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Abstract. A setF of Boolean functions is called a pseudorandom function generator
(PRFG) if communicating with a randomly chosen secret function from F cannot
be efficiently distinguished from communicating with a truly random function. We
ask for the minimal hardware complexity of a PRFG. This question is motivated by
design aspects of secure secret key cryptosystems. Such cryptosystems should be
efficient in hardware, but often are required to behave like PRFGs. By constructing
efficient distinguishing schemes we show for a wide range of basic nonuniform
complexity classes, induced by depth restricted branchingprograms and several types
of constant depth circuits (includingTC02 ), that they do not contain PRFGs. On the
other hand we show that the PRFG proposed by Naor and Reingoldin [24] consists
of TC04 -functions. The question ifTC03 -functions can form PRFGs remains as an
interesting open problem. We further discuss relations of our results to previous work
on cryptographic limitations of learning (see, e.g., [13])and Natural Proofs [27].
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1 Basic Definitions

Function Generators

A function generatorF is an efficient (i.e., polynomial time) algorithm which for specific
values of plaintext block lengthn computes for each plaintext blockx 2 f0; 1gn and each
key s from a predefined key setSFn � f0; 1gk(n) a corresponding ciphertext output blocky = Fn(x; s) 2 f0; 1gl(n). k(n) andl(n) are called key length and output length ofF . The
efficiency ofF implies thatk(n) andl(n) are polynomially bounded inn. Observe that the
encryption mechanism of a secret key block cipher can be thought of as a function generator
in a straightforward way. Clearly, cryptographic algorithms occuring in practice are usually
designed for one specific input lengthn. However, in many cases the definition can be
generalized to infinitely many values of admissible input lengthn in a more or less natural
way. Correspondingly, we consider function generators to be sequencesF = (Fn)n2IN of
sets of Boolean functionsFn = nfn;s : f0; 1gn �! f0; 1gl(n); s 2 SFn o ;
where, ifn is admissible, we definefn;s(x) = Fn(x; s).

A function generatorF is pseudorandomif it is infeasible to distinguish between a
(pseudorandom) function, which is randomly chosen fromFn, n admissable, and a truly
random functionf 2 Bl(n)n . (For l; n 2 IN let Bln denote the set of all22ln functionsf :f0; 1gn �! f0; 1gl.) In the sequel, we concentrate on functionsf : f0; 1gn �! f0; 1g1? Supported by DFG grant Kr 1521/3-1.



and defineBn = B1n. Note that a truly random function inBln(n) is just a tuple ofl(n)
independent random functions inBn.

For giving the formal definition of pseudorandomness we introduce the notion of anH-oracle, whereH � Bn. An H-oracle chooses randomly, via the uniform distribution
onH , a secret functionh 2 H and answers membership queries for inputsx 2 f0; 1gn
immediately withh(x). A distinguishing algorithm for a function generatorF = Fn
is a randomized oracle Turing machineD which knows the definition ofF , which gets an
admissible input parametern and which communicates via membership queries with anH-
oracle, where eitherH = Bl(n)n (the truly random source) orH = Fn (the pseudorandom
source). The aim ofD is to find out whetherH = Bn (in this case,D outputs 0) orH = Fn
(in this case,D outputs 1). Let us denote byPrD(f) the probability thatD accepts if the
unknown oracle function isf .

The relevant cost parameters of a distinguishing algorithms D are theworst case
running time tD = tD(n) and theadvantage"D = "D(n), which is defined as"D(n) = ��Pr[D outputs 1jH = Fn℄� Pr[D outputs 1jH = Bn℄��= ���Ef2FnPrD(f)�Ef2Bl(n)n PrD(f)��� :
The ratio rD = rD(n) of a distinguishing algorithmD is defined to berD(n) =tD(n) � "�1D (n).

Observe further that for any function generatorF , there are two trivial strategies to
distinguish it from a truly random source, which achieve ratio O(jFnj log(jFnj)), the
trivial upper bound. In both cases the distinguisher fixes a set X of inputs, wherejX j
is the minimal number satisfying2jXj � 2jFnj. The first strategy is to fix a functionf 2 Fn and to accept if the oracle coincides withf on X . This gives running timeO(jX j) = O(log jFnj) and advantage12 jFnj�1. The second strategy is to check via
exhaustive search whether there is somef 2 Fn which coincides with the oracle function
onX . This implies advantage at least12 but running timeO(jFnj log(jFnj)).

We will call F to be apseudorandom function generator(for short:PRFG) if for all
distinguishing algorithmsD for F it holds thatrD 2 2n
(1)

. Observe that this definition is
similar to that in [7]. The difference is that in [7] only superpolynomiality is required.

Given a complexity measureM we denote byP (M) the complexity class containing all
sequences of (multi-output) Boolean functions which have polynomial size representations
with respect toM . We say that a function generatorF hasM -complexity bounded by a
function
 : IN �! IN if for all n and all keyss 2 SFn it holds thatM(fn;s) � 
(n), and
thatF belongs toP (M) if the M -complexity ofF is bounded by some
(n) 2 nO(1).
We will call a complexity classcryptographically strong if it contains a PRFG, and
cryptographically weak otherwise.

It is widely believed that there exist PRFGs (we will presenta candidate in section 4),
i.e., P/poly is supposed to be cryptographically strong. Pseudorandom function generators
are of great interest in cryptography, e.g. as building blocks for block ciphers [20, 21], for
remotely keyed encryption schemes [22, 3], for message authentication [2], and others. As
the existence of PRFGs obviously impliesP 6= NP , recent pseudorandomness proofs
refer to unproven cryptographic hardness assumptions. In the following we will detect
cryptographical strength – or weakness – for most of the basic nonuniform complexity
classes.

A distinguishing algorithmD = D(n;m), depending on the two input parametersn (input length) andm (complexity parameter), is called apolynomial distinguishing
schemewith respect toM (resp. P(M)) if there are functionst(n;m); "�1(n;m) 2(n + m)O(1) such that for all polynomial boundsm = m(n) 2 nO(1) and all (single
output) functionsg 2 Bn with M(g) � m(n) it holds thatD(n;m) runs in timet(n;m)
and PrD(g)�Ef2BnPrD(f) � "(n;m):
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The definition of aquasipolynomial distinguishing schemewith respect toM can be
obtained by replacingt(n;m); "�1(n;m) 2 (n + m)O(1) by t(n;m); "�1(n;m) 2(n+m)logO(1)(n+m). We call a distinguishing schemeefficient if it is quasipolynomial or
polynomial.

If there is an efficient distinguishing schemeD w.r.t. such a complexity measureM
then, obviously, P(M) is cryptographically weak as each output bit of a function generator in
P(M) can be efficiently distinguished viaD. Consequently, as theefficiency of key length
is a central design criterion for modern secret key encryption algorithms, these algorithms
should have nearly maximal complexity w.r.t. to such complexity measuresM . As
cryptographers are searching for encryption mechanisms having hardware implementations
which are very efficient with respect to time and energy consumption, there is alow
complexity dangerto get into the sphere of influence of one of the distinguishing schemes
presented in this paper.

