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Abstract. Reverse engineering of program code is the process of constructing a higher level
abstraction of an implementation in order to facilitate the understanding of a system that may
be in a “legacy” or “geriatric” state. Changing architectures and improvements in programming
methods, including formal methods in software development and object-oriented programming,
have prompted a need to reverse engineer and re-engineer program code. This paper describes
the application of the strongest postcondition predicate transformer (sp) as the formal basis for
the reverse engineering of imperative program code.
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1. Introduction

The demand for software correctness becomes more evident when accidents, some-
times fatal, are due to software errors. For example, recently it was reported that
the software of a medical diagnostic system was the major source of a number of
potentially fatal doses of radiation [17]. Other problems caused by or due to soft-
ware failure have been well documented and with the change in laws concerning
liability [8], the need to reduce the number of problems due to software increases.

Software maintenance has long been a problem faced by software professionals,
where the average age of software is between 10 to 15 years old [18]. With the
development of new architectures and improvements in programming methods and
languages, including formal methods in software development and object-oriented
programming, there is a strong motivation to reverse engineer and re-engineer ex-
isting program code in order to preserve functionality, while exploiting the latest
technology.

Formal methods in software development provide many benefits in the forward
engineering aspect of software development [20]. One of the advantages of using
formal methods in software development is that the formal notations are precise,
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verifiable, and facilitate automated processing [3]. Reverse Engineering is the pro-
cess of constructing high level representations from lower level instantiations of an
existing system. One method for introducing formal methods, and therefore taking
advantage of the benefits of formal methods, is through the reverse engineering of
existing program code into formal specifications [10, 16, 19].

This paper describes an approach to reverse engineering based on the formal
semantics of the strongest postcondition predicate transformer sp [7], and the par-
tial correctness model of program semantics introduced by Hoare [13]. Previously,
we investigated the use of the weakest precondition predicate transformer wp as
the underlying formal model for constructing formal specifications from program
code [4, 10]. The difference between the two approaches is in the ability to di-
rectly apply a predicate transformer to a program (i.e., sp) versus using a predicate
transformer as a guideline for constructing formal specifications (i.e., wp).

The remainder of this paper is organized as follows. Section 2 provides background
material for software maintenance and formal methods. The formal approach to
reverse engineering based on sp is described in Sections 3 and 4, where Section 3
discusses the sp semantics for assignment, alternation, and sequence, and Section 4
gives the sp semantics for iterative and procedural constructs. An example applying
the reverse engineering technique is given in Section 5. Related work is discussed in
Section 6. Finally, Section 7 draws conclusions, and suggest futures investigations.

2. Background

This section provides background information for software maintenance and formal
methods for software development. Included in this discussion 1s the formal model
of program semantics used throughout the paper.

2.1. Software Maintenance

One of the most difficult aspects of re-engineering is the recognition of the func-
tionality of existing programs. This step in re-engineering is known as reverse
engineering. Identifying design decisions, intended use, and domain specific details
are often significant obstacles to successfully re-engineering a system.

Several terms are frequently used in the discussion of re-engineering [5]. Forward
Engineering is the process of developing a system by moving from high level ab-
stract specifications to detailed, implementation-specific manifestations [5]. The
explicit use of the word “forward” is used to contrast the process with Reverse
Engineering, the process of analyzing a system in order to identify system com-
ponents, component relationships, and intended behavior [5]. Restructuring is the
process of creating a logically equivalent system at the same level of abstraction [5].
This process does not require semantic understanding of the system and is best
characterized by the task of transforming unstructured code into structured code.
Re-Engineering is the examination and alteration of a system to reconstitute it in



a new form, which potentially involves changes at the requirements, design, and
implementation levels [5].

Byrne described the re-engineering process using a graphical model similar to
the one shown in Figure 1 [1, 2]. The process model appears in the form of two
sectioned triangles, where each section in the triangles represents a different level
of abstraction. The higher levels in the model are concepts and requirements. The
lower levels include designs and implementations. The relative size of each of the
sections is intended to represent the amount of information known about a system at
a given level of abstraction. Entry into this re-engineering process model begins with
system A, where Abstraction (or reverse engineering) is performed to an appropriate
level of detail. The next step is Alteration, where the system is constituted into a
new form at a different level of abstraction. Finally, Refinement of the new form
into an implementation can be performed to create system B.

Alteration
—_—

‘‘Forward Engineering’’

**Reverse Engineering’’ Concept

Requirements \

Design

Abstraction Refinement

Implementation

Figure 1. Reverse Engineering Process Model

This paper describes an approach to reverse engineering that is applicable to
the implementation and design levels. In Figure 1, the context for this paper is
represented by the dashed arrow. That is, we address the construction of formal
low-level or “as-built” design specifications. The motivation for operating in such
an implementation-bound level of abstraction is that it provides a means of trace-
ability between the program source code and the formal specifications constructed
using the techniques described in this paper. This traceability is necessary in order
to facilitate technology transfer of formal methods. That 1s, currently existing de-
velopment teams must be able to understand the relationship between the source
code and the specifications.



2.2. Formal Methods

Although the waterfall development life-cycle provides a structured process for de-
veloping software, the design methodologies that support the life-cycle (i.e., Struc-
tured Analysis and Design [21]) make use of informal techniques, thus increasing the
potential for introducing ambiguity, inconsistency, and incompleteness in designs
and implementations. In contrast, formal methods used in software development
are rigorous techniques for specifying, developing, and verifying computer soft-
ware [20]. A formal method consists of a well-defined specification language with
a set of well-defined inference rules that can be used to reason about a specifica-
tion [20]. A benefit of formal methods is that their notations are well-defined and
thus, are amenable to automated processing [3].

2.2.1.  Program Semantics

The notation @ { S } R [13] is used to represent a partial correctness model of
execution, where, given that a logical condition @ holds, if the execution of program
S terminates, then logical condition R will hold. A rearrangement of the braces to
produce { @} S{ R}, in contrast, represents a total correctness model of execution.
That is, if condition @ holds, then S is guaranteed to terminate with condition R
true.

