
LOVER: Light-weight fOrmal Verification of
adaptivE systems at Run time

Amir Molzam Sharifloo1 and Paola Spoletini2

1Dipartimento di Elettronica e Informazione, Politecnico di Milano,
P.zza Leonardo da Vinci 32, 20133 Milano, Italy

2Università dell’Insubria
via Ravasi, 2, 21100 - Varese (Italy)

molzam@elet.polimi.it, paola.spoletini@uninsubria.it

Abstract. Adaptive systems are able to modify their behaviors to re-
spond to significant changes at run time such as component failures. In
many cases, run-time adaptation is simply replacing a piece of system
with a new one without interrupting the system operation. In terms of
component-based systems, an adaptation may be defined as replacing a
system component with a new version at run time. However, updating a
system with new components requires the assurance that the new config-
uration will fully satisfy the expected requirements. Formal verification
has been widely used to guarantee that a system specification satisfies a
set of properties. However, applying verification techniques at run time
for any potential change can be very expensive and sometimes unfea-
sible. In this paper, we present a methodology, called LOVER, for the
lightweight verification of component-based adaptive systems. LOVER
provides a new process model supported with formalisms, verification
algorithms and tool to verify a significant subset of CTL properties.

1 Introduction

Adaptive systems have been deeply studied over the last decade as means for
developing dependable software applications, always more flexible and dynamic
[4]. Examples of such systems are service-oriented applications [10], active sensor
networks [12] and smart grids [1]. Due to the increasingly use of such systems, a
lot of research has been carried out to develop techniques that support adapta-
tion [4, 8]. Run-time adaptation is required if a system is not able to cope with
the unpredicted changes occurring at run time. For example, a service hired from
an external component fails during the system operation or stops supporting a
set of requirements. To react to such failures, a new component, discovered at
run time, may be plugged to the system. Similarly, new components with higher
level of QoS may become available while the system is operating, which may be
preferred to the currently used component. However, since there has been no
information about the behavior of the new component at design time, it is nec-
essary to reason about its impact and negative side effects on the overall system
behavior at run time.

2 Amir Molzam Sharifloo and Paola Spoletini

To avoid any violations, it is necessary to guarantee that the overall system
properties will be satisfied in case of applying an adaptation. This could be
assured by formally verifying the new system specification, which is obtained
by integrating the specification of the new component, against the properties.
Intuitively, it is an extra work and overhead due to the fact that the major part of
the specification does not change. Moreover, model checking a large specification
at run time is quite difficult because of the time and resource limitations. If we
could reuse the verification results of the invariant part for future verifications,
this would significantly save the time and resource usage at run time.

The existing approaches to verifying adaptive systems mainly focus on the
specification and verification of adaptation process [19, 2]. These approaches as-
sume that there is a complete knowledge about the system and environment
behavior at design time, so they are able to reason about the properties of the
whole interaction model. However, this is not the case in many realistic ex-
amples, in which the information about the behavior of some components and
the environment are obtained only at run time. This is why run-time verifica-
tion techniques come into play to monitor and check that the running system
does not violate the specification and the properties [11, 14]. Although these ap-
proaches are less expensive than model-checking techniques but still they are
not complete, and do not guarantee the satisfaction of the properties.

The contribution of this paper is a methodology, called LOVER1, to effi-
ciently verify that a set of adaptations will lead to the satisfaction of the overall
system properties. More specifically, our approach allows the designer to verify
the system at design time, even if some components are unspecified. Our model
checking algorithm then verifies if the requirements hold and produces a set
of constraints for the unspecified components, if needed. Once the components
are specified at runtime they can be verified in isolation against this new set of
constraints, without checking again the entire system.

Our approach is different from the assume-guarantee approaches in which a
set of assumptions on the environment of a component is made that guaran-
tees the satisfaction of the desired properties [13, 6, 9]. Instead we address the
run-time model checking of incomplete or changing specifications that comprise
dynamic components evolving at run time. We focus on component-based adap-
tive systems represented by an extension of Labeled Transition Systems (LTS)
and verification algorithms for qualitative Computational Tree Logic (qCTL),
CTL without the next operator. Moreover, we provide a tool support for the
verification algorithm, and a formalism to specify the constraints.

The remainder of the paper is organized as follows. Section 2 intuitively
motivates the research problem through a running example. Section 3 presents
LOVER process model, the formalisms, and the verification algorithms. Exper-
imental results are reported in Section 4. Section 5 discusses the state of the
art in verifying adaptive systems, and finally, Section 6 concludes the paper and
gives some hints for the future work.

1 Light-weight formal verification of adaptive systems at run time

Light-weight formal verification 3

2 The Running Example

In this section, we introduce the running example that is used through the pa-
per. Secure Information Retrieval (SIR) is an information system that receives
requests, in form of questions, from the clients and responds to them via en-
crypted messages. The system behavior, in terms of the interactions among the
components, is illustrated in Figure 1.

Fig. 1. The activity flow of the Secure Information Retrieval system

A request received from a client is processed by Request Processor compo-
nent. First, the validity of the request is checked and then the requested informa-
tion is retrieved by querying on different data centers. The results are composed
as a message to be sent to the client. This message is encrypted by an Encryptor
component. The system is designed in such a way that is able to dynamically
change the encryption method depending on the level of the requested security
and performance. Hence, Encryptor can be rebound to different components at
run time with respect to the context. The encrypted message is checked against
a set of security standards by a Certifier component. The certified message is
logged and sent to the client. For security and reliability reasons, the following
set of properties shall be guaranteed by the system.

Security property: any message shall be encrypted before being sent out over
the network;

Reliability property: the system shall recover from any failure.

