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Abstract Fungi producing high xylanase levels have
attracted considerable attention because of their potential
industrial applications. Batch cultivations of Aspergillus
terricola fungus were evaluated in stirred tank and airlift
bioreactors, by using wheat bran particles suspended in
the cultivation medium as substrate for xylanase and
�-xylosidase production. In the stirred tank bioreactor,
in physical conditions of 30°C, 300 rpm, and aeration of
1 vvm (1 l min¡1), with direct inoculation of fungal spores,
7,475 U l¡1 xylanase was obtained after 36 h of operation,
remaining constant after 24 h. In the absence of air injec-
tion in the stirred tank reactor, limited xylanase production
was observed (Wnal concentration 740 U l¡1). When the fer-
mentation process was realized in the airlift bioreactor,
xylanase production was higher than that observed in the
stirred tank bioreactor, being 9,265 U l¡1 at 0.07 vvm
(0.4 l min¡1) and 12,845 U l¡1 at 0.17 vvm (1 l min¡1) aer-
ation rate.

Keywords Xylanase · Bioreactors · Aspergillus · 
Wheat bran

Introduction

Biomass from plant material is the most abundant and
widespread renewable raw material for sustainable production
of clean and aVordable biofuels, biopower, and high-value
bioproducts. Thus, lignocellulosic materials from forest,
agriculture, set-aside lands or industry, mainly made up
of lignin, cellulose, and hemicelluloses, are potential feed-
stocks for bioprocess utilization [9]. Xylans, the most abun-
dant of the hemicelluloses of plant cell walls, are composed
of 1,4-�-D-xylopyranose residues with diVerent substituent
groups in the side-chain [3, 7, 24].

Xylanases (EC 3.2.1.8), which cleave the backbone and
initiate depolymerization of xylan, have received most
attention, mainly because of their potential use in preble-
aching of cellulose pulp to minimize use of active chlorine
[21]. Apart from use in pulp and paper industry, xylanases
are also used in food and foodstuV processing industry; as
food additives in animal feed for poultry, swine, and rumi-
nants; in manufacture of bread to increase volume and
water adsorption; in juice and wine industries for extrac-
tion, clearing, and stabilization of fruit pulp; and in process-
ing of plant Wbers in textile industry. Xylose, the hydrolytic
product of xylan, can be also converted by fermentation
into combustible liquids (ethanol), xylitol, furfural, and sol-
vents [23].

Successful application of xylanase requires production
of large amounts of this enzyme. However, in many of the
works published on this subject, fermentations were carried
out in small Xasks [6, 9, 26], which are not viable for mass
production. On the other hand, Kim et al. [19] found that
xylanase production by Aspergillus niger decreased consid-
erably when the fungus was grown in a stirred tank bioreac-
tor (STB), presumably because of damage to mycelia
caused by shear stress. Thus, to achieve optimal production,
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selection of an appropriate bioreactor conWguration is criti-
cal. Airlift bioreactors (ALB) provide a low-shear environ-
ment for enzyme production. They do not have mechanical
stirrers, and so the risk of contamination is reduced, as is
energy demand. In addition, they are uncomplicated, reli-
able, and low cost. The aim of this work is to evaluate the
performance of diVerent bioreactors (stirred tank and air-
lift) and the inXuence of aeration for xylanase production
by Aspergillus terricola using wheat bran as carbon source.

Materials and methods

Material

Wheat residues (wheat bran) were kindly supplied by a
local farmer (Portugal), and stored at room temperature
until use.

Microorganism

Aspergillus terricola was isolated from tree trunk surface
(Hovenia dulcis) in the Faculty of Philosophy, Sciences and
Letters of Ribeirão Preto, University of São Paulo, Brazil.
The strain was classiWed as Aspergillus terricola and
deposited at the Mycology Culture Collection URM at the
Federal University of Pernambuco, Brazil. Stock cultures
were propagated on potato dextrose agar (PDA) medium at
30°C for 1 week, and stored at 4°C. This microorganism
was selected from among 35 fungi that were good produc-
ers of xylanases.

Inoculum preparation

The microorganism was inoculated in Vogel medium [29] con-
taining 0.5% (w/v) wheat bran as carbon source. The spore
concentration in the suspension was determined in a Neubauer
counting chamber. Approximately 3 £ 108 spores ml¡1 were
inoculated directly into the bioreactor.

Bioreactor conWguration and operating conditions

Initially, enzyme production was performed in a 2-l stirred
tank bioreactor (STB; Bioengineering AG CH-8636, Wald,
Switzerland) equipped with automatic monitoring and con-
trol facilities for temperature, pH, agitation, and aeration.
The working volume was 1 l, the temperature was kept at
30°C and agitation at 300 rpm, and the aeration rate was
either adjusted to 1 vvm (1 l min¡1) or was absent.