A precondition describes the initial state of a program, and a postcondition de-
scribes the final state. Given a statement S and a postcondition R, the weakest
precondition wp(S, R) describes the set of all states in which the statement S can
begin execution and terminate with postcondition R true, and the weakest liberal
precondition wlp(S, R) is the set of all states in which the statement S can begin
execution and establish R as true if S terminates. In this respect, wp(S, R) estab-
lishes the total correctness of S, and wip(S, R) establishes the partial correctness
of 5. The wp and wlp are called predicate transformers because they take predicate
R and, using the properties listed in Table 1, produce a new predicate.

Table 1. Propertiesof the wp and wip predicate

transformers

wp(S, A) = wp(S,true) Awlp(S, A)
wp(S, A) = —wip(S,—A4)

wp(S, false) = false

wp(S, A A B) = wp(S, A) Awp(S, B)
wp(S, AV B) =  wp(S,A) vwp(S,B)
wp(S,A—= B) = wp(S,A) = wp(S,B)

The context for our investigations is that we are reverse engineering systems that
have desirable properties or functionality that should be preserved or extended.
Therefore, the partial correctness model 1s sufficient for these purposes.



2.2.2.  Strongest Postcondition

Consider the predicate —wip(S, ~R), which is the set of all states in which there
exists an execution of S that terminates with R true. That is; we wish to describe
the set of states in which satisfaction of R is possible [7]. The predicate —wip(S, —~R)
is contrasted to wip(S, R) which, is the set of states in which the computation of S
either fails to terminate, or terminates with R true.

An analogous characterization can be made in terms of the computation state
space that describes initial conditions using the strongest postcondition sp(S, Q)
predicate transformer [7], which is the set of all states in which there exists a com-
putation of S that begins with @ true. That is, given that @ holds, execution of
S results in sp(S, Q) true, if S terminates. As such, sp(S, Q) assumes partial cor-
rectness. Finally, we make the following observation about sp(S, @) and wip(S, R)
and the relationship between the two predicate transformers, given the Hoare triple

Q{S}RIT:

Q = wip(S,R)
sp(S,Q) = R

The importance of this relationship is two-fold. First, it provides a formal basis
for translating programming statements into formal specifications. Second, the
symmetry of sp and wlp provides a method for verifying the correctness of a reverse
engineering process that utilizes the properties of wip and sp in tandem.

2.2.3. spuvs. wp

Given a Hoare triple @ { S } R, we note that wp is a backward rule, in that a
derivation of a specification begins with R, and produces a predicate wp(S, R).
The predicate transformer wp assumes a total correctness model of computation,
meaning that given S and R, if the computation of S begins in state wp(S, R), the
program S well halt with condition R true.

We contrast this model with the sp model, a forward derivation rule. That is,
given a precondition @ and a program S, sp derives a predicate sp(S, Q). The pred-
icate transformer sp assumes a partial correctness model of computation meaning
that if a program starts in state ), then the execution of S will place the program in
state sp(S, @) if S terminates. Figure 2 gives a pictoral depiction of the differences
between sp and wp, where the input to the predicate transformer produces the cor-
responding predicate. Figure 2(a) gives the case where the input to the predicate
transformer is “S” and “R”, and the output to the predicate transformer (given by
the box and appropriately named “wp”) is “wp(S,R)”. The sp case (Figure 2(b))
is similar, where the input to the predicate transformer is “S” and “Q”, and the
output to the transformer is “sp(S,Q)”.

The use of these predicate transformers for reverse engineering have different
implications. Using wp implies that a postcondition R is known. However, with
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Figure 2. Black box representation and differences between wp and sp: (a) wp (b) sp

respect to reverse engineering, determining R is the objective, therefore wp can only
be used as a guideline for performing reverse engineering. The use of sp assumes
that a precondition @ is known and that a postcondition will be derived through
the direct application of sp. As such, sp is more applicable to reverse engineering.

3. Primitive Constructs

This section describes the derivation of formal specifications from the primitive
programming constructs of assignment, alternation, and sequences. The Dijkstra
guarded command language [6] is used to represent each primitive construct but
the techniques are applicable to the general class of imperative languages. For
each primitive, we first describe the semantics of the predicate transformers wip
and sp as they apply to each primitive and then, for reverse engineering purposes,
describe specification derivation in terms of Hoare triples. Notationally, throughout
the remainder of this paper, the notation { @ } S { R } will be used to indicate a
partial correctness interpretation.

3.1. Assignment

An assignment statement has the form x:= e; where x is a variable, and e is an
expression. The wlp of an assignment statement is expressed as wip(x:=e, R) = RZ,
which represents the postcondition R with every free occurrence of z replaced by
the expression e. This type of replacement 1s termed a textual substitution of z by
e in expression R. If x corresponds to a vector j of variables and e represents a
vector I/ of expressions, then the wlp of the assignment is of the form R, where
each y; is replaced by FEj;, respectively, in expression K. The sp of an assignment
statement is expressed as follows [7]

sp(x:=e, @) = (Fv = Q) ANx =€), (1)



where () is the precondition, v 1s the quantified variable, and ‘::” indicates that the
range of the quantified variable v is not relevant in the current context.

We conjecture that the removal of the quantification for the initial values of a
variable 1s valid if the precondition @ has a conjunct that specifies the textual
substitution. That is, performing the textual substitution Q7 in Expression (1) is
a redundant operation if, initially, @) has a conjunct of the form z = v. Refer to
Appendix A where this case is described in more depth. Given the imposition of
initial (or previous) values on variables, the Hoare triple formulation for assignment
statements is as follows:

{Q} /* precondition */
x = e;
{(zj41 =€7,) ANQ} /* postcondition */

where z; represents the initial value of the variable z, z;4, is the subsequent value
of &, ) is the precondition. Subscripts are added to variables to convey historical
information for a given variable.