Note that the satisfiability of these properties strongly depends on how the
encryption is performed and the details of this module are unknown at design
time. Indeed, even if an encryption module is selected and the verification is
accomplished at design time, this binding may change for different reasons at
run time and may require a new verification phase to re-assure the properties.
The SIR system is only an example of many component-based systems whose

4 Amir Molzam Sharifloo and Paola Spoletini

properties depend on dynamic components, which may be bound or changed at
run time. Such systems require a continuous verification process that should be
as light-weight as possible to avoid intolerable overheads.

3 The LOVER Framework

Differently from traditional model checking approaches, LOVER deals with in-
complete models, where a set of components are unspecified at design time and
are known only at run time. Obviously, the classical techniques could be applied
by checking the system every time the bindings (unspecified at design time) are
resolved or changed. Indeed, the time and space required for the verification
could be considerable, and since some bindings are resolved only while the sys-
tem is operating, the total overhead in resolving them should be kept as small
as possible.

To overcome these limitations, we propose LOVER, which is a two-phase
approach, that allows the designer to verify the incomplete system specification
at design time and generates a set of constraints for the unspecified components.
Those constraints are verified at run time whenever the component specifications
become available. An overall view of LOVER is given in Figure 2. At design
time, the incomplete system is described as a particular kind of LTS, where
some states are transparent w.r.t. the labels. This model is then checked against
a desired qCTL property. The result of the verification could be “yes”, “no”
or “conditionally yes”. The last option gives the set of constraints that has to
be satisfied by the unspecified components such that the whole system satisfies
the given property. These constraints are expressed in path-qCTL, an extension
of qCTL that allows the specification of properties also over finite paths. The
constraints are verified by a path-qCTL model checker, which can be obtained
by a simple extension to any CTL model checker, such as NuSMV [5].

In this section, we first introduce the novel formalisms and briefly recall
qCTL. Then we present the core of LOVER: the model checking algorithm for
incomplete models, and a sketch the proof of its equivalence with the traditional
solution. We then conclude by showing how to check path-qCTL properties on
a component specification expressed as a variation of LTS.

3.1 Incompletely Labeled Transition System

An Incompletely Labeled Transition System (ILTS) is a labelled transition sys-
tem (LTS) in which the set of states is partitioned in R, the set of regular states,
and T , the set of transparent states, that are special states that can represent
more complex components and are considered as unknown. Formally, an ILTS
is specified as a tuple 〈S, s0,→, L〉 over the alphabet A of atomic propositions,
where

– S is a set of states, which is partitioned in two sets: R (Regular) and T
(Transparent) , i.e., S = R ∪ T and R ∩ T = ∅;

Light-weight formal verification 5

ILTS

qCTL False

True

Conditionally True
{Path-CTL}

D
es

ig
n

Ti
m

e
R

un
 T

im
e Path-qCTL

Checker LTS

False

True

ILTS/qCTL
Checker

LTSLTS

U
pd
at
ed

C
om

po
ne
nt
s

Fig. 2. The LOVER Framework

– s0 is the initial state;

– →⊆ S × S represents the transitions between states;

– L : R → ℘(A) is the labeling function that associates a subset of atomic
propositions to each regular state.

The transparent states represent unknown components that, once specified,
can be modeled using a special kind of LTS, namely LTS with single final state,
i.e., a tuple 〈S, s0, sF ,→, L〉, where sF ∈ S is the final state. The initial state
and the final state represent the unique entering and exiting points in and from
the component, respectively. ILTS can be used to model dynamic systems in
which some components are unspecified at design time or may change at run
time. In other words, there is a big part of system specification that is known at
design time, but there are some components that may be left undefined or may
be dynamically replaced with other components. Figure 3 shows the ILTS of
the motivating example, which is driven from the activity flow, presented in Sec-
tion 2. Transparent state 5 represents the unavailable specification of Encryptor.
The other states are labeled regarding the three message attributes: encrypted,
failed, and sent.

6 Amir Molzam Sharifloo and Paola Spoletini

Fig. 3. The ILTS of the Secure Information Retrieval system

3.2 Qualitative CTL and Path-Qualitative CTL

Qualitative CTL (qCTL) is a proper subset of CTL that excludes metrics by ne-
glecting the operators EX and AX. Hence, the syntax of the language becomes:

φ→ φ ∧ φ | ¬φ | E φ U φ | E G φ | p

where p ∈ AP , EU and EG are the CTL operators whose semantics is briefly
recalled below.

CTL is classically defined on a state of LTS M = 〈S, s0, L〉 (M, s |= ϕ
means that ϕ holds in a state s of the LTS M) as follows:

– M, s |= p ⇔ p ∈ L(s);
– M, s |= ¬ϕ ⇔ M, s 2 ϕ
– M, s |= ϕ1 ∧ ϕ2 ⇔ M, s |= ϕ1 and M, s |= ϕ2;
– M, s |= Eϕ1 ∪ ϕ2 ⇔ if there exists a path π starting from s such that
∃sk ∈ π | M, sk |= ϕ2 and ∀si ∈ π with i < k, M, si |= ϕ1;

– M, s |= EG ϕ⇔ if there exists an infinite path π starting from s such that
∀si ∈ π, M, si |= ϕ.

Notice that the classical boolean connectives (∨,⇒ and⇔) and the temporal
operators AU , AG, EF , and AF can be derived from the above sets of operators.
As an example, let us consider the security and reliability properties presented
in Section 2, using the set of atomic propositions AP = {s, e, f}, the meaning
of which was explained above. The property “All messages are encrypted before
being sent out over the network” can be expressed as A(¬sUe), meaning that
there is no sending until the encryption is performed. The reliability property
(“The system eventually recovers from any failure”) can be instead expressed as
¬EFEGf , meaning that there does not exist a path in which eventually there
will be a path in which there is a failure forever.

