
© The British Computer Society 2013. All rights reserved.
For Permissions, please email: journals.permissions@oup.com

doi:10.1093/comjnl/bxt107

Performance Modelling and Simulation
of Three-Tier Applications in Cloud

and Multi-Cloud Environments

Nikolay Grozev
∗

and Rajkumar Buyya

Department of Computer Science and Information Systems, Cloud Computing and Distributed Systems
(CLOUDS) Laboratory, The University of Melbourne, Parkville, Australia

∗Corresponding author: ngrozev@student.unimelb.edu.au

A significant number of Cloud applications follow the 3-tier architectural pattern. Many of them serve
customers worldwide and must meet non-functional requirements such as reliability, responsiveness
and Quality of Experience (QoE). Thus the flexibility and scalability offered by clouds make them a
suitable deployment environment. Latest developments show that using multiple clouds can further
increase an application’s reliability and user experience to a level that has not been achievable
before. However, the research in scheduling and provisioning 3-tier applications in clouds and across
clouds is still in its infancy. To foster the research efforts in the area, we propose an analytical
performance model of 3-tier applications in Cloud and Multi-Cloud environments. It takes into
account the performance of the persistent storage and the heterogeneity of cloud data centres in
terms of Virtual Machine (VM) performance. Furthermore, it allows for modelling of heterogeneous
workloads directed to different data centres. Based on our model, we have extended the CloudSim
simulator, through which we validate the plausibility of our approach. The conducted experiments
with the RUBiS workload show that the predicted performance characteristics by the simulation

approximate well those of the modelled system.

Keywords: cloud computing; simulation; performance model; multi-cloud

Received 13 April 2013; revised 12 July 2013
Handling editor: Rada Chirkova

1. INTRODUCTION

Cloud computing is an IT model enabling on-demand access
to computing resources as a subscription service. Cloud service
providers create and maintain large data centres to provide their
clients with on-demand computing resources [1, 2]. Clients
access and use external resources dynamically in a pay-as-you-
go manner. This proves to be very appealing to businesses as
it provides greater flexibility and efficiency than maintaining
local infrastructure that is underutilized most of the time while
at times it may be insufficient.

Many view Cloud computing as an extension of Grid
computing, which also envisions on-demand access to a pool
of computing resources. One major distinction between the two
is the type of applications that are usually hosted. Grids are
used for resource-intensive batch processing applications, while
Cloud applications are much more general purpose and also
include interactive online applications [3]. Practice has shown

that Clouds are suitable for interactive 3-tier applications. By
3-tier architecture we denote the architecture of the application,
not the data centre. Enterprises hosting 3-tier applications in
cloud environments range from e-commerce businesses like
ebay [4], hosted in a hybrid cloud [5], to government agency
web sites, including the US Department of Treasury, hosted
in Amazon EC2 [6]. However, the cloud deployment of such
applications also raises several challenges.

A cloud service interruption may have a severe impact
on clients who are left without access to essential resources
[2], as highlighted by several recent Cloud outages [7, 8].
Furthermore, for many applications the geographical location of
the serving data centre is essential because of either legislative
or network latency considerations. Such reliability, legal and
QoE requirements are of special importance for large interactive
applications which serve customers worldwide and need to be
continuously available.Thus some large-scale applications need
to use multiple clouds (i.e. a Multi-Cloud) [1]. This has been

The Computer Journal, 2013

 The Computer Journal Advance Access published September 26, 2013
 at Pennsylvania State U

niversity on February 20, 2016
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

2 N. Grozev and R. Buyya

exemplified by several industry reports including IBM’s case
study about the usage of three private data centres to host the
website of the Australian Open tennis championships [9].

There are significant differences between the characteristics
of batch processing and interactive 3-tier applications. In
essence, while batch processing programs execute without
any user interaction, interactive applications have to respond
to user interactions constantly and in a timely manner. This
imposes substantially different requirements for application
scheduling and provisioning. Foster et al. highlight that Clouds,
unlike Grids, are especially suitable for interactive real-time
applications [3]. Hence, the development of provisioning
and scheduling techniques for interactive applications is an
important research area. Unfortunately, most research works in
the area focus on resource intensive Grid-like batch processing
applications, leaving interactive ones beyond their scope. For
example, Sotiriadis et al. present a literature review of meta-
scheduling approaches in cloud environments and discuss their
applicability in the area of cross-cloud scheduling [10]. They
overview 18 meta-scheduling approaches, all of which schedule
batch processing applications and none of them schedules
interactive ones. In addition, in our previous work we have also
outlined that most existing approaches for application brokering
across clouds specialize in batch processing applications only
[11]. This is not reflective of the more general nature of Clouds,
which in contrast to Grids tend to host a wider range of business
applications, many of which are interactive and follow the 3-tier
reference architecture.

There are many impediments to the research in interactive
application provisioning and scheduling in Clouds. Firstly,
installing and configuring different middleware and software
components (e.g. application and database (DB) servers and
load balancers) can be complex and laborious.Another problem
is the selection of appropriate workloads and populating the DB
with suitable data in order to test different scenarios in practice.
Last but not least, the incurred financial costs for repeatedly
performing multiple tests on large-scale applications can be
significant.

Historically, similar problems have been encountered by
researchers in the area of batch processing applications in
Grids and Clouds. These have been resolved by introducing
formal performance models and simulation environments that
allow for the evaluation of solutions without deploying and
executing large-scale systems. For example, previous works
on distributed systems simulation have significantly fostered
the research efforts and have been used in both academia and
industry for quick evaluation of new approaches. Unfortunately,
existing simulators like GridSim [12], CloudSim [13] and
GreenCloud [14] can only be used to simulate batch processing
and infrastructure utilization workloads and are not suitable for
interactive 3-tier applications.

With this work, we aim to fill this gap and make contributions
that bring the benefits of modelling and simulation to the area
of 3-tier application provisioning and scheduling in Cloud

and Multi-Cloud. More specifically we (i) propose a novel
analytical model for 3-tier applications; (ii) define algorithms
for implementing a simulator based on the model; (iii) describe
our enhancement of CloudSim supporting modelling and
simulation of such applications and (iv) validate our model
through comparison with an actual system. In this work, we
walk the entire path from defining an abstract, theoretical
performance model to implementing a full scale simulator based
on the model, which is used to validate its adequacy. To the best
of our knowledge, this is the first work in the area to do so. We
identify and address the shortcomings of existing approaches
and thus in our model we incorporate the following aspects,
which are not accounted for by most related works:

(i) Performance Variability—in a cloud environment,
VMs’ performance can vary depending on their
placement among the physical hosts. VMs with equal
characteristics may observe significant performance
differences [15].

(ii) Disk I/O performance—many 3-tier applications
perform a huge amount of disk operations, which often
cause a performance bottleneck.

(iii) Usage Patterns—applications’ workload change over
time. We describe it analytically and implement utilities
in the simulation environment to generate workload
based on an analytical description.

The rest of the paper is organized as follows: In Section 2,
we describe related works and compare the present one to them.
In Section 3, we provide a succinct description of the targeted
class of applications, define the scope and assumptions of this
work and summarize our model. Section 4 formally defines
the performance model. Section 5 describes the design of a
simulator following this model. Section 6 describes several use
cases of our model. Section 7 evidences the plausibility of our
simulator through experiments. Section 8 concludes and defines
avenues for future work.

2. RELATED WORK

Urgaonkar et al. [16] discuss a model for multi-tier web
applications which represents how web requests are processed at
the different tiers.This seminal work has been the basis for many
other efforts in the area. Their model is represented as a linear
network of queues—Q1, Q2, . . . , Qm. Each queue corresponds
to an architectural tier. A request comes to a tier’s queue Qi and
after being served it is transferred to the queue of the next level
Qi+1 with probability p or to the queue of the previous tier
Qi−1 with probability 1 − p. To model web sessions a new
queue Q0 is introduced which is linked to both Q1 and Qm thus
forming an infinite queuing system. For each active session a
dedicated server is assigned in Q0. Requests exiting from the
last tier proceed to Q0 and from there they re-enter the system.
The time spent at the virtual server in Q0 models the idle user
time.

The Computer Journal, 2013

 at Pennsylvania State U
niversity on February 20, 2016

http://com
jnl.oxfordjournals.org/

D
ow

nloaded from

http://comjnl.oxfordjournals.org/

Performance Modelling and Simulation of Three-Tier Applications 3

TABLE 1. Summary of related work.

Application Server Level of
Work Analytical approach type concurrency granularity Server type

Urgaonkar et al. [16] Closed network of queues Multi-tier Single threaded Request Hardware
Zhang et al. [17] Closed network of queues Multi-tier Single threaded Transaction Virtual machine
Bi et al. [18] Hybrid queuing model Multi-tier Single threaded Request Virtual machine
Zhang and Fan [19] Queuing model Single tier Single threaded Request Hardware
Kamra et al. [20] Queuing model, control theory Single tier Single threaded Request Hardware
Chen et al. [21] Closed multi-station queuing network Multi-tier Multi-threaded Request Virtual machine
Present work Performance model based on step functions Three-tier Multi-threaded Session Virtual machine

In their model, Urgaonkar et al. do not consider the
performance variability in a virtualized cloud environment.
They consider the service time of the servers in the different tiers
to be a random variable which is independent of the number of
concurrently served sessions. In our model these are reflected.
They represent sessions as a set of requests while in our model
they are represented as atomic entities continuously creating
performance load on the tiers’ servers.

A similar analytical model based on a network of queues has
been proposed by Zhang et al. [17]. Unlike Urgaonkar et al.,
they use statistical regression to estimate the CPU cost of each
server in the system. Also, the unit of work is transactions, not
web requests. They do not consider the inherent performance
variability in a cloud environment and the load on the servers
in terms of used memory and disk I/O.

Several other approaches also use queuing theory for
performance modelling. For example, Bi et al. [18] propose
a hybrid queuing model for provisioning multi-tier applications
in cloud data centres. They model the system at the level
of incoming requests not sessions. Zhang and Fan [19] have
developed a queuing model of a web system with one load
balancer and two web servers. Their model does not represent a
multi-tier system. Kamra et al. [20] model the entire multi-tier
application as a single queue. That is, the different layers are
not modelled separately.

In standard queuing theory, a server cannot serve more
than one request at a time. This is an inherent problem
when modelling multi-tier applications, since most application
servers are multi-threaded and can serve multiple requests
simultaneously. This issue has been identified by Chen et al.
[21] and thus they model the whole system as a closed multi-
station queuing network to capture this aspect. Every server
in the application’s architecture is represented as N servers
in the queuing model, where N is the maximum number of
concurrent sessions in a server. Also, in their work they assume
a virtualized environment.A major difference between our work
and theirs is that alike other queue-based models, they model the
system behaviour at a lower level in terms of requests. Another
difference is that they do not reflect the performance variability
of the virtualized environment.

A major difference between all these works and ours is
that our model is much more coarse-grained—we model the
workload in terms of sessions and do not represent each
and every request. This makes it much easier to define and
experiment with different workloads. Also, since we do not
represent requests, our model is more general and essentially
agnostic of the underlying technologies. While other models are
constrained to a specific type of technology, our model can be
used for standard web applications, Rich Internet Applications
(RIA), thick-client 3-tier applications, etc. Lastly, unlike others,
our work takes into account the performance and workload
heterogeneity of Cloud and Multi-Cloud environments. Table 1
further summarizes the related work.

