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Abstract. A setF of Boolean functions is called a pseudorandom function geoe
(PRFG) if communicating with a randomly chosen secret fioncfrom F' cannot
be efficiently distinguished from communicating with a yruandom function. We
ask for the minimal hardware complexity of a PRFG. This goesis motivated by
design aspects of secure secret key cryptosystems. Suptosygtems should be
efficient in hardware, but often are required to behave likE-8s. By constructing
efficient distinguishing schemes we show for a wide range asfid nonuniform
complexity classes, induced by depth restricted brangbiograms and several types
of constant depth circuits (includif§C3), that they do not contain PRFGs. On the
other hand we show that the PRFG proposed by Naor and Reiimgf#td] consists
of TCJ-functions. The question iT'C2-functions can form PRFGs remains as an
interesting open problem. We further discuss relationsunfresults to previous work
on cryptographic limitations of learning (see, e.g., [1&3d Natural Proofs [27].
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1 Basic Definitions

Function Generators

A function generatof? is an efficient (i.e., polynomial time) algorithm which fquegific
values of plaintext block length computes for each plaintext bloake {0, 1}™ and each
key s from a predefined key s&! C {0, 1}’“(”) a corresponding ciphertext output block
y=F,(z,s) € {0, 1}1(”). k(n) andi(n) are called key length and output lengthfafThe
efficiency of F implies thatk(n) andl(n) are polynomially bounded in. Observe that the
encryption mechanism of a secret key block cipher can begthitoaf as a function generator
in a straightforward way. Clearly, cryptographic algonith occuring in practice are usually
designed for one specific input length However, in many cases the definition can be
generalized to infinitely many values of admissible inpagféan in a more or less natural
way. Correspondingly, we consider function generatorsstedquences = (F),),en Of
sets of Boolean functions

F, = {fn’s - {0,1}" — {0,1}'™. s ¢ s}j} :

where, ifn is admissible, we defing, ;(z) = F,,(z, s).

A function generatof' is pseudorandomif it is infeasible to distinguish between a
(pseudorandom) function, which is randomly chosen fibn n admissable, and a truly
random functionf € BY™. (Forl,n € NN let B! denote the set of ai*”" functions :
{0,1}" — {0,1}") In the sequel, we concentrate on functighs {0,1}" — {0,1}'
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and defineB,, = BL. Note that a truly random function iB!, (n) is just a tuple of(n)
independent random functions By,.

For giving the formal definition of pseudorandomness weoihtice the notion of an
H-oracle, whereH C B,. An H-oracle chooses randomly, via the uniform distribution
on H, a secret functioh € H and answers membership queries for inputs {0, 1}"
immediately withh(z). A distinguishing algorithm for a function generatof’ = F,
is a randomized oracle Turing machibewhich knows the definition of’, which gets an
admissible input parameterand which communicates via membership queries witian
oracle, where eithel = Bﬁf”) (the truly random source) af = F,, (the pseudorandom
source). The aim ab is to find out whethef = B,, (in this caseD outputs0) oiH = F,
(in this caseD outputs 1). Let us denote byrp (f) the probability thatD accepts if the
unknown oracle function ig.

The relevant cost parameters of a distinguishing algostlitmare theworst case
running time ¢p = tp(n) and theadvantages p = £p(n), which is defined as

ep(n) = |Pr[D outputs 1H = F,] — Pr[D outputs 1H = B,]|
= ‘EfEFnPTD(f) —E, g Pro(f)|.

Theratio rp = rp(n) of a distinguishing algorithmD is defined to berp(n) =
tp(n) - ept(n).

Observe further that for any function generafoy there are two trivial strategies to
distinguish it from a truly random source, which achieveaa®d(|F,|log(|Fy|)), the
trivial upper bound. In both cases the distinguisher fixegta)s of inputs, where| X|
is the minimal number satisfying!X! > 2|F,|. The first strategy is to fix a function
f € F, and to accept if the oracle coincides wifhon X. This gives running time
O(|X|) = O(log|F,|) and advantage|F,|~'. The second strategy is to check via
exhaustive search whether there is sgfne F,, which coincides with the oracle function
on X. This implies advantage at leasbut running timeO(|F,,| log(| F,.)).

We will call F' to be apseudorandom function generator(for short:PRFG) if for all
distinguishing algorithm® for F it holds thatrp € 27 Observe that this definition is
similar to that in [7]. The difference is that in [7] only supelynomiality is required.

Given a complexity measurd we denote byP (/) the complexity class containing all
sequences of (multi-output) Boolean functions which haslgrmomial size representations
with respect toM. We say that a function generatdrhas M -complexity bounded by a
functionc : N — IN if for all » and all keyss € S it holds thatM (f,,s) < ¢(n), and
that F' belongs toP (M) if the M-complexity of F' is bounded by some(n) € n®®),
We will call a complexity classryptographically strong if it contains a PRFG, and
cryptographically weak otherwise.

It is widely believed that there exist PRFGs (we will preseandidate in section 4),
i.e., P/poly is supposed to be cryptographically stronguésrandom function generators
are of great interest in cryptography, e.g. as building kddfor block ciphers [20, 21], for
remotely keyed encryption schemes [22, 3], for messageeatitiation [2], and others. As
the existence of PRFGs obviously impliés # N P, recent pseudorandomness proofs
refer to unproven cryptographic hardness assumptionshérfallowing we will detect
cryptographical strength — or weakness — for most of thecbasnuniform complexity
classes.

A distinguishing algorithmD = D(n,m), depending on the two input parameters
n (input length) andn (complexity parameter), is called @olynomial distinguishing
schemewith respect toM (resp. P(M)) if there are functiongn,m),e~'(n,m) €
(n + m)°® such that for all polynomial bounds = m(n) € n°® and all (single
output) functiongy € B, with M (g) < m(n) it holds thatD(n,m) runs in timet(n, m)
and

Prp(g) — Esep, Pro(f) > e(n,m).



The definition of aquasipolynomial distinguishing schemewith respect toM can be
obtained by replacing(n,m),e '(n,m) € (n 4+ m)°W by t(n,m),e *(n,m) €
(n 4+ m)'ee O (n+m) \We call a distinguishing schenefficient if it is quasipolynomial or
polynomial.

If there is an efficient distinguishing scheniew.r.t. such a complexity measurg
then, obviously, P(M) is cryptographically weak as eaclpatibit of a function generatorin
P(M) can be efficiently distinguished via. Consequently, as ttedficiency of key length
is a central design criterion for modern secret key encoypélgorithms, these algorithms
should have nearly maximal complexity w.r.t. to such comitye measuresM. As
cryptographers are searching for encryption mechaniswia@pdardware implementations
which are very efficient with respect to time and energy comstion, there is dow
complexity dangerto get into the sphere of influence of one of the distinguiglsichemes
presented in this paper.