Light-weight formal verification 7

We formally define path-qCTL by adding a temporal operator to qCTL that
allows the designer to predicate also on finite sequences of events. Path-qCTL will
be used to describe the constraints that has to be guaranteed by the transparent
components to assure the requirements validity. The syntax of the language is
formally defined as follows:

φ→ φ ∧ φ | ¬φ | E φ U φ | E G φ | Ep G φ | p

where p ∈ AP , EU and EG are the CTL operators (the above set of derivable
operators is still derivable)), EPG is a fresh temporal operator, that indicates
that the arguments, on which it is applied, holds at least in a possible scenario
starting from the present until the end of the system behavior, i.e, the final state.

We can define the semantics of path-qCTL on M , a labelled transition sys-
tem with a unique final state sF , as defined above. If ϕ is a formula M, s |= φ
means that φ holds in a state s of the LTS M . Omitting the qCTL operators,
we just need to define the semantics of EpG as follows

M, s |= EpG φ ⇔ if there exists a path π, starting from s and ending in the
final state sF of M , such that, for all si in π, M, si |= φ.

3.3 qCTL model checking of incomplete models

The core of LOVER is the qCTL model checking algorithm for incomplete mod-
els, described as ILTS. The basic idea is to modify the traditional explicit CTL
model checking [3] in order to deal with transparent states. The algorithm takes
as inputs a qCTL property and an ILTS. If the ILTS is a regular LTS, it behaves
as the traditional approach on regular LTS, while if the ILTS contains transpar-
ent states, it computes the set of path-qCTL formulae that shall be guaranteed
by the components modeled as transparent states.

More precisely, the algorithm works as follows. First, the qCTL formula is
parsed and its parsing tree is derived. As usual, the leaves of the tree are propo-
sitions and the inner nodes are boolean and temporal operators. Similarly to
CTL model checking, a bottom-up approach is applied to the tree to calculate
the satisfactory states for each sub-formula, starting from the leaves of the tree.
For each node of the tree, the set of the states in which the sub-formula holds is
calculated by applying Algorithm 1.

Algorithm 1 is invoked for every subtree of the parsing tree, starting from the
leaves. The algorithm takes as inputs a subtree T of the parsing tree (possibly
the parsing tree itself), the formula ϕ, and the ILTS M on which the original
formula is evaluated. The tree T is a binary tree, where a node representing a
unary operator has a single son, while a node representing a binary operator has
two sons. We use T.S to refer to the set of states in M that satisfy the formula
represented by the current subtree, T.left and T.right to refer to the left and the
right subtrees of the current tree (when the root is a binary operator), and T.son
to refer to the subtree of the current tree (when the root is a unary operator). The

8 Amir Molzam Sharifloo and Paola Spoletini

Algorithm 1 Node evaluation
1: evaluate(ϕ, T,M){
2: X = ∅
3: switch (ϕ){
4: case ϕ ∈ AP :
5: for all s ∈M.S { constr(ϕ, s) = ∅; }
6: for all s ∈M.S {
7: if (s ∈M.R && p ∈ L(s)) {
8: X = X ∪ {s};
9: }elseif(s ∈M.T){

10: X = X ∪ {s};
11: constr(ϕ, s) = constr(ϕ, s) ∪ {(Θp, s)}; }}
12: case ϕ = ¬ϕ1 :
13: for all s ∈M.R− T.son.R{
14: X = X ∪ {s}; }
15: for all s ∈ (T.son.S ∩M.T) ∨ (s ∈ T.son.R ∧constr(ϕ1, s) 6= ∅){
16: X = X ∪ {s};
17: constr(ϕ, s) = buildNeg(constr(ϕ1, s)); }
18: case ϕ = ϕ1 ∧ ϕ2 :
19: for all s1 ∈ T.left.S{
20: for all s2 ∈ T.right.S{
21: if (s1 = s2){
22: X = X ∪ {s1};
23: if(constr(ϕ1, s1) 6= ∅ ∨ constr(ϕ2, s1) 6= ∅){
24: constr(ϕ, s) = ANDCombine(constr(ϕ1, s1), constr(ϕ2, s1)); }}}}
25: case ϕ = Eϕ1Uϕ2 :
26: for all s2 ∈ T.right.S{
27: X = X ∪ s2
28: if(s2 ∈ T.right.S){constr(ϕ, s2) = resolveRightUntil(ϕ2, s2)}
29: X′ = ∅;
30: while(X′! = X){
31: X′ = X;
32: for all s1 ∈ T.left.S{
33: if(∃s′ ∈ X|(s1, s′) ∈M.Transitions)
34: X = X ∪ {s1}
35: π = buildPath(s1, T.right.S)
36: {constr(ϕ, s1) = resolveLeftIUntil(constr(ϕ1, s1), π); }}}}
37: case ϕ = EGϕ1 :
38: S′ = ∅;
39: for all s ∈M.T{
40: S′ = S′ ∪ {{s}};X = X ∪ {s};
41: constr(ϕ, s) = resolveOutSCC(constr(ϕ1, s); }
42: for all subS ∈ ℘(T.son.S){
43: if(subS is a scc){
44: S′ = S′ ∪ {subS};X = X ∪ subS ;
45: for all s ∈ subS{
46: constr(ϕ, s) = resolveInSCC(constr(ϕ1, s), subS); }}}
47: for all sub ∈ S′ ∪M.T{
48: X′ = sub
49: X′′ = ∅;
50: while(X′′! = X′){
51: X′′ = X′;
52: for all s1 ∈ T.son.S{
53: if(∃s′ ∈ X′|(s1, s′) ∈M.Transitions)
54: X′ = X′ ∪ {s1}
55: π = buildPath(s1, T.right.S)
56: constr(ϕ, s1) = resolvePathGlobally(constr(ϕ1, s1), π); }}
57: X = X ∪X′; }
58: }
59: T.S = X;
60: }

Light-weight formal verification 9

elements of the ILTS M are referred as M.S (states), M.R (regular states), M.T
(transparent states), M.Transitions (transition relation), and M.L (labeling
function).