Consider a program that consists of a series of assignments to a variable z,

“x 1= a; x:= b; x:= ¢c; x:=4d; x:= e; x:= £; x:= g; x:= h;” Despite its sim-
{e=X) (20=X} {wo=X}
X := a; X := a; X := a;
{z=aAnX =X} {z1=0a} {z1=arhz=X}
x := b; x := b; x := b;
{z=bAra=a} {za=0b} {zme=bAzi=aAn...}
X = c; X = c; X = c;
{z=cAb=0b} {z3=c} {@Zs=cAzx=bA...}
x :=d; x :=d; x :=d;
{z=dArc=c} {zg=4d} {wza=dAzs=cA...}
X = e; X = e; X = e;
{z=eAnd=d} {zs =€} {wzs=eAzg=dA...}
x = 1; x = 1; x := 1,
{z=fne=¢} {ze =171} {zg=fAms=ecn...}
x = g; x = g; X = g;
{z=gnf=7F} {zr=9g} {ozr=gAhzs=fN...}
x := h; x := h; x := h;
{z=hAg=g} {zg=h} {zg=hAzr=gAN...}
(a) Code with strict  (b) Code (c) Code with historical
sp application with subscripts and
historical propagation
subscripts

Figure 3. Different approaches to specifying the history of a variable

plicity, the example is useful in illustrating the different ways that the effects of



an assignment statement on a variable can be specified. For instance, Figure 3(a)
depicts the specification of the program by strict application of the strongest post-
condition.

Another possible way to specify the program is through the use of historical sub-
scripts for a variable. A historical subscript is an integer number used to denote the
ith textual assignment to a variable, where a textual assignment 1s an occurrence
of an assignment statement in the program source (versus the number of times the
statement is executed). An example of the use of historical subscripts is given in
Figure 3(b). However, when using historical subscripts, special care must be taken
to maintain the consistency of the specification with respect to the semantics of
other programming constructs. That is, using the technique shown in Figure 3(b)
is not sufficient. The precondition of a given statement must be propagated to the
postcondition, as shown in Figure 3(c). The main motivation for using histories is
to remove the need to apply textual substitution to a complex precondition and to
provide historical context to complex disjunctive and conjunctive expressions. The
disadvantage to using such a technique is that the propagation of the precondition
can potentially be complex visually. Note that we have not changed the semantics
of the strongest postcondition, but, rather, in the application of strongest post-
condition, extra information is appended that provides a historical context to all
variables of a program during some “snapshot” or state of a program.

3.2. Alternation

An alternation statement using the Dijkstra guarded command language [6] is ex-
pressed as

if
B — Sl,'

[| B — Sn;
£i;
where B; — S; is a guarded command such that S; is only executed if logical
expression (guard) B; is true. The wlp for alternation statements is given by [7]:

wlp(IF, R) = (Vi : B; : wip(Si, R)),

where IF represents the alternation statement. The equation states that the nec-
essary condition to satisfy R, if the alternation statement terminates; is that given
B; is true, the wip for each guarded statement 5; with respect to R holds. The sp
for alternation has the form [7]

sp(IF, Q) = (3i 5 5p(Si,Bi A Q). (2)

The existential expression can be expanded into the following form



sp(IF, Q) = (sp(S1,B1 AQ) V...V sp(Sn, Bn A Q)). (3)

Expression (3) illustrates the disjunctive nature of alternation statements where
each disjunct describes the postcondition in terms of both the precondition @ and
the guard and guarded command pairs, given by B; and S;, respectively. This
characterization follows the intuition that a statement S; is only executed if B; is
true. The translation of alternation statements to specifications 1s based on the
similarity of the semantics of Expression (3) and the execution behaviour for alter-
nation statements. Using the Hoare triple notation, a specification is constructed

as follows
1@}
if
B — Sl,'
[| B — Sn;
£i;

{sp(S1,B1 AQ)V ... Vsp(Sn, Bp AQ) }

3.3. Sequence

For a given sequence of statements S;;...;S,, it follows that the postcondition for
some statement S; is the precondition for some subsequent statement S;;q1. The
wlp and sp for sequences follow accordingly. The wip for sequences is defined as

follows [7]:
wlp(81; 82, R) = wlp(S1, wlp(Sa, R)).

Likewise, the sp [7] is

sp(S1;82, Q) = sp(S2, sp(S1,Q)). (4)

In the case of wlp, the set of states for which the sequence S; ;S5 can execute with
R true (if the sequence terminates) is equivalent to the wlp of S; with respect to
the set of states defined by wip(S2, R). For sp, the derived postcondition for the
sequence Si;S, with respect to the precondition @ is equivalent to the derived
postcondition for S with respect to a precondition given by sp(S1, Q). The Hoare
triple formulation and construction process is as follows:

{Q}

S1;

{ sp(S1,Q)}

Sa2;
{ sp(S2,5p(51,Q)) }-
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4. TIterative and Procedural Constructs

The programming constructs of assignment, alternation, and sequence can be com-
bined to produce straight-line programs (programs without iteration or recursion).
The introduction of iteration and recursion into programs enables more compactness
and abstraction in program development. However, constructing formal specifica-
tions of iterative and recursive programs can be problematic, even for the human
specifier. This section discusses the formal specification of iteration and proce-
dural abstractions without recursion. We deviate from our previous convention
of providing the formalisms for wip and sp for each construct and use an opera-
tional definition of how specifications are constructed. This approach is necessary
because the formalisms for the wlp and sp for iteration are defined in terms of
recursive functions [7, 11] that are, in general, difficult to practically apply.

4.1. Iteration

Iteration allows for the repetitive application of a statement. Iteration, using the
Dijkstra language, has the form

do
B1 — Si;

[| B, — Sn;
od;

In more general terms, the iteration statement may contain any number of guarded
commands of the form B; — S;, such that the loop is executed as long as any guard
B; 18 true. A simplified form of repetition 1s given by “do B — S od ”.

