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1 IntroductionWe consider the maximum disjoint paths problem and its generalization, the call controlproblem