In terms of simulation environments GridSim [12] and
CloudSim [13] are the most relevant related projects. They are
suitable for simulating batch processing workloads, and our
present work extends CloudSim to support interactive 3-tier
applications as well. Unlike our approach the GreenCloud [14]
project focuses on simulating data centre energy consumption,
rather than application performance. Similarly, MDCSim
[22] focuses on evaluating the overall energy consumption
and latency and does not facilitate application performance
modelling. The SPECI [23] simulator is designed to evaluate
the scalability and resilience of data centre infrastructure, and
also cannot be used for application performance evaluation. The
iCanCloud simulator [24] has similar capabilities and design
philosophy to CloudSim, but is designed to be faster for large
workloads and has a graphical user interface (GUI). It does not
allow modelling 3-tier applications. In fact we argue that our
approach can be implemented as an extension of iCanCloud, as
we have done it for CloudSim.

3. OVERVIEW

3.1. Architectural setting

Dividing a system architecture into layers is the fundamental
approach for managing complexity. In essence, a system is con-
structed as a sequence of layers/tiers, each of which is indepen-
dent of the successive ones and communicates only with the

The Computer Journal, 2013

 at Pennsylvania State U
niversity on February 20, 2016

http://com
jnl.oxfordjournals.org/

D
ow

nloaded from

http://comjnl.oxfordjournals.org/

4 N. Grozev and R. Buyya

previous tier(s) through well-defined interfaces. This approach
brings numerous benefits including increased understandability
and maintainability since the layers can be developed, under-
stood and investigated relatively independently [25].

As to Fowler [25] the main challenges when designing a
multi-tier software system is to decide what are the layers
and their encapsulated functionalities. A design error at this
stage could result in having hard to maintain coarse grained
layers which contain too much functionality or too many small
layers that communicate excessively. This has precluded the
development of layered architectural patterns. Of these, the most
prominent is the 3-tier software architectural pattern (not to be
confused with 3-tier data centre architecture), which allows for
building scalable and adaptable information systems. Although
not web specific, it has gained significant momentum with the
advent of the web as it allows quickly migrating traditional
applications to the web by replacing only the user interface
layer [25]. This has resulted in the development of well known
and established frameworks like Java EE [26], Ruby On Rails
[27] and Django [28], which facilitate the development of 3-
tier applications. A standard 3-tier application consists of three
logical layers [25, 29, 30]:

(i) Presentation Layer—represents the interface, displayed
to the user.

(ii) Business/Domain Layer—implements the core applica-
tion logic.

(iii) Data Layer—handles access to the persistent storage.

This layering is logical, meaning that the layers could be
deployed within a single or two machines. However, in the case
of large-scale applications it also becomes physical separation
and each logical layer is deployed separately in order to increase
performance.

The presentation layer implements the user interface which
the end user interacts with. It can be either a separate application
(the so-called ‘fat client’) or web interface accessed through
a web browser. Either way it is executed on the end user’s
machine and thus we do not take it into account in the servers’
performance.

The business/domain layer implements the essential appli-
cation logic. This includes all application specific business
functionalities—e.g. the management of items in a shopping
cart in an online store, persistence and access to users’ personal
data, etc. Traditionally, the domain layer is executed in one or
several application servers (AS) which communicate with the
presentation and the data layers. In the case of Infrastructure
as a Service (IaaS) cloud offerings, AS servers are deployed in
separate virtual machines (VMs).

The data layer facilitates access to the persistent storage. It
is independent from the other two layers, as the persistent data
often outlives the applications that use it and in some cases it can
even serve more than one application. The data layer is executed
in one or several DB servers.

Traditionally, the data layer has been the most architecturally
challenging part of a 3-tier application, since it is hard
to scale horizontally as demand rises. For example, this is
the case when the data tier is implemented with traditional
transactional relational DBs, which are widespread in virtually
every application domain. Several approaches like master–slave
replication, caching, NoSQL and NewSQL DBs [31] have been
used to mitigate this issue and have been widely adopted in
cloud environments as well.

This architectural pattern is very generic and there are a lot
of possible adjustments that can improve the overall system
performance. For example, the number of AS servers can be
different and can increase or decrease dynamically in response
to the demand. As discussed, the data layer can be composed of
both transactional relational DBs, caches and novel approaches
like NoSQL and NewSQL DBs. In this work, we introduce a
general modelling and simulation approach that encompasses
all of them, and can be used to evaluate different design
alternatives—e.g. use of caching vs. master–slave replication
in the data layer.

In this work we consider two main scenarios: (i) a 3-tier
application is deployed within a single data centre and (ii)
a 3-tier application is deployed in multiple Clouds (i.e. a
Multi-Cloud) with additional redirection of users to appropriate
data centres. Clouds A and B on Fig. 1 depict two possible
deployments. For each application in a data centre, requests
arrive through a single load balancer, which can be implemented
in different ways. For example, it can be deployed in a VM or
provided by the Cloud as a service. Load balancers distribute the
incoming workload to a set of application server VMs deployed
in the Cloud. Consequently, clients establish sessions with the
assigned application servers. The AS communicate with the
servers from the DB layer. Each DB server has one or several
hard disks attached, which are used to store persistent data.
In the multi-cloud scenario, client requests come to a global
entry point, from where they are distributed to data centres,
each of which has the aforementioned software stack deployed
as depicted in Fig. 1.

3.2. Assumptions and scope

In this work we consider stateful (i.e. maintaining session
data) 3-tier applications. Examples of session data are user
preferences, shopping carts and history of user actions. Also,
we assume that the DB servers are deployed in separate VMs.
Alternatively, persistent storage could be provided by a cloud
provider as a service. There is a plethora of vendor-specific
Database-as-a-Service (DBaaS) solutions and relying on them
can easily lead to vendor lock-in. Hence it is an industry best
practice to use DB servers deployed in separate VMs [32].
Furthermore, many DBaaS solutions like Amazon RDS [33]
actually provide VM instances to customers, and thus they can
be represented by our model as well.

The Computer Journal, 2013

 at Pennsylvania State U
niversity on February 20, 2016

http://com
jnl.oxfordjournals.org/

D
ow

nloaded from

http://comjnl.oxfordjournals.org/

Performance Modelling and Simulation of Three-Tier Applications 5

FIGURE 1. 3-tier reference architecture deployed in multiple Clouds.

Very few cloud providers offer their clients non-virtualized
physical servers which are optimized for a specific purpose
(e.g. running a DB). This can be considered an exception
from the general practice of building cloud data centres
from commodity hardware and providing it to clients in the
from of virtualized resources [1, 2] and hence most cloud
simulators do not represent application execution in non-
virtualized environments. An example of such cloud service
is the Oracle Database Cloud, which offers DB hosting on
Oracle Exadata Database Servers [34, 35]. Such scenario can
still be represented by our approach by modelling a host with
the desired characteristics and allocating a single VM to it,
which utilizes all its resources. Since in the model we do not
consider virtualization overhead, this will be equal to running
the workload on the host directly.

In this work we consider 3-tier applications deployed in
cloud and multi-cloud environments. In the related literature
there is a certain terminological ambiguity regarding the
terms Inter-Cloud Federation and Multi-Cloud. In essence,
an Inter-Cloud Federation is achieved when cloud providers
voluntarily interconnect and share their infrastructure [11, 36–
38]. This often raises interoperability issues, since resources
like VMs need to be transparently migrated from one provider’s
infrastructure to another. Often this needs to be transparent
to the cloud clients. In contrast, the concept of Multi-Cloud

does not depend on an underlying collaboration of cloud
providers. In a Multi-Cloud environment a cloud client uses and
distributes workload among independent clouds [11, 36, 39]. In
the current cloud landscape, where there is no inter-operation
between major competing cloud vendors like Amazon and
Google, the Multi-Cloud approach is much more feasible than
the federation. In this configuration, cloud interoperability is
not a problem, as cloud clients do not rely on underlying
cloud provider collaboration. The main problem is working
with the different management APIs of all cloud providers.
Industry developments in the area of Multi-Cloud services like
RigthScale [40], Enstratius [41], Scalr [42] and Multi-Cloud
libraries like JClouds [43], Apache LibCloud [44] and Apache
DeltaCloud [45] provide unified APIs for managing diverse
cloud infrastructure and hence simplify system development
[11]. Therefore in this work we focus our attention on workload
distribution across clouds.

We consider that the load balancers implement ‘Sticky load
balancing’ policies. That is, after a session between a client
and an application server is established, all subsequent requests
from this session are redirected to the same AS server. This is
a reasonable assumption, since session sharing among servers
often leads to overall performance degradation.

Clouds have made it possible for many clients to execute
complex and time consuming analysis over huge amounts of

The Computer Journal, 2013

 at Pennsylvania State U
niversity on February 20, 2016

http://com
jnl.oxfordjournals.org/

D
ow

nloaded from

http://comjnl.oxfordjournals.org/

6 N. Grozev and R. Buyya

data (i.e. ‘Big Data’) [46]. Often there is a standard 3-tier
web application serving as a front-end for accessing the data
intensive analytical back end. Thus we can largely classify
two types of data processing—synchronous (a.k.a online) and
asynchronous (a.k.a offline). The synchronous data processing
is concerned with performing data retrieval or manipulation
in real time—e.g. extracting a list of items from online shop
and passing them to the AS server for display to the user. In
this case the user interactions are blocked until the operations
are complete. Asynchronous data processing is concerned with
running long batch processing jobs in the background. In this
case user interactions are not blocked while the jobs are running.
In this work we address synchronous data processing as it is in
the standard 3-tier reference model.

We have outlined modelling data centre heterogeneity as one
of our goals. More specifically in this work we focus one the
following aspects of heterogeneity:

(i) Workload heterogeneity—for a Multi-Cloud applica-
tion, sessions arrive with different frequencies based on
the cloud geographical location, time zone, etc.

(ii) Cloud offerings heterogeneity—different cloud pro-
viders offer different VMs in terms of their CPU,
memory and disk capacity.

(iii) VM consolidation policies—different cloud providers
have different policies for placing VMs on physical
hosts, which can affect CPU and disk performance.

(iv) Differences in the hardware capacity of the used
physical hosts/nodes.

Finally, when multiple data centres are used we assume that
the workload is distributed among data centres based on its
geographical origin and do not model the work of the entry
point. That is, clients directly submit their sessions to the nearby
data centre.

3.3. Essence of the model

We propose a session-based analytical approach for perfor-
mance modelling. The workload is represented in terms of
user sessions established between users and application servers.
Each session incurs performance load on the application and the
DB servers. The workload of a given server at any point in time
is defined as the sum of the workloads of the served sessions.
Sessions make use of CPU time and RAM on the application
servers and CPU, RAM and disk I/O on the DB servers. We
assume that the disk operations on the application server are
negligible—e.g. logging, loading configuration files, etc.

A key problem is how to represent the workloads (in terms
of CPU, RAM and I/O) incurred by a session. Logically, they
should be represented as continuous functions of time so that
workload changes over time can be modelled. Since we are
aiming to implement a discrete event simulator, we aim to
represent these continuous functions in a discrete manner. One

FIGURE 2. RAM load represented as stacked sessions’ load.

approach is to use stepwise functions. That way, by using a finite
number of values one can define a continuous function of time.

Figure 2 depicts how a server’s RAM usage can be composed
of the RAM usage of three sessions and the underlying software
stack—i.e. operating system and middleware. The system’s
RAM footprint can be defined as the used RAM, when no
sessions are being served. The RAM usage of the sessions is
represented by stepwise functions and the system’s RAM usage
is considered to be constant. Similar diagrams could be drawn
for the CPU utilizations as well. The same approach can be
used to represent the I/O utilization of a given hard disk on a
DB server. That is, the utilization of a hard disk is defined by the
I/O operations performed on it by the sessions using this disk
on any of the DB servers. A minor difference is that the CPU
and I/O capacity are not constant and change over time, because
as discussed VMs can observer performance variability.