The algorithm uses the set X (initialized in line 2) as a local set to store the
elements that satisfy ϕ. Moreover, the set of constraints that are needed to satisfy
the formula ϕ in a transparent state s are saved in a matrix constr. Each element
constr(ϕ, s) is a set of constraints in the form [(ψ1, state1), . . . , (ψn, staten)],
meaning that the formula ϕ holds in s if the path-qCTL formula ψ1 holds
in state1, . . ., and the path-qCTL formula ψn holds in staten. For example,
constr(EGa, s) = {[(EGa, s)], [(EpGa, s), (EGa, s′)]} means that the formula
EGa holds in the transparent state s either if the formula itself holds in the
correspondent component or if the formula EpGa holds in the correspondent
component and EGa holds in the component represented by the transparent
state s′. Roughly speaking, the elements of the set are conjunctions and the set
is seen as a disjunction of such conjunctions. The evaluation algorithm is based
on a switch on the value of the most external operator in ϕ (line 3). Considering
the grammar of qCTL, there are five different cases: atomic proposition (lines
4–11), negated formulae (lines 12–17), conjunctions (lines18–24), EU formulae
(lines 25–36), and EG formulae (lines 37–58).

If ϕ is an atomic proposition and T is a leaf, the value of constr(ϕ, s) is
initialized for all s. Note that this is the only case in which constr(ϕ, s) is based
on the value of the sub-formulae. Then, all the regular states labeled with ϕ are
added to the set of states X in which the formula holds (lines 7-8). Moreover
all the transparent states are added to X (line 10), together with an update of
the correspondent constr slot. In particular, for each transparent state s, the
constraint Θp is added to constr(ϕ, s)(line 11). The symbol Θ represents a still
non-identified path-qCTL operator, of which the kind will be resolved in the
rest of the algorithm. The operator Θ indicates that a propositional formula,
that is apparently evaluated on a state, will be evaluated on a component. If
the propositional formula is inside a temporal formula, Θ will be resolved by the
semantics of the outer operators.

If T is a subtree of which the root is a ¬ operator, i.e., ϕ is a formula of
the form ¬ϕ1, all the regular states that are not in the set of states in which
ϕ1 holds are added to the set X of states in which ϕ holds (line 13-14). The
transparent states are always added to the set of states in which a formula
holds together with a set of constraints (that however could also be unsatis-
fiable). Thus, every transparent state s is added to X. Moreover, the regular
states in which the formula ϕ1 conditionally holds are added to X. For both
these kinds of states, the correspondent slot constr(ϕ, s) is updated through the
function buildNeg(constr(ϕ1, s)) (lines 15-17). This function basically consid-
ers the “negation” of the set of constraints for ϕ1 in s. At this stage, ¬Θp is
changed to Θ¬p, since the constraint comes from an untimed sub-formula. Note
that the set represents a disjunction of constraints, while each element in square
bracket represents a conjunction of constraints and this has to be considered in

10 Amir Molzam Sharifloo and Paola Spoletini

negating the set. For example the negation of constr(EGa, s) considered above
is {[(¬EGa, s), (¬EpGa, s)], [(¬EGa, s), (¬EGa, s′)]}.

When ϕ is a formula of the form ϕ1 ∧ ϕ2 and T is a subtree of which
the root is a ∧ operator, all the states that are both in the set of states in
which ϕ1 and ϕ2 hold are added to the set X of states in which ϕ holds
(line 19-23). If the added state contains a constraint w.r.t. the considered sub-
formula, the correspondent constraint is built using the function ANDCombine
(constr(ϕ1, s1), constr(ϕ2, s1)) (lines 23-24). This function basically considers
the “conjunction” of the two sets, by simplifying the elements on the same state
in the same constraint. At this stage, the conjunction of the elements Θp and
Θp′ is considered as Θ(p ∧ p′), because both the constraints come from an un-
timed formula. For example, if ϕ = EGa ∧ EaUb, constr(EGa, s) is defined as
shown above and constr(EaUb, s) = {[(EaUb, s)], [(EpGa, s), (EaUb, s′)]}, then
constr(EGa ∧ EaUb, s) becomes {[(EaUb, s), (EGa, s)], [(EpGa, s), (EGa, s),
(EaUb, s′)], [(EaUb, s), (EpGa, s), (EGa, s′)], [(EpGa, s), (EaUb, s

′), (EGa, s′)]}
If T is a subtree of which the root is an EU operator and ϕ is a formula of

the form Eϕ1Uϕ2, the procedure is in two steps. First, all the states that are in
the set of states in which ϕ2 holds (T.right.S) are added to the set X of states
in which ϕ holds. (line 26-27). If the added state s is transparent, the constraint
of s for ϕ is updated using the function resolveRightUntil(ϕ2, s). This function
transforms the elements of the form (x, s) that appears in constr(ϕ2, s) into
(Eϕ1Ux, s). Note that the algorithm only changes the constraints connected
to the current states and not the others on adjacent states of a constrained
sequence. At this stage, if x has the form Θp or contains a Θ, the operator Θ
is deleted. Second, X is updated by using ϕ1 (lines 29-36). More precisely, we
update X by adding in it the states, in which ϕ1 holds (condition in line 32) and
from which it is possible to reach a state in X (condition in line 33). The idea is
that ϕ1 holds in such states (these states can be either regular or transparent)
and from them it is possible to reach directly the states in X, i.e., the states in
which ϕ holds. For each added state, the path π that connects it to a state in the
set in which ϕ2 holds is computed (line 35). The path π is used to enrich the set
of constraints that make ϕ hold in it. For this purpose, the algorithm uses the
function resolveLeftIUntil(constr(ϕ1, s), π). This function adds to constr(ϕ, s)
a constraint composed by the conjunction of all the constraints x that makes ϕ1

true in the transparent states of π (except the last one), after updating them in
EpGx. Again, if the original constraints contain Θ, the operator Θ is deleted.