We consider several types of constant depth circuits over unbounded fan-in MODm,
AND-, OR-, as well as bounded and unbounded weight thresholdgates. The gate function
MODm is defined by MODm(x1; : : : ; xn)=1 if and only if x1 + : : : + xn 6� 0 mod m.
Unweighted treshold gatesTn�r, resp.Tn�r, are defined by the relationsTn�r(x1; : : : ; xn) = 1 () x1 + : : :+ xn � r
andTn�r(x1; : : : ; xn) = 1 () x1 + : : :+ xn � r. A weighted treshold gateT!a�r, where!a2 ZZn, is defined by the relationT!a�r(x1; : : : ; xn) = 1 () a1x1 + : : :+ anxn � r:
The inputs for the circuits are the constants 0 and 1 and literals from the setfx1; : : : ; xn; �x1; : : : ; �xng. The definition of the mode of computation as well as the
definition of AND- and OR-gates should be known. As usual, byAC0k , AC0k [m℄, TC0k
we denote the complexity classes consisting of all problemshaving polynomial size depthk circuits over AND-,OR-, resp. AND-, OR-, MODm-, resp. unweighted threshold gates.

We further consider branching programs, alternatively called binary decision diagrams
(BDDs). A branching program for a Boolean functionf 2 Bn is a directed acyclic graphG = (V;E) with l sources. Each sink is labeled by a Boolean constant and each inner
node by a Boolean variable. Inner nodes have two outgoing edges, one labeled by 0 and the
other by 1. Given an inputa, the outputf(a)j is equal to the label of the sink reached by
the unique path consistent witha and starting at sourcej; 1 � j � l. Relevant restricted
types of branching programs are

– Ordered binary decision diagrams (OBDDs), where each computational path has to
respect the same variable ordering. An OBDD which respects afixed variable ordering� is called a�-OBDD.

– Read-k-BDDs, for which on each path each variable is forbidden to occur more thank
times.

2 Related Work, Our Results

Cryptographic Weakness

In section 3 we present efficient distinguishing schemes forthe following complexity
measures,

– a quasipolynomial scheme for the size of read-k BDDs (Theorem 3),
– a quasipolynomial scheme for the size of weighted Threshold-MOD2 circuits, i.e.

depth 2 circuits with a layer of MOD2-gates connected with one output layer consisting
of weighted threshold gates (Theorem 1),
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– a quasipolynomial scheme for the size of constant depth circuits consisting of AND-,
OR-, and MODp-gates,p prime (Theorem 2),

– a polynomial scheme for the size of unweighted threshold circuits of depth 2 (Theorem
4)

– a quasipolynomial scheme for the size of constant depth circuits having a constant
number of layers of AND-, OR-gates connected with one outputlayer of weighted
threshold gates (Theorem 5).

Observe that the function generatorf!a (x1; : : : ; xn) = Pni=1 aixi, where
!a2ZZn; (x1; : : : ; xn) 2 f0; 1gn, corresponding to the NP-hardSubset Sum Problem,

belongs toTC02 [28], which emphasizes the cryptographic weakness of this operation.
The complexity measuresM handled in Theorems 3,1,2,4,5 represent a ”frontline” in

the sense that they correspond to the most powerful models for which we know effective
lower bound arguments, i.e., methods to show� 62 P (M) for some explicitely defined
problem� . Indeed, all our distinguishing schemes are inspired by theknown lower bound
arguments for the corresponding models and can be seen as some ”algorithmic version”
of these arguments. It seems that searching for effective lower bound arguments for a
complexity measureM is the same problem as searching for methods to distinguish
unknownP (M)-functions from truly random functions. Note that a similarobservation,
but with respect to another mode of distinguishing, was madealready byRazborovand
Rudichin [27]. For illustrating the difference of their approach with our paper let us review
the results in [27] in some more detail and start with the following definition.

Distinguishing Schemes versus Natural Proofs

Let � � P=poly denote a complexity class andT = (Tn) 2 � be a sequence of Boolean
functions for which the input length ofTn is N=2n. T is called an efficient� -test against a
function generatorF = (Fn)n2IN (consisting of single output functions) if for alln��Prf [Tn(f) = 1℄� Prs[Tn(fn;s) = 1℄�� � p�1(N) (1)

for a polynomially (inN ) bounded functionp : IN �! IN. Hereby, functionsf 2 Bn
are considered to be strings of lengthN = 2n. The probability on the left side is taken
w.r.t. the uniform distribution onBn (the truly random case), the probability on the right
side is taken w.r.t. the uniform distribution onFn (the pseudorandom case). The following
observation was made in [27].

(1) It seems that all complexity classes� for which we know a method for proving thatF 62 � for some explicitely defined problemF have a so called� -Natural Proof for
some complexity classes� � P=poly. (the somewhat technical definition of Natural
Proofs is omitted here).

(2) On the other hand (and this is the property of Natural Proofs which is important in our
context), if� has a� -Natural Proof then all function generatorsF = (Fn) belonging
to� have efficient� -tests.

The main implication of [27] is that aP=poly-Natural Proof againstP=poly would imply
the nonexistence of function generators which are pseudorandom w.r.t.P=poly-tests. But
this implies the nonexistence of pseudorandom bit generators [27], contradicting widely
believed cryptographic hardness assumptins.

Observe that, in contrast to our concept of pseudorandomness, the existence of an
efficient � -test for a given PRFGF does not yield any feasible attack against the
corresponding cipher. This is because the whole function table has to be processed, which
is of exponential size inn. Thus, informally speaken, the message of [27] is that effective
lower bound arguments forM , as a rule, imply low complexity circuits which efficiently
distinguish P(M)-functions from truly random functions, where the complexity is measured
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in the size of the whole function table. Our message is that effective lower bound arguments
for M , as a rule, imply even efficient distinguishing attacks against each secret key
encryption mechanism which belongs to P(M), where the running time is measured in the
input length of the function. Observe that our most complicated distinguishing scheme for
the size of constant depth circuits over AND, OR, MODp, p prime, (Theorem 2) uses an
idea from [27] for constructing anNC2-Natural Proof for AC0[p℄, p > 2 prime.

Cryptographic Strongness

In section 4 we try to identify the smallest complexity classes which are powerful enough
to contain PRFGs. In [7], a general method for constructing PRFGs on the basis of
pseudorandom bit generators is given. The construction is inherently sequential, and
at first glance it seems hopeless to build PRFGs with small parallel time complexity.
Naor and Reingold [23, 24] used a modified construction, based on concrete number-
theoretic assumptions instead of generic pseudorandom bitgenerators. They presented a
function generator (which we shortly call NR-generator, the definition will be presented in
section 4) which is pseudorandom under the condition that theDecisional Diffie-Hellman
Assumption, a widely believed cryptographic hardness assumption, is true. Moreover, the
NR-generator belongs toTC0, in [24] it is claimed (without proof) that it consists ofTC05 -
functions.

We show in Theorem 6 that the NR-generator even consists ofTC04 -functions, i.e.TC04
seems to be cryptographic strong whileTC02 has proved to be weak. It is an interesting open
question ifTC03 is strong enough to contain PRFGs. Observe thatTC03 seems to contain
pseudorandom bit generators, take hardcore bits of cryptographic one-way functions inTC03 like discrete logarithm or squaring modulo the product of two prime numbers [28].