The frequency of the establishment of sessions is another
aspect to model. Typically such phenomena are modelled with
Poisson distribution representing that sessions arrive with some
predefined frequency λ [47, 48]. Furthermore, Paxson and
Floyd [49] have found that events like user arrivals/logins are
well modelled with a Poisson process for fixed time intervals.
However, in the case of a large-scale application it is not typical
to observe constant arrival rates at all times. Moreover, in a
Multi-Cloud environment the workload of the different data
centres may be substantially different. For example, a data
centre in the US will have higher arrival rates during the working
hours in the US time zones and lower otherwise. Thus we model
session establishment rates for a given data centre as a Poisson
distribution of a frequency function of time λ(t), which is also a
stepwise function. If λ(t) is a constant function, the arrival rates
remain with pure Poisson distribution, and thus our approach is
more general than the usual one. Our approach allows to model

The Computer Journal, 2013

 at Pennsylvania State U
niversity on February 20, 2016

http://com
jnl.oxfordjournals.org/

D
ow

nloaded from

http://comjnl.oxfordjournals.org/

Performance Modelling and Simulation of Three-Tier Applications 7

demand fluctuations and spikes over time and to evaluate how
the modelled system behaves in such cases.

If we have several different types of sessions in terms of
the incurred performance, we can model the arrival rate of
each of these as a separate Poisson distribution over a different
frequency function.

4. ANALYTICAL MODEL

4.1. Session model

We take a session-based approach and instead of jobs or
requests, the unit of workload in our model is a session, which
represents a series of consecutive user actions incurring system
load. Each session is assigned to an application server VM
and can use the available DB servers in the data centre for the
application.

Unlike jobs, a session generates variable workload over time.
For example, for the first few minutes after its establishment
a session may utilize heavily the processor of the application
server, for the next five minutes it may incur very low resource
consumption, and over the next five minutes it may incur
significant disk I/O on a DB server. In contrast, a job is usually
modelled in terms of the required resources (CPU, RAM, etc.)
and there are no requirements as to how these resources are
provided over time. More formally, a session is defined with
the following variables and functions:

Ideal session duration
τi denotes the ideal duration of a session si measured in seconds.
It is the session duration given that all resources for its execution
are available. If there are more sessions than a tier can handle,
there will be some resource pre-emption and eventually the
session will be served in more than τi seconds or will fail. By �i

we denote the time by which si has exceeded τi and we consider
it as a measure of application responsiveness.

Data item
In order to model the locality of disk operations, we need to
represent the data resident on the disks. Thus, we introduce the
notion of data item, which represents an entity stored on a disk.
Examples of data items are files and portions of DB records,
which are often accessed and stored together (e.g. a DB shard).
In the model, we consider that a finite number of data items
d1 . . . dn is specified.

Step size
We define a common step size δ for all stepwise functions in
our model. Generally, we would aim for small value of δ, since
that would make the simulation more refined.

CPU load of the application server
By νas(t) we denote the CPU load on the application server
caused by the session. It is measured in millions instructions

per second (MIPS) and represents the average number of CPU
instructions required by the session over time. At a given point
in time, the required number of operations can be defined as
n(t)/2ε where n(t) is the number of instructions required by
a session in the time interval [t − ε, t + ε] after its start given
a small predefined ε > 0. The ε value is an input parameter
to the model (e.g. ε = 0.001). Based on that, we can formally
define the values of the stepwise function νas for the j th step
(i.e. t ∈ [(j − 1)δ, jδ)) as νas(t) = (1/δ)

∫ jδ

(j−1)δ
(n(x)/2ε) dx.

Memory load of the application server
The stepwise function φas(t) denotes the RAM usage in the
application server by the session over time and is defined
analogously to νas(t). φas(t) defines how many megabytes of
memory the session uses t seconds after its start.

CPU load of the database servers
By νdb(t, dk), we denote the number of CPU operations needed
for the processing of data item dk by some of the DB servers. It
is measured in MIPS and is defined analogously to νas(t).

Memory load of the database servers
φdb(t, dk) defines the RAM usage needed for the processing of
data item dk by a DB server and is formally defined analogously
to φas(t).

Disk I/O load
By σdb(t, dk) we denote the number of required disk I/O
operations on data item dk over time. It is measured in Millions
of Input/Output Operations Per Second (MIOPS). The number
of I/O operations with dk at time t can be defined as n(t, dk)/2ε,

where n(t, dk) is the number of instructions with data item
dk required by a session in the time interval [t − ε, t + ε]
and given the predefined ε > 0. Analogously to νas , we
can define the ‘averaged’ step values of the σdb functions
for the j th step (i.e. t ∈ [(j − 1)δ, jδ)) as σdb(t, dk) =
(1/δ)

∫ jδ

(j−1)δ
(n(x, dk)/2ε) dx.

Network delay and ‘think times’
Within our architectural settings, we can largely classify two
types of network: (i) the internal data centre network, used to
connect application tiers within a cloud and (ii) the network
between the end users and the serving data centre.

Nowadays the internal data centre network usually has
sophisticated topology and offers high speed and low latency
[50]. Moreover, previous research in multi-tier applications
shows that inter-tier network performance typically does not
cause significant performance penalty compared to CPU, RAM
and I/O utilization [51, 52]. In fact Lloyd et al. have empirically
shown that for a multi-tier application in a cloud environment,
the outgoing and incoming VM network transfer between tiers
explain, respectively, only 0.75% and 0.74% of the overall
performance variability. In contrast, they have found that CPU
load and disk reads and writes explain, respectively, over 71%,

The Computer Journal, 2013

 at Pennsylvania State U
niversity on February 20, 2016

http://com
jnl.oxfordjournals.org/

D
ow

nloaded from

http://comjnl.oxfordjournals.org/

8 N. Grozev and R. Buyya

37% and 14% of the observed performance [53]. Hence we will
consider the effect of the internal network to be negligible and
will not present it in our model.

In contrast, the delays caused by the wide area network
connecting end users with the serving data centre can be
significant. Similarly, users’ ‘think times’ are typically present
and need to be modelled. From the perspective of the servers
both the external network delays and the ‘think times’ result
in idle periods, during which the servers are not utilized by
the session. More formally, if a session is idle (either because
of a network delay or user’s inactivity) during the time period
[t1, t2], then the number of required CPU instructions by the
AS server will be n(t) = 0 for t ∈ [t1, t2]. Since νas(t) is
dependent on n(t) its value for this time interval will be affected
accordingly. The values of νdb and σdb, representing the CPU
and disk utilization of a DB server, for an idle time period can
be defined analogously. The values of φas and φdb for an idle
period can be defined as the amount of session data kept in
the memory by the respective AS and DB servers during these
periods.

4.2. Modelling resource contention

Resource contention appears when some of a server’s resources
(e.g. CPU) are insufficient to serve all its sessions timely.
Although clouds offer seemingly endless resource pools, it
is still possible for an application to experience resource
shortage. Firstly, some applications allocate resources statically
and given a substantial workload their capacity can be
exceeded. Secondly, public online applications can experience
a sudden and unexpected demand peak. In some cases
resources cannot be provisioned quickly enough and thus the
already provisioned servers experience contention. Thirdly, in
many 3-tier deployment models, the data tier cannot scale
horizontally. For example, when a single relational DB server is
used without any replication or sharding. In such cases the DB
servers can experience contention.To explore what is the system
performance in such cases, we need to be able to model and
simulate contentions. Next, we describe how different resource
contentions are handled in our model.

CPU resource contention
When the CPU resources of a server are insufficient, standard
process/thread scheduling policies are used to assign processing
time to each session. For the time periods that the session is
preempted in a tier, it is also considered preempted on the other
application tier. In other words resource preemption in one tier
is reflected by an overall slowdown of the entire session, which
is representative of synchronous data processing.

I/O resource contention
When the I/O throughput of the DB server is insufficient,
standard I/O scheduling policies are used to assign I/O

processing to each session. Alike with CPU, an I/O preemption
in one tier leads to a preemtion in the other tier as well.

RAM resource contention
RAM resource contention occurs when at a given point in time
the sum of the sessions’and the system’s memory usages exceed
the amount of memory the server has. When RAM resource
contention appears the server stops, resulting in ‘out of memory’
error. Consequently, all sessions served on this server fail and it
stops accepting new ones.The work of the other servers however
continues. For simplicity in our model we do not consider
the usage of swapped disk space. The modelled behaviour is
representative of an operating system going out of memory and
killing the process of the server.

4.3. Session arrival model

As discussed, we model the arrival of a session of a given
type in a data centre as a Poisson distribution of a frequency
function—Po(λ(t)), where λ(t) is represented as a stepwise
function of time. In a Multi-Cloud scenario, the arrival rates
in each Cloud should be defined. Hence, frequency functions
need to be specified per data centre. This allows for modelling
different workloads coming at different times within each data
centre. Thus, we can represent workload influencing factors
like time zone differences. Formally, for each session type sti
and data centre dcj , the number of arrivals can be modelled as
Po(λij(t)), where λij(t) is a user specified function modelling
the arrival rate.

4.4. Performance variability across clouds

The VM performance in a Multi-Cloud environment can vary
significantly. The two main factors for this are:

(i) VM setup—a typical VM configuration allows a VM to
use additional (but still limited) resources in terms of
CPU and I/O if the host machine provides for that. Thus
in the model it is important to specify what is the set-up
of the VMs with respect to sharing hardware resources.

(ii) VM consolidation—if the VM setup allows for
opportunistic usage of host resources, then it is
important to note what the VM consolidation policy of
each cloud provider is.

In order to adequately model the variability of the VM
performance in a Multi-Cloud environment, we need to
note both these characteristics for every data centre. In the
implementation section we discuss further how these policies
can be specified.

5. SIMULATOR IMPLEMENTATION

The previously described analytical model allows for coarse
grained performance analysis of 3-tier applications. In

The Computer Journal, 2013

 at Pennsylvania State U
niversity on February 20, 2016

http://com
jnl.oxfordjournals.org/

D
ow

nloaded from

http://comjnl.oxfordjournals.org/

Performance Modelling and Simulation of Three-Tier Applications 9

this section, we describe our implementation in terms of
algorithms and data structures which extend the CloudSim
[13] environment to support our model. CloudSim is a mature
simulation environment and by extending it our approach can
make use of all of its existing features like VM placement
policies and energy consumption evaluation.

5.1. Representation of disk I/O operations

To represent an application’s performance in terms of access
to persistence storage, we extended CloudSim to support disk
operations. This was done at three levels:

(i) Host—we extended the base CloudSim Host (physical
machine) entity by adding hard disks to it. Each disk is
represented as an extension of the Processing Element
(Pe) component. A Pe in CloudSim models a core of a
processor.

(ii) VM—in a similar fashion, we also extended the VMs
to support disk operations. We also extended the
schedulers that distribute VM resources among the
executing jobs to distribute the available I/O operations.

(iii) Cloudlet (Job)—each job (cloudlet in terms of
CloudSim) has been extended to define a number of
required I/O operations.Also each cloudlet is associated
with the data item it uses. Lastly, each cloudlet defines
a boolean value, showing whether it modifies the data
item or not.

Users are allowed to specify the policies for sharing I/O
operations among VMs in a Host and cloudlets in a VM the
same way they do it for CPU.

5.2. Provisioning of I/O operations

Disk I/O operations need to be distributed at two levels. Firstly,
a Host should distribute the available disk operations among
the VMs using the disks. Secondly, VMs should distribute their
portion of the I/O operations among the jobs/cloudlets deployed
in them. There is clear analogy between distributing I/O and
CPU operations among VMs and cloudlets. Furthermore, as we
represent hard disks as extended Processing Elements (Pe) we
could directly reuse the already existing CloudSim policies for
CPU scheduling.

