorrectness model of execution. However, the total correctness interpretation hasno forward rule (i.e. no strongest total postcondition stp [7]). By using a partial cor-rectness model of execution, both a forward rule (sp) and backward rule (wlp) canbe used to verify and re�ne formal speci�cations generated by program understand-ing and reverse engineering tasks. The main di�erence between the two approachesis the ability to directly apply the strongest postcondition predicate transformerto code to construct formal speci�cations versus using the weakest preconditionpredicate transformer as a guideline for constructing formal speci�cations.7. Conclusions and Future InvestigationsFormalmethods provide many bene�ts in the development of software. Automatingthe process of abstracting formal speci�cations from program code is sought but,unfortunately, not completely realizable as of yet. However, by providing the toolsthat support the reverse engineering of software, much can be learned about thefunctionality of a system.The level of abstraction of speci�cations constructed using the techniques de-scribed in this paper are at the \as-built" level, that is, the speci�cations containimplementation-speci�c information. For straight-line programs (programs withoutiteration or recursion) the techniques described herein can be applied in order toobtain a formal speci�cation from program code. As such, automated techniquesfor verifying the correctness of straight-line programs can be facilitated.Since our technique to reverse engineering is based on the use of strongest post-condition for deriving formal speci�cations from program code, the application ofthe technique to other programming languages can be achieved by de�ning the for-



23mal semantics of a programming language using strongest postcondition, and thenapplying those semantics to the programming constructs of a program. Our currentinvestigations into the use of strongest postcondition for reverse engineering focuson three areas. First, we are extending our method to encompasses all major facetsof imperative programming constructs, including iteration and recursion. To thisend, we are in the process of de�ning the formal semantics of the ANSI C program-ming language using strongest postcondition and are applying our techniques to aNASA mission control application for unmanned spacecraft. Second, methods forconstructing higher level abstractions from lower level abstractions are being in-vestigated. Finally, a rigorous technique for re-engineering speci�cations from theimperative programming paradigm to the object-oriented programming paradigmis being developed [9]. Directly related to this work is the potential for applyingthe results to facilitate software reuse, where automated reasoning is applied to thespeci�cations of existing components to determine reusability [14].AcknowledgmentsThe authors greatly appreciate the comments and suggestions from the anonymousreferees. Also, the authors wish to thank Linda Wills for her e�orts in organizingthis special issue. Finally, the authors would like to thank the participants ofthe IEEE 1995 Working Conference on Reverse Engineering for the feedback andcomments on an earlier version of this paper.Appendix AMotivations for Notation and Removal of Quanti�cationSection 3.1 states a conjecture that the removal of the quanti�cation for the initialvalues of a variable is valid if the precondition Q has a conjunct that speci�es thetextual substitution. This Appendix discusses this conjecture. Recall thatsp(x:= e; Q) = (9v :: Qxv ^ x = exv): (A.1)There are two goals that must be satis�ed in order to use the de�nition of strongestpostcondition for assignment. They are:1. Elimination of the existential quanti�er2. Development and use of a traceable notation.Eliminating the Quanti�er. First, we address the elimination of the existentialquanti�er. Consider the RHS of de�nition A.1. Let y be a variable such that(Qxy ^ x = exy)) (9v :: Qxv ^ x = exv ): (A.2)