Finally, if T is a subtree of which the root is an EG operator, i.e., ϕ is a for-
mula of the form EGϕ1, all the transparent states are added to the set X of the
states in which ϕ holds. Moreover, these states are added as singleton to the set S′

that contains all the sets that represent strongly connected components, in which
ϕ1 always holds. Since, the added states are transparent, the correspondent set of
constraints is updated using the function resolveOutSCC(constr(ϕ1, s)) (lines
39-41). This function adds the constraint EGϕ1 to each of these states. Then
as in the classical explicit model checking algorithm, for all the non-elementary
possible subset in which ϕ1 holds, if the subset is a strongly connected compo-

Light-weight formal verification 11

nent, the set of the subset is added to S′ and the states to X. If there exist
transparent states in the added subset, their constraints are updated with the
function resolveInSCC(constr(ϕ1, s), subS) (lines42-46). This function, for all
the states in the subsets, adds a conjunction that includes for each state the
constraint EpGx, where x is the constraint that makes ϕ1 hold in that state.
Obviously, if the components only contain regular states, this constraint is empty.
As the last step, analogously to what is done for operator EU , X is updated
by using ϕ1 and S′ (lines 47-57). More precisely, starting from each strongly
connected components in S′, the set of the states in which ϕ1 (condition in line
53) holds and from which it is possible to reach a state in which ϕ holds (con-
dition in line 54) is added to X. Once a transparent node is added, the path
π that connects it to the strongly connected component in which ϕ1 holds is
computed (line 56), and using π (that contains also the considered strongly con-
nected component), the set of constraints that makes ϕ hold in it, is updated
using resolvePathGlobally(constr(ϕ1, s1), π). This function works analogously
to function resolveLeftIUntil(constr(ϕ1, s), π). In all the functions considered
for this case, the operator Θp is automatically deleted.

After the evaluation algorithm is performed on the whole parsing tree from
the leaves to the root, if the set of the states, that satisfy the root, contains
the initial state of M , then the property ϕ holds constrained to const(ϕ, s0). If
there is still an unresolved Θ in this set of constraints, it means that the initial
state is a transparent state and that the property ϕ is untimed. In this case the
untimed property that follows Θ has to hold in the initial state of the component
representing the transparent state.

Sketching the correctness of qCTL algorithm for incomplete models
Here we informally describe the correctness of our algorithm by showing the
equivalence between the classical checking of qCTL and the two-stage checking
performed by LOVER. Our “proof” technique is based on the semantics of qCTL
and path-qCTL. Basically, we show that checking a qCTL property ϕ on an
ILTS with Algorithm 1 and imposing the obtained path-qCTL formulae to the
components that are bound to the transparent states in the ILTS is equivalent
to check the same property ϕ with the traditional qCTL algorithm on an LTS,
obtained by substituting the transparent states in the original ILTS with the
components bound to them.

Consider an LTS M and an ILTS M ′, obtained by removing k independent
LTSs MT

i (with 1 ≤ i ≤ k) - starting from si0 with final state siF - from M and
replacing each of them with a transparent state sTi . An example, with k = 2, is
shown in Figure 4, where the LTS MT

1 and MT
2 in M are abstracted through

sT1 and sT2 in M ′. A path π of M is called compatible with a path π′ of M ′ if
and only if π contains exactly the same (and in the same order) regular states
of π′ and, instead of the transparent states of π′, it contains one of the possible
paths that cross the graph obtained by substituting the transparent states with
the actual components.

12 Amir Molzam Sharifloo and Paola Spoletini

We want to show that proving a qCTL formula ϕ on M is equivalent to
proving ϕ on M ′ using the LOVER approach.

S0

S1

S2
S3 S4

S0 SF... S6

S7

S8

S0 SF... S9S5

...

...

M

M

1 1

2 2

S0

S1

S2
S3 S4

S6

S7

S8

S9S5

...

...

S1
T

S2
T

M

M'

T

2

1

T

Fig. 4. An example of LTL and its corresponding ILT.

Let us start by considering formulae of the form Eϕ1Uϕ2. Checking the
validity of this formula corresponds to check if M, s0 |= Eϕ1Uϕ2 holds, i.e., if
there exists a path π starting from the initial state s0 such that ∃sk ∈ π |M, sk |=
ϕ2 and ∀si ∈ π with i < k, M, sj |= ϕ1. To show the correctness of Algorithm 1
is enough to show that, given a generic path π′ in M ′, it satisfies Eϕ1Uϕ2 and the
components corresponding to the transparent states in M ′ satisfy the constraints
obtained by LOVER if and only if there exists a path π of M , compatible with
π′, that satisfies Eϕ1Uϕ2.

A generic path π′ in M ′ can be as follows:

1. π′ does not contain any transparent state sTi ;
2. the last state of π′ is a transparent state;
3. π′ contains transparent states, but the last state is not transparent;
4. π′ contains transparent states, including the last position.

Obviously, case (4) is a generalization of cases (2) and (3), but since they are
more intuitive, we will treat them separately (even if the proof for these cases
are included in the proof for case (4)).