We consider several types of constant depth circuits ovbounded fan-in MOL,,
AND-, OR-, as well as bounded and unbounded weight thregatiels. The gate function
MOD,, is defined by MOD, (1, ...,z,)=1ifand only ifzy + ... + z, Z 0 mod m.
Unweighted treshold gatds?,, resp.T2,., are defined by the relations

Tgr(asl,...,:nn)zl < 1 t...tT>T

andTgr(asl, oo xp) =1 << =z +...+ 1z, <r. Aweighted treshold gatﬁgr, where
ae 7", is defined by the relation

TS (21,...,xn) =1 <= a121 + ...+ apzy, >

The inputs for the circuits are the constants 0 and 1 andalgefrom the set
{z1,...,2n,Z1,...,Z,}. The definition of the mode of computation as well as the
definition of AND- and OR-gates should be known. As usual A, AC?[m], TC}
we denote the complexity classes consisting of all probleaving polynomial size depth
k circuits over AND-,OR-, resp. AND-, OR-, MOR, resp. unweighted threshold gates.

We further consider branching programs, alternativelyechbinary decision diagrams
(BDDs). A branching program for a Boolean functigne B,, is a directed acyclic graph
G = (V, E) with [ sources. Each sink is labeled by a Boolean constant and eaeh i
node by a Boolean variable. Inner nodes have two outgoingsdme labeled by 0 and the
other by 1. Given an input, the outputf(a); is equal to the label of the sink reached by
the unique path consistent withand starting at sourcg 1 < j < [. Relevant restricted
types of branching programs are

— Ordered binary decision diagrams (OBDDs), where each ctatipnal path has to
respect the same variable ordering. An OBDD which respeifixed variable ordering
m is called ar-OBDD.

— Readk-BDDs, for which on each path each variable is forbidden wuoenore thark
times.

2 Related Work, Our Results

Cryptographic Weakness

In section 3 we present efficient distinguishing schemesttier following complexity
measures,

— a quasipolynomial scheme for the size of rédaBPDs (Theorem 3),

— a quasipolynomial scheme for the size of weighted ThresM@iD, circuits, i.e.
depth 2 circuits with a layer of MOPgates connected with one output layer consisting
of weighted threshold gates (Theorem 1),



— a quasipolynomial scheme for the size of constant depthitsrconsisting of AND-,
OR-, and MOD-gatesp prime (Theorem 2),

— apolynomial scheme for the size of unweighted threshotnlidis of depth 2 (Theorem
4)

— a quasipolynomial scheme for the size of constant depthuitirtaving a constant
number of layers of AND-, OR-gates connected with one oulpyeer of weighted
threshold gates (Theorem 5).

Observe that the function generatgﬁ;» (Z1,...,2n) = Z?Zl a;z;, where ac
Z", (x1,...,zn) € {0,1}", corresponding to the NP-har@ubset Sum Problem
belongs tal'CY [28], which emphasizes the cryptographic weakness of ghésation.

The complexity measure® handled in Theorems 3,1,2,4,5 represent a "frontline” in
the sense that they correspond to the most powerful modelstich we know effective
lower bound arguments, i.e., methods to shldwgZ P(M) for some explicitely defined
problemII. Indeed, all our distinguishing schemes are inspired bxttuevn lower bound
arguments for the corresponding models and can be seen &s atijorithmic version”
of these arguments. It seems that searching for effectwerddound arguments for a
complexity measureM is the same problem as searching for methods to distinguish
unknown P (M )-functions from truly random functions. Note that a simitdrservation,
but with respect to another mode of distinguishing, was nmeldeady byRazborovand
Rudichin [27]. For illustrating the difference of their approachthvour paper let us review
the results in [27] in some more detail and start with thedielhg definition.

Distinguishing Schemes versus Natural Proofs

Let I' C P/poly denote a complexity class afid= (T,,) € I" be a sequence of Boolean
functions for which the input length &, is N=2". T' is called an efficienl -test against a
function generatof' = (F),),eN (consisting of single output functions) if for ail

|Pri[T,(f) = 1] = Pry|[Ta(fas) = 1]| > p1(N) 1)

for a polynomially (inN) bounded functiorp : IN — IN. Hereby, functionsf € B,
are considered to be strings of length = 2". The probability on the left side is taken
w.r.t. the uniform distribution orB,, (the truly random case), the probability on the right
side is taken w.r.t. the uniform distribution d#, (the pseudorandom case). The following
observation was made in [27].

(1) It seems that all complexity classdsfor which we know a method for proving that
F ¢ A for some explicitely defined probleifi have a so called™-Natural Proof for
some complexity classds C P/poly. (the somewhat technical definition of Natural
Proofs is omitted here).

(2) On the other hand (and this is the property of Natural Bradnich is important in our
context), if A has al"-Natural Proof then all function generatdrs= (F,,) belonging
to A have efficient"-tests.

The main implication of [27] is that #/poly-Natural Proof againsP/poly would imply

the nonexistence of function generators which are pseandora w.r.t. P/ poly-tests. But
this implies the nonexistence of pseudorandom bit genex§®7], contradicting widely
believed cryptographic hardness assumptins.

Observe that, in contrast to our concept of pseudorandosniies existence of an
efficient I'-test for a given PRFGF' does not yield any feasible attack against the
corresponding cipher. This is because the whole functiblethas to be processed, which
is of exponential size in. Thus, informally speaken, the message of [27] is that &ffec
lower bound arguments fa¥/, as a rule, imply low complexity circuits which efficiently
distinguish P(M)-functions from truly random functionshere the complexity is measured



in the size of the whole function table. Our message is tliat#¥e lower bound arguments
for M, as a rule, imply even efficient distinguishing attacks aglaeach secret key
encryption mechanism which belongs to P(M), where the mgptime is measured in the
input length of the function. Observe that our most compdidadistinguishing scheme for
the size of constant depth circuits over AND, OR, MDD prime, (Theorem 2) uses an
idea from [27] for constructing aiv C?-Natural Proof for AC[p], p > 2 prime.

Cryptographic Strongness

In section 4 we try to identify the smallest complexity ckssvhich are powerful enough
to contain PRFGs. In [7], a general method for constructiRFBs on the basis of
pseudorandom bit generators is given. The constructiomh&rently sequential, and
at first glance it seems hopeless to build PRFGs with smallighttime complexity.
Naor and Reingold[23,24] used a modified construction, based on concrete rumb
theoretic assumptions instead of generic pseudorandogehirators. They presented a
function generator (which we shortly call NR-generatog tiefinition will be presented in
section 4) which is pseudorandom under the condition theD#ctisional Diffie-Hellman
Assumption, a widely believed cryptographic hardness assumptiomyiés Moreover, the
NR-generator belongs B8C?, in [24] it is claimed (without proof) that it consists @TC?-
functions.