An airlift bioreactor (ALB), made of polymethylmethacry-
late (Perspex; Department of Biological Engineering, Univer-
sity of Minho/Portugal) and equipped with automatic
monitoring and control facilities for temperature, pH, and aer-

ation, was also used for enzyme production. In this case, the
working volume was 6 l. A full description of the ALB and a
diagram are shown in Fig. 1. The bioreactor was programmed
to work at 30°C, and Wlter-sterilized air was supplied at
0.07 vvm (0.4 l min¡1) or 0.17 vvm (1 l min¡1) by means of a
perforated plate at the bottom of the bioreactor, thus promot-
ing eYcient air diVusion throughout the bioreactor.

In the cultivation medium, wheat bran at 0.5% (w/v) was
the only carbon source used. In all experiments the initial pH
was adjusted to 6.0 and monitored during the process. Anti-
foam solution was used when necessary. Samples were col-
lected every 12 or 24 h, Wltered, and analyzed in triplicate.

Enzymatic assays

Xylanase activity was determined as described by Miller
[22] using 1% (w/v) birchwood xylan as substrate. The
reaction mixture contained 0.2 ml of the respective sub-
strate suspended in McIlvaine buVer at pH 6.5, and 0.2 ml
of the enzyme. The samples were incubated at 60°C.
�-Xylosidase activity was determined as described in Ker-
sters-Hilderson et al. [17] using 0.25% (w/v) p-nitrophenyl-
�-D-xylopyranoside (PNP-xyl) as substrate. The reaction
mixture contained 0.2 ml enzyme, 0.15 ml McIlvaine buVer
at pH 4.0, and 0.05 ml PNP-xyl suspended in distilled
water. The samples were incubated at 70°C. One unit of
enzyme activity was deWned as the amount of enzyme
which releases 1 �mol reducing sugar from the respective
substrates per minute under the assay conditions. Total
activity was deWned as units per ml multiplied by the total
enzyme volume of the Wltrate. All samples were analyzed in
triplicate.

Fig. 1 Schematic representation of the airlift tower loop bioreactor
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Results and discussion

Cultivation in stirred tank bioreactor (STB)

The inXuence of aeration was investigated under the fol-
lowing conditions: The main cultures were performed with
3 £ 108 spores ml¡1, at stirrer speed of 300 rpm, tempera-
ture of 30°C, initial pH of 6.0, and aeration rate of 1 vvm.
In the cultivation medium, wheat bran at 0.5% (w/v) was
the only carbon source used.

It is well known that hemicelluloses, especially xylan
from various sources, are excellent inducers for xylanase
(EC 3.2.1.8). The cost of production and low yields of these
enzymes are the major obstacles to industrial application.
Therefore, investigations on the ability of cellulose- and
hemicellulose-hydrolyzing microbial strains to utilize inex-
pensive substrate have been carried out. Much work has
been directed to develop hyperproducing microbial strains
while also focusing on improvement of the fermentation
processes [12, 16]. Among the various biomass materials,
lignocellulosic biomass has been considered as a promising
feedstock because of its abundance, low cost, and huge
potential availability.

Wheat bran is an inexpensive byproduct containing a lot
of xylan, which makes it one of the most popular compo-
nents of complex media for xylanase production. It consists
of 28% hemicellulose, 9% starch, 8.7% cellulose, 3.2% lig-
nin, and 3% pectin [27]. However, wheat bran particles
must be suspended in the cultivation medium so that ade-
quate contact occurs between particles and the biomass.

Stirring speed of 300 rpm was the lowest speed required
to maintain the wheat bran circulating homogeneously
throughout the bioreactor. Besides, Siedenberg et al. [27]
observed that levels of xylanase activity were the highest at
300 rpm, decreasing with increasing stirrer speed. The
lower xylanase activity at higher stirrer speeds can be
explained by the less intimate contact between the fungal
mycelium and the wheat bran, since the attachment of the
fungus to the wheat bran surface is reduced at higher stirrer
speeds.

In submerged culture, xylanase production by Wlamen-
tous fungi may also be aVected by shear stress, which is
related to the agitation rate. The high viscosity and Newto-
nian behavior of culture broths of Wlamentous fungi often
require the use of high agitation rates to provide adequate
mixing and oxygen transfer. However, mycelial damage
due to high shear stress limits the practicable range of stir-
rer speed values and consequently the volumetric biomass
and enzyme productivity of the culture [5].

Induction of xylanase formation by A. terricola started
after 12 h of cultivation, and a plateau of activity was
observed between 36 and 60 h of fermentation (7,475 U l¡1),
while induction of �-xylosidase activity started only after

48 h of cultivation with a plateau of activity observed in the
period 120–168 h (10.1 U l¡1) (Fig. 2).