However, unlike CPU, I/O operations are localized. I/O
operations on a data item stored on one drive can not be
executed on another, while CPU operations can be executed
on every available CPU. Since CloudSim does not support such
locality in the assignment of CPU operations, directly reusing
these policies will lead to erroneous simulation behaviour.
To overcome this problem we assign a separate scheduler to
each of the hard disks of a Host. Thus disk operations can be
provisioned per disk. This allows forVMs to have access only to
a portion of the available disks and to achieve locality. We have
also implemented locality in an extension to the job/cloudlet

scheduling policies, so that jobs utilize only the disks, where
the corresponding data items reside.

5.3. Representing sessions and contention

In the analytical model, we represented a session as several
stepwise functions defining its resource demands on the servers.
Within each step, a session has constant resource requirements
in terms of CPU, RAM and I/O operations. To bring this concept
to the simulation environment, we represent the behaviour of
each session within a step as one cloudlet executed by the AS
server and several cloudlets on the DB servers. Each of the DB
cloudlets is associated with the data item it uses. The breakdown
of a session’s behaviour for a given step into DB cloudlets
is based on the data items it accesses during this period. For
example if a session accesses three data items during a given
step, then there will be three DB cloudlets for this step.

In other words for each session and for each step in the
simulation we have one cloudlet assigned to the AS server and
several cloudlets assigned to the DB servers. Thus in terms of
implementation the step values of νas , φas , νdb, φdb, σdb define
the corresponding cloudlets’ resource requirements in terms of
CPU, RAM and I/O.

The assignment of cloudlets to DB servers is based on
the data items they use—cloudlets are assigned to servers
which have access to their data. This assignment is done by
a new simulation entity DBCloudletScheduler. The default
implementation of this entity assigns each DB cloudlet to the
first server which has access to its data item. By specifying
a custom DBCloudletScheduler one can simulate different
policies in the data layer. For example, cloudlets performing
read operations could be redirected to slave DB servers, or can
be cancelled if the data they retrieve is in a cache.

Formally, for a given session the required amount of CPU
operations in the AS cloudlet corresponding to the step interval
[ti , ti + δ] is

∫ ti+δ

ti
νas(t) dt , which simply equals δνas(ti) as

νas(t) is a stepwise function has a constant value within this
interval. The other resource requirements (CPU and RAM
of a server and I/O on a disk) of the cloudlets are defined
analogously.

Each session is represented with two equal-sized queues—
one for the AS server and one for the DB servers. The elements
of both queues correspond to the steps in the model. The
elements of the AS queue are single cloudlets, which are
executed sequentially. The elements of the DB queue are sets
of cloudlets, whose members execute simultaneously. Cloudlets
from subsequent elements of the DB queue execute sequentially.
The cloudlets from the corresponding elements of both queues
are associated with the same start time, and no cloudlet is
submitted to the servers before its start time has passed.

This is depicted in Fig. 3. For each session si on the diagram
the j th element of the AS queue is sas

ij and the j th element of
the DB queue is the set {sdb

ij1 · · · sdb
ij lij

}, where lij is the set size.

The Computer Journal, 2013

 at Pennsylvania State U
niversity on February 20, 2016

http://com
jnl.oxfordjournals.org/

D
ow

nloaded from

http://comjnl.oxfordjournals.org/

10 N. Grozev and R. Buyya

Algorithm 1 Submit Session.
1: procedure SubmitSession(si , tcurr, σ) � si - session, tcurr - current rime, σ - step size
2: submit sas

i1 to the assigned AS server
3: submit {sdb

i11, . . . s
db
i1li1

} to the DBCloudletScheduler
4: setStartTime(si , 2, tcurr + σ) � Sets the start times of the cloudlets at position 2 in the queues
5: end procedure

FIGURE 3. Session representation.

Cloudlets associated with the j th step are submitted only if all
their start times have passed and all cloudlets from the previous
steps have finished execution.

After a session si is submitted, the cloudlets form the heads
of both queues are set the current simulation time tcur as start
times. The head of the AS queue sas

i1 is directly submitted to
the assigned AS server. Cloudlets sdb

i11 · · · sdb
i1li1

from the head
of the DB queue are sent to the DBCloudletScheduler, which
submits them to the DB servers in accordance with the DB layer
architecture—e.g. Master–Slave, caching, etc. The cloudlets
from the next elements of the queues sas

i2 , sdb
i21 . . . sdb

i2li2
are set

starting time tcurr +σ . This procedure is defined in Algorithm 1.
Upon the completion of every submitted cloudlet and the

elapse of the start time of every cloudlet, which has not been
yet submitted, the heads of the two queues are inspected. If all
cloudlets from the two heads have finished and the start times
of the cloudlets form the next queue elements have passed, then
the following actions are taken:

(1) the heads of the queues are removed;
(2) the cloudlets from the new heads are submitted;
(3) the cloudlets from the next elements (after the heads)

of the queues are set to have starting times σ seconds
after the present moment.

Algorithm 2 defines formally the previously described
procedure for updating a session. The two key invariants of
this algorithm are:

(i) No cloudlet is submitted before its start time and the
start time of its counterparts from both queues have
come. Formally, no cloudlet c ∈ {sas

ij , sdb
ij1 . . . sdb

ij lij
} is

submitted before the start times for all sas
ij , sdb

ij1 . . . sdb
ij lij

have elapsed. This ensures that even if one of the servers
is quick to finish its cloudlets, this will not lead to
premature exhaustion of the session’s cloudlets and the
session will still take at least its predefined ideal time.

(ii) No cloudlet is submitted before all its predecessors and
all predecessors of its counterparts from both queues
have finished. Thus if there is contention/bottleneck in
any of the tiers this will result in an overall delay of the
whole session.

As a consequence a bottleneck in a tier results in an overall
delay of the served sessions.

CloudSim is a discrete event simulator and one can associate
custom logic with every event. This allowed us to check
throughout the simulation if the memory usage within a server
exceeds its capacity. In accordance with the described model,
in such a case the VM simulation entity is stopped and all of its
running sessions are marked as failed.

5.4. Performance variability

CloudSim supports a special CPU provisioning policy called
VmSchedulerTimeSharedOverSubscription. It allows setting the
maximum CPU capacity of a VM. If there are sufficient
resources this capacity is provided. Otherwise a smaller share is

The Computer Journal, 2013

 at Pennsylvania State U
niversity on February 20, 2016

http://com
jnl.oxfordjournals.org/

D
ow

nloaded from

http://comjnl.oxfordjournals.org/

Performance Modelling and Simulation of Three-Tier Applications 11

Algorithm 2 Update Session Processing - executed when a cloudlet finishes, or the start time of a cloudlet elapses.
1: procedure UpdateSessionProcessing(si , tcurr, σ) � si - session, tcurr - current rime, σ - step size
2: j ← index of the heads of the queues
3: if tcurr ≥ getStartTime(si, j + 1) then
4: submitNextStep ← TRUE
5: for all c ∈ {sas

ij , sdb
ij1 . . . sdb

ij lij
} do

6: if c is not finished then
7: submitNextStep ← FALSE
8: break
9: end if

10: end for

11: if submitNextStep then
12: pop si’s queues
13: j ← j + 1
14: submit sas

ij to the assigned AS server
15: submit {sdb

ij1, . . . s
db
ij lij

} to the DBCloudletScheduler

16: setStartTime(si , j + 1, tcurr + σ)
17: end if
18: end if
19: end procedure

allocated. This allows us to implement the previously discussed
VM performance variability with respect to their mapping to
hosts. Since we represent hard disks as extended processors,
we reuse this policy to allocate I/O instructions among VMs.

When instantiating a physical machine in the simulation
environment, one needs to specify two policies—one for sharing
CPU time among VMs and one for sharing I/O operations. By
choosing the appropriate policy one can either take into account
the performance variability or assume that VMs use constant
resources.

By using VmSchedulerTimeSharedOverSubscription and
implementing different VM consolidation logic in each data
centre, the performance heterogeneity of a Multi-Cloud
environment can be represented.

5.5. Load balancing

To distribute the incoming sessions among AS servers, we
introduce a new entity called LoadBalancer. It is responsible
for assigning the incoming sessions to the AS servers within a
data centre. Currently, the load balancer is a separate entity and
is not deployed within a VM. We implemented a default load
balancer that distributes the incoming sessions to the AS server
with the least percentage of CPU utilization. However, one can
implement different load balancing policies and run simulations
with them.

5.6. Workload generation

In our implementation, workload is generated by a new entity
called WorkloadGenerator. It generates workload for a single

data centre and application. Thus each generator is associated
with a single load balancer.At the start of every simulation step,
each generator is queried and returns a list of sessions that will
be submitted to the load balancer during the step.

In order to define the behaviour of a generator, two
additional parameters are needed—a FrequencyFunction and a
SessionGenerator. The FrequencyFunction represents the λ(t)

function from the formal model. In our implementation it has
an additional property—the unit, which represents the time
period the frequency is defined for. For example, if the unit
is 60 s and the frequency is λ(t) = 3 for every t , then sessions
appear with frequency 3 per minute during the entire simulation.
One can implement arbitrary frequency functions that meet the
requirements of their simulation.

The default implementation is PeriodicStochasticFrequen-
cyFunction, which defines a periodic frequency function. For
example, it can be used to define the frequencies on a daily or
weekly basis. Using it, one can further define frequency val-
ues as samples of a normal distribution. For example, one can
specify that on a daily basis in the period 13–15 h the session
occurrence frequency per hour has a mean of 20 and a standard
deviation of 2. At simulation time, the workload generator gen-
erates values that meet these criteria. One can also specify the
so-called null point of such a function. It represents the moment
at which a period starts. Null points represent an easy way to
define workloads originating in different time zones. That is, if
we have a given workload generator, we can ‘move’ it through
time zones by just setting the appropriate null value.

The SessionGenerator is responsible for creating sessions.
The default implementation is ConstSessionGenerator which

The Computer Journal, 2013

 at Pennsylvania State U
niversity on February 20, 2016

http://com
jnl.oxfordjournals.org/

D
ow

nloaded from

http://comjnl.oxfordjournals.org/

12 N. Grozev and R. Buyya

generates equal sessions every time it is called. Alike frequency
functions one can implement and plug their own session
generation policies.

The work of a workload generator is depicted in Fig. 4.
At the beginning of every step of the simulation, the
WorkloadGenerator is requested to generate the sessions for the
step. Based on the step length, the frequency and the function’s
unit the generator computes how many sessions need to be
submitted for the step and asks the SessionGenerator to create
them. The resulting sessions’ submission times are uniformly
distributed throughout the step’s duration.

6. USE CASES

This section describes several typical use cases of the proposed
modelling and simulation environment. We envision that
the proposed environment can be used by both researchers
in the field of distributed systems and system architects
for performance evaluation and comparison of different
provisioning and scheduling approaches. The common use
cases are depicted in Fig. 5.

FIGURE 4. Workload generation.

During the early stages of designing a system, an architect
often needs to predict how the designed system would behave
under different workloads and if it is going to meet the stated
non-functional requirements at all times. Key non-functional
requirements usually are the response time to users and the cost
of the utilized Cloud resources. Having multiple configurable
Commercial Off-The-Shelf (COTS) and Open Source software
components and middleware at their disposal, they need to
compare the available approaches, to weight the architectural
trade-offs and make an architecture wise decision. This is
usually achieved by developing small-scale proof of concept
(POC) prototypes that demonstrate the overall plausibility of
an approach. The cost and efforts for developing multiple POCs
to explore various architectural alternatives have been a major
inhibitor for system architects. Not to mention that small scale
POCs can not be used to test for workload peaks and scaling
under extreme workload.

Hence, a simulation environment can be used during
these early stages of system development. An architect can
perform simulations by ‘plugging’ different policies for load
balancing and data replication and caching by implementing
the LoadBalancer and DBCloudletScheduler APIs. This would
allow for evaluation and comparison of different approaches.