We show in Theorem 6 that the NR-generator even consigt€gffunctions, i.eT'CY
seems to be cryptographic strong wHil€'Y has proved to be weak. Itis an interesting open
question ifT'CY is strong enough to contain PRFGs. Observe Thaf seems to contain
pseudorandom bit generators, take hardcore bits of cryapbdgc one-way functions in
TCY like discrete logarithm or squaring modulo the product af fwime numbers [28].

Some Remarks on Learning versus Distinguishing

Clearly, a successful distinguishing attack against aetd@y encryption algorithm does
not automatically imply that relevant information abou¢ thecret key can be efficiently
computed. Observe that breaking the cipher correspondBdieatly learning an unknown
function from a known concept class. It is intuitively cleand not hard to prove that,
with respect to any reasonable model of algorithmicallyiéay Boolean concept classes
from examples, any efficient learning algorithm for funasofrom a given complexity
class A gives an efficient distinguishing scheme fdr (Use the learning algorithm to
compute a low complexity hypothesisof the unknown functionf and test ifh really
approximatesf.) Observe on the other hand that under the condition that meeship
gueries are forbidden, each efficient distinguishing atgor (which poses oracle queries
only for randomly chosen inputs) can be simulated by an efficiveak learning algorithm,
which computes % + e-approximator for the unknown function [4]. |.e., efficidatown
plaintext distinguishing attacks can be used to really break a cifiiere is some evidence
that in the general case,éhosen plaintext i.e., membership queries are allowed, this is
not the case. It is not hard to see that there is a polynomgindiuishing scheme for
polynomial size OBDDS$.0n the other hand, there are several results proved in [1iwh
strongly support the following conjecture: it is impossilib efficiently learn the optimal
variable ordering of a function with small OBDDs from examesl

In a certain sense the results of this paper can be conside@giptographic limitations
of proving lower bounds for complexity classes containiig?, while the results of
[27] can be seen as cryptographic limitations of provingdowounds against P/poly.

! Take disjoint random subsets of variabsand Z of appropriate logarithmic size and test if the
matrix (f(y, z, 8)), wherey andz range over all assignments Bfand Z, resp., has small rank.
As in the pseudorandom case with probabilitpoly(n), Y and Z are separated by the optimal
variable ordering of the oracle functigh This gives an efficient test.



Observe that cryptographic limitations of learning wereeatly detected bitearnsand
Valiant in [13]. It is shown there that efficient learnability aFCS-functions would
contradict the existence of pseudorandom bit generatdréfhand thus to widely believed
cryptographic hardness assumptions like the security & BSRabiris cryptosystem, see
above.

Note that for all complexity classes! which are shown in section 3 to be
cryptographically weak, it is unknown whethey functions are efficiently learnable.

3 Distinguishing Schemes

Let us firstly consider the following basis t&sfp, ¢, V), whered, p € (0, 1), which accepts
if

N

1

WE Xi g [p—(s,p-l-(s],
i=1

where theX; denoteN mutually independent random variables definedyX,; = 1] =
pandPr[X; = 0] = 1 — p. Hoffdings Inequality (see, e.g., [1], Appendix A) yieldst

Lemma 1. The probability thafl'(p, 5, N') accepts is smaller thae 20"V . O

Note that most of our distinguishing scheme will be t&stshich first choose a random
seedr from an appropriate sét, and then perform a corresponding t&i) on the oracle
function. Such a tesT is called a(p, g, p)-test for a function f* € B, if T accepts a
random function with probability at mogt(i.e., E.cr[Prren, [T (r) acceptsf]] < p), but
if the probability (taken over) thatT (r) accepts/* € F,, with probability at leasy, is at
leastp.

Observe the following easy but useful fact.

Lemma 2. If pg > p then a(p, ¢, p)-test for f* distinguishesf* with advantage at least
pq — p from a truly random function

Theorem 1. There is a polynomial distinguishing scheme for polynorsia¢ weighted
thresholdA O D, circuits.

Proof. The algorithm follows quite straightforwardly from a resfrbm Bruck[6]. If m is
the minimal number of MOB-nodes in a weighted threshold-M@#Rircuit computing a
givenf € B, then there is a MOB-functionp(z) = z;, ® ... ® z;, in B, such that

1

Eze{0,1}n[f®p($)] - %‘ 2 o

Let us fix a polynomial boundh(n) € n®W). Let the schemed work as follows onn
andm = m(n). It chooses an approriate numbeiog(m) < 7 < n, chooses a random

MOD.-functionjp(z) over{zy, ...,z } and accepts if
E _ — N 1 S 1
vef0,1)7 /(@ 0) @ p(a)] — 51 > .
Observe that the running time is linear iV = 2" and that this test is a

(1/N,1, 2e*2ﬁN)—test on each functiorfi* € B,, having weighted threshold4 O D,
circuits of sizem. (Observe the above mentioned result [6] and the fact tleegubfunction

fe, 8) has size< m.) It is easy to see that we can find somez O(log(n)) yielding
advantagglw (see Lemma 2). O

Theorem 2. For all primesp and all constant depth boundsthere is a quasipolynomial
distinguishing scheme for polynomial size depthircuits over{ AND,OR, MOD,}.



The proof is quite lengthy and can be found in the full papdi.[As MOD,. belongs to
ACY[p] [29], the proof for prime powers follows immediately.

Theorem 3. For all & > 1 there is a quasipolynomial distinguishing scheme for
nondeterministic reade-BDDs.

Proof. The first exponential lower bounds on red&d branching programs were
independently proved in [5] and [26]. See also [12] for otimeresting applications of
the method. We use these methods for our distinguishingnsehket us fix an arbitrary
natural constank > 1, and a polynomial bouneh = m(n) € n°M). Let us denote
X, = {z1,...,2,}. In [12] Juknashows the existence of a numbee m°®) = p°W)
and a constant € (0, 1) such that eaclf € B,, which is computable by a nondeterministic
syntactic readktimes branching program of size(n) can be written as

w
i=1

where foralli, 1 < i < W, it holds that there is a partitiok,, = U; UV; UW; of pairwise
disjoint subset#/;, V;, W; of X,, such that

fi(Xn) = g:(Us, Vi) A hi(Vi, W3),

where|U;| > yn and|W;| > yn.
The distinguishing schem® works onn andm = m(n) as follows.

(0) Fix an appropriat&/ € n°(\) andtestvid'(, &, N) if the probability that the oracle

function outputs 1 is at leagt If not accept.

(1) Computes and appropriate parameters: € logo(l) n.Let@Q = 29. Choose randomly
disjoint subsetd/, W from X,, with |U| = |W| = ¢, and a{0, 1}-assignmenb of
X\ (U UW). Finally, choose randorf0), 1}-assignments?, . . ., a" of U.

3 3

(2) Acceptiff f(a',b,c)A...A f(a",b,c) = 1 for at Ieast% assignments of .