The first case is naive. Since there is no transparent state, Algorithm 1 be-
haves exactly as the classical model checking. The second case corresponds to
π′ containing only a transparent state at the end. Our algorithm will produce

Light-weight formal verification 13

“yes” only if for all sx in π′ (excluded the last s|π′|) M
′, sx |= ϕ1, exactly as

required by the classical model checking algorithm. Moreover our algorithm will
impose that Eϕ1Uϕ2 holds in the component corresponding to s|π′| and this will
happen only if exists a path π in M compatible with π′ that satisfies Eϕ1 ∪ ϕ2.
The third case considers a path π′ that contains a number of transparent states,
but not at the end. Our algorithm will produce “yes” only if for all non-transient
state sx in π′ (excluded the last s|π′|) M

′, sx |= ϕ1, and M ′, s|π′| |= ϕ2. Moreover
our algorithm will impose that EpGϕ1 holds in the component corresponding to
the transparent state of π′. All these requirements are satisfied if there exists a
path π in M compatible with π′ that satisfies Eϕ1Uϕ2.
The last case is the most general case and corresponds to π′ containing a num-
ber of transparent states, including the end. Our algorithm on such a path
would first label the state with ϕ, using only ϕ2. Among all the possible con-
straints that the labeling imposes, for the proof, we are only interested to the
sets that include all the states through the end of π′2. So, if π′ = s0, s1, ..., sn
and the sequence of transparent states in it is [s′1, . . . , s

′
m], for all 0 ≤ i ≤ n− 1,

the set constr(ϕ2, si) can contain the constraint [(subϕ2 , s
′
j), (subϕ2 , s

′
j+1), . . .,

(subϕ2 , s
′
m−1), (ϕ2, s

′
m)], where s′j is the first transparent state after si in π′ and

subϕ2
is a subcondition needed to make ϕ2 true in the current state. Moreover in

sn, constr(ϕ2, sn) contains the constraint [(ϕ2, sn)], where sn is exactly the last
transparent state s′m. When our algorithm starts the labeling using also ϕ1, each
of the above constraints can be used to compute constr(Eϕ1Uϕ2, s0), adding
constraints of the form [(EpGϕ1, s

′
1), . . ., (EpGϕ1, s

′
j−1), (E(ϕ1Usubϕ2), s′j),

(subϕ2
, s′j+1), . . ., (subϕ2

, s′m−1), (ϕ2, s
′
m)]. Moreover, if such a constraint ex-

ists, the algorithm checks that all the regular states before the j-th transparent
state satisfy ϕ1 and all the regular states after the j-th transparent state satisfy
subϕ2 . A compatible path π satisfies Eϕ1 ∪ ϕ2 if and only if it satisfies one of
the previous constraints.

An analogous reasoning can be applied to EG ϕ, while the atomic proposition
case and the boolean connectors need to be treated differently. When ϕ ∈ AP ,
ϕ holds in M if s0 is labeled with ϕ. If s0 is a regular state, then our algorithm
will check exactly the same. If instead s0 is included in an LTS substituted with
a transparent state, the algorithm will come up with the constraint that in this
component, that is exactly the same condition checked by the classical algorithm.
Moreover, our algorithm deals with the boolean connectors as the classical one,
only modifying the previously obtained constraints according to the connector
semantics.

Notice that this is not a formal proof, but is an informal reasoning to show
the equivalence of the two approaches.

3.4 Path-CTL model checking

To verify a path-qCTL property on an ILTS with unique final state, we need to
observe that ILTS with a unique final state is a particular case of LTS and that

2 We are looking at the satisfiability using the whole path; all the subpaths are con-
sidered separately as one of the possible four mentioned scenarios.

14 Amir Molzam Sharifloo and Paola Spoletini

the final state does not influence the verification of classical qCTL properties.
Hence, since path-qCTL is qCTL with the extra temporal operator EpG, we can
readapt the classical CTL algorithm to deal with this new operator. Algorithm
2 shows a fragment of an evaluation function to deal with formulae ϕ of the form
EpGϕ1. The fragment uses the same notation and structure of Algorithm 1. The
idea is that, starting from an LTS with final state M , the algorithm builds M ′ by
delating the states where ϕ1 does not hold and the transitions as a consequence
(line 3). Then, a state s of M ′ is added to the set of states in which ϕ holds (line
7) if the final state sF belongs to M ′ (line 4) and there exists at least a path
from s to sF in M ′ (line 6). This check can be done easily with a breadth-first
search in O(|M ′.S|), making the overall evaluation O(|M ′.S|2).

Algorithm 2 Checking formulae of the form EpGϕ

1: case(ϕ = EpGϕ1) :
2: S′ = {s ∈ M.S|s ∈ T.son.S};
3: M ′ = M |S←S′ ;
4: if sF ∈ S′{
5: for all s ∈ S′{
6: if SearchPaths(s, sF ,M

′){
7: X = X ∪ {s}; }}}

4 Experimental Results

In this section, we present the applicability and scalability of the proposed ap-
proach in practice.

4.1 Tool Support and Applicability

We have developed a prototype tool to verify ILTSs against properties expressed
in qCTL according to the algorithm presented in Section 3. The inputs of the
tool are two files, which contain the ILTS and the qCTL property. The tool
is capable to verify the property and report the output as a set of solutions3.
Solutions are path-CTL properties that constrain the transparent states. The
tool is also able to verify LTSs against properties expressed in path-CTL.

To demonstrate the applicability of our approach, we used the tool to verify
the ILTS of the running example against the properties (presented in Section 2).
Regarding the global security property A(¬s∪e), the model checker returns two
solutions that constrain a possible specification of the transparent state (state
5). The first solution is {S5 |= A(¬s ∪ e)}, which means that the global prop-
erty shall hold also in the specification. The second solution is {S5 |= ApG¬s}.
3 The tool is available online: https://sites.google.com/site/amirsharifloo/

tool-lover

Light-weight formal verification 15

This property enforces the paths between the start and the end states of the
specification to be labeled with ¬s.