Similarly, the proposed modelling and simulation environ-
ment could also be of use to researchers, developing new pro-
visioning and scheduling approaches for 3-tier applications in
Clouds and Multi-Clouds. New load balancing, data replica-
tion and caching strategies could be developed and evaluated
through the LoadBalancer and DBCloudletScheduler APIs.
New entry point policies can also be evaluated.

A key point in all these use cases is the definition of the
workload directed to every data centre. Firstly, one needs to
define the resource consumption of the sessions that make
up the workload. One approach is to define one or several
types of sessions, whose performance characteristics over

FIGURE 5. Main use case scenarios.

The Computer Journal, 2013

 at Pennsylvania State U
niversity on February 20, 2016

http://com
jnl.oxfordjournals.org/

D
ow

nloaded from

http://comjnl.oxfordjournals.org/

Performance Modelling and Simulation of Three-Tier Applications 13

time (expressed in the step-wise functions) are averaged from
monitoring data from actual executions. For this baseline
benchmarks of application executions are needed. They can be
extracted from historical data from log files of a prototype of the
system or a similar system. Alternatively, they can be extracted
by performing experiments with a prototype of the system or
one with similar characteristics.

Once the characteristics of the session type(s) have been
defined, the frequencies of the session establishments need to
be defined. One approach is to use historical workload—e.g. the
times of session establishment can be taken from logs. However,
it is often the case that no historical information is available—
e.g. if a new system is being architected. Moreover, one of the
main benefits of performance modelling and simulation is that
one can test with a range of workloads including both high and
low ones and with static or dynamic arrival frequencies over
time. The aforementioned workload generation functionality of
the simulation environment can be used to generate synthetic
workload. As discussed, it allows for the generation of arbitrary
time-dependent workloads.

7. VALIDATION

In this section, we model and simulate the behaviour of an actual
3-tier system and compare the performances of the simulation
and the system itself. The goals are two-fold: (i) to demonstrate
how one can model a system’s behaviour and (ii) to show that
our model can predict a system’s performance with reasonable
accuracy.

A simulator is a generic tool with a wide applicability
scope. Testing and validating our simulator against all possible
middleware technologies, operating systems, configurations,
virtualization environments and workloads is an extremely
laborious and time consuming task. In this section, we
demonstrate the plausibility of our approach with two
experiments with the established benchmarking environment
Rice University Bidding System (RUBiS) [54–57]. It consists
of an e-commerce website similar to eBay.com and a client
application, which generates requests to the website.

RUBiS follows the standard 3-tier architecture and has an
application and a DB server. We use the PHP version of RUBiS
with a MySql relational DB. The user interface consists of
several web pages. They are not static and have dynamic content
[57]. For each incoming HTTP request for a page, the PHP
server parses the HTTP parameters, queries or updates the
MySql DB and generates the dynamic content of the page,
which is then returned to the end user. Hence each page request
induces load to both servers. The MySql server ensures that
the data are accessed in a transactional and consistent manner,
which is important for an e-commerce application. The DB
consists of seven main tables, containing information about
items, categories, bids, comments, users, regions and direct
purchases [54]. Figure 6 shows the relational model in more

details. There is an additional table called ‘old-items’ with the
same schema as ‘items’, which contains historical data about
goods, which are no longer for sale. In the RUBiS workload,
the DB has been populated with data in a manner similar to
ebay. More specifically, at every moment there are about 33
000 items classified in 20 categories and 1 million users in 62
regions. There are half a million comments. The total size of
the MySql DB and the accompanying indices is approximately
1.4 GB [54].

In RUBiS the workload consists of sessions, each of which
comprises a sequence of requests. The succession of requests is
based on a transactions table/matrix specifying the probabilities
for a user visiting a given page to navigate to every other page
or to leave the website. RUBiS also emulates the ‘think times’
between requests. By default the lengths of the ‘think times’
follow a negative exponential distribution as advised by the
TPC-W specification [58]. The mean of this distribution and
the number of sessions are parameters of the workload. At run
time, for each session the RUBiS client starts by sending an
initial request to the ‘Home’ page. Then based on the mean
‘think time’, the last accessed page and the transactions table it
randomly generates a ‘think time’ period, waits for it to expire,
and generates the next request. We have modified the client, so
that this process continues until a predefined number of requests
have been served or the user leaves the system.

RUBiS comes with two types of workload, defined in the
provided transactions tables. The first one consists of browsing
actions only, that do not result in a modification of the
persistent data. Examples of such actions are browsing items
and reviewing sellers’ information and ranking. The second
workload consists of 85% browsing actions and 15% actions
resulting in a modification of the DB. It is a much more realistic
auction site’s workload [55, 57]. This is the default RUBiS
workload and it is the one we use in all our experiments.

In RUBiS performance utilization data are gathered from
both servers through the SAR (System Activity Report) system
monitor, provided by the SYSSTAT package [59]. At execution
time, it collects detailed information regarding CPU, RAM,
I/O and network utilization. Among these, the measurement
of the actual RAM consumption is an elusive goal, because
(i) operating systems often keep huge caches of persistent
data in memory to avoid some disk operations, (ii) in many
middleware technologies memory is not automatically released
until garbage collection. Consequently, deciding what part of
the allocated memory is actually used by the application is not
trivial. To bypass this issue in our experiments we use the SAR
metric for amount of ‘active memory’. As to the specification it
represents the amount of memory which has been used recently
and is not likely to be claimed for other purposes.

In all following experiments we set-up the RUBiS client
to execute sessions consisting of maximum 150 requests, and
having 7 s average ‘think time’. We use the default RUBiS
transitions table to emulate users browsing through the website.
In all simulations, we consider a step time δ = 60 s.

The Computer Journal, 2013

 at Pennsylvania State U
niversity on February 20, 2016

http://com
jnl.oxfordjournals.org/

D
ow

nloaded from

http://comjnl.oxfordjournals.org/

14 N. Grozev and R. Buyya

FIGURE 6. Relational model of the RUBiS workload.

7.1. Session performance baseline

As discussed, one can extract a typical session’s performance
characteristics either from historical data or by benchmarking.
Due to the unavailability of suitable performance logs for
RUBiS we use benchmarking, which is described in this section.

Firstly, we assume that all sessions have similar performance
characteristics. For a RUBiS workload’s sessions this is
reasonable, since they all follow the same statistical patterns.
This is also typical in real life, where one can often find
that ‘on average’ users follow similar usage patterns. In our
simulation we will have one session type/prototype defining a
session’s performance demands over time in terms of the νas ,
φas , νdb, φdb and σdb functions. The values of these functions
are derived from benchmarks of the system’s performance.
Hence when we emulate n sessions with the aforementioned
statistical properties in RUBiS, in the corresponding simulation
we will simulate n sessions from this type. Intuitively, as the
session type is representative of a typical session the simulation
and the actual execution should have similar performance

characteristics given a sufficient number of sessions. We test
this assumption in the later subsections.

For some applications one can observe that different groups
of users (e.g. merchants and buyers in an online store) have
diverse usage patterns, resulting in different resource utilization.
In such case, different session types should be defined and
simulated. However, in the RUBiS environment all users
follow the same usage pattern, and thus we consider only one
type.

We conduct the benchmarking on a computer with an Intel(R)
i7-2600 chipset, which has four hyper-threading 3.4 GHz cores,
8 GB RAM and is running 64bit Ubuntu 12.10 operating system.
We have deployed theAS and DB servers in separateVirtualBox
VMs, each of which has 512 MB RAM, a dedicated CPU core
from the host and is running 32bit Ubuntu 12.4.

The RUBiS benchmark uses a single DB server and does not
use any caching, replication or sharding. Thus in the formal
model we consider a single data item d1, which is used by all
disk operations.Thus in our model the νdb,φdb andσdb functions
de facto become functions of time only.

The Computer Journal, 2013

 at Pennsylvania State U
niversity on February 20, 2016

http://com
jnl.oxfordjournals.org/

D
ow

nloaded from

http://comjnl.oxfordjournals.org/

Performance Modelling and Simulation of Three-Tier Applications 15

0 50 100 150 200 250 300

0
5

10
15

20
25

30

Time in seconds

%
C

P
U

 u
til

is
at

io
n

100 sessions
1 session

FIGURE 7. CPU utilization of the DB server with 1 and 100
simultaneous sessions for the initial 5 minutes.

We perform two simple RUBiS benchmark tests to define the
session type for the simulation. For both tests we get the values
of the resource utilization in terms of CPU, RAM and disk
I/O from the SAR monitoring service. We take measurements
for all servers and for every second from the tests. First,
we test the system with only one session. The goal is to
measure the utilization caused by the operating system, the
middleware and the monitoring service. Secondly, we test with
100 simultaneously started sessions.We attribute the differences
in system utilization between the two tests to the increment of
99 sessions in the workload and based on that we estimate the
overhead of a single session.

In the rest of the section, we describe how the AS server
CPU utilization caused by a session can be represented in our
model. The procedure for defining the model representation
based on the benchmarks is not CPU specific and only uses
the reported by SAR utilizations in percentages. Thus, without
loss of generality, the same approach can be applied to model
the incurred RAM utilizations of both servers and the CPU and
disk utilizations of the DB server.

Based on the two tests, we can define a session’s AS CPU
utilization ti ∈ N seconds after its start as:

F as
cpu(ti) = F as(100)

cpu (ti) − F
as(1)
cpu

99
, (1)

where F as(1)
cpu (ti) and F as(100)

cpu (ti) are the measurements of the
CPU utilization of the AS server for the experiments with 1

and 100 sessions, respectively, and F
as(1)
cpu denotes the mean of

all CPU measurements for the AS server from the test with

1 session. The rationale for Eq. (1) is that F
as(1)
cpu denotes the

typical overhead utilization caused by the system components
like middleware and OS. Thus when we subtract it from the
overall utilization and divide by the increment of sessions we
get an estimation of the overhead caused by a single session.
We call the values F as

cpu(ti) derived observations of the session’s
CPU utilization on the AS server. Analogously, we can define
the session’s derived observations on both servers in terms of
CPU, I/O and RAM.

Next we need to define the step values of the model step
functions based on the derived observations in terms of CPU,
RAM and disk I/O. One approach is to use the means of
the derived observations falling within a step. However, we
observe that the monitoring values returned by SAR for the
two experiments include many fluctuations/spikes—see Fig. 7.
Thus, to overcome the effects of outliers, we use the medians of
the derived observations falling within a step. Recalling that we
consider steps of size 60 s, and that we have derived observations
for every second, the CPU utilization of the AS server for the
j th step (i.e. t ∈ [t60(j−1), t60j]), can be defined as follows:

νas(t) = median(F as
cpu(t60(j−1)) · · · F as

cpu(t60j−1)). (2)

As discussed, we define the step values of φas , νdb, φdb and σdb

analogously, which gives us a complete session performance
model.

Lastly, we need to define the ideal session duration τ of
the sessions from the session type. In the experiment with 100
sessions, the utilization of all performance characteristics (CPU,
RAM and disk I/O) is much less than 100% at all times. Hence,
there has not been any resource contention during this test and
thus we can define τ as the mean of the execution times of all
sessions from this experiment.

7.2. Experiment 1: static workload

The goal of this experiment is to demonstrate that a simulation
can be used to predict the resource utilization of the AS and DB
servers and the delays in the sessions’ execution. We execute
several RUBiS benchmarks, and model and simulate each of
them using our approach. We use different workloads in terms
of their intensity to test our simulation in the presence of both
low and high resource consumption and CPU and disk I/O
contention. Then we compare the predicted by the simulations
performance with the ones from the actual execution.