The parameterg, N, andr will be specified later. Observe that the running time&isQ).
Observe further that the probability that a truly randomdtimn will be accepted in Step 2
is bounded byze 20°Q ford = L — 277 (see (1)).

On the other hand, in the pseudorandom case it holds withajpitity %(7/2)2‘1 that
U C UjandW C W; for somej for which Pr,[f;(z) = 1] > 5-. Further, with
probability ;- (v/2)?? we haveb fixed in such a way thaPr, [fj(a,b,c) = 1] > &,
wherea andc denote the assignmentsGfand respectively. Observe that this implies
that Pro[gj(a,b) = 1] > & and thatPr.[h;(b,c) = 1] > &. Consequently, with
probabilityp = =" (v/2)% it holds thatg;(a*,b) = ... = g;(a”,b) = 1. But, under
this condition, it holds for all assignments¢o W andi,1 < I < r, that f;(a;,b,¢c) =1
iff hj(b,c) = 1iff f;(ai,b,c) = 1foralll,1 <1 < r.As f;(a;,b,c) = 1 implies
f(a;,b,¢) = 1, the function is accepted in Step 2 with probability 1.

We obtain that Step 1 and 2 form(g, 1, 2e*2‘52@)-test for each functiory of size
at mostm. It can be easily verified that foy = |log,(s?n)] andr = [log,(12s)],
we can find someV € n°™") such thatD(n, m) achieves advantaggn, m) fulfilling

e(n,m)~! € nOlogn), 0

Theorem 4. There is a polynomial distinguishing scheme for polynomsizé unweighted
depth 2 threshold circuits.

Proof. For all distributed functiong : {0,1}"x{0,1}" — {0, 1} consider the following
invariants

(1) = max { By 2.9) © 9(0) © 0] - 5

; g,hGBn}

7



1
o) = max {[B, (10 & 1" )] - 3|+ £ € 0137
The first exponential lower bound on the size of unweightgattd2 threshold circuits was
proved in [10]. The following two observations are implait contained there. Let us fix
an arbitrary polynomial boungh, = m(n) € n°M,

(I) There is a numbeS € m®W such that iff : {0,1}" x {0,1}* — {0,1} has
unweighted depth 2 threshold circuits of sizén) theny(f) > .
(1) For all distributed functionsf : {0,1}" x {0,1}" — {0, 1} it holds thaty(f) <

The distinguishing schem@ = D(n,m) is defined to do the following on andm. It
chooses an appropriate numige O(log(n)) such that fol) = 2¢ the condition) > S

is satisfied, and two random assignmentg z' of {z1,...,z,}. D accepts if
— , — 1 1
|Eye{0’1}q[f(x,y, 0) D f(iL‘ 'Y, 0)] - 5‘ > ﬁ

Observe that the probability that this test accepts a tiautglom function is the same as the
probability that tes'(, 7=, Q) accepts, i.e., at moge—@/5”.

On the other hand, observe that for all oracle functions pé si m the following
holds: if in Step 1 the pair, 2’ determininga(f(-,-,ﬁ)) is chosen (and this occurs
with probability 1/(Q(Q — 1))) then Step 2 will accept with probability 1. In other
words, we have d1/(Q(Q — 1)),1,2e~9/5%)-test. It is quite easy to verify that we
can fix someg € O(log(n)) which gives advantage(n, m) for D(n, m) fulfiling that
e Y(n,m) € n®W), O

Theorem 5. For all £ > 1 it holds that there is a distinguishing algorithm of

quasipolynomially bounded ratio for depk+ 1 circuits consisting ok levels of AN D
andOR gates connected with one weighted threshold gate as ougpet g

The proof exhibits the so called Switching Lemma [11] and barfound in the full
paper [14].

4  PseudorandomI'C?-Functions

We start with the definition of the NR-generatér. For all n the keyss for F' have

the forms = (P,Q,g,7,a1,...,a,), where all components are-bit numbers fulfilling
the following conditions.P and @ are primes and) dividesP — 1, g € Z}p has
multiplicative order@, andax, ..., a, are fromZZg,. Define the corresponding function

fs 1 {0,1}" = Zp C {0,1}™ by

fs(l') = fs(xla' e :mn) = gy(m) mod P:

n

wherey(z) = [];_, ai*. For our purpose it is obviously sufficient to show

i=1 "

Theorem 6. The functionf = f; has polynomial size depth 4 unweighted threshold
circuits.

Proof. We use the following terminology and facts about threshatduits which are
mainly based on results from [8, 9, 28].



Definition 1. A Boolean functiory : {0,1}" — {0,1} is called¢-bounded if there are
integer weightsu , . . ., w,, and¢ pairwise disjoint intervalgay, bx], 1 < k < t of the real
line such that

9(z1,...,xp) =1 = Hks.t.Zwixi € lag, by].
i=1

The functiong is called polynomially bounded if is t-bounded for some € n®1).
A multi-output function is called-bounded if each output bit is &#bounded Boolean
function.

Fact 1: Suppose that a functiofi : {0,1}" — {0,1}"™ can be computed by a depth
circuit of polynomial size, where each gate of the circuifpems a function which can
be written as a sum of at moste n°() polynomially bounded operations. Then
can be computed by a polynomial size degth1 unbounded weight threshold circuit.

Observe the following statements which can be easily proved

Fact2: If g(z1,...,z,) depends only on a linear combinati@?z1 w;x;, where for all
i, 1 <i<n,itholds|w;| € n°"), theng is a polynomially bounded operation.
Fact 3: If a Boolean functiory : {0,1}" — {0, 1} can be written ag = h(g1, ..., 9.),
wherec is a constant and the Boolean functians. .., g. : {0,1}"* — {0,1} are

polynomially bounded operations, thetis a polynomially bounded operation.

As for many other efficient threshold circuit constructiptte key idea is to parallelize
the computation off (z) via Chinese remaindering. Let us fix the firsprime numbers
p1,...,pr, Wherer isthe smallest number such tiét:= [T, ., ., px > []i, ai. Observe
thatr € O(n?) and that allp;, 1 < i < r, are polynomially bounded in, i.e., can be
written asm-bit numbers for somer € O(logn).

Consider the inverse Chinese remaindering transformaii&®i —' which assigns to
eachr-tupel of m bit numbers(z!,... 2"), 2* = (28,_;,...,2¢) fori = 1,...,r, the

uniquely defined number < IT for whichy = 2% mod p; foralli = 1,...,r. Denote by
CRTy' the function

CRT5': ({0,1})™)" — {0,1}"
defined af CRT~'(z',...,2") mod P), and observe

Fact 4: ORTIS1 can be written as the sum of polynomially (i) many polynomially
bounded operations.