Applying the verification algorithm to the second property returns only one
solution: {S5 |= ¬EFEGf}. Therefore, any component that is bound at run
time to play the role of Encryptor shall satisfy this path-qCTL property.

4.2 Scalability

To see how our approach scales up with respect to the number of regular and
transparent states, we performed a scalability experiment. To do so, we gen-
erated different models by concatenating the running example. Concatenation
here means to produce a new ILTS by simply connecting the last state (state
15) of the ILTS to the first state of another copy of the ILTS. For example, the
first concatenation results in an ILTS with 30 states in which two states are
transparent. This way we generated larger models and applied the tool to verify
the properties.

Figure 5 illustrates the result, which is obtained by running the experiment
100 times and computing the average. The result shows that the verification
time of both properties exponentially grow. However, the verification time of the
nested property grows faster as the number of states increases. The machine we
used for the experiments had the following characteristics: OS = Mac, CPU=2.4
GHz Core 2 Duo, and RAM=4 GB.

Although in general the verification cost of the algorithm exponentially grows
with respect to the number of transparent states, the specification topology is a
key parameter that can significantly affect the total amount of the computation.
Note that this is the verification time required at design-time. Obviously, it is
more than a simple verification performed by an LTS model checker, since the al-
gorithm calculates constraints, considering the combinations. Moreover, our tool
is a prototype and the result can be improved by applying further optimizations.
Despite such overhead at design-time, the verification cost of verifying unspeci-
fied components at run time is always less than the model-checking of the whole
specification, and that is the main advantage of applying LOVER in practice.
This is due to the fact that the verification at run-time phase is performed on
the specifications of the components, which are much smaller than the entire
one. Moreover, the constraints can be checked in parallel in order to speed up
the verification.

5 Related Work

There have been a set of approaches to formally specify adaptive systems and
apply model checking techniques to verify their properties at design time [16].
To formally specify adaptive behaviors, Zhang et al. [19, 20] introduce A-LTL
(an extension of LTL). A-LTL adds an operator Adapt-operator which eases
describing the properties that hold in the initial program and the adapted pro-
gram. They also present a modular verification algorithm to verify an adaptive

16 Amir Molzam Sharifloo and Paola Spoletini

!"

#!"

$!!"

$#!"

%!!"

%#!"

&!!"

&#!"

$#" '!" $!#" $#!" $(#" %)!" %*#"

!"
#$%

&'
()

*+
(,

"+
-.
"&
/0+

*1,2"#+)3+.4'4".+

+,-."∪"/0"

-121" 3"

Title Suppressed Due to Excessive Length 11

Table 1. The verification time for the properties (in seconds)

Transparent State A(¬s ∪ e) ¬E♦E�f

1 15 0.105637 0.079811

4 60 0.76972 0.702177

7 105 3.156306 5.841801

10 150 8.659444 24.611509

13 195 19.197839 70.304578

16 240 36.051059 161.264

19 285 59.829017 326.778

!"

#!"

$!!"

$#!"

%!!"

%#!"

&!!"

&#!"

$" %" &" '" #" (")" *" +" $!" $$" $%" $&" $'" $#" $(" $)" $*" $+"

∀,-."∪"/0"

∀-1 2"

Fig. 4. The verification time for the properties (in seconds)

5 Related Work

6 Conclusion

Blabla

Acknowledgments

This research has been partially funded by the European Commission, Pro-
gramme IDEAS-ERC, Project 227977-SMScom.

References

Fig. 5. The verification time for the properties (The table provides the precise values
shown in the diagram.)

system against the formulae expressed in A-LTL [21]. The system is represented
as a state machine in which the states present the system configurations and
transitions are adaptation actions.

Adler et al. [2] propose an approach to modularly design and model adaptive
embedded systems such that the system specification is suitable for verification
analysis. The approach distinguishes between the part of the system that sup-
ports the functionality and the part that manages the adaptation, and focuses
on specifying the adaptation behavior in order to verify the stability property of
the adaptation process. Theorem proving techniques e.g. Isabelle/HOL are em-
ployed to verify the properties. The approach is extended in [15] to verify system
properties with respect to environment constraints. To this end, the interaction
among the system and the environment is modeled and is verified that the sys-
tem properties are guaranteed assuming a maximal environment. This approach
assumes that all the environmental behaviors can be predetermined in advanced
so the verification of the properties are performed at design time. Although ap-
plying modular techniques reduces the verification costs, the approach assumes
that the whole knowledge on the specification and the adaptations is available
at design time.

Păsăreanu et al. [6, 9] propose an approach to automatically generating as-
sumptions for the environments of a component, and apply the technique for
compositional verification. The output of the approach describes the environ-
ments in which a component will satisfy the expected properties. Our approach
is different in the point that there exists a couple of unspecified components
that make the specification incomplete and the verification unfeasible. What we
do is to enforce those components with some constraints such that the global
properties hold.

To verify the properties of dynamic component-based systems, there has
been a trend of research based on black-box testing and monitoring at run time
[18, 17, 7]. Xie and Zhe [18, 17] propose a test-based approach for the verifica-
tion of component-based systems, in which the behavior of some components

Light-weight formal verification 17

is not specified. The system consists of a host system and a collection of un-
specified components, which are represented as finite transition systems that
synchronously communicate via a set of input/output symbols. An algorithm
is used to derive a set of strings that unspecified components are supposed to
generate through black-box testing. Although testing approaches do not lead to
state explosion, applying them at run time is still challenging.