In the context of iteration, a bound function determines the upper bound on the
number of iterations still to be performed on the loop. An invariant is a predicate
that is true before and after each iteration of a loop. The problem of constructing
formal specifications of iteration statements is difficult because the bound func-
tions and the invariants must be determined. However, for a partial correctness
model of execution, concerns of boundedness and termination fall outside of the
interpretation, and thus can be relaxed.

Using the abbreviated form of repetition “do B — S od”, the semantics for it-
eration in terms of the weakest liberal precondition predicate transformer wip is
given by the following [7]:

wlp(DO, R) = (Vi : 0 < i : wilp(IF', BV R)), (5)

where the notation “IF?” is used to indicate the execution of “if B — S £i” i times.
Operationally, Expression (5) states that the weakest condition that must hold in
order for the execution of an iteration statement to result with R true, provided
that the iteration statement terminates, is equivalent to a conjunctive expression
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where each conjunct is an expression describing the semantics of executing the loop
¢ times, where ¢ > 0.

The strongest postcondition semantics for repetition has a similar but notably
distinct formulation [7]:

sp(D0, Q) = =B A (Fi: 0 < i:sp(IF,Q)). (6)

Expression (6) states that the strongest condition that holds after executing an
iterative statement, given that condition @ holds, is equivalent to the condition
where the loop guard is false (—B), and a disjunctive expression describing the
effects of iterating the loop i times, where ¢ > 0.

Although the semantics for repetition in terms of strongest postcondition and
weakest liberal precondition are less complex than that of the weakest precondi-
tion [7], the recurrent nature of the closed forms make the application of such
semantics difficult. For instance, consider the counter program “do i < n — i
:= i + 1 od”. The application of the sp semantics for repetition leads to the
following specification:

sp(doi<n —i:=i+10d,Q)=GE>n)A(3j:0<j:sp(IF,Q)).

The closed form for iteration suggests that the loop be unrolled j times. If j is set
to n — start, where start is the initial value of variable ¢, then the unrolled version
of the loop would have the following form:

1. i:= start;

2. if

3. i<n-->i=1i+1;
4. fi

5. if

6. i<n-->i=1i+1;
7. fi

8.

9. if

10. i<n-—->i:=1+1;
11. fi

Application of the rule for alternation (Expression (2)) yields the sequence of
annotated code shown in Figure 4, where the goal is to derive

sp(do i < mn — i := 1+ 1 od,(start < n)A (i = start)).

In the construction of specifications of iteration statements, knowledge must be
introduced by a human specifier. For instance, in line 19 of Figure 4 the inductive
assertion that “i = start + (n — start — 1)” is made. This assertion is based on a
specifier providing the information that (n—start—1) additions have been performed
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1 < n))

1. {(E=1I)A(start <n) }

2. i:= start;

3. { (i = start) A (start <n) }

4. if i<n->i:=1i+1fi

5. {sp(i =1+ 1,(i <n)A (i = start) A (start < n))

6. \Y

7. ((i >= n) A (i = start) A (start < n))

8. =

9. (i = start + 1) A (start < n)) }

10. if i<n->i:=1i+1fi

11. {sp(i:=i+1,(i <n)A (i =start + 1) A (start < n))
12. \

13. ((i >=n) A (i = start + 1) A (start < n))

14. =

15. ((i = start + 2) A (start +1 < n))

16. \

17. ((i >=n) A (i = start + 1) A (start <n)) }

18. ..

19. { (i = start + (n — start — 1)) A (start + (n — start — 1) — 1 < n))
20. \
21. ((i >= n)A(i = start+(n—start—2))A(start+(n—start—2)—
22. =
23. (i=n—1)A(n—2<n)) }
24. if i<n->i:=1i+1fi
25. {spi=i+1,i<n)A(i=n—1)A(n—2<n))
26. \
27. (i>=n)A(i=n—-1)A(n—2<n))
28. =
29. (i=n)}

Figure 4. Annotated Source Code for Unrolled Loop
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if the loop were unrolled at least (n — start — 1) times. As such, by using loop
unrolling and induction, the derived specification for the code sequence is

((n—1<n)A(i=n)).

For this simple example, we find that the solution is non-trivial when applying
the formal definition of sp(DO, @). As such, the specification process must rely on
a user-guided strategy for constructing a specification. A strategy for obtaining a
specification of a repetition statement is given in Figure 5.

4.2. Procedural Abstractions

This section describes the construction of formal specifications from code containing
the use of non-recursive procedural abstractions. A procedure declaration can be
represented using the following notation

proc p ( value 7; value-result 7; result 7z );

{P}( body H{Q}

where T, ¥, and Z represent the value, value-result, and result parameters for the
procedure, respectively. A parameter of type value means that the parameter is
used only for input to the procedure. Likewise, a parameter of type result indicates
that the parameter is used only for output from the procedure. Parameters that
are known as value-result indicate that the parameters can be used for both
input and output to the procedure. The notation { body ) represents one or more
statements making up the “procedure”, while {P} and {@} are the precondition
and postcondition, respectively. The signature of a procedure appears as

proc p: (input_type)” — (output_type)* (7)

where the Kleene star (*) indicates zero or more repetitions of the preceding unit,
input_type denotes the one or more names of input parameters to the procedure p,
and output_type denotes the one or more names of output parameters of procedure
p. A specification of a procedure can be constructed to be of the form

{P: U}

procp: Fog— Ey
(body)

{ Q: sp(body, U) AU }

where Fj is one or more input parameter types with attribute value or value-
result, and F is one or more output parameter types with attribute value-result
or result. The postcondition for the body of the procedure, sp(body,U), is con-
structed using the previously defined guidelines for assignment, alternation, se-
quence, and iteration as applied to the statements of the procedure body.
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1. The following criteria are the main characteristics to be identified during the
specification of the repetition statement:

e dnvariant (P): an expression describing the conditions prior to entry and
upon exit of the iterative structure.

e guards (B): Boolean expressions that restrict the entry into the loop. Exe-
cution of each guarded command, B; — S; terminates with P true, so that
P is an invariant of the loop.