For this experiment, we use the same environment as for the
baseline measurement we did previously.We execute workloads
consisting of 50, 200, 300, 400, 500 and 600 simultaneously
starting sessions and we record the delays and the utilization
over time. The sessions are based on the default RUBiS
transitions table, which defines regular transactional load in an
e-commerce website and which we used for the baselining.

From the monitoring data we can conclude that the used
workloads are mostly transactional and data intensive, since

The Computer Journal, 2013

 at Pennsylvania State U
niversity on February 20, 2016

http://com
jnl.oxfordjournals.org/

D
ow

nloaded from

http://comjnl.oxfordjournals.org/

16 N. Grozev and R. Buyya

AS server, CPU
DB server, CPU
DB server, Disk

0 200 400 600 800 1000 1200 1400

0
20

40
60

80
10

0

300 sessions

Time in seconds

%
 U

til
is

at
io

n

0 200 400 600 800 1000 1200 1400

600 sessions

FIGURE 8. CPU and disk utilizations with 300 and 600 simultaneous sessions. The plotted values are averaged for every 90 s.

the DB disk utilization dominates the CPU utilizations of the
two servers for the majority of the execution time. This is
shown in Fig. 8 which depicts the CPU and disk utilizations
of the two servers at execution time given workloads of 300
and 600 sessions. We have plotted the averaged utilizations for
every 90 s. For space considerations we have omitted the other
four graphs comparing utilizations. An interesting observation
is that by the end of the execution, the disk utilization decreases
significantly. One reason for this is the suspension of some
of the simultaneously started sessions, whose lengths are
generated by RUBiS as values of a random variable. In fact,
this is why all resource utilizations decrease in the latest
stages of the experiment. Another reason is the in-memory
caching of disk operations by the operating systems and the DB
server, whose effect gradually increases during the experiment.
Another interesting observation is that, the CPU utilization of
the AS server increases, as the disk utilization decreases. This
is because the throughput of the data tier is increased, which
allows the AS server to serve more user requests timely.

In our parallel simulation environment we define a single
host, with two VMs with parameters modelled after the real
ones. Then we execute simulations with the same number of
sessions as in the aforementioned RUBiS experiments and
we record the resource utilization of the two VMs. The step
functions, defining a sessions’ behaviour are the ones extracted
from the previous section.

First, we compare the accumulated session delays from the
RUBiS execution (�i) with the ones from the simulation.
Since in the simulation we have identical sessions, which start
simultaneously and whose performance utilization does not
depend on a random variable, we get a single numeric value
as a predictor of the delay. However, in the RUBiS benchmark

−
20

0
−

10
0

0
10

0
20

0

Number of Sessions

S
es

si
on

 D
el

ay
 in

 S
ec

on
ds

50 200 300 400 500 600

FIGURE 9. Execution delays (boxplots) and predicted delays
(crossing horizontal lines) in Experiment 1.

the delays vary, as the ‘think times’ and the succession of
requests vary based on random variables. Figure 9 depicts the
estimated by the simulations execution delays and the actual
ones and shows that the predicted delay is a good estimator
of the actual delays, always falling in the interquartile range,
except for the case with 600 sessions, when the 3rd quartile is
exceeded with about 40 s. We believe this difference is caused

The Computer Journal, 2013

 at Pennsylvania State U
niversity on February 20, 2016

http://com
jnl.oxfordjournals.org/

D
ow

nloaded from

http://comjnl.oxfordjournals.org/

Performance Modelling and Simulation of Three-Tier Applications 17

by performance improvements like in-memory caching, which
are not represented in our model, and which can mitigate the
consequences of contention in case of high workload. Since the
most utilized resource is the disk of the DB server (see Fig. 8)
this has impact on the overall delay. It is worthwhile noting
that some of the execution delays are actually negative, which
means that some sessions finish before the ideal execution time
has passed. This is because we defined the ideal execution time
τ as the mean of the execution times of a multitude of sessions
that do not experience any contention. Thus by pure chance in

0 200 400 600 800 1000 1200 1400

0
20

40
60

80
10

0

Time in seconds

%
 C

P
U

 u
til

is
at

io
n

Simulation
Execution

FIGURE 10. Predicted and actual CPU utilization of the AS server
with 300 simultaneous sessions in Experiment 1.

the actual execution we have sessions, whose own ideal duration
will be shorter.

Next we compare the utilizations over time in terms of CPU,
RAM and I/O of the servers in the execution and simulation
experiments. Figure 10 shows how the predicted CPU utilization
of the AS server approximates the real one for a workload of
300 sessions. To make the diagram clearer we have plotted the
averages of each 50 observations from the simulation, not of
each single observation. Figure 11 depicts how the predicted
by the simulation disk I/O utilizations approximate the one
observed at execution time for workloads of 50, 300 and
600 sessions. Again, we have shown the averages of each 50
observations from the simulation. The figure shows that with
the increase of the workload, the actual disk I/O utilization
increases as well, and causes contention in the benchmark
with 600 sessions. This behaviour is well approximated by
the predicted by the simulation disk I/O utilization. For space
considerations we do not include the other 26 comparison
graphs.

For every workload, server and resource (i.e. CPU, RAM
and I/O), we have two matched time sequences of observations
for every second of the execution—one from the RUBiS
benchmark and one from the simulation. Since in the simulation
we can do many monitoring operations without hurting the
performance, for better precision we perform 10 observations
for each second and then we average them. In other words we
have paired samples of the utilization from the executions and
the simulations. All utilization measurements are in terms of
percentage—e.g. 90% disk utilization. Based on the procedure
of the Wilcoxon signed rank test with continuity correction we
can compute the 95% confidence intervals (CI) and an estimate
(the pseudomedian) for the median of the difference between
the populations.

Simulation
Execution

0 400 800 1200 0 400 800 1200 0 400 800 1200

0
20

40
60

80
10

0

50 sessions

%
 D

is
k

 u
til

is
at

io
n

300 sessions

Time in seconds

600 sessions

FIGURE 11. Predicted and actual disk I/O utilization of the DB server with 50, 300 and 600 simultaneous sessions in Experiment 1.

The Computer Journal, 2013

 at Pennsylvania State U
niversity on February 20, 2016

http://com
jnl.oxfordjournals.org/

D
ow

nloaded from

http://comjnl.oxfordjournals.org/

18 N. Grozev and R. Buyya

TABLE 2. 95% Confidence Intervals (CIs) and estimates of the median of the utilization differences between simulation and execution.
Measurements are in percentages.

AS server, CPU AS server, RAM DB server, CPU DB server, RAM DB server, I/O
#
Sessions 95% CI Estimate 95% CI Estimate 95% CI Estimate 95% CI Estimate 95% CI Estimate

50 (−5.43, −4.93) −5.22 (−1.61, −1.58) −1.59 (−2.90, −2.39) −2.84 (−1.93, −1.91) −1.92 (−8.48, −4.64) −6.89
200 (−13.41, −12.51) −12.97 (−3.27, −3.22) −3.25 (−7.67, −6.15) −7.05 (−1.70, −1.69) −1.7 (−19.81, −15.05) −17.45
300 (−15.32, −12.82) −14.05 (−0.67, −0.56) −0.61 (−2.31, 14.14) −0.32 (−0.11, −0.09) −0.11 (−17.16, −11.01) −13.96
400 (−18.29, −14.04) −16.52 (−1.05, −0.91) −0.99 (22.92, 26.66) 24.97 (2.62, 2.70) 2.68 (−13.99, −6.92) −10.45
500 (−17.16, −5.29) −9.01 (−2.47, −2.11) −2.29 (24.21, 27.43) 25.86 (4.36, 4.38) 4.37 (−16.90, −9.65) −13.25
600 (−11.09, −7.06) −8.98 (−0.91, −0.25) −0.63 (27.46, 31.13) 29.34 (5.29, 5.38) 5.33 (−17.32, −9.84) −13.59

Table 2 lists the 95% CIs and the estimates for all experi-
ments and utilization characteristics. For all experiments and
characteristics, except for the CPU utilization of the DB server,
the 95% CIs for median of the difference in utilization contain
values within 20% range of the ideal case of 0%. The only
exception is the CPU of the DB server, the estimate of the devi-
ation for which reaches nearly 30% for the case of 600 sessions.
Once again this difference can be explained by performance
optimizations like caching, that we do not account for. Such
optimizations can mitigate contention and improve performance
given a significant workload, which is reflected by the increase
of inaccuracies when the number of sessions is increased.

7.3. Experiment 2: dynamic workload

The goal of this experiment is to show that simulation can
be used to predict the resource utilizations given a dynamic
workload in a heterogeneous Multi-Cloud environment. For this
purpose, we set up two installations of RUBiS. The first one is
the environment we used in the previous experiment and for the
benchmarking. We call this environment Data Centre 1 (DC1).
The second one is in the Asia Pacific (Singapore) region of
Amazon EC2. It consists of two m1.small VM instance—one
for the AS and one for the DB server. We call this environment
Data Centre 2 (DC2). The two environments have different
underlying hardware, virtualization technologies and provide
VMs with different capacities. Hence, with this experiment
we demonstrate how we can model and simulate application
execution in heterogeneous cloud environments.

We modify the RUBiS client, so that it can dynamically
generate sessions over a 24 h period, based on predefined
frequencies for each hour. For example, we can specify that
between the second and third hours of the test the number
of arriving sessions is normally distributed with mean μ and
standard deviation σ . Then at execution time, at the beginning
of the second hour of the test, the RUBiS client generates a
random number n, which is an instance of this distribution.
Then n sessions are submitted at equal intervals between the
second and the third hour.

TABLE 3. Hourly frequencies of the workload for Experiment 2.

Time period (h) Mean hourly frequency Standard deviation

0–6 10 1
6–7 30 2
7–10 50 3
10–14 100 4
14–17 50 3
17–18 30 2
18–24 10 1

0
20

40
60

80
10

0

Time after experiment's start

A
ve

ra
ge

 S
es

si
on

 A
rr

iv
al

s

0h 3h 6h 9h 12h 15h 18h 21h 24h

DC1
DC2

FIGURE 12. Average hourly frequencies of session arrivals for the
two data centres in Experiment 2.

Table 3 lists the frequencies we use in this experiment. They
are representative of the daily workload of a small website. We
use them to generate workload for DC1. To demonstrate the
effects of heterogeneous time zone dependent workloads, we
assume that DC2 is in a location with 12 h time zone difference
and has the same workload pattern. Thus for DC2 we ‘shift’ the
frequencies with 12 hours. Figure 12 depicts the mean session
arrivals for the two data centres.

The Computer Journal, 2013

 at Pennsylvania State U
niversity on February 20, 2016

http://com
jnl.oxfordjournals.org/

D
ow

nloaded from

http://comjnl.oxfordjournals.org/

Performance Modelling and Simulation of Three-Tier Applications 19

DC1 DC2

0
2

4
6

8
10

AS Server, CPU
%

 U
til

is
at

io
n

0h 6h 12h 18h 24h

DB Server, CPU

Time after simulation's start

0h 6h 12h 18h 24h

DB Server, Disk

0h 6h 12h 18h 24h

FIGURE 13. CPU and disk utilizations of the AS and DB servers in DC1 and DC2 at simulation time in Experiment 2.

In the simulation environment we use the data centre we
used in the previous experiment to represent DC1. In our
simulation DC2 has the same characteristics as DC1, with the
only difference being the RAM, CPU and I/O capacity of the
VMs and the physical machines (hosts).

However, m1.small instances in Amazon EC2 do not have a
dedicated processing core, like the ones in our local environment
(DC1). Hence, some of the CPU time may be distributed to other
VMs located in the same host. As discussed, the dynamism of
VM placement can result in significant performance variability.
Amazon defines the metric EC2 Compute Unit, to measure
the amount of CPU capacity a m1.small VM has. However,
often this is just a lower bound, and one can observe better
performance if for example the VM does not share the host
with others. Typically, one should evaluate their scheduling and
provisioning policies against the lower bound capacities of the
provider’s SLA. However, in this comparative study we aim to
statistically compare simulation and execution and thus we need
as accurate VM performance data as possible.