24De�ne sp�(x:= e; Q) (pronounced \s-p-rho") as the strongest postcondition forassignment with the quanti�er removed. That is,sp�(x:= e; Q) = (Qxy ^ x = exy) for some y: (A.3)Given the de�nition of sp�, it follows thatsp�(x:= e; Q)) sp(x:= e; Q): (A.4)As such, the speci�cation of the assignment statement can be made more simpleif y from equation (A.3) can either be identi�ed explicitly or named implicitly.The choice of y must be made carefully. For instance, consider the following. LetQ := P ^ (x = z) such that P contains no free occurrences of x. Choosing anarbitrary � for y in (A.3) leads to the following derivation:sp�(x:= e; Q) = Qx� ^ (x = ex�)� hQ := P ^ (x = z)i(P ^ (x = z))x� ^ (x = ex�)� htextual substitutioni(P x� ^ (x = z)x� ^ (x = ex�)� hP has no free occurrences of x, Textual substitutioniP ^ (� = z) ^ (x = ex�)� h� = ziP ^ (� = z) ^ (x = ex��z)� htextual substitutioniP ^ (� = z) ^ (x = exz ):At �rst glance, this choice of y would seem to satisfy the �rst goal, namely removalof the quanti�cation. However, this is not the case. Suppose P were replaced withP 0 ^ (� 6= z). The derivation would lead tosp�(x:= e; Q) � P 0 ^ (� 6= z) ^ (� = z) ^ (x = exz ):This is unacceptable because it leads to a contradiction, meaning that the speci�-cation of a program describes impossible behaviour. Ideally, it is desired that thespeci�cation of the assignment statement satisfy two requirements. It must:1. Describe the behaviour of the assignment of the variable x, and2. Adjust the precondition Q so that the free occurrences of x are replaced withthe value of x before the assignment is encountered.It can be proven that through successive assignments to a variable x that thespeci�cation sp� will have only one conjunct of the form (x = �), where � is anexpression. Informally, we note that each successive application of sp� uses a textualsubstitution that eliminates free references to x in the precondition and introducesa conjunct of the form (x = �).



25The convention used by the approach described in this paper is to choose for ythe expression �. If no � can be identi�ed, use a place holder  such that theprecondition Q has no occurrence of . As an example, let y in equation (A.3) bez, and Q := P ^ (x = z). Thensp�(x:= e; Q) � P ^ (z = z) ^ (x = exz ):Notice that the last conjunct in each of the derivations is (x = exz ) and that sinceP contains no free occurrences of x, P is an invariant.Notation. De�ne sp�� (pronounced \s-p-rho-iota") as the strongest postconditionfor assignment with the quanti�er removed and indices. Formally, sp�� has the formsp��(x:= e; Q) = (Qxy ^ xk = exy) for some y: (A.5)Again, an appropriate y must be chosen. Let Q := P ^ (xi = y), where P has nooccurrence of x other than i subscripted x's of form (xj = ej); 0 � j < i. Based onthe previous discussion, choose y to be the RHS of the relation (xi = y). As such,the de�nition of sp�� can be modi�ed to appear assp��(x:= e; Q) = ((P ^ (xi = y))xy ^ xi+1 = exy ) for some y: (A.6)Consider the following example where subscripts are used to show the e�ects oftwo consecutive assignments to the variable x. Let Q := P ^ (xi = �), and let theassignment statement be x:= e. Application of sp�� yieldssp��(x:= e; Q) = (P ^ (xi = �))x� ^ (xi+1 = e)x�� htextual substitutioniP x� ^ (xi = �)x� ^ (xi+1 = e)x�� htextual substitutioniP ^ (xi = �) ^ (xi+1 = ex�)A subsequent application of sp�� on the statement x:= f subject to Q0 := Q ^(xi+1 = ex�) has the following derivation:sp��(x:= f; Q0) = (P ^ (xi = �) ^ (xi+1 = ex�))xex� ^ xi+2 = fxex�� htextual substitutioniP xex� ^ (xi = �)xex� ^ (xi+1 = ex�)xex� ^ xi+2 = fxex�� hP has no free x, textual substitutioniP ^ (xi = �) ^ (xi+1 = ex�) ^ xi+2 = fxex�� hde�nition of QiQ ^ (xi+1 = ex�) ^ xi+2 = fxex�� hde�nition of Q0iQ0 ^ xi+2 = fxex�Therefore, it is observed that by using historical subscripts, the construction of thespeci�cation of the assignment statements involves the propagation of the precon-dition Q as an invariant conjuncted with the speci�cation of the e�ects of setting
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