{PAB;}S;{P}, for 1 <i<n

When none of the guards is true and the invariant is true, then the
postcondition of the loop should be satisfied (P A =“BB — R, where
BB = B; V...V B, and R is the postcondition).

2. Begin by introducing the assertion “@Q) A BB” as the precondition to the body
of the loop.

3. Query the user for modifications to the assertion made in step 2. This guided
interaction allows the user to provide generalizations about arbitrary iterations
of the loop. In order to verify that the modifications made by a user are valid,
wlp can be applied to the assertion.

4. Apply the strongest postcondition to the loop body S; using the precondition
given by step 3.

5. Using the specification obtained from step 4 as a guideline, query the user for
a loop invariant. Although this step is non-trivial, techniques exist that aid in
the construction of loop invariants [15, 11].

6. Using the relationship stated above (PA—=BB — R), construct the specification
of the loop by taking the negation of the loop guard, and the loop invariant.

Figure 5. Strategy for constructing a specification for an iteration statement

Gries defines a theorem for specifying the effects of a procedure call [11] using a
total correctness model of execution. Given a procedure declaration of the above
form, the following condition holds [11]

. pTY — — .. OWF b,z =7 =
{PRT: P 2N (Vu,v = Qy3 = Ry3)} p(a,b,e) {R} (8)

@, )
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for a procedure call p(a, b, ), where @, b, and € represent the actual parameters of
type value, value-result, and result, respectively. Local variables of procedure
p used to compute value-result and result parameters are represented using uw
and 7, respectively. Informally, the condition states that PRT must hold before the
execution of procedure p in order to satisfy R. In addition, PRT states that the
precondition for procedure p must hold for the parameters passed to the procedure
and that the postcondition for procedure p implies R for each value-result and
result parameter. The formulation of Equation (8) in terms of a partial correctness
model of execution is identical, assuming that the procedure is straight-line, non-
recursive, and terminates. Using this theorem for the procedure call, an abstraction
of the effects of a procedure call can be derived using a specification of the procedure
declaration. That is, the construction of a formal specification from a procedure call
can be performed by inlining a procedure call and using the strongest postcondition
for assignment. A procedure call p(@, b, ) can be represented by the program block
[11] found in Figure 6, where (body) comprises the statements of the procedure
declaration for p, { PR } is the precondition for the call to procedure p, { P} is
the specification of the program after the formal parameters have been replaced by
actual parameters, { @ } is the specification of the program after the procedure has
been executed, { QR } is the specification of the program after formal parameters
have been assigned with the values of local variables, and { R } is the specification of
the program after the actual parameters to the procedure call have been “returned”.
By representing a procedure call in this manner, parameter binding can be achieved
through multiple assignment statements and a postcondition R can be established
by using the sp for assignment. Removal of a procedural abstraction enables the
extension of the notion of straight-line programs to include non-recursive straight-
line procedures. Making the appropriate sp substitutions, we can annotate the code
sequence from Figure 6 to appear as follows:

{ PR}
Xy :=3,b; L L L
{P:(3@B: PREIAE =32 T Ay=b27) )
(body) 7 ’ ’
{@}
Y’Z = ﬁ’v;
- JEZ._ JEZ,. .JZ
é_QR (_El;y,C QV,E Ay = o ANZ = V?E) 1
T = ¥E
7 — bc,- -bc,- _bc
{R: (39,9 QRE /\b_yﬁﬁ/\c_zﬁﬁ) }

where @, 3, 7, {, ¥, and % are the initial values of X, § (before execution of the
procedure body), § (after execution of the procedure body), z, b, and ¢, respectively.
Recall that in Section 3.1, we described how the existential operators and the
textual substitution could be removed from the calculation of the sp. Applying that
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begin
{ PR}
p(a@,b,?)
tR}

end

begin

S
L~
I
=

o~
= .
S

=l

= oo N
.o :U..
<~ gl

NI

i = e I e e e
— |

end

Figure 6. Removal of procedure call p(z, D, ¢) abstraction

technique to assignments and recognizing that formal and actual result parameters
have no initial values, and that local variables are used to compute the values of the
value-result parameters, the above sequence can be simplified using the semantics
of sp for assignments to obtain the following annotated code sequence:

{ PR}

an :=€’B’
{P:PRAX=aATJ=b}
(body)

1Q}

¥z 1=V, _ B
iQR:Q/\?:E%/\Z:V%}
b’E :=Y’Z’
{R:QRAD=FAT=Z }

where @ is derived using sp({body), P).
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5. Example

The following example demonstrates the use of four major programming constructs
described in this paper (assignment, alternation, sequence, and procedure call)
along with the application of the translation rules for abstracting formal specifica-
tions from code. The program, shown in Figure 7, has four procedures, including
three different implementations of “swap”. AUTOSPEC [4, 9, 10] is a tool that we
have developed to support the derivational approach to the reverse engineering of
formal specifications from program code.

Figures 8, 9, and 10 depict the output of AUTOSPEC when applied to the program
code given in Figure 7 where the notation id{scope}instance is used to indicate
a variable id with scope defined by the referencing environment for scope. The
instance identifier is used to provide an ordering of the assignments to a variable.
The scope identifier has two purposes. When scope is an integer, it indicates
the level of nesting within the current program or procedure. When scope is an
identifier, it provides information about variables specified in a different context.
For instance, if a call to some arbitrary procedure called foo is invoked, then
specifications for variables local to foo are labeled with an integer scope. Upon
return, the specification of the calling procedure will have references to variables
local to foo. Although the variables being referenced are outside the scope of the
calling procedure, a specification of the input and output parameters for foo can
provide valuable information, such as the logic used to obtain the specification for
the output variables to foo. As such, in the specification for the variables local
to foo but outside the scope of the calling procedure, we use the scope label So.
Therefore, if we have a variable q local to foo, it might appear in a specification
outside its local context as q{foo}4, where “4” indicates the fourth instance of
variable q in the context of foo.