Run-time verification [11, 14] an interesting area that addresses a problem
similar to what we deal with in this paper. Runtime verification approaches as-
sume that the implementation may be different from the specification, or the
environment may change in such a way that the expected system properties vi-
olate. The aim of run-time verification is to ensure that the traces generated by
the system satisfy the properties. To this end, the key idea is to generate specific
elements, called monitor, to check the compliance at run time. Differently from
model checking, run-time verification does not lead to state exploration, but it
does not guarantee that the properties certainly hold.

6 Conclusion and future work

This paper presents a two-phase framework to efficiently verify adaptive systems,
in which some components may dynamically change at run time. To support the
framework, we developed formalisms, verification algorithms, and a prototype
tool. We applied our approach to a running example, and evaluated the scala-
bility by larger models.

This paper states the initial steps that we have taken to address the run-
time model checking of dynamic systems. There are many directions to extend
this work. At the moment, we are working to optimize the implementation and
to explore a new symbolic approach. In the current paper, we have focused on
qualitative CTL, but the future work is to support the full CTL by adding
Next operator. Further steps are applying the approach to other case studies in
different areas and extending the framework to support other temporal logics
such as LTL.

Acknowledgments

We would like to thank Carlo Ghezzi for the fruitful discussions on this work.
This research has been partially funded by the European Commission, Pro-
gramme IDEAS-ERC, Project 227977-SMScom.

References

1. Smart Grids European Technology Platform. http://www.smartgrids.eu/.
2. Rasmus Adler, Ina Schaefer, Tobias Schuele, and Eric Vecchié. From model-based

design to formal verification of adaptive embedded systems. ICFEM’07, pages
76–95, Berlin, Heidelberg, 2007. Springer-Verlag.

18 Amir Molzam Sharifloo and Paola Spoletini

3. Christel Baier and Joost-Pieter Katoen. Principles of Model Checking (Represen-
tation and Mind Series). The MIT Press, 2008.

4. Betty H. C. Cheng, Rogério de Lemos, Holger Giese, Paola Inverardi, and Jeff
Magee, editors. Software Engineering for Self-Adaptive Systems, volume 5525 of
Lecture Notes in Computer Science. Springer, 2009.

5. A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri, R. Se-
bastiani, and A. Tacchella. NuSMV Version 2: An OpenSource Tool for Symbolic
Model Checking. In Proc. International Conference on Computer-Aided Verifi-
cation (CAV 2002), volume 2404 of LNCS, Copenhagen, Denmark, July 2002.
Springer.

6. Jamieson M. Cobleigh, Dimitra Giannakopoulou, and Corina S. Păsăreanu. Learn-
ing assumptions for compositional verification. In Proceedings of the 9th interna-
tional conference on Tools and algorithms for the construction and analysis of
systems, TACAS’03, pages 331–346, 2003.

7. Yliès Falcone, Mohamad Jaber, Thanh-Hung Nguyen, Marius Bozga, and Sad-
dek Bensalem. Runtime verification of component-based systems. In Proceedings
of the 9th international conference on Software engineering and formal methods,
SEFM’11, pages 204–220, 2011.

8. Carlo Ghezzi. Engineering evolving and self-adaptive systems: An overview. In
Software and Systems Safety - Specification and Verification, pages 88–102. 2011.

9. Dimitra Giannakopoulou, Corina S. Păsăreanu, and Howard Barringer. Assump-
tion generation for software component verification. In Proceedings of the 17th
IEEE international conference on Automated software engineering, ASE ’02, 2002.

10. N. Gold, A. Mohan, C. Knight, and M. Munro. Understanding service-oriented
software. Software, IEEE, 21(2):71 – 77, march-april 2004.

11. Martin Leucker and Christian Schallhart. A brief account of runtime verification.
Journal of Logic and Algebraic Programming, 78(5):293 – 303, 2009.

12. Philip Levis, David Gay, and David Culler. Active Sensor Networks. In Proc. of
the 2nd Symposium on Networked Systems Design & Implementation - Volume 2,
pages 343–356. USENIX Association, 2005.

13. Corina S. Pasareanu, Matthew B. Dwyer, and Michael Huth. Assume-guarantee
model checking of software: A comparative case study. In Proceedings of the 5th
and 6th International SPIN Workshops on Theoretical and Practical Aspects of
SPIN Model Checking, pages 168–183, 1999.

14. Grigore Roşu and Klaus Havelund. Rewriting-based techniques for runtime verifi-
cation. Automated Software Engg., 12(2):151–197, April 2005.

15. Ina Schaefer and Arnd Poetzsch-Heffter. Model-based verification of adaptive em-
bedded systems under environment constraints. SIGBED, 6(3):9:1–9:4, 2009.

16. Klaus Schneider, Tobias Schuele, and Mario Trapp. Verifying the adaptation be-
havior of embedded systems. SEAMS ’06, pages 16–22, 2006.

17. Gaoyan Xie, , and Zhe Dang. Ctl model-checking for systems with unspecified
finite state components. SAVCBS, 2004.

18. Gaoyan Xie and Zhe Dang. An automata-theoretic approach for model-checking
systems with unspecified components. FATES, 2004.

19. Ji Zhang and Betty H. C. Cheng. Model-based development of dynamically adap-
tive software. ICSE ’06, pages 371–380, New York, NY, USA, 2006. ACM.

20. Ji Zhang and Betty H.C. Cheng. Using temporal logic to specify adaptive program
semantics. Journal of Systems and Software, 79(10):1361 – 1369, 2006.

21. Ji Zhang, Heather J. Goldsby, and Betty H.C. Cheng. Modular verification of
dynamically adaptive systems. AOSD ’09, pages 161–172, New York, NY, USA,
2009. ACM.