The proof (see, e.g., [28]) is based on the fact that
CRT™'(2',...,2") = Z E;z* mod II,
i=1

where fori = 1...r the numbet; denotes the uniquely determined number smaller than
IT for which (E; mod p;) =6, ; forall¢,j =1,...,r. This implies

T m—1
CRT *(z*,...,2") = ZE’ (Z szj) mod IT
i=1 j=0

_

= Z ei,jz;‘. mod IT, 3)
i=1 j=0
wheree; j = (E;2/ mod II).
The computation off (z) will be performed on 3 consecutive levels consisting of
operations which are polynomially bounded (level 1,2) oiahitcan written as polynomial
length sums of polynomially bounded operations.



Level 1: Computez(z) = (z!(z),...,2"(x)), where for alli = 1,...,r, the m-bit
numberz’ is defined to béy(z) mod p;).

Observe that forall = 1,...,r, z/(x) can be written as
n n i
. . . T Tj
2 (z) = H a;’ mod p; = ozl-ZF1 ™ mod p;,
j=1

wherea; denotes a fixed element of order— 1 in ZZ;, andr;'. denotesforj =1,...,n
the discrete logarithm af; to the basev;. Because alt; are polynomially bounded in,
it follows by Fact 2 that(z) is a polynomially bounded operation.

Forall inputsz = (2!,...,2") € ({0,1}™)" denote byY (z) the number

r m—1
Y(z) = Z Z ehzh.
i=1 k=0
Observe that for all it holds thaty(x) ) mod IT andY(z(z)) < mrll.

I =
S =

z(x

= )
Moreover, there exists exactly okel < k < 1, such that

y(2) = Y(=(2)) - kL.
This k is characterized byl < Y (z(z)) < (k + 1)IT — 1. Consequently, the equation

f=fo+...+ fmr_1 holds, where foreach = 0, ..., mr — 1, the functionf;, is defined
as

Frl@) = xu(=(2))(¢" DM mod P),

wherex.(z(x)) € {0,1} is defined byyx (z(z)) = 1iff kIT <Y (z(x)) < (k+ 1)IT — 1.
Further observe that

g¥ @O mod P = Gy(z) mod P,
whereG(z) = ¢ [, H;”ZO(bl-,j)Z;, and thec;, andb; ; aren-bit numbers defined by
e = (g " mod P) and b;; = (¢° mod P).
Observe that, in contrast 9" (*)~*!T, the numbelG},(z) has polynomially many, namely
n(mr + 1), bits. Fixu to be the smallest number such thgf_, p; > 2"(""+1). Observe

further that by the same arguments as above (Level 1), thebpe (G, (2) mod p;) is
foralli =1,..., u polynomially bounded.

Level 2: Forallk =0...mr —1andi =1...u compute
Hi(z) = x&(2)(Gr(2) mod p;).

This is a polynomially bounded operation as each output bjpetds only on two
polynomially bounded operations (Fact 3).

Level 3: Computefi(z) = CRTp (H} (2(z)), ..., H¥(2(z))).

Due to Fact 4 and Fact 1 this yields polynomial size depth 4«igited threshold
circuits for f. O
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5 Open Problems

It would be nice if we could detect for each basic nonunifoomeplexity classi = P(M)
whether it has an efficient distinguishing scheme (then toggsigners should obey the
low complexity danger w.r.tA/) or whetherA contains a PRFG (then lower bound proofs
for this model seem to be a very serious task). Unfortunatiegre are classes liKECY
and AC9[m], m composite, which up to now cannot be classified in the above Wwa
is an interesting open questiontCy is strong enough to contain PRFGs. Observe that
T'CY seems to contain pseudorandom bit generators. (Note teaatigns such as squaring
modulo the product of two unknown primes isTiC? [28].)

Another open problem is the design of an efficient distingimig scheme for
polynomial size weighted threshold-MQMircuits,p an odd prime power. This is the only
example of a complexity measure for which we failed to transfthe known effective
lower bound method (see [15]) into a distinguishing aldorit

A further interesting question is to determine the minimesidware complexity of other
cryptographic primitives like pseudorandom bit genergtg@seudorandom permutation
generators, one-way functions and cryptographically setiash functions. DoegC?Y
contain pseudorandom bit generators? Luby and Rackoff $88jved how to construct
pseudorandom permutatioby three sequential applications of a pseudorandom fumctio
each followed by an XOR-operation. Luby and Rackoff alsowsw how to construct
super pseudorandom permutatidog four such applications. Thus, as a corollary of our
results, efficient pseudorandom permutations can be aanettin TG, and efficient super
pseudorandom permutations can be constructed th T@e conjecture that these results
can be further improved, perhaps based on the results fréin [2
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6 Appendix

6.1 The Proof of Theorem 2

Theorem 2 For all primesp and all constant depth boundkthere is quasipolynomial
distinguishing scheme for polynomial size deptircuits over{ AND,OR, MOD,}.
Proof. We start with some preliminaries: L&f denote an arbitrary field anl = {a, b} an
arbitrary two-element subset &f. Observe that each functign: B® — K has a unique
representation as am-variate multilinear polynomial oveK'. Let us denote byleg ;. (h)
the degree of this representation, i.e., the maximal lelofth monomial occuring with
nonzero coefficient in this representation. Fix a Boolearcfion f : {0,1}" — {0,1}.
The unique functiorf : B —s B, which is obtained frony by replacing all occurences
of 0 by a and of 1 by b is said to be thea, b)-variant of f. Now fix another two
elementsa’ # b’ of K and denote by the (a',b')-variant of f. Observe that for all

a -V ab' —a'b
n) — gy dbn - 4 4
9, yn) = —— f(@r e Ta) + —— 4)
holds, wherez; = 2=y, + 90=at" ¢ {4 b} forall i = 1,...,n. As this

transformation is linear it follows that for all two element # b € K it holds that the
K-degree of the (a,b)-variant gfis the same. We denote this valued»g ;. (f).

ForK = F,, r = p* prime power, we use the denotatidnag,.(f). If the context is
clear and some fiel& is fixed we identify Boolean functions with theid x, 1 )-variants.
We start now with the proof of Theorem 2.

Theorem 2For all primesp and all constant depth boundghere is a uasipolynomial
distinguishing scheme for polynomial size degpttircuits over AND, OR)M OD,-gates.

Let us fix a primep and a depth bound. The proof of the Theorem is based on the
following result ofSmolenskj29]:

Lemma 3. Let f, gq,..., gr € B, be given such thaf = Vf:1 g;- Then for allr < n

3 3

there is aF,-polynomialg = ¢(¢1,...,9m) Of degree at mosfp — 1)r such that

3

It is quite straightforward to derive

Corollary 1. If f € B,, can be computed by a depthAND,OR,MOD)-circuit of size
m then for eachr, p < r < n, there is a functionf : {0,1}" — F, such that

deg,(f) < ((p = 1)r)* and Pry[f(z) # f(2)] < ((m* = 1)/(m —1))27".