Some Remarks on Learning versus Distinguishing

Clearly, a successful distinguishing attack against a secret key encryption algorithm does
not automatically imply that relevant information about the secret key can be efficiently
computed. Observe that breaking the cipher corresponds to efficiently learning an unknown
function from a known concept class. It is intuitively clearand not hard to prove that,
with respect to any reasonable model of algorithmically learning Boolean concept classes
from examples, any efficient learning algorithm for functions from a given complexity
class� gives an efficient distinguishing scheme for�. (Use the learning algorithm to
compute a low complexity hypothesish of the unknown functionf and test ifh really
approximatesf .) Observe on the other hand that under the condition that membership
queries are forbidden, each efficient distinguishing algorithm (which poses oracle queries
only for randomly chosen inputs) can be simulated by an efficient weak learning algorithm,
which computes a12 + "-approximator for the unknown function [4]. I.e., efficientknown
plaintext distinguishing attacks can be used to really break a cipher.There is some evidence
that in the general case, ifchosen plaintext, i.e., membership queries are allowed, this is
not the case. It is not hard to see that there is a polynomial distinguishing scheme for
polynomial size OBDDs.1 On the other hand, there are several results proved in [17] which
strongly support the following conjecture: it is impossible to efficiently learn the optimal
variable ordering of a function with small OBDDs from examples.

In a certain sense the results of this paper can be consideredas cryptographic limitations
of proving lower bounds for complexity classes containingTC04 , while the results of
[27] can be seen as cryptographic limitations of proving lower bounds against P/poly.
1 Take disjoint random subsets of variablesY andZ of appropriate logarithmic size and test if the

matrix (f(y; z;!0 )), wherey andz range over all assignments ofY andZ, resp., has small rank.
As in the pseudorandom case with probability1=poly(n), Y andZ are separated by the optimal
variable ordering of the oracle functionf . This gives an efficient test.
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Observe that cryptographic limitations of learning were already detected byKearnsand
Valiant in [13]. It is shown there that efficient learnability ofTC03 -functions would
contradict the existence of pseudorandom bit generators inTC03 and thus to widely believed
cryptographic hardness assumptions like the security of RSA or Rabin’s cryptosystem, see
above.

Note that for all complexity classes� which are shown in section 3 to be
cryptographically weak, it is unknown whether�- functions are efficiently learnable.

3 Distinguishing Schemes

Let us firstly consider the following basis testT (p; Æ;N), whereÆ; p 2 (0; 1), which accepts
if 1N NXi=1 Xi 62 [p� Æ; p+ Æ℄;
where theXi denoteN mutually independent random variables defined byPr[Xi = 1℄ =p andPr[Xi = 0℄ = 1� p. Höffdings Inequality (see, e.g., [1], Appendix A) yieldsthat

Lemma 1. The probability thatT (p; Æ;N) accepts is smaller than2e�2Æ2N .2
Note that most of our distinguishing scheme will be testsT which first choose a random

seedr from an appropriate setR, and then perform a corresponding testT (r) on the oracle
function. Such a testT is called a(p; q; �)-test for a function f� 2 Bn if T accepts a
random function with probability at most� (i.e.,Er2R[Prf2Bn [T (r) acceptsf ℄℄ � �), but
if the probability (taken overr) thatT (r) acceptsf� 2 Fn with probability at leastq, is at
leastp.

Observe the following easy but useful fact.

Lemma 2. If pq > � then a(p; q; �)-test forf� distinguishesf� with advantage at leastpq � � from a truly random function.2
Theorem 1. There is a polynomial distinguishing scheme for polynomialsize weighted
threshold-MOD2 circuits.

Proof. The algorithm follows quite straightforwardly from a result from Bruck[6]. If m is
the minimal number of MOD2-nodes in a weighted threshold-MOD2-circuit computing a
givenf 2 Bn then there is a MOD2-functionp(x) = xi1 � : : :� xir in Bn such that����Ex2f0; 1gn[f � p(x)℄� 12 ���� � 12m:
Let us fix a polynomial boundm(n) 2 nO(1). Let the schemeD work as follows onn
andm = m(n). It chooses an approriate number~n; log(m) < ~n < n, chooses a random
MOD2-function~p(x) overfx1; : : : ; x~ng and accepts if����Ex2f0; 1g~n [f(x;!0)� ~p(x)℄� 12 ���� � 14m:
Observe that the running time is linear inN = 2~n and that this test is a(1=N; 1; 2e�2 116m2N )-test on each functionf� 2 Bn having weighted threshold-MOD2
circuits of sizem. (Observe the above mentioned result [6] and the fact that the subfunctionf(�;!0 ) has size� m.) It is easy to see that we can find some~n 2 O(log(n)) yielding
advantage12N (see Lemma 2). ut
Theorem 2. For all primesp and all constant depth boundsd there is a quasipolynomial
distinguishing scheme for polynomial size depthd circuits overfAND;OR;MODpg.
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The proof is quite lengthy and can be found in the full paper [14]. As MODpk belongs toAC02 [p℄ [29], the proof for prime powers follows immediately.

Theorem 3. For all k � 1 there is a quasipolynomial distinguishing scheme for
nondeterministic read–k BDDs.

Proof. The first exponential lower bounds on readk branching programs were
independently proved in [5] and [26]. See also [12] for otherinteresting applications of
the method. We use these methods for our distinguishing scheme. Let us fix an arbitrary
natural constantk � 1, and a polynomial boundm = m(n) 2 nO(1). Let us denoteXn = fx1; : : : ; xng. In [12] Juknashows the existence of a numbers 2 mO(1) = nO(1)
and a constant
 2 (0; 1) such that eachf 2 Bn which is computable by a nondeterministic
syntactic read–k times branching program of sizem(n) can be written asf = W_i=1 fi; (2)

where for alli; 1 � i �W , it holds that there is a partitionXn = Ui[Vi [Wi of pairwise
disjoint subsetsUi; Vi;Wi of Xn such thatfi(Xn) = gi(Ui; Vi) ^ hi(Vi;Wi);
wherejUij � 
n andjWij � 
n.

The distinguishing schemeD works onn andm = m(n) as follows.

(0) Fix an appropriateN 2 nO(1) and test viaT ( 12 ; 112 ; N) if the probability that the oracle
function outputs 1 is at least13 . If not accept.

(1) Computes and appropriate parametersq; r 2 logO(1) n. LetQ = 2q. Choose randomly
disjoint subsetsU;W from Xn with jU j = jW j = q, and af0; 1g-assignmentb ofX n (U [W ). Finally, choose randomf0; 1g-assignmentsa1; : : : ; ar of U .

(2) Accept ifff(a1; b; 
) ^ : : : ^ f(ar; b; 
) = 1 for at leastQ6s assignments
 of W .

The parametersq,N , andr will be specified later. Observe that the running time isO(rQ).
Observe further that the probability that a truly random function will be accepted in Step 2
is bounded by2e�2Æ2Q for Æ = 16s � 2�r (see (1)).