To achieve this, firstly we examine the capacity of the host
CPU, as defined in the /proc/cpuinfo Linux kernel file of
the two VMs. The SAR monitor defines the %steal metric,
which describes the percentage of ‘stolen’ CPU operations
by a hypervisor—e.g. for serving other VMs. This metric is
always zero for VMs with dedicated cores. At execution time
we account for the %steal value when we define the CPU
utilization. In the simulation environment the CPU capacity of
theVMs in DC2 is defined as the mean CPU host capacity, which
has not been ‘stolen’ during execution. Similarly, Amazon does
not define (not even with a lower bound) how many disk I/O
operations a VM with an Instance Store can perform for a
second. They do so only for EBS backed instances. Hence, we
benchmark our instances to get an estimate for I/O performance.
We use the aforementionedVM characteristics to define the DC2
VMs in the simulation environment.

As a result of the aforementioned performance measure-
ments, we have found that there are significant differences in
the VM capacities in DC1 and DC2. While the VMs in the local
environment DC1 have dedicated CPU cores, the ones in Ama-
zon EC2 do not. Our measurements show that on average the
CPU capacities of the AS and DB VMs in DC2 equal approxi-
mately 66% and 76% of the capacities of the respective servers
in DC1. Similarly, the disk capacity of the DB server in DC2
is approximately 75% of the disk capacity of the DB server in
DC1. Furthermore, the VMs in DC2 are standard Amazon EC2
instances with 1.7 GB of RAM, while our local VMs have only
512 MB of RAM. Hence with this experiment we demonstrate
application modelling and simulation in heterogeneous envi-
ronments with respect to both the observed performance and
the incoming workload.

In order to simulate the workload we use the previously
defined workload functionalities of the simulator. During
execution we sample the performance utilizations every minute.
In the simulation, we take utilization samples for every second
and then define the utilization for every minute as the average
of the samples for the included seconds.

Figure 13 displays the average VM utilizations of the servers
for every 5 min, as predicted by the simulation. It shows that
the predicted resource utilizations of the servers follow the
patterns of the workloads shown in Fig. 12. As a result of the
heterogeneity of the hardware andVM capacities in the two data
centres, the utilizations of the servers in the two data centres
differ significantly. For example, the CPU utilization of the AS
server in DC2 at the peak times of the workload exceeds almost
twice the utilization of the DC1 server at its peak workload time.
This is because, the average CPU capacity of the AS server
in DC2 is about 66% of the one in DC1. Similarly, the disk
utilization during the workload peak of the DB server in DC2
is much higher than the one in DC1, as a result of having only
76% of the disk capacity of DC1. Given intensive workloads,

The Computer Journal, 2013

 at Pennsylvania State U
niversity on February 20, 2016

http://com
jnl.oxfordjournals.org/

D
ow

nloaded from

http://comjnl.oxfordjournals.org/

20 N. Grozev and R. Buyya

TABLE 4. 95% Confidence Intervals (CIs) and estimates of the median of the utilization differences between simulation and execution in DC1
and DC2. Measurements are in percentages.

AS server, CPU AS server, RAM DB server, CPU DB server, RAM DB server, I/O
Data
centre 95% CI Estimate 95% CI Estimate 95% CI Estimate 95% CI Estimate 95% CI Estimate

DC1 (−0.43, −0.37) −0.4 (−4.06, −3.97) −4.02 (−0.35, −0.31) −0.33 (−1.06, −0.89) −0.97 (−1.16, −0.97) −1.07
DC2 (0.65, 0.74) 0.7 (−10.46, −10.31) −10.39 (−2.78, −2.71) −2.75 (−7.12, −7.07) −7.1 (0.49, 0.58) 0.53

this performance heterogeneity can easily result in different
contentions and consequently application performance in the
different data centres.

Table 4 lists the 95% CIs and the estimations of the medians
of the differences of the utilizations of the servers in DC1 and
DC2.As in the previous experiment, we use the procedure of the
Wilcoxon signed rank test with continuity correction to compute
the 95% confidence intervals (CI) and the estimates. From the
table we can see that the estimated error (the pseudomedian
of the differences) is less than 11% for all characteristics.
The accumulated delay for every simulated session in this
experiment is 0. This is representative of the fact, that at
execution time there were no resource contentions with the
given workload.

8. CONCLUSION AND FUTURE WORK

We have introduced a new approach for performance modelling
of 3-tier applications and their workload in Cloud and Multi-
Cloud environments. Unlike others, our model is coarse-grained
and session-based and does not represent each and every user
interaction. Thus, it is suitable for quick prototyping and testing
of scheduling, provisioning and load balancing approaches. We
have implemented a CloudSim extension realising this model,
which can be used for performance evaluation without the need
to deploy large scale prototypes.

By definition a system model is a simplified description
of the original system, and as such our model makes
some simplifying assumptions. To validate it, we have
conducted two experiments demonstrating the plausibility
of our approach by comparing the simulation results with
the results from an actual system execution. By using both
public Cloud and private in-house infrastructures with different
virtualization environments, settings and workload dynamism
we demonstrated the plausibility of our approach in a wide range
of environments.

Our future work will focus on: (i) modelling the entry point,
which distributes the incoming workload among clouds, (ii)
modelling asynchronous data processing, that would allow ‘Big
Data’ jobs to be represented, (iii) incorporation of our model in
other simulation environments and (iv) evaluation of the energy
consumption impact caused by an application.

In fact CloudSim already supports power consumption
modelling [13]. Moreover, Guérout et al. have defined DVFS
(Dynamic Voltage and Frequency Scaling) aware extension
of CloudSim allowing to test the effect of different DVFS
approaches on data centre power consumption [60].All of these
functionalities have been implemented in the core CloudSim
components (i.e. physical machines/hosts and processing
elements/CPU) and thus can be reused by all extensions. Hence,
while our approach is focused on application performance
modelling and simulation, it can already be used to evaluate the
energy consumption impact of application execution in different
data centres with respect to their VM consolidation and DVFS
management policies. We plan to study these aspects in more
details in the future.

ACKNOWLEDGEMENTS

We thank Rodrigo Calheiros, Amir Vahid Dastjerdi and the rest
of the CLOUDS lab members for their comments on improving
the paper.

FUNDING

This research is partially supported by research grants from
the Australian Research Council (ARC) for Discovery Projects
(DP1093678 and DP130101378).

REFERENCES

[1] Buyya, R., Yeo, C.S., Venugopal, S., Broberg, J. and Brandic,
I. (2009) Cloud computing and emerging IT platforms: Vision,
hype, and reality for delivering computing as the 5th utility.
Future Generation Computer Systems, 25, 599–616.

[2] Armbrust, M. et al. (2010) A view of cloud computing. Commun.
ACM, 53, 50–58.

[3] Foster, I., Zhao, Y., Raicu, I. and Lu, S. (2008) Cloud
Computing and Grid Computing 360-Degree Compared. Proc.
Grid Computing Environments Workshop (GCE 2008), Austin,
TX, USA, November 16, pp. 1–10. IEEE Computer Society Press.

[4] Ebay (June 21, 2013) Ebay. http://ebay.com/.
[5] Ebay Tech Blog (June 21, 2013) Cloud Bursting for Fun and

Profit. http://ebaytechblog.com/2011/03/28/cloud-bursting-for-
fun-and-profit/.

The Computer Journal, 2013

 at Pennsylvania State U
niversity on February 20, 2016

http://com
jnl.oxfordjournals.org/

D
ow

nloaded from

http://ebay.com/
http://ebaytechblog.com/2011/03/28/cloud-bursting-for-fun-and-profit/
http://ebaytechblog.com/2011/03/28/cloud-bursting-for-fun-and-profit/
http://comjnl.oxfordjournals.org/

Performance Modelling and Simulation of Three-Tier Applications 21

[6] Amazon (February 13, 2013) Public Sector Case Studies.
http://aws.amazon.com/publicsector/customer-experiences/.

[7] Amazon (August 6, 2012) Summary of the AWS Service Event
in the US East Region. http://aws.amazon.com/message/67457/.

[8] Microsoft (June 14, 2012). Windows Azure Service Dis-
ruption Update. http://blogs.msdn.com/b/windowsazure/archive/
2012/03/01/windows-azure-service-disruption-update.aspx.

[9] IBM (May 31, 2013) IBM takesAustralian Open data onto private
cloud. http://www-07.ibm.com/innovation/au/ausopen/.

[10] Sotiriadis, S., Bessis, N. and Antonopoulos, N. (2011)
Towards Inter-cloud Schedulers: A Survey of Meta-scheduling
Approaches. Proc. Int. Conf. on P2P, Parallel, Grid, Cloud
and Internet Computing (3PGCIC), Barcelona, Catalonia, Spain,
October 26–28, pp. 59–66. IEEE Computer Society Press.

[11] Grozev, N. and Buyya, R. (2012) Inter-cloud architectures and
application brokering: taxonomy and survey. Software: Practice
and Experience, doi: 10.1002/spe.2168.

[12] Buyya, R. and Murshed, M. (2002) GridSim: a toolkit for the
modeling and simulation of distributed resource management and
scheduling for Grid computing. Concurrency and Computation:
Practice and Experience, 14, 1175–1220.

[13] Calheiros, R.N., Ranjan, R., Beloglazov, A., Rose, C.A.F.D.
and Buyya, R. (2011) CloudSim: a toolkit for modeling and
simulation of cloud computing environments and evaluation
of resource provisioning algorithms. Software: Practice and
Experience, 41, 23–50.

[14] Kliazovich, D., Bouvry, P. and Khan, S.U. (2012) GreenCloud:
a packet-level simulator of energy-aware cloud computing data
centers. J. Supercomputing, 62, 1263–1283.

[15] Dejun, J., Pierre, G. and Chi, C.-H. (2009) EC2 Performance
Analysis for Resource Provisioning of Service-Oriented Appli-
cations. Proc. Int. Conf. Service-Oriented Computing (ICSOC
2009), Stockholm, Sweden, November 23–27, pp. 197–207.
Springer, Berlin, Heidelberg.

[16] Urgaonkar, B., Pacifici, G., Shenoy, P., Spreitzer, M. and Tantawi,
A. (2005) An Analytical Model for Multi-Tier Internet Services
and itsApplications. Proc. Int. Conf. Measurement and Modeling
of Computer Systems ACM SIGMETRICS 2005, Banff, Alberta,
Canada, June 6–10, pp. 291–302. ACM, New York, NY, USA.

[17] Zhang, Q., Cherkasova, L. and Smirni, E. (2007) A Regression-
Based Analytic Model for Dynamic Resource Provisioning
of Multi-Tier Applications. Proc. 4th Int. Conf. Autonomic
Computing (ICAC 2007), Jacksonville, FL, USA, June 11–15,
27. IEEE Computer Society.

[18] Bi, J., Zhu, Z., Tian, R. and Wang, Q. (2010) Dynamic
Provisioning Modeling for Virtualized Multi-tier Applications
in Cloud Data Center. Proc. 3rd Int. Conf. Cloud Computing
(CLOUD 2010), Miami, FL, USA, July 5–10, pp. 370–377. IEEE
Computer Society Press.

[19] Zhang, Z. and Fan, W. (2008) Web server load balancing: a
queueing analysis. Eur. J. Oper. Res., 186, 681–693.

[20] Kamra, A., Misra, V. and Nahum, E. (2004) Yaksha: A Self-
Tuning Controller for Managing the Performance of 3-Tiered
Web Sites. Proc. 12th IEEE Int. Worksh. Quality of Service
(IWQOS 2004), Montreal, Canada, June 7–9, pp. 47–56. IEEE
Computer Society Press.