Fenice et al. [10] reported that laccase and Mn-peroxi-
dase (MnP) productions were strongly aVected by the
impeller speed in STR. The activity of laccase was highest
(4,600 U l¡1 after 13 days of fermentation) at 250 rpm,
while that of MnP was highest at 500 rpm (370 U l¡1 on
day 9). The aeration rate also greatly aVected both enzyme
activities, which were highest (3,900 and 360 U l¡1 on
day 9 for laccase and MnP, respectively) at 1.0 vvm. In
fact, stirrer speeds above 500 rpm led to reduced levels of
enzyme activity. Negative eVects on production of both
enzymes were also observed at 1.5 vvm. Probably, the
microorganism suVered a certain amount of shear stress.

Reddy et al. [25] reported the highest xylanase activity
(13,500 nKat ml¡1) by T. lanuginosus SSBP at 1 vvm,
while aeration rates greater than 1 vvm adversely aVected
production of xylanase and accessory enzymes. In that
work, aeration rates were found to have a strong inXuence
on xylanase production. However, authors speculated that
production of accessory enzymes (�-xylosidase and �-glu-
cosidase) is dependent on neither agitation nor aeration, and
may be inhibited at genetic level. Hoq et al. [14] reported that
increasing aeration rates from 0.5 to 1 vvm favored xylan-
ase production by T. lanuginosus RT9 (41,630 U l¡1 h¡1),
and for aeration rates above 1 vvm, reduced levels of xylanase
activity were also observed.

However, if very high air Xow rates are used in conjunc-
tion with low stirring speeds, air envelopes the impeller
without dispersion and the air Xow pattern in the vessel is
dominated by air Xowing up the stirrer shaft. This phenom-
enon, known as impeller “Xooding,” should be avoided,
because an impeller surrounded by air no longer contacts
the liquid properly, resulting in poor mixing, reduced air
dispersion, and diminished oxygen transfer rates [8].

Fig. 2 Cultivation in the stirred tank bioreactor at 30°C, 300 rpm, ini-
tial pH of 6.0, and aeration rate of 1 vvm (1 l min¡1). Main cultures
were performed with inoculum of 3 £ 108 spores ml¡1
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Batch cultivation under the same conditions but without
aeration led to limitation of xylanase production (Fig. 3).
The genus Aspergillus includes aerobic microorganisms,
and the fact that pH practically did not change proves
the diYculty of spore germination under those conditions.
�-Xylosidase activity was at levels similar to those of the
aerobic fermentation. At this stage it is important to stress
that �-xylosidases are often intracellular, but they can
sometimes be associated to the membrane (as indicated by
Kulkarni et al.) [20], thus justifying the observed low levels
of extracellular �-xylosidase.

Although aeration seems to have been highly inXuential
in xylanase production in STB by A. terricola, it is impor-
tant to note the diYculties of working with solid substrates,
since with aeration a large fraction of the wheat bran was
impelled to the bioreactor surface (outside of the fermenta-
tion medium). Fontana et al. [11] deWned a culture medium
based on wheat bran aqueous extract (WBE) (without sol-
ids), which resulted in polygalacturonase (PG) activities
similar to those obtained in media containing wheat bran
(WB). After 96 h of cultivation, the highest endo- and exo-
PG activity levels were obtained in the WB medium—40.3
and 18.6 U ml¡1, respectively—whereas with the WBE
medium, lower enzymatic activities were achieved:
33.1 U ml¡1 for endo-PG, and 16.1 U ml¡1 for exo-PG.

Cultivation in airlift bioreactor (ALB)

The runs in the ALB were performed under initial inocula-
tion of 3 £ 108 spores ml¡1, at 30°C, initial pH of 6.0, and
aeration of 0.07 vvm or 0.17 vvm. Under both aeration con-
ditions, xylanase production occurred, being higher at the
highest aeration rate.

When 0.07 vvm of aeration was introduced in the ALB,
xylanase and �-xylosidase synthesis occurred practically

during the same period, i.e., mainly between 96 and 168 h
of fermentation, with peak activity at 144 h (9,265 U l¡1)
for xylanase and 120 h (10.1 U l¡1) for �-xylosidase
(Fig. 4). However, with 0.17 vvm of aeration, both xylan-
ase and �-xylosidase production were faster, occurring
between 48 and 144 h of fermentation, with maxima for
xylanase (12,845 U l¡1) and �-xylosidase (10.1 U l¡1) pro-
duction observed at 96 h (Fig. 5).