On the other hand, in the pseudorandom case it holds with probability 1s (
=2)2q thatU � Uj andW � Wj for somej for which Prx[fj(x) = 1℄ � 13s . Further, with
probability 12s (
=2)2q we haveb fixed in such a way thatPra;
[fj(a; b; 
) = 1℄ � 16s ,
wherea and
 denote the assignments ofU andW respectively. Observe that this implies
that Pra[gj(a; b) = 1℄ � 16s and thatPr
[hj(b; 
) = 1℄ � 16s . Consequently, with
probabilityp = 16s r 12s (
=2)2q it holds thatgj(a1; b) = : : : = gj(ar; b) = 1. But, under
this condition, it holds for all assignments
 to W andl; 1 � l � r; thatfj(al; b; 
) = 1
iff hj(b; 
) = 1 iff fj(ai; b; 
) = 1 for all l; 1 � l � r. As fj(ai; b; 
) = 1 impliesf(ai; b; 
) = 1, the function is accepted in Step 2 with probability 1.

We obtain that Step 1 and 2 form a(p; 1; 2e�2Æ2Q)-test for each functionf of size
at mostm. It can be easily verified that forq = blog2(s2n)
 and r = blog2(12s)
,
we can find someN 2 nO(1) such thatD(n;m) achieves advantage"(n;m) fulfilling"(n;m)�1 2 nO(logn). ut
Theorem 4. There is a polynomial distinguishing scheme for polynomialsize unweighted
depth 2 threshold circuits.

Proof. For all distributed functionsf : f0; 1gn�f0; 1gn �! f0; 1g consider the following
invariants 
(f) = max�����Ex;y[f(x; y)� g(x) � h(y)℄� 12 ���� ; g; h 2 Bn�
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�(f) = max�����Ey[f(x; y)� f(x0; y)℄� 12 ���� ; x 6= x0 2 f0; 1gn� :
The first exponential lower bound on the size of unweighted depth 2 threshold circuits was
proved in [10]. The following two observations are implicitely contained there. Let us fix
an arbitrary polynomial boundm = m(n) 2 nO(1).
(I) There is a numberS 2 mO(1) such that iff : f0; 1gn � f0; 1gn �! f0; 1g has

unweighted depth 2 threshold circuits of sizem(n) then
(f) � 1S .
(II) For all distributed functionsf : f0; 1gn � f0; 1gn �! f0; 1g it holds that
(f) �q 12 (�(f) + 2�n):

The distinguishing schemeD = D(n;m) is defined to do the following onn andm. It
chooses an appropriate numberq 2 O(log(n)) such that forQ = 2q the conditionQ � S2
is satisfied, and two random assignmentsx 6= x0 of fx1; : : : ; xqg.D accepts ifjEy2f0; 1gq [f(x; y;!0)� f(x0; y;!0 )℄� 12 j � 12S2 :
Observe that the probability that this test accepts a truly random function is the same as the
probability that testT ( 12 ; 12S2 ; Q) accepts, i.e., at most2e�Q=S2 .

On the other hand, observe that for all oracle functions of size� m the following

holds: if in Step 1 the pairx; x0 determining�(f(�; �;!0 )) is chosen (and this occurs
with probability 1=(Q(Q � 1))) then Step 2 will accept with probability 1. In other
words, we have a(1=(Q(Q � 1)); 1; 2e�Q=S2)-test. It is quite easy to verify that we
can fix someq 2 O(log(n)) which gives advantage"(n;m) for D(n;m) fulfilling that"�1(n;m) 2 nO(1). ut
Theorem 5. For all k � 1 it holds that there is a distinguishing algorithm of
quasipolynomially bounded ratio for depthk + 1 circuits consisting ofk levels ofAND
andOR gates connected with one weighted threshold gate as output gate.

The proof exhibits the so called Switching Lemma [11] and canbe found in the full
paper [14].

4 PseudorandomTC04 -Functions

We start with the definition of the NR-generatorF . For all n the keyss for F have
the forms = (P;Q; g; r; a1; : : : ; an), where all components aren-bit numbers fulfilling
the following conditions.P and Q are primes andQ divides P � 1, g 2 ZZ�P has
multiplicative orderQ, anda1, . . . , an are fromZZ�Q. Define the corresponding functionfs : f0; 1gn ! ZZP � f0; 1gn byfs(x) = fs(x1; : : : ; xn) = gy(x) mod P;
wherey(x) =Qni=1 axii . For our purpose it is obviously sufficient to show

Theorem 6. The functionf = fs has polynomial size depth 4 unweighted threshold
circuits.

Proof. We use the following terminology and facts about threshold circuits which are
mainly based on results from [8, 9, 28].
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Definition 1. A Boolean functiong : f0; 1gn �! f0; 1g is calledt-bounded if there are
integer weightsw1; : : : ; wn andt pairwise disjoint intervals[ak; bk℄, 1 � k � t of the real
line such that g(x1; : : : ; xn) = 1 () 9k s.t.

nXi=1 wixi 2 [ak; bk℄:
The functiong is called polynomially bounded ifg is t-bounded for somet 2 nO(1).
A multi-output function is calledt-bounded if each output bit is at-bounded Boolean
function.

Fact 1: Suppose that a functionf : f0; 1gn �! f0; 1gn can be computed by a depthd
circuit of polynomial size, where each gate of the circuit performs a function which can
be written as a sum of at mosts 2 nO(1) polynomially bounded operations. Thenf
can be computed by a polynomial size depthd+1 unbounded weight threshold circuit.

Observe the following statements which can be easily proved.

Fact 2: If g(x1; : : : ; xn) depends only on a linear combination
Pni=1 wixi, where for alli; 1 � i � n, it holdsjwij 2 nO(1), theng is a polynomially bounded operation.

Fact 3: If a Boolean functiong : f0; 1gn �! f0; 1g can be written asg = h(g1; : : : ; g
),
where
 is a constant and the Boolean functionsg1; : : : ; g
 : f0; 1gn �! f0; 1g are
polynomially bounded operations, theng is a polynomially bounded operation.

As for many other efficient threshold circuit constructions, the key idea is to parallelize
the computation off(x) via Chinese remaindering. Let us fix the firstr prime numbersp1; : : : ; pr, wherer is the smallest number such that� :=Q1�k�r pk �Qni=1 ai. Observe
that r 2 O(n2) and that allpi, 1 � i � r, are polynomially bounded inn, i.e., can be
written asm-bit numbers for somem 2 O(logn).

Consider the inverse Chinese remaindering transformationCRT�1 which assigns to
eachr-tupel ofm bit numbers(z1; : : : ; zr), zi = (zim�1; : : : ; zi0) for i = 1; : : : ; r, the
uniquely defined numbery < � for whichy � zi mod pi for all i = 1; : : : ; r. Denote byCRT�1P the function CRT�1P : (f0; 1gm)r �! f0; 1gn2
defined as

�CRT�1(z1; : : : ; zr) mod P �, and observe

Fact 4: CRT�1P can be written as the sum of polynomially (inn) many polynomially
bounded operations.