Proof. The approximating functiorf is obtained by replacing all AND- and OR- gates
by F,-polynomials which approximate the gate with parametas in Lemma 3. Taking
into account that th&',-degree of MOL) is p-1 and that the indegree of each AND- and
OR-gate is bounded by it is easy to see that the degree pfis bounded bys,(m)
and the error probability is bounded Wy,(m), whered,(m) and E,(m) are defined
via the recursiony; (m) = (p — 1)r, Ey(m) = 27", da(m) = (p — 1)rds—1(m) and
E4(m) = mE4_1(m) + E;(m). Evaluating this recursion gives the claim. O

Consequently, distinguishingC9[p]-functions from truly random functions can be
reduced to testing that a given sample is induced by a fumatibich can be well
approximated by a low degree polynomial o¥&y. If p # 2 the idea for such a test can be
derived fromRazborov'sandRudich’sNatural Proof against C°[3] [27]: Let us fix some
odd numben. In the following, we do all arithmetic operations with resp to the field
F,. For all Boolean functiong : {0,1}" — {0, 1} we denote byf the (1,-1)-variant of
f. As the characteristic df,, is odd we haved # —1.

13



Let us denote byl the F,-vector space of all functions : {1,-1}" — F,. It
holdsdim, (V) = N := 2". We denote further by_ the subspace of alt € V with

deg,(h) < n/2. Asn is odd we havelim,(L) = N/2. The complexity parameteD,(f)
which is essential for us is defined as

D,(f) = dim, (L + fL),

WherefL denotes the subspace of functions which can be Writtgﬁnjash € L,where
- denotes argumentwise multiplication. (Observe that theffeinctionsf : {1, —1}" —
{1, -1} is closed under argumentwise multiplication.)

Observe the following properties of the paramdfer

(i) If f coincides with a functiory : {0,1}" — F,, of degreeP < v+/n, v € (0,1),
outside a fixed input séf C {0,1}" thenD,(f) < (1/2+ )N + |E|.
In order to see this observe at first that there is a fungion{1, —1}" — F,, with
degreeP which coincides Withf outside a fixed input sek’ C {1,-1}", where
|E| = [E"].
Consequently, outside @’ all functions inL + fL coincide with a function of degree
smaller tham/2 + P. Hence,

n/2+P

DN < > (1) +IE < N2+ PIVA) + B

k=0

(The last calculation is a consequence of Stirling’s Fomwthich gives tha( Ln72j) <
2"/v/n.)

(i) For the parity functionr = z1 & ... & z, it holds thatD,(x) = N. This follows
from the well-known fact thatr = y1y»...y,. Consequently, (ovefl, —1}") for
each monomiatn of degree larger than/2 there is a monomiah’ of degree smaller
thann /2 such thatn = 7m'.

(iii) Forall Boolean functions it holds thatD,,(f) + D,(x & f) > 3/2N. In order to see
this observe that

Dy(n & f) — N/2 = dim,(L + #fL/L) =
dim, (fL + #L/fL) < dim,(fL+ #L + L/(fL+ L)) =
dim, (V/(L + fL)) = N —Dy(f).
The statement follows directly. As a consequence of (3) wainob
(iv) The amount of Boolean functiong: {0,1}" — {0,1} with D,(f) > 3/4N is at
least50%.

(v) Inorder to evaluat®,(f), one has to compute tf#,-rank of anNV x N-matrix, i.e.,
it can be done in tim&v (1),

We describe now the distinguishing algoritibhfor { AN D, OR, M OD,}-circuits,
wherep # 2. Fix a polynomialm = m(n) € n®1). Given input parameters and
m = m(n), D at first computes the minimal numbeand the minimal odd numbérsuch
that

64m?~' < 2" and (p-1)%? < (1/8)Vn.

Observe that € O(log(n)), n € O(log?*(n)) and letN = 27.

ThenD chooses randomly an 0,1-assignmetd the set of variable§zsy1,...,2,}
and accepts iD,(f°) < (3/4)N.

Observe that by (v), this computation can be done uing- 2 oracle queries in time
NOO) = exp(log®™ n).
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In the truly random case, by (iv), the probability tHatoutputs 1 is at most 1/2.

Now consider the pseudorandom case and denotg Hye secret function chosen
by the oracle. By Corollary 1, there is a functigh : {0,1} — F, such that
deg,(f) < ((p — 1)r)? such that the probability thaf differs from f is bounded by
((m? —1)/(m —1))27".

Observe that for at least 75% of the 0,1-assignmetdshe variable§ 41, ..., 2, }
it holds that the probability thaf differs from f¢ is bounded by

4((m?-1)/(m-1))27" < 8m? 127", (5)

This implies thatf* differs from f¢ on a set& of less thargm? 127" < (1/8)2%
inputs, i.e., by (i) and adeg, (f) < (1/8)V/7i we obtain

D,(f) < (1/2+1/8)N +(1/8)N = (3/4)N.

Consequently, the probability thdd accepts is at least 3/4. It follows directly that
D distinguishesACY[p]-functions from truly random functions with quasipolynaity
bounded ratio.

Now let us consider the cage= 2. Clearly, if a given Boolean functiofi coincides
outside a seE with a functiong with deg,(g) = d, then for all fieldsK of characteristic
2 and alla # b € K it holds that the (a,b)-variant of coincides with a functiorg of
K-degreel outside a sef; with | E| = |E)|.

The problem is that = —1 holds for fields of characteristic 2.

We choose the field( = F4 = {0,1,2,2 + 1}. Observe the relation? = 2 + 1
and the fact thak® = 1 forall £ € {1,2,2 + 1}. For a Boolean functiorf we denote
by f the (1,2)-variant off. As above, we fix an odd, denoteN = 2", denote byl the
N-dimensionalK -vector space of all functions frofi, z}" into K, and byL the N/2-
dimensional subspace of all functionsiéfdegree smaller tham/2.

Further let for all functions : {1,2}" — {1,2,2+ 1}

Ds(h) = dimg (L + fL).
For Boolean functiong : {0,1}" — {0,1} let D5(f) := D,(f). Observe that property
(i) of D, holds in the same way fab,. Consider further the functiop : {1,2}" —
{1, 2,z + 1} defined by

PY1, - Yn) = Y192 - - Yn.
Observe now the following properties 6f,:

(1) It holds thatdimg (L + p2L) = N. In order to prove this it is sufficient to show that
each monomiah of length larger than n/2 belongs t8L. We can obviously find a
monomialm' of length smaller n/2 such that? = p>m/’. On the other hand, using the
factthaton{1, z}

yi = (z2+ 1)y + 2

it can be seen thah? = (z + 1)!m + h, wheret denotes the length ofi andh a
function of degree smaller thaninduction on the length of. yields the proof.