Regarding the production period, Fenice et al. [10]
observed that the lag phase of laccase production in ALB
was markedly reduced with respect to that in STR. In fact,
the onset of enzyme activity occurred after 2 days from
inoculation and the maximal production (4,300 U l¡1 on
day 7) occurred earlier. Thereafter, activity levels remained
nearly constant until the end of fermentation (14 days). The
time required to reach the maximal MnP activity
(410 U l¡1) was also reduced (7 days). A negative eVect of
agitation (mechanical stress) on production of fungal per-
oxidases [4, 28] and laccases [13, 30] has been observed

Fig. 3 Cultivation in the stirred tank bioreactor at 30°C, 300 rpm, ini-
tial pH of 6.0, and without aeration. Main cultures were performed
with inoculum of 3 £ 108 spores ml¡1
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Fig. 4 Cultivation in the airlift tower loop bioreactor at 30°C, initial
pH at 6.0, and aeration rate of 0.07 vvm (0.4 l min¡1). Main cultures
were performed with inoculum of 3 £ 108 spores ml¡1
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Fig. 5 Cultivation in the airlift tower loop bioreactor at 30°C, initial
pH of 6.0, and aeration rate of 0.17 vvm (1 l min¡1). Main cultures
were performed with inoculum of 3 £ 108 spores ml¡1
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in other studies. In fact, with a pneumatically agitated sys-
tem, both the lag phase and the time required to reach max-
imal enzyme activities were considerably reduced with
respect to STR.

Aeration was very important to obtain good productivity
values for xylanolytic enzymes, while also contributing to
foster the growth of the microorganism. Fungal biomass
determination was hindered by the presence of solid resi-
dues (wheat bran), and also because of adherence of the
fungus to the wheat bran and by physical adsorption of fun-
gal cells to wheat bran [1], making it impossible to deter-
mine the fungal cell mass concentration in the culture.
Furthermore, aeration inXuenced the time of production of
those enzymes, thus contributing to improve the viability of
the process.

A high aeration rate was important to maintain circula-
tion of the medium inside the ALB, particularly due to Wla-
mentous mycelium formation. This Wlamentous network
increased the medium viscosity considerably, causing a
reduction of medium circulation.

The glucoamylase level of the free cell culture reported
by Kilonzo et al. [18] in the ALB was approximately 20%
higher than that in the in STB due to high cell density (cell
dry weight/volume of bioreactor).

The speciWc power input and shear stress on the cells are
described to be lower in ALB, in comparison with STB.
Kim et al. [19] and Siedenberg et al. [27] also observed that
xylanase production was higher in ALB than in STB. ALBs
can only be operated at low speciWc power inputs at which
oxygen transfer occurs with high eYciency with respect to
the power input. However, their optimal operation range
diVers considerably from that of STBs. When using ALBs,
diluted cultivation medium has to be used to reduce the cell
mass concentration and the viscosity of the medium. The
solid substrate concentration (e.g., peanut Xour) must be
reduced as well to achieve the necessary reduction in the
viscosity of the cultivation medium. With consumption of
the solid substrate and the change of the morphology of the
fungus, the viscosity of the cultivation medium decreased
and the mass transfer into the medium and the supply of
oxygen and nutrient to cells improved [27].

Aleksieva and Peeva [2] observed in Humicola lutea that
proteolytic activity obtained in batch cultivation in ALB
and STB were similar, reaching maximum activity of
around 1,100–1,200 U ml¡1 after 60 h.

In contrast, Fontana et al. [11] reported that, when
Aspergillus oryzae IPT301 was cultivated in STR and airlift
bioreactors, slightly higher polygalacturonase production
was achieved for the STR, in terms of both yield and
productivity. Levels of 91.3 U ml¡1 of endo-PG and
65.2 U ml¡1 of exo-PG were reached in the STR bioreactor
and 86.2 U ml¡1 of endo-PG and 60.6 U ml¡1 of exo-PG in
the airlift bioreactor in approximately 96 h of cultivation.

According to Kahar et al. [15], mycelium growth and mor-
phology, and formation of products are related to the type
of bioreactor used. For A. oryzae IPT301, apparently, the
expected shearing eVect of the STR turbines is not so criti-
cal. However, the similar results for the Wnal endo- and
exo-polygalacturonase activities suggest that the airlift bio-
reactor has potential for use in production of these enzymes
in larger scale operation, with lower installation and opera-
tion costs in comparison with STR.

Conclusions

The results obtained suggest that variables such as aeration
and bioreactor conWguration are key to the deWnition of a
strategy to optimize biosynthesis and production of micro-
bial enzymes. Xylanase production rates by Aspergillus ter-
ricola in ALB were considerably higher than in STB. Other
researchers reported that production of some enzymes
decreased considerably when the fungus was grown in
STB, presumably because of damage to mycelia caused by
shear stress. This type of bioreactor, which is widely used
for xylanase production, is known to induce enough shear
to rupture mycelial cells and deactivate xylanase. Recently,
alternative bioreactors, such as ALB or bubble columns,
which induce lower shear stress, have started to Wnd appli-
cation in xylanase production.
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