The proof (see, e.g., [28]) is based on the fact thatCRT�1(z1; : : : ; zr) = rXi=1 Eizi mod �;
where fori = 1 : : : r the numberEi denotes the uniquely determined number smaller than� for which (Ei mod pj) = Æi;j for all i; j = 1; : : : ; r. This impliesCRT�1(z1; : : : ; zr) = rXi=1 Ei0�m�1Xj=0 zij2j1A mod �= rXi=1 m�1Xj=0 ei;jzij mod �; (3)

whereei;j = (Ei2j mod �).
The computation off(x) will be performed on 3 consecutive levels consisting of

operations which are polynomially bounded (level 1,2) or which can written as polynomial
length sums of polynomially bounded operations.
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Level 1: Computez(x) = (z1(x); : : : ; zr(x)), where for all i = 1; : : : ; r, the m-bit
numberzi is defined to be(y(x) mod pi).

Observe that for alli = 1; : : : ; r, zi(x) can be written aszi(x) = nYj=1 axjj mod pi = �Pnj=1 rijxji mod pi;
where�i denotes a fixed element of orderpi � 1 in ZZ�pi andrij denotes forj = 1; : : : ; n
the discrete logarithm ofaj to the base�i. Because allrij are polynomially bounded inn,
it follows by Fact 2 thatz(x) is a polynomially bounded operation.

For all inputsz = (z1; : : : ; zr) 2 (f0; 1gm)r denote byY (z) the numberY (z) = rXi=1 m�1Xk=0 eikzik:
Observe that for allx it holds thaty(x) � Y (z(x)) mod � andY (z(x)) � mr� .
Moreover, there exists exactly onek, 1 � k � mr � 1, such thaty(x) = Y (z(x)) � k�:
This k is characterized byk� � Y (z(x)) � (k + 1)� � 1. Consequently, the equationf = f0+ : : :+ fmr�1 holds, where for eachk = 0; : : : ;mr� 1, the functionfk is defined
as fk(x) = �k(z(x))(gY (z(x))�k� mod P );
where�k(z(x)) 2 f0; 1g is defined by�k(z(x)) = 1 iff k� � Y (z(x)) � (k + 1)� � 1.

Further observe thatgY (z)�k� mod P = Gk(z) mod P;
whereGk(z) = 
kQri=1Qmj=0(bi;j)zij , and the
k andbi;j aren-bit numbers defined by
k = (g�k� mod P ) and bi;j = (gei;j mod P ):
Observe that, in contrast togY (z)�k� , the numberGk(z) has polynomially many, namelyn(mr + 1), bits. Fixu to be the smallest number such that

Qui=1 pi � 2n(mr+1). Observe
further that by the same arguments as above (Level 1), the operation(Gk(z) mod pi) is
for all i = 1; : : : ; u polynomially bounded.

Level 2: For allk = 0 : : :mr � 1 andi = 1 : : : u computeH ik(z) = �k(z)(Gk(z) mod pi):
This is a polynomially bounded operation as each output bit depends only on two
polynomially bounded operations (Fact 3).

Level 3: Computefk(x) = CRT�1P (H1k(z(x)); : : : ; Huk (z(x))).
Due to Fact 4 and Fact 1 this yields polynomial size depth 4 unweighted threshold

circuits forf: ut
10



5 Open Problems

It would be nice if we could detect for each basic nonuniform complexity class� = P (M)
whether it has an efficient distinguishing scheme (then cryptodesigners should obey the
low complexity danger w.r.t.M ) or whether� contains a PRFG (then lower bound proofs
for this model seem to be a very serious task). Unfortunately, there are classes likeTC03
andAC03 [m℄, m composite, which up to now cannot be classified in the above way. It
is an interesting open question ifTC03 is strong enough to contain PRFGs. Observe thatTC03 seems to contain pseudorandom bit generators. (Note that operations such as squaring
modulo the product of two unknown primes is inTC03 [28].)

Another open problem is the design of an efficient distinguishing scheme for
polynomial size weighted threshold-MODp circuits,p an odd prime power. This is the only
example of a complexity measure for which we failed to transform the known effective
lower bound method (see [15]) into a distinguishing algorithm.

A further interesting question is to determine the minimal hardware complexity of other
cryptographic primitives like pseudorandom bit generators, pseudorandom permutation
generators, one-way functions and cryptographically secure hash functions. DoesTC02
contain pseudorandom bit generators? Luby and Rackoff [20]showed how to construct
pseudorandom permutationsby three sequential applications of a pseudorandom function,
each followed by an XOR-operation. Luby and Rackoff also showed how to construct
super pseudorandom permutationsby four such applications. Thus, as a corollary of our
results, efficient pseudorandom permutations can be constructed in TC010 and efficient super
pseudorandom permutations can be constructed in TC013. We conjecture that these results
can be further improved, perhaps based on the results from [25].
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6 Appendix

6.1 The Proof of Theorem 2

Theorem 2 For all primesp and all constant depth boundsd there is quasipolynomial
distinguishing scheme for polynomial size depthd circuits overfAND;OR;MODpg.
Proof. We start with some preliminaries: LetK denote an arbitrary field andB = fa; bg an
arbitrary two-element subset ofK. Observe that each functionh : Bn �! K has a unique
representation as ann–variate multilinear polynomial overK. Let us denote bydegK(h)
the degree of this representation, i.e., the maximal lengthof a monomial occuring with
nonzero coefficient in this representation. Fix a Boolean functionf : f0; 1gn �! f0; 1g.
The unique function̂f : Bn �! B, which is obtained fromf by replacing all occurences
of 0 by a and of 1 by b is said to be the(a; b)-variant of f . Now fix another two
elementsa0 6= b0 of K and denote byg the (a0; b0)-variant of f . Observe that for all(y1; : : : ; yn) 2 fa0; b0gn the relationg(y1; : : : ; yn) = a0 � b0a� b f̂(x1; : : : ; xn) + ab0 � a0ba� b (4)

holds, wherexi = a�ba0�b0 yi + a0b�ab0a0�b0 2 fa; bg for all i = 1; : : : ; n. As this
transformation is linear it follows that for all two elements a 6= b 2 K it holds that theK-degree of the (a,b)-variant off is the same. We denote this value bydegK(f).

ForK = Fr, r = pk prime power, we use the denotationdegr(f). If the context is
clear and some fieldK is fixed we identify Boolean functions with their(0K ; 1K)-variants.
We start now with the proof of Theorem 2.

Theorem 2For all primesp and all constant depth boundsd there is a uasipolynomial
distinguishing scheme for polynomial size depthd circuits over AND, OR,MODp-gates.

Let us fix a primep and a depth boundd. The proof of the Theorem is based on the
following result ofSmolensky[29]:

Lemma 3. Let f; g1; : : : ; gk 2 Bn be given such thatf = Wki=1 gi: Then for allr < n
there is aFp-polynomial q = q(g1; : : : ; gm) of degree at most(p � 1)r such thatPrx[f(x) 6= q(g1(x); : : : ; gm(x))℄ � 2�r: The same statement holds iff = Vki=1 gi:

It is quite straightforward to derive

Corollary 1. If f 2 Bn can be computed by a depthd AND,OR,MODp-circuit of sizem then for eachr; p � r < n; there is a function~f : f0; 1gn �! Fp such thatdegp(f) � ((p� 1)r)d and Prx[f(x) 6= ~f(x)℄ � ((md � 1)=(m� 1))2�r .