In addition to the notations for variables, we use the notation ‘|’ to denote a
logical-or, ‘&’ to denote a logical-and, and the symbols ‘(* *)’ to delimit comments
(i.e., specifications).

In Figure 8, the code for the procedure FindMaxMin contains an alternation state-
ment, where lines I, J, K, and L specify the guarded commands of the alternation
statement (I and J), the effect of the alternation statement (X), and the effect of
the entire procedure (L), respectively.

Of particular interest are the specifications for the swap procedures given in Fig-
ure 9 named swapa and swapb. The variables X and Y are specified using the
notation described above. As such, the first assignment to Y is written using Y{0}1,
where Y is the variable, ‘{0}’ describes the level of nesting (here it is zero), and ‘1’
is the historical subscript, the ‘1’ indicating the first instance of Y after the initial
value. The final comment for swapa (Line M), which gives the specification for the
entire procedure, reads as:

(* (Y{0}2 = X0 & X{0}1 = YO & Y{0}1 = YO + X0) & U *)
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program MaxMin ( input, output );
var a, b, ¢, Largest, Smallest : real;

procedure FindMaxMin(WumOne, NumTwo:real; var Max, Min:real );

begin
if NumOne > NumTwo then
begin
Max NumOne;
Min := NumTwo;
end
else
begin
Max := NumTwo;
Min := NumOne;
end
end;

procedure swapa( var X:integer; var Y:integer );
begin

Y o

X

Y

end;

1+
< Pe e

TR
~ <

procedure swapb( var X:integer; var Y:integer );
var
temp : integer;
begin
temp := X;
X
Y
end;

temp

procedure funnyswap( X:integer; Y:integer );
var
temp : integer;
begin
temp := X;
X :

end;

begin
a :=b5;
b := 10;
swapa(a,b);
swapb(a,b);
funnyswap(a,b);
FindMaxMin(a,b,Largest,Smallest);
¢ := Largest;
end.

Figure 7. Example Pascal program

where Y{0}2 = X0 is the specification of the final value of ¥, and X{0}1 = YO is
the specification of the final value of X. In this case, the intermediate value of Y,
denoted Y{0}1, with value YO + XO is not considered in the final value of Y.
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program MaxMin( input, output

var

a, b, ¢, Largest, Smallest :

procedure FindMaxMin( NumOne,

)

real;

NumTwo:real; var Max,

Min:real );

begin
if (HumOne > HNumTwo) then
begin
Max := NumOne;
(* Max{2}1 = HumOneO & U *)
Min := HNumTwo;
(* Min{2}1 = HumTwoO & U *)
end
I: (* (Max{2}1 = HumOneO & Min{2}1 = NumTwoO) & U *)
else
begin
Max := NumTwo;
(* Max{2}1 = HumTwoO & U *)
Min := HNumOne;
(* Min{2}1 = HumOneO & U *)
end
J: (* (Max{2}1 = HumTwoO & Min{2}1 = NumOneO) & U *)
K: (* (((NumOneO > NumTwoO) &
(Max{0}1 = HumOneO & Min{0}1 = NumTwoO))
(not (HumOneO > NumTwoO) &
(Max{0}1 = HumTwoO & Min{0}1 = NumOne0))) & U *)
end
L: (* (((HumOneO > NumTwoO) &

(Max{0}1 = HumOneO & Min{0}1 =
(not (HumOneO > NumTwoO) &
(Max{0}1 = HumTwoO & Min{0}1 =

HumTwo0))

HumOne0))) & U *)

Figure 8. Output created by applying AUTOSPEC to example

Procedure swapb uses a temporary variable algorithm for swap. Line N is the
specification after the execution of the last line and reads as:

(* (Y{0}1 = X0 & X{0}1 = YO & temp{0}1 = X0) & U *)

where Y{0}1 = X0 is the specification of the final value of Y, and X{0}1
specification of the final value of X.

Although each implementation of the swap operation is different, the code in each
procedure effectively produces the same results, a property appropriately captured
by the respective specifications for swapa and swapb with respect to the final values
of the variables X and Y.

In addition, Figure 10 shows the formal specification of the funnyswap procedure.

YO is the

The semantics for the funnyswap procedure are similar to that of swapb. However,
the parameter passing scheme used in this procedure is pass by value.

The specification of the main begin-end block of the program MaxMin is given
in Figure 10. There are eight lines of interest, labeled I, J, K, L, M, N, 0, and
P, respectively. Lines I and J specify the effects of assignment statements. The
specification at line K demonstrates the use of identifier scope labels, where in this
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procedure swapa( var X:integer; var Y:integer );

begin

Y ;= (Y + X);

(*x (Y{O}1 = (YO + X0)) & U *)

X := (Y - X);

(% (X{0}1 = ((YO + X0) - X0)) & U *)

Y ;= (Y - X);

(x (Y{0}2 = ((YO + XO) - ((YO + XO0) - X0))) & U %)
end

M: (x (Y{0}2 = X0 & X{0}1 = YO & Y{O}1 = YO + X0) & U *)
procedure swapb( var X:integer; var Y:integer );

var
temp : integer;

begin
temp := X;
(* (temp{0}1 = X0) & U *)
X :=Y;
(x (X{0}1 = YO) & U %)
Y := temp;
(* (Y{O}1 = X0) & U *)

end

N: (x (Y{0}1 = X0 & X{0}1 = YO & temp{O}1 = X0) & U *)

procedure funnyswap( X:integer; Y:integer );
var
temp : integer;

begin
temp := X;
(* (temp{0}1 = X0) & U *)
X :=Y;
(* (x{0}1 = YO) & U %)
Y := temp;
(* (Y{O}1 = X0) & U %)

end

0: (x (Y{0}1 = X0 & X{0}1 = YO & temp{O}1 = X0) & U *)