() The amount of function& : {1, z}" — {1,2,z + 1} forwhich D>(h) > (3/4)N is
at least 50%. For proving this observe that forfall {1, z}"* — {1,2,2 + 1}

Ds(p*h) — N/2 = dimg (L + p*hL/L) = dimg (h2L + p>L/h2L)

> dimg (WL + p?L + L/(W*L + L)) = N — Dy(h?),

i.e.,Da(p*h)+Dy(h?) > (3/2)N. As squaring and multiplication with? are bijective
mappings over the set of functiohs {1,z}" — {1, z, z + 1} the claim follows.
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In other words, if we take a truly random functidn: {1,z}" — {1,z,2z + 1}
thenD,(h) > (3/4)N with significant probability. Unfortunately, we can not shthis
for the (1,z)-variants of randorBooleanfunctions which would be necessary for our
distinguishing algorithm. This is because we do not see amy fer applying the above
distinguishing algorithm straightforwardly in the cagse= 2. The only way-out we see
in the moment is to use the following (allmost complexity s@ering) transformation
of functions f € B, into functions which map intd1,z,z + 1}. We describe the
transformation in a more general form which could also befulsén other similar
situations.

Generating random functions into{1,...,k}, k > 2

We describe here an operat®, ;. .., wheren, k,m are positiv natural numbers
fulfiling m < n andk < 2", which assigns to each Boolean functipn {0,1}" —
{0, 1} ak-nary functionT’, 1. (f) : {0,1} — {0, 1} such that the following holds:

— If f has low complexity w.r.t. to a large number of relevant nafarm complexity
measures thef, ; ,,(f) has, too.

—If f is arandom Boolean function then, fofarge enought’, ;. ., looks "sufficiently
random”. The construction is based on the following tecahic

Lemma 4. For eachn and £ < 2", and each partitionr = (sy,...,s;) of 27, i.e.,
the s; are positive natural numbers fulfilling; + ... + s = 27", there is a function
hy :{0,1}" — {0, 1} with the following properties:

(@ Foralli, 1 <i <k, itholds|h1(i)| = s;.

(b) h has a Boolean decision tree with at m@kt— 1)n + 1 leafs.

Proof. A decision tree for a functioh : {0,1}" — {1,...,k} is a usual Boolean
decision tree for which the leafs are labelled by...,%k. The computation mode is
straightforward. We identify partition®” = s; + ... + s by multisetst = (s1,.. ., sg).
For eachn andk < 2", and each patrtitiom = (s1, ..., sx) we define the corresponding
functionh by giving a decision tre®? for h, of the appropriate size (=number of leafs).
We do this by induction.

Clearly, fork = 1 this tree consists of a single leaf labelled by "1". The sizd iand
matches the statement of the lemma.

If n =1andk = 2 (partition 2=1+1) this tree consists of one inner node leeokeby
z1 and two leafs labelled "1” and "2”.

If k=2andn > 1andr = (s,s'), s +s' =27, then the tre? can be (inductively)
constructed as follows: Let = max{s, s’} and observe that > 2"~!. D" consists of
a source labelled by,,, one successor is a leaf, the other successﬂﬁj@ Lt
follows easily by induction that the size 61?875,) is at mostn + 1.

Now let us fix arbitraryn > 1, k¥ > 2, and a partitionm = (sq,...,s;) of 2™.
Let us fix the uniquely definetl 1 < I < k, for whichs; +... + s 7, < 2" ! and
S1+...+85 > n—1,

Lets) = 2771 — (sy + ... + 8-1), "1 = s, — s}, @ = (s1,...,81-1,5)), and
7" = (s"1,541 .. .,5:). Observe that both’ andr” are partitions o™ *.

D? can be defined as a source labelledihy the 0-successor of the sourceDﬁ,‘l,
the 1-successor is a copy B, ' for which the leafs are labelled Byl + 1, .. ., k instead
of 1,2,...,(k — 1) + 1. By induction hypothesis the size & is at most

I-Dmn—-1)+1+(k-)n-1)+1=(k-1n+3-k<(k—1n+1.

1
2n—1 90 _t)

0
We identify each functiorh, : {0,1}" — {1,...,k} with k£ Boolean functions
hl, ..., hk defined by '
hl(z) =1 < hg(z) =j.
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We callhl, ..., h* thecharacteristic Boolean functiorsf 4. Observe

Corollary 2. For all positive natural numbera andk with £ < 27, all partitions 7 of 2"
of lengthk, and allj, 1 < j < k, it holds that the Boolean functiord, , 1 < j < k, can
be written as the sum of; monomials withS; + ... + S < (k—1)n + 1.

Proof. Take the monomials fa/. corresponding to the paths i? leading to leafs with
label "j". O

Now, for all positive natural numbersandk with £ < 2™ fix the balancedpartitionw
of 2" consisting ofr times[2"/k] andk — r times|2"/k|, wherer = 2™ mod k. Denote
by hl .,...,hE , the characteristic Boolean functions corresponding.to

Fix a further positive natural number < n, and letS = 2"~™. We now define
the operatofT), . For all Boolean functiong : {0,1}" — {0,1} let T}, x.m(f) :
{0,1}™ — {0, 1} be defined

Ty (F) (@1, xm) =D jhL (y1,. . ys),

withy; = f(z1,...,2m, b)), whereb™® ... b(%) denote theS possible 0,1-assignments
of £, m+1,. .., T, in the canonical order.

Now denote byB,, ;. the set of all functions: : {0,1}" — {1,...,k}. In the
following lemma we estimate how much the distribution inéd®y T, 1 1, (f) 0N By, i

deviates from the uniform distribution a,, ;.

Lemma 5. Fix an arbitrary subse¥ of B,, ; and denote by the probability of the event
E w.r.t. the uniform distribution oveB,, ;, and withp the probability of the evernf’ w.r.t.
the distribution which is induced V&, ;. (f) by uniformly distributed random Boolean
functionsf : {0,1}" — {0,1}. Then

lp—p| < pk2m S(1+k275)2".

Corollary 3. If n,m are choosen in such a way that f&f = 2"~™ it holds that
2% > ak2™ for somea > 1, then

p—5l < (p/a)e'/".

Proof. Let us denotel/ = 2™. Observe that for alt € {0,1}" and allj, 1 < j < &,
the probability thati(x) = j, whereh denotes a random function distributed according to
Tok.m(f),isin(1/k—2751/k + 279). Consequently,

)M =1 = pME27S(1 4 2)M

p—bl <pEMA/k+275)M —p=p(1+k27°
for somez € (1,1 + k2=°). Hence|p — p| < pMk2=5(1 + k2=%)M,

The Corollary follows by applying the well known inequality + (z/N))N < e* for
all z > 0, which yields(p/a)(1 4+ (1/aM))M < (p/a)e'/. O

The distinguishing algorithm for p = 2
For all d > 2, a distinguishing algorithmD for depth d circuits over

{AND,OR,MOD,} can be designed as follows. Given input parametezadm(n) €
n®W) | D fixes parameters and# as the minimal natural numbers fulfilling

19220+ < 9" and rit? < (1/8)V7.