Proof. The approximating function~f is obtained by replacing all AND- and OR- gates
by Fp-polynomials which approximate the gate with parameterr as in Lemma 3. Taking
into account that theFp-degree of MODp is p-1 and that the indegree of each AND- and
OR-gate is bounded bym it is easy to see that the degree of~f is bounded byÆd(m)
and the error probability is bounded byEd(m), whereÆd(m) andEd(m) are defined
via the recursionÆ1(m) = (p � 1)r; E1(m) = 2�r; Æd(m) = (p � 1)rÆd�1(m) andEd(m) = mEd�1(m) +E1(m). Evaluating this recursion gives the claim. ut

Consequently, distinguishingAC0d [p℄-functions from truly random functions can be
reduced to testing that a given sample is induced by a function which can be well
approximated by a low degree polynomial overFp. If p 6= 2 the idea for such a test can be
derived fromRazborov’sandRudich’sNatural Proof againstAC0[3℄ [27]: Let us fix some
odd numbern. In the following, we do all arithmetic operations with respect to the fieldFp. For all Boolean functionsf : f0; 1gn �! f0; 1g we denote bŷf the (1,-1)-variant off . As the characteristic ofFp is odd we have1 6= �1.
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Let us denote byV theFp-vector space of all functionsh : f1;�1gn �! Fp. It
holdsdimp(V ) = N := 2n. We denote further byL the subspace of allh 2 V withdegp(h) < n=2. Asn is odd we havedimp(L) = N=2: The complexity parameterDp(f̂)
which is essential for us is defined asDp(f) = dimp(L+ f̂L);

wheref̂L denotes the subspace of functions which can be written asf̂ �h; h 2 L, where� denotes argumentwise multiplication. (Observe that the set of functionsf̂ : f1;�1gn �!f1;�1g is closed under argumentwise multiplication.)
Observe the following properties of the parameterD:

(i) If f coincides with a functiong : f0; 1gn �! Fp of degreeP � 
pn; 
 2 (0; 1),
outside a fixed input setE � f0; 1gn thenDp(f) � (1=2 + 
)N + jEj:
In order to see this observe at first that there is a functionĝ : f1;�1gn �! Fp with
degreeP which coincides withf̂ outside a fixed input setE0 � f1;�1gn, wherejEj = jE0j.
Consequently, outside ofE0 all functions inL+ f̂L coincide with a function of degree
smaller thann=2 + P . Hence,Dp(f) � n=2+PXk=0 �nk�+ jEj � N(1=2 + P=pn) + jEj:
(The last calculation is a consequence of Stirling’s Formula which gives that

� nbn=2
� �2n=pn.)
(ii) For the parity function� = x1 � : : : � xn it holds thatDp(�) = N . This follows

from the well-known fact that̂� = y1y2 : : : yn. Consequently, (overf1;�1gn) for
each monomialm of degree larger thann=2 there is a monomialm0 of degree smaller
thann=2 such thatm = �̂m0.

(iii) For all Boolean functionsf it holds thatDp(f) +Dp(� � f) � 3=2N . In order to see
this observe that Dp(� � f)�N=2 = dimp(L+ �̂f̂L=L) =dimp(f̂L+ �̂L=f̂L) � dimp(f̂L+ �̂L+ L=(f̂L+ L)) =dimp(V=(L+ f̂L)) = N �Dp(f):
The statement follows directly. As a consequence of (3) we obtain:

(iv) The amount of Boolean functionsf : f0; 1gn �! f0; 1g with Dp(f) � 3=4N is at
least50%.

(v) In order to evaluateDp(f), one has to compute theFp-rank of anN �N -matrix, i.e.,
it can be done in timeNO(1).
We describe now the distinguishing algorithmD for fAND;OR;MODpg-circuits,

wherep 6= 2. Fix a polynomialm = m(n) 2 nO(1). Given input parametersn andm = m(n),D at first computes the minimal numberr and the minimal odd number~n such
that 64md�1 < 2r and (p� 1)drd < (1=8)p~n:
Observe thatr 2 O(log(n)), n 2 O(log2d(n)) and let ~N = 2~n.

ThenD chooses randomly an 0,1-assignment
 to the set of variablesfx~n+1; : : : ; xng
and accepts ifDp(f
) < (3=4) ~N:

Observe that by (v), this computation can be done using~N := 2~n oracle queries in time~NO(1) = exp(logO(1) n).
14



In the truly random case, by (iv), the probability thatD outputs 1 is at most 1/2.
Now consider the pseudorandom case and denote byf the secret function chosen

by the oracle. By Corollary 1, there is a function~f : f0; 1gn �! Fp such thatdegp( ~f) � ((p � 1)r)d such that the probability thatf differs from ~f is bounded by((md � 1)=(m� 1))2�r.
Observe that for at least 75% of the 0,1-assignments
 to the variablesfx~n+1; : : : ; xng

it holds that the probability thatf 
 differs from ~f
 is bounded by4((md � 1)=(m� 1))2�r < 8md�12�r: (5)

This implies thatf 
 differs from ~f
 on a setE of less than8md�12~n�r � (1=8)2~n
inputs, i.e., by (i) and asdegp( ~f) < (1=8)p~n we obtainDp( ~f) < (1=2 + 1=8) ~N + (1=8) ~N = (3=4) ~N:
Consequently, the probability thatD accepts is at least 3/4. It follows directly thatD distinguishesAC0d [p℄-functions from truly random functions with quasipolynomially
bounded ratio.

Now let us consider the casep = 2. Clearly, if a given Boolean functionf coincides
outside a setE with a functiong with deg2(g) = d, then for all fieldsK of characteristic
2 and alla 6= b 2 K it holds that the (a,b)-variant off coincides with a function̂g ofK-degreed outside a set̂E with jEj = jÊj.

The problem is that1 = �1 holds for fields of characteristic 2.
We choose the fieldK = F4 = f0; 1; z; z + 1g. Observe the relationz2 = z + 1

and the fact thatk3 = 1 for all k 2 f1; z; z + 1g. For a Boolean functionf we denote
by f̂ the (1,z)-variant off . As above, we fix an oddn, denoteN = 2n, denote byV theN -dimensionalK-vector space of all functions fromf1; zgn into K, and byL theN=2-
dimensional subspace of all functions ofK-degree smaller thann=2.

Further let for all functionsh : f1; zgn �! f1; z; z + 1gD2(h) = dimK(L+ f̂L):
For Boolean functionsf : f0; 1gn �! f0; 1g letD2(f) := D2(f̂). Observe that property
(i) of Dp holds in the same way forD2. Consider further the function� : f1; zgn �!f1; z; z + 1g defined by �(y1; : : : ; yn) = y1y2 : : : yn:
Observe now the following properties ofD2:
(I) It holds thatdimK(L + �2L) = N . In order to prove this it is sufficient to show that

each monomialm of length larger than n/2 belongs to�2L. We can obviously find a
monomialm0 of length smaller n/2 such thatm2 = �2m0. On the other hand, using the
fact that onf1; zg y2i = (z + 1)yi + z
it can be seen thatm2 = (z + 1)tm + h; wheret denotes the length ofm andh a
function of degree smaller thant. Induction on the length ofm yields the proof.