Figure 9. Output created by applying AUTOSPEC to example (cont.)

case, we see the specification of variables X and Y from the context of swapa. Line
L is another example of the same idea, where the specification of variables from the
context of swapb (X and Y), are given. In the main program, no variables local to
the scope of the call to funnyswap are affected by funnyswap due to the pass by
value nature of funnyswap, and thus the specification shows no change in variable
values, which is shown by line ¥ of Figure 10. The effects of the call to procedure
FindMaxMin provides another example of the specification of a procedure call (line
N). Finally, line P is the specification of the entire program, with every precondition
propagated to the final postcondition as described in Section 3.1. Here, of interest
are the final values of the variables that are local to the program MaxMin (i.e., a,
b, and c). Thus, according to the rules for historical subscripts, the a{0}3, b{0}3,
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(# Main Program for MaxMin *)

begin
a :=b5;
I: (+ a{0}1 =5 & U %)
b := 10;
J: (* b{0}1 = 10 & U *)

swapa(a,b)
K: (* (b{0}2 =5 &
(af{0}2 = 10 &
(Y{swapa}2 = 5 &
(X{swapal}1l = 10 & Y{swapal}l = 15)))) & U *)
swapb(a,b)
L: (* (b{0}3 = 10 &
(af{0}3 =5 &
(Y{swapb}1 = 10 &
(X{swapb}1 = 5
funnyswap(a,b)
: (* (Y{funnyswap}l = 5 & X{funnyswap}l = 10 &
temp{funnyswap}1 = 5) & U *)
FindMaxMin(a,b,Largest,Smallest)

& temp{swapb}l = 10)))) & U *)

n: (* (Smallest{0}1 = Min{FindMaxMin}1 &
Largest{0}1 = Max{FindMaxMin}1 &
(((5 > 10) &
(Max{FindMaxMin}1 = 5 &
Min{FindMaxMin}1 = 10)) |
(not(5 > 10) &
(Max{FindMaxMin}1 = 10 &
Min{FindMaxMin}1 = 5)))) & U *)
c := Largest;
0: (* c{0}1 = Max{FindMaxMin}1 & U *)
end
P: (* ((c{0}1 = Max{FindMaxMin}1) &

(Smallest{0}1 = Min{FindMaxMin}1 &
Largest{0}1 = Max{FindMaxMin}1 &

(((5 > 10) &
(Max{FindMaxMin}1 = 5 &
Min{FindMaxMin}1 = 10)) |
(not(5 > 10) &
(Max{FindMaxMin}1 = 10 &
Min{FindMaxMin}1 = 5))))) &

( Y{funnyswap}1 = 5 & X{funnyswap}1l = 10 &
temp{funnyswap}l = 5 ) &
( b{0}3 = 10 &

a{0}3 =5 &
(Y{swapb}1 = 10 & X{swapb}l = 5 &
temp{swapb}1l = 10)) &

(b{o}2 =5 &
a{0}2 = 10 &
(Y{swapa}2 = 5 & X{swapal}l = 10 &
Y{swapa}1l = 15)) &
(b{0}1 = 10 & a{0}1 = 5) & U *)

Figure 10. Output created by applying AUTOSPEC to example (cont.)

and c¢{0}1 are of interest. In addition, by propagating the preconditions for each
statement, the logic that was used to obtain the values for the variables of interest
can be analyzed.
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6. Related Work

Previously, formal approaches to reverse engineering have used the semantics of
the weakest precondition predicate transformer wp as the underlying formalism of
their technique. The Maintainer’s Assistant uses a knowledge-based transforma-
tional approach to construct formal specifications from program code via the use
of a Wide-Spectrum Language (WSL) [19]. A WSL is a language that uses both
specification and imperative language constructs. A knowledge-base manages the
correctness preserving transformations of concrete, implementation constructs in a
WSL to abstract specification constructs in the same WSL.

REDO [16] (Restructuring, Maintenance, Validation and Documentation of Soft-
ware Systems) is an Espirit IT project whose objective is to improve applications by
making them more maintainable through the use of reverse engineering techniques.
The approach used to reverse engineer COBOL involves the development of general
guidelines for the process of deriving objects and specifications from program code
as well as providing a framework for formally reasoning about objects [12].

In each of these approaches, the applied formalisms are based on the semantics of
the weakest precondition predicate transformer wp. Some differences in applying wp
and sp are that wp 1s a backward rule for program semantics and assumes a total
correctness model of execution. However, the total correctness interpretation has
no forward rule (i.e. no strongest total postcondition stp [7]). By using a partial cor-
rectness model of execution, both a forward rule (sp) and backward rule (wlp) can
be used to verify and refine formal specifications generated by program understand-
ing and reverse engineering tasks. The main difference between the two approaches
is the ability to directly apply the strongest postcondition predicate transformer
to code to construct formal specifications versus using the weakest precondition
predicate transformer as a guideline for constructing formal specifications.

7. Conclusions and Future Investigations

Formal methods provide many benefits in the development of software. Automating
the process of abstracting formal specifications from program code is sought but,
unfortunately, not completely realizable as of yet. However, by providing the tools
that support the reverse engineering of software, much can be learned about the
functionality of a system.

The level of abstraction of specifications constructed using the techniques de-
scribed in this paper are at the “as-built” level, that is, the specifications contain
implementation-specific information. For straight-line programs (programs without
iteration or recursion) the techniques described herein can be applied in order to
obtain a formal specification from program code. As such, automated techniques
for verifying the correctness of straight-line programs can be facilitated.