[21] Chen,Y., Iyer, S., Liu, X., Milojicic, D. and Sahai,A. (2007) SLA
Decomposition: Translating Service Level Objectives to System

Level Thresholds. Proc. 4th Int. Conf. Autonomic Computing
(ICAC 2007), Jacksonville, FL, USA, June 11–15, pp. 3–13. IEEE
Computer Society.

[22] Lim, S.-H., Sharma, B., Nam, G., Kim, E.K. and Das, C. (2009)
MDCSim: A Multi-tier Data Center Simulation, Platform. Proc.
IEEE Int. Conf. Cluster Computing and Workshops (CLUSTER
’09), New Orleans, LA, USA, August 31–September 4, pp. 1–9.
IEEE Computer Society Press.

[23] Sriram, I. (2009) SPECI, a Simulation Tool Exploring Cloud-
Scale Data Centres. In Jaatun, M., Zhao, G. and Rong, C. (eds.),
Cloud Computing, pp. 381–392. Lecture Notes in Computer
Science, Vol. 5931. Springer, Berlin Heidelberg.

[24] NúÑez, A., VÁzquez-Poletti, J., Caminero, A., Castañé, G.,
Carretero, J. and Llorente, I. (2012) iCanCloud: a flexible and
scalable cloud infrastructure simulator. J. Grid Comput., 10, 185–
209.

[25] Fowler, M. (2003) Patterns of Enterprise Application Architec-
ture. Addison-Wesley, New York, NY, USA.

[26] Java EE (June 21, 2013) Java EE. http://oracle.com/
technetwork/java/javaee/overview/index.html.

[27] Ruby on Rails (June 21, 2013) Ruby on Rails. http://
rubyonrails.org/.

[28] Django (June 21, 2013) Django. https://djangoproject.com/.
[29] Ramirez, A.O. (2000) Three-Tier architecture. Linux J., 2000.
[30] Aarsten, A., Brugali, D. and Menga, G. (1996) Patterns for

Three-tier Client/server Applications. Proc. Pattern Languages
of Programs (PLoP ’96), Monticello, IL, USA, September 4–6.
Addison-Wesley, Reading, MA, USA.

[31] Cattell, R. (2010) Scalable SQL and NoSQL data stores.
SIGMOD Record, 39, 12–27.

[32] Adler, B. (February 13, 2013) Building Scalable Applications
in the Cloud. http://rightscale.com/info_center/white-papers/
RightScale_White_Paper_Building_Scalable_Applications.pdf.

[33] Amazon (February 13, 2013) Amazon Relational Database
Service (Amazon RDS). http://aws.amazon.com/rds/.

[34] Oracle (May 31, 2013) Oracle Database and the Oracle
Database Cloud. http://www.oracle.com/technetwork/database/
database-cloud/public/oracle-db-and-db-cloud-service-wp-
1844127.pdf.

[35] Oracle (May 31, 2013) Oracle Database Cloud Service.
http://www.oracle.com/us/solutions/cloud/overview/database-
cloud-service-wp-1844123.pdf.

[36] Ferrer A. J. et al. (2012) OPTIMIS: a holistic approach to cloud
service provisioning. Future Gen. Comput. Syst., 28, 66–77.

[37] Arjuna Agility (June 14, 2012) What Is Federation.
http://arjuna.com/what-is-federation.

[38] Rochwerger, B. et al. (2009) The RESERVOIR model and
architecture for open federated cloud computing. IBM J. Res.
Dev., 53, 1–11.

[39] Petcu, D. (2013) Multi-Cloud: Expectations and Current
Approaches. Proc. Int. Worksh. Multi-cloud Applications and
Federated Clouds (MultiCloud ’13), Prague, Czech Republic,
April 22, pp. 1–6. ACM, New York, NY, USA.

[40] RightScale (June 14, 2012) RightScale. http://rightscale.com/.
[41] Enstratius (May 31, 2013) Enstratius. https://enstratius.com/.
[42] Scalr (June 14, 2012) Scalr. http://scalr.net/.
[43] JClouds (June 14, 2012) JClouds. http://jclouds.org/.

The Computer Journal, 2013

 at Pennsylvania State U
niversity on February 20, 2016

http://com
jnl.oxfordjournals.org/

D
ow

nloaded from

http://aws.amazon.com/publicsector/customer-experiences/
http://aws.amazon.com/message/67457/
http://blogs.msdn.com/b/windowsazure/archive/2012/03/01/windows-azure-service-disruption-update.aspx
http://blogs.msdn.com/b/windowsazure/archive/2012/03/01/windows-azure-service-disruption-update.aspx
http://www-07.ibm.com/innovation/au/ausopen/
http://oracle.com/technetwork/java/javaee/overview/index.html
http://oracle.com/technetwork/java/javaee/overview/index.html
http://rubyonrails.org/
http://rubyonrails.org/
https://djangoproject.com/
http://rightscale.com/info_center/white-papers/RightScale_White_Paper_Building_Scalable_Applications.pdf
http://rightscale.com/info_center/white-papers/RightScale_White_Paper_Building_Scalable_Applications.pdf
http://aws.amazon.com/rds/
http://www.oracle.com/technetwork/database/database-cloud/public/oracle-db-and-db-cloud-service-wp-1844127.pdf
http://www.oracle.com/technetwork/database/database-cloud/public/oracle-db-and-db-cloud-service-wp-1844127.pdf
http://www.oracle.com/technetwork/database/database-cloud/public/oracle-db-and-db-cloud-service-wp-1844127.pdf
http://www.oracle.com/us/solutions/cloud/overview/database-cloud-service-wp-1844123.pdf
http://www.oracle.com/us/solutions/cloud/overview/database-cloud-service-wp-1844123.pdf
http://arjuna.com/what-is-federation
http://rightscale.com/
https://enstratius.com/
http://scalr.net/
http://jclouds.org/
http://comjnl.oxfordjournals.org/

22 N. Grozev and R. Buyya

[44] Apache Foundation (June 14, 2012) Apache Libcloud.
http://libcloud.apache.org/.

[45] Apache Foundation (June 14, 2012) Apache Delta Cloud.
http://deltacloud.apache.org/.

[46] Helland, P. (2012) Condos and clouds. ACM Queue, 10, 20–35.
[47] Cao, J., Andersson, M., Nyberg, C. and Kihl, M. (2003) Web

Server Performance Modeling Using an M/G/1/K*PS Queue.
Proc. 10th Int. Conf. Telecommunications (ICT’03), Tahiti,
Papeete, French Polynesia, February 23–March 1, pp. 1501–
1506. IEEE Computer Society Press.

[48] Robertson, A., Wittenmark, B. and Kihl, M. (2003) Analysis
and Design of Admission Control in Web-server Systems. Proc.
American Control Conference (ACC ’03), Denver, CO, USA,
June 4–6, pp. 254–259. IEEE Computer Society Press.

[49] Paxson, V. and Floyd, S. (1995) Wide area traffic: the failure of
Poisson modeling. IEEE/ACM Trans. Network., 3, 226–244.

[50] Ilyadis, N. (2012) The Evolution of Next-generation Data Center
Networks for High Capacity Computing. Proc. Symp. VLSI
Circuits (VLSIC’12), June 13–15, Honolulu, HI, USA, pp. 1–5.
IEEE Computer Society Press.

[51] Jung, G., Swint, G., Parekh, J., Pu, C. and Sahai, A. (2006)
Detecting Bottleneck in n-Tier ITApplicationsThroughAnalysis.
In State, R., Meer, S., O’Sullivan, D. and Pfeifer, T. (eds.),
Large Scale Management of Distributed Systems, pp. 149–160.
Lecture Notes in Computer Science, Vol. 4269. Springer, Berlin
Heidelberg.

[52] Malkowski, S., Jayasinghe, D., Hedwig, M., Park, J., Kanemasa,
Y. and Pu, C. (2010) Empirical Analysis of Database Server
Scalability using an N-tier Benchmark with Read-intensive
Workload. Proc. ACM Symp. Applied Computing (SAC ’10),
Sierre, March 22–26, pp. 1680–1687. Switzerland SAC’10.
ACM, New York, NY, USA.

[53] Lloyd, W., Pallickara, S., David, O., Lyon, J., Arabi, M.
and Rojas, K. (2013) Performance implications of multi-tier
application deployments on Infrastructure-as-a-Service clouds:
Towards performance modeling. Future Generation Computer
Systems, 29, 1254–1264.

[54] RUBiS (March 15, 2013) RUBiS: Rice University Bidding
System. http://rubis.ow2.org/.

[55] Amza, C., Chanda, A., Cox, A., Elnikety, S., Gil, R.,
Rajamani, K., Zwaenepoel, W., Cecchet, E. and Marguerite, J.
(2002) Specification and Implementation of Dynamic Web Site
Benchmarks. Proc. IEEE Int.Worksh.Workload Characterization
(WWC-6), Austin, TX, USA, October 27–27, pp. 3–13. IEEE
Computer Society Press.

[56] TR02-388 (2002) Bottleneck Characterization of Dynamic Web
Site Benchmarks. Technical Report, Department of Computer
Science Rice University, Houston, TX, USA.

[57] Cecchet, E., Chanda, A., Elnikety, S., Marguerite, J. and
Zwaenepoel, W. (2003) Performance Comparison of Middleware
Architectures for Generating Dynamic Web Content. Proc.
ACM/IFIP/USENIX Int. Conf. Middleware (Middleware ’03), Rio
de Janeiro, June 16–20, pp. 242–261. Brazil Middleware ’03.
Springer, New York, NY, USA.

[58] TPC BenchmarkTM W 1.8 (2002) TPC BENCHMARK
W (Web Commerce). Specification, version 1.8. Transaction
Processing Performance Council (TPC), San Francisco, CA,
USA.

[59] SYSSTAT (March 15, 2013) SYSSTAT. http://sebastien.
godard.pagesperso-orange.fr/.

[60] Guérout, T., Monteil, T., Costa, G. D., Calheiros, R. N., Buyya,
R. and Alexandru, M. (2013) Energy-aware simulation with
DVFS. Simul. Model. Practice Theory, doi:10.1016/j.simpat.
2013.04.007.

The Computer Journal, 2013

 at Pennsylvania State U
niversity on February 20, 2016

http://com
jnl.oxfordjournals.org/

D
ow

nloaded from

http://libcloud.apache.org/
http://deltacloud.apache.org/
http://rubis.ow2.org/
http://sebastien.godard.pagesperso-orange.fr/
http://sebastien.godard.pagesperso-orange.fr/
http://comjnl.oxfordjournals.org/

	1 Introduction
	2 Related Work
	3 Overview
	3.1 Architectural setting
	3.2 Assumptions and scope
	3.3 Essence of the model

	4 Analytical Model
	4.1 Session model
	4.2 Modelling resource contention
	4.3 Session arrival model
	4.4 Performance variability across clouds

	5 Simulator Implementation
	5.1 Representation of disk I/O operations
	5.2 Provisioning of I/O operations
	5.3 Representing sessions and contention
	5.4 Performance variability
	5.5 Load balancing
	5.6 Workload generation

	6 Use Cases
	7 Validation
	7.1 Session performance baseline
	7.2 Experiment 1: static workload
	7.3 Experiment 2: dynamic workload

	8 Conclusion and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /PageByPage
 /Binding /Left
 /CalGrayProfile ()
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings false
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /Courier-Oblique
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Symbol
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /Times-Roman
 /ZapfDingbats
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 175
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50286
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG2000
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 20
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 175
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50286
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG2000
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 20
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages true
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 175
 /MonoImageDepth 4
 /MonoImageDownsampleThreshold 1.50286
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