(II) The amount of functionsh : f1; zgn �! f1; z; z + 1g for whichD2(h) � (3=4)N is
at least 50%. For proving this observe that for allh : f1; zgn �! f1; z; z + 1gD2(�2h)�N=2 = dimK(L+ �2hL=L) = dimK(h2L+ �2L=h2L)� dimK(h2L+ �2L+ L=(h2L+ L)) = N �D2(h2);
i.e.,D2(�2h)+D2(h2) � (3=2)N . As squaring and multiplication with�2 are bijective
mappings over the set of functionsh : f1; zgn �! f1; z; z + 1g the claim follows.
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In other words, if we take a truly random functionh : f1; zgn �! f1; z; z + 1g
thenD2(h) � (3=4)N with significant probability. Unfortunately, we can not show this
for the (1,z)-variants of randomBooleanfunctions which would be necessary for our
distinguishing algorithm. This is because we do not see any way for applying the above
distinguishing algorithm straightforwardly in the casep = 2. The only way-out we see
in the moment is to use the following (allmost complexity preserving) transformation
of functions f 2 Bn into functions which map intof1; z; z + 1g. We describe the
transformation in a more general form which could also be usefull in other similar
situations.

Generating random functions intof1; : : : ; kg; k > 2
We describe here an operatorTn;k;m, where n; k;m are positiv natural numbers

fulfilling m < n andk < 2n, which assigns to each Boolean functionf : f0; 1gn �!f0; 1g ak-nary functionTn;k;m(f) : f0; 1gm �! f0; 1g such that the following holds:
– If f has low complexity w.r.t. to a large number of relevant nonuniform complexity

measures thenTn;k;m(f) has, too.
– If f is a random Boolean function then, fors large enough,Tn;k;m looks ”sufficiently

random”. The construction is based on the following technical

Lemma 4. For eachn and k � 2n, and each partition� = (s1; : : : ; sk) of 2n, i.e.,
the si are positive natural numbers fulfillings1 + : : : + sk = 2n, there is a functionh� : f0; 1gn �! f0; 1g with the following properties:

(a) For all i; 1 � i � k, it holdsjh�1� (i)j = si.
(b) h has a Boolean decision tree with at most(k � 1)n+ 1 leafs.

Proof. A decision tree for a functionh : f0; 1gn �! f1; : : : ; kg is a usual Boolean
decision tree for which the leafs are labelled by1; : : : ; k. The computation mode is
straightforward. We identify partitions2n = s1 + : : :+ sk by multisets� = (s1; : : : ; sk).
For eachn andk � 2n, and each partition� = (s1; : : : ; sk) we define the corresponding
functionh� by giving a decision treeDn� for h� of the appropriate size (=number of leafs).
We do this by induction.

Clearly, fork = 1 this tree consists of a single leaf labelled by ”1”. The size is 1 and
matches the statement of the lemma.

If n = 1 andk = 2 (partition 2=1+1) this tree consists of one inner node labelled byx1 and two leafs labelled ”1” and ”2”.
If k = 2 andn > 1 and� = (s; s0); s+ s0 = 2n, then the treeDn� can be (inductively)

constructed as follows: Lett = maxfs; s0g and observe thatt � 2n�1. Dn� consists of
a source labelled byxn, one successor is a leaf, the other successor isDn�1(t�2n�1;2n�t). It
follows easily by induction that the size ofDn(s;s0) is at mostn+ 1.

Now let us fix arbitraryn > 1, k > 2, and a partition� = (s1; : : : ; sk) of 2n.
Let us fix the uniquely definedl; 1 � l � k, for which s1 + : : : + sl�1 � 2n�1 ands1 + : : :+ sl > 2n�1.

Let s0l = 2n�1 � (s1 + : : : + sl�1), s"l = sl � s0l, �0 = (s1; : : : ; sl�1; s0l), and�" = (s"l; sl+1 : : : ; sk). Observe that both�0 and�" are partitions of2n�1.Dn� can be defined as a source labelled byxn, the 0-successor of the source isDn�1�0 ,
the 1-successor is a copy ofDn�1�" for which the leafs are labelled byl; l+1; : : : ; k instead
of 1; 2; : : : ; (k � l) + 1. By induction hypothesis the size ofDn� is at most(l � 1)(n� 1) + 1 + (k � l)(n� 1) + 1 = (k � 1)n+ 3� k � (k � 1)n+ 1: ut

We identify each functionh� : f0; 1gn �! f1; : : : ; kg with k Boolean functionsh1�; : : : ; hk� defined by hj�(x) = 1 () h�(x) = j:
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We callh1; : : : ; hk thecharacteristic Boolean functionsof h. Observe

Corollary 2. For all positive natural numbersn andk with k � 2n, all partitions� of 2n
of lengthk, and all j; 1 � j � k, it holds that the Boolean functionshj�; 1 � j � k, can
be written as the sum ofSj monomials withS1 + : : :+ Sk � (k � 1)n+ 1.

Proof. Take the monomials forhj� corresponding to the paths inDn� leading to leafs with
label ”j”. ut

Now, for all positive natural numbersn andk with k � 2n fix thebalancedpartition�
of 2n consisting ofr timesd2n=ke andk� r timesb2n=k
, wherer = 2n mod k. Denote
by h1n;k; : : : ; hkn;k the characteristic Boolean functions corresponding to�.

Fix a further positive natural numberm < n, and letS = 2n�m. We now define
the operatorTn;k;m. For all Boolean functionsf : f0; 1gn �! f0; 1g let Tn;k;m(f) :f0; 1gm �! f0; 1g be definedTn;k;m(f)(x1; : : : ; xm) = kXj=1 jhjS;k(y1; : : : ; yS);
with yj = f(x1; : : : ; xm; b(j)), whereb(1); : : : ; b(S) denote theS possible 0,1-assignments
of xn�m+1; : : : ; xn in the canonical order.

Now denote byBm;k the set of all functionsh : f0; 1gm �! f1; : : : ; kg. In the
following lemma we estimate how much the distribution induced byTn;k;m(f) onBm;k
deviates from the uniform distribution onBm;k:
Lemma 5. Fix an arbitrary subsetE ofBm;k and denote byp the probability of the eventE w.r.t. the uniform distribution overBn;k, and with~p the probability of the eventE w.r.t.
the distribution which is induced viaTn;k;m(f) by uniformly distributed random Boolean
functionsf : f0; 1gn �! f0; 1g. Thenjp� ~pj � pk2m�S(1 + k2�S)2m :
Corollary 3. If n;m are choosen in such a way that forS = 2n�m it holds that2S > ak2m for somea � 1, thenjp� ~pj � (p=a)e1=a:
Proof. Let us denoteM = 2m. Observe that for allx 2 f0; 1gm and allj; 1 � j � k,
the probability thath(x) = j, whereh denotes a random function distributed according toTn;k;m(f), is in (1=k � 2�S; 1=k + 2�S). Consequently,jp� ~pj � pkM (1=k + 2�S)M � p = p �1 + k2�S�M � 1 = pMk2�S(1 + z)M�1
for somez 2 (1; 1 + k2�S). Hence,jp� ~pj � pMk2�S(1 + k2�S)M :

The Corollary follows by applying the well known inequality(1 + (x=N))N � ex for
all x > 0, which yields(p=a)(1 + (1=aM))M � (p=a)e1=a: ut

The distinguishing algorithm for p = 2
For all d � 2, a distinguishing algorithmD for depth d circuits overfAND;OR;MOD2g can be designed as follows. Given input parametersn andm(n) 2nO(1), D fixes parametersr and~n as the minimal natural numbers fulfilling192m2(d+1) < 2r and rd+2 < (1=8)p~n:

Observe that192 = 24 � 8, r 2 O(log(n)), and~n 2 O(log2(d+2) n), and let ~N = 2~n.
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At next,D computes a parameters 2 O(log log(n)) such that forS = 2s it holds that2S � 12 ~N and S(m+ 2) + 1 � m2:
This is always possible forn;m large enough.