Since our technique to reverse engineering is based on the use of strongest post-
condition for deriving formal specifications from program code, the application of
the technique to other programming languages can be achieved by defining the for-
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mal semantics of a programming language using strongest postcondition, and then
applying those semantics to the programming constructs of a program. Our current
investigations into the use of strongest postcondition for reverse engineering focus
on three areas. First, we are extending our method to encompasses all major facets
of imperative programming constructs, including iteration and recursion. To this
end, we are in the process of defining the formal semantics of the ANSI C program-
ming language using strongest postcondition and are applying our techniques to a
NASA mission control application for unmanned spacecraft. Second, methods for
constructing higher level abstractions from lower level abstractions are being in-
vestigated. Finally, a rigorous technique for re-engineering specifications from the
imperative programming paradigm to the object-oriented programming paradigm
is being developed [9]. Directly related to this work is the potential for applying
the results to facilitate software reuse, where automated reasoning is applied to the
specifications of existing components to determine reusability [14].
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Appendix A

Motivations for Notation and Removal of Quantification

Section 3.1 states a conjecture that the removal of the quantification for the initial
values of a variable is valid if the precondition @ has a conjunct that specifies the
textual substitution. This Appendix discusses this conjecture. Recall that

sp(xi= e,Q) = (Fv Q) A =e]). (A.1)

There are two goals that must be satisfied in order to use the definition of strongest
postcondition for assignment. They are:

1. Elimination of the existential quantifier
2. Development and use of a traceable notation.

Eliminating the Quantifier. First, we address the elimination of the existential
quantifier. Consider the RHS of definition A.1. Let y be a variable such that

(Qy ANz =rcy) = (FvuQyAz=cep). (A.2)
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Define sp,(x:= e,Q) (pronounced “s-p-rho”) as the strongest postcondition for
assignment with the quantifier removed. That is,

spp(x:= e,Q) = (Qy Az =¢y) for some y. (A.3)
Given the definition of sp,, it follows that

spp(x:= 6,Q) = sp(x:= e,0Q). (A4)

As such, the specification of the assignment statement can be made more simple
if y from equation (A.3) can either be identified explicitly or named implicitly.
The choice of y must be made carefully. For instance, consider the following. Let
@ := P A(xz = z) such that P contains no free occurrences of x. Choosing an
arbitrary o for y in (A.3) leads to the following derivation:

py(xi= Q)= QE A (¢ =€)
= {(Q:=PA(z=2)
(P A= )5 A (& =€)
(textual substitution)
(PE A (2 = 25 A (2 = )
(P has no free occurrences of x, Textual substitution)
PA(a=2z)A(x=¢€%)
(=2
PA(a=2z)A(z=¢eL2)
= (textual substitution)
PA(a=2z)A(x=¢€7).

At first glance, this choice of y would seem to satisfy the first goal, namely removal
of the quantification. However, this is not the case. Suppose P were replaced with
P’ A (a # 2z). The derivation would lead to

spp(xi= e, Q) =P Ala#2)A(a=2)A(z=¢€).

This is unacceptable because it leads to a contradiction, meaning that the specifi-
cation of a program describes impossible behaviour. Ideally, 1t 1s desired that the
specification of the assignment statement satisfy two requirements. It must:

1. Describe the behaviour of the assignment of the variable z, and

2. Adjust the precondition @ so that the free occurrences of x are replaced with
the value of x before the assignment is encountered.

It can be proven that through successive assignments to a variable z that the
specification sp, will have only one conjunct of the form (¢ = ), where 8 is an
expression. Informally, we note that each successive application of sp, uses a textual
substitution that eliminates free references to x in the precondition and introduces
a conjunct of the form (z = 3).
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The convention used by the approach described in this paper is to choose for y
the expression 5. If no § can be identified, use a place holder v such that the
precondition @ has no occurrence of v. As an example, let ¥ in equation (A.3) be
z,and @ := P A (2 = z). Then

spp(x:= 6,Q)=PA(z=2)A(z=¢l).

xr

Notice that the last conjunct in each of the derivations is (z = e?

P contains no free occurrences of #, P is an invariant.
Notation. Define sp,, (pronounced “s-p-rho-iota”) as the strongest postcondition
for assignment with the quantifier removed and indices. Formally, sp,, has the form

) and that since

sppu(x:= €,Q) = (Q, Nx = e,) for some y. (A.5)

Again, an appropriate y must be chosen. Let @ := P A (2; = y), where P has no
occurrence of & other than ¢ subscripted ’s of form (x; = e;),0 < j < 4. Based on
the previous discussion, choose y to be the RHS of the relation (z; = y). As such,
the definition of sp,, can be modified to appear as

sppu(x:= €,Q) = (P A (x; = y))y Nziy1 =e,) for some y. (A.6)

Consider the following example where subscripts are used to show the effects of
two consecutive assignments to the variable x. Let @ := P A (#; = «), and let the
assignment statement be x:= e. Application of sp,, yields

Pouxi= 0,@) = (P A (55 = )5 A (i1 =€)
= (textual substitution)

P A (2 = a)g A (wig1 =€)y,
= (textual substitution)

PA(z; =a) A (w41 = €%)

A subsequent application of sp,, on the statement x:= f subject to Q' = Q A
(z;41 = €%) has the following derivation:

Poui= £,Q) = (P A (£ = 0) A 241 = )y Ay =[5
(textual substitution)
P A (i = O‘)gg A(wipr = 62)% NEiys = fix
= (P has no free x, textual substitution)
PA(z;=a) A (g1 = €5) A&ijpa = f(fg
(definition of Q)
QN (Tiy1 = €eg) ANzigo = [l
= (definition of Q")
Q' Nrigs = f

Therefore, it is observed that by using historical subscripts, the construction of the
specification of the assignment statements involves the propagation of the precon-
dition ) as an invariant conjuncted with the specification of the effects of setting
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a variable to a dependent value. This convention makes the evaluation of a specifi-
cation annotation traceable by avoiding the elimination of descriptions of variables
and their values at certain steps in the program. This is especially helpful in the
case where choice statements (alternation and iteration) create alternative values
for specific variable instances.
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