Observe that92 = 24 - 8, r € O(log(n)), andii € O(log*>**?) ), and let\N = 27,
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At next, D computes a parameterc O(loglog(n)) such that forS = 27 it holds that
29> 12N and S(m+2)+1<m?

This is always possible for, m large enough.

ThenD chooses randomly a 0,1-assignmetd the variables:s 1, ..., Th—s.

D accepts iffDy (h¢) < (3/4) N, whereh denotes the (1,z,z+1)-variant®f 3 ,,_(f).
Observe that the evaluation of one valuehoheedsS oracle queries and evaluations of
h% 4, h% 5 andh? 4, i.e. the running time of the algorithm is bounded(®Y.S)°*) which
is quasipolynomially bounded im.

In the truly random case)¢ is a random function from{1, z}" into {1, 2,2 + 1}
which is distributed according to that distribution 8% 5 which is induced by the uniform
distribution onBj 5 2 Via T45,3,5-

Remember that by (1) the probability that, (k) > (3/4)N is at leastl /2 w.r.t. the
uniform distribution onB;, 3. Consequently, by Corollary 3, and 2% > 4-3- N we obtain
that the probability thatl accepts is at most

1/2+ (1/4)e!/* < 11/16.

Now consider the pseudorandom case and denofethg secret function fixed by the
oracle. Observe that for all = 1, 2, 3 the functionsi* : {0,1}" — {0, 1} defined by

hu(‘r) = hg,S(yla v 7y5)

with y; = f(z,b), where b, ... b(%) denote theS possible assignments of
Tn_s+1s---, %y IN the canonical order, can be computed by AND,OR,M@ibcuits of
depthd + 2 and sizeSm + 25 + 1 = S(m + 2) + 1 < m?. (see Corollary 2.)

Consequently, for the given, there is a degree?*? polynomial g for which the
probability thath differs from g is at most

3(m2(d+2) _ 1)/(m2 _ 1)277‘ S 6m2(d+1)27’r"

for m large enough.

Hence, for an amount of at least 75% of all 0,1-assignments the variables
Ti41,. .., Tn_s it holds that the error probability 0f¢ w.r.t. ¢ is at leasR4m?2(@+1)2-7
i.e. h¢ andg® differ with respect to at most

24m 9= < (1/8)27

inputs. Suppose that we have choosen sueh 8hen, as the degree gf is smaller
than (1/8)+/n, we get by (i) thatD,(h¢) < (3/4)N, i.e., D accepts with probability
3/4 > 11/16. We obtain quasipolynomial distinguishing ratio. O

6.2 The Proof of Theorem 5

quasipolynomially bounded ratio for depkh+ 1 circuits consisting ok levels of AN D

andOR gates connected with one weighted threshold gate as ouspet g

Proof. Let us call an unbounded fanin degifcircuit Xy -circuit, resp.ITj-circuit, if the
circuit consists of inner levels, which contain either only AND-gates, or onlR@ates,
and if the top gate is an OR-gate, resp. an AND-gate.

We use the fact that for each Boolean functiprwith polynomial size weighted
thresholdfI;, or with polynomial size weighted threshol circuits the following
holds. With high probability, a random subfunction ¢f Threshold-MOD circuits
of quasipolynomial size. According to [11] we consider thet §0, 1, «}™ of partial

Theorem 5 For all & > 1 it holds that there is a distinguishing algorithm of
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assignments to the set of variables , . . ., z,, } with respect to the probability distribution
R(p) which is defined by
Pr(p] = 11, Prlp],

wherePr[p; = %] = p, andPr[p; = 0] = Pr[p; = 1] = (1 — p)/2.

We exhibit theSwitching Lemmdl1] saying that for allf € B,, p € (0,1) and
s,t < n it holds the following. If f has a¥;- (resp.ll,-circuit) of bottom fan-in< ¢ than
the probability thatf? has all,-circuit (resp.X,-circuit) of bottom fan-in< s is at least
1— «?®, where the partial assignmemts distributed according t&(p) and the value: can
be estimated byt < 5pt (see [30] pp. 325-331 for a nice presentation of the proof).

Moreover, it is shown in [19] that iff has aX,-circuit of bottom fan-in< ¢ and a
I5-circuit of bottom fan-in< s then f has a decision tree of depth, and, consequently,
can be computed exactly by a real polynomial of degtee

Let us fix a polynomial boundr = m(n) € n®") and suppose that ¢ B, can
be computed by a threshold; circuit S, where each level of the circuit consists of at
mostm(n) nodes. The case of threshalf}: circuits can be treated in a similar way. Fix
s € O(log(n)) to be the smallest number for whi@ > m(n). The gates at level 1 &
can be seen a5,- (resp.Il,-) circuits of bottom fanin ¥ s. Fix an appropriate probability
p, which will be specified later, and consider partial assigntap of {z;,...,z,} to be
distributed according tdz(p). Observe that a standard probability estimation shows that
the probability thatf” depends on at leagh variables is at least 1/3. Consequently, the
probability that each bottom gate 6fcan be replaced by an equivaldiit- (resp.Xs-)
circuits of bottom fanirs is at least

1-2/3-2%° < 1/3— (10ps)°.

We fix a number in such a way that fop = 27" holds (10ps)® < 1/6. Observe that
p~! € O(log(n)).

It follows that the probability thatf? depends on at leagin variables and has
thresholdX;, circuits of widthm(n) and bottom fanins is at least 1/6. This argument
can be iteratively applied t¢”. It turns out that forp distributed according td(p*), the
probability thatf” depends on at leagtn variables and has a threshalfi- or threshold-
X, circuit of bottom fanins? is at least(1/6)*. Observe that this implies that’ has
threshold-MOD circuits of size

52

(b(n, S) = Z (?) c n0(10g2 n)’

=0

i.e., we can apply the distinguishing scheme for thresi®@b, circuits. Letm' =
#(n,s) + 1 and@ and N be defined as above in the proof of Theorem 1. We suppose
thatn, s are large enough such thetln(m')/m’ < (1/6)**+* andp*n > 7.

The distinguishing scheme for weighted threshalg- and weighted thresholdF-
circuits of width m(n) works as follows. Choose randomly a partial assignmemif
{x1,...,7,}, wherep is distributed according t&(p*) and test whethef” has weighted
threshold-MOD circuits of sizeg(n, s) with the algorithm of Theorem 1. The choice of
the internal parametefs s, m’ andn yields that the advantage is at le@st6)* — (1/6)*+1
and that the running time is quasipolynomially bounded.in O
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