ThenD chooses randomly a 0,1-assignment
 to the variablesx~n+1; : : : ; xn�s.D accepts iffD2(h
) < (3=4) ~N , whereh denotes the (1,z,z+1)-variant ofTn;3;n�s(f).
Observe that the evaluation of one value ofh needsS oracle queries and evaluations ofh1S;3; h2S;3 andh3S;3, i.e. the running time of the algorithm is bounded by( ~NS)O(1) which
is quasipolynomially bounded inn.

In the truly random case,h
 is a random function fromf1; zg~n into f1; z; z + 1g
which is distributed according to that distribution onB~n;3 which is induced by the uniform
distribution onB~n+s;2 via T~n+s;3;~n:

Remember that by (II) the probability thatD2(h) � (3=4) ~N is at least1=2 w.r.t. the
uniform distribution onB~n;3. Consequently, by Corollary 3, and as2S > 4 �3 � ~N we obtain
that the probability thatA accepts is at most1=2 + (1=4)e1=4 < 11=16:

Now consider the pseudorandom case and denote byf the secret function fixed by the
oracle. Observe that for allu = 1; 2; 3 the functionshu : f0; 1gn �! f0; 1g defined byhu(x) = huS;3(y1; : : : ; yS)
with yj = f(x; bj), where b(1); : : : ; b(S) denote theS possible assignments ofxn�s+1; : : : ; xn in the canonical order, can be computed by AND,OR,MOD2-circuits of
depthd+ 2 and sizeSm+ 2S + 1 = S(m+ 2) + 1 � m2. (see Corollary 2.)

Consequently, for the givenr, there is a degreerd+2 polynomial g for which the
probability thath differs fromg is at most3(m2(d+2) � 1)=(m2 � 1)2�r � 6m2(d+1)2�r;
for m large enough.

Hence, for an amount of at least 75% of all 0,1-assignments
 to the variablesx~n+1; : : : ; xn�s it holds that the error probability ofh
 w.r.t. g
 is at least24m2(d+1)2�r,
i.e.h
 andg
 differ with respect to at most24m2(d+1)2~n�r < (1=8)2~n
inputs. Suppose that we have choosen such a
. Then, as the degree ofg
 is smaller
than (1=8)pn, we get by (i) thatD2(h
) < (3=4) ~N; i.e., D accepts with probability3=4 > 11=16. We obtain quasipolynomial distinguishing ratio. ut
6.2 The Proof of Theorem 5

Theorem 5 For all k � 1 it holds that there is a distinguishing algorithm of
quasipolynomially bounded ratio for depthk + 1 circuits consisting ofk levels ofAND
andOR gates connected with one weighted threshold gate as output gate.
Proof. Let us call an unbounded fanin depthk circuit �k-circuit, resp.�k-circuit, if the
circuit consists ofk inner levels, which contain either only AND-gates, or only OR-gates,
and if the top gate is an OR-gate, resp. an AND-gate.

We use the fact that for each Boolean functionf with polynomial size weighted
threshold-�k, or with polynomial size weighted threshold-�k circuits the following
holds. With high probability, a random subfunction off Threshold-MOD2 circuits
of quasipolynomial size. According to [11] we consider the set f0; 1; �gn of partial
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assignments to the set of variablesfx1; : : : ; xng with respect to the probability distributionR(p) which is defined by Pr[�℄ = �ni=1Pr[�i℄;
wherePr[�i = �℄ = p, andPr[�i = 0℄ = Pr[�i = 1℄ = (1� p)=2.

We exhibit theSwitching Lemma[11] saying that for allf 2 Bn, p 2 (0; 1) ands; t � n it holds the following. Iff has a�2- (resp.�2-circuit) of bottom fan-in� t than
the probability thatf� has a�2-circuit (resp.�2-circuit) of bottom fan-in� s is at least1��s, where the partial assignment� is distributed according toR(p) and the value� can
be estimated by� < 5pt (see [30] pp. 325-331 for a nice presentation of the proof).

Moreover, it is shown in [19] that iff has a�2-circuit of bottom fan-in� t and a�2-circuit of bottom fan-in� s thenf has a decision tree of depthst, and, consequently,
can be computed exactly by a real polynomial of degreest.

Let us fix a polynomial boundm = m(n) 2 nO(1) and suppose thatf 2 Bn can
be computed by a threshold-�k circuit S, where each level of the circuit consists of at
mostm(n) nodes. The case of threshold-�k circuits can be treated in a similar way. Fixs 2 O(log(n)) to be the smallest number for which2s � m(n). The gates at level 1 ofS
can be seen as�2- (resp.�2-) circuits of bottom fanin 1� s. Fix an appropriate probabilityp, which will be specified later, and consider partial assignments� of fx1; : : : ; xng to be
distributed according toR(p). Observe that a standard probability estimation shows that
the probability thatf� depends on at leastpn variables is at least 1/3. Consequently, the
probability that each bottom gate ofS can be replaced by an equivalent�2- (resp.�2-)
circuits of bottom fanins is at least1� 2=3� 2s�s < 1=3� (10ps)s:
We fix a numberr in such a way that forp = 2�r holds(10ps)s � 1=6. Observe thatp�1 2 O(log(n)).

It follows that the probability thatf� depends on at leastpn variables and has
threshold-�k circuits of widthm(n) and bottom fanins is at least 1/6. This argument
can be iteratively applied tof�. It turns out that for� distributed according toR(pk), the
probability thatf� depends on at leastpkn variables and has a threshold-�1- or threshold-�1 circuit of bottom fanins2 is at least(1=6)k. Observe that this implies thatf� has
threshold-MOD2 circuits of size�(n; s) = s2Xi=0 �ni� 2 nO(log2 n);
i.e., we can apply the distinguishing scheme for threshold-MOD2 circuits. Letm0 =�(n; s) + 1 and ~n and ~N be defined as above in the proof of Theorem 1. We suppose
thatn; s are large enough such that12 ln(m0)=m0 < (1=6)k+1 andpkn > ~n.

The distinguishing scheme for weighted threshold-�k- and weighted threshold-�k-
circuits of widthm(n) works as follows. Choose randomly a partial assignment� offx1; : : : ; xng, where� is distributed according toR(pk) and test whetherf� has weighted
threshold-MOD2 circuits of size�(n; s) with the algorithm of Theorem 1. The choice of
the internal parametersp; s;m0 and~n yields that the advantage is at least(1=6)k�(1=6)k+1
and that the running time is quasipolynomially bounded inn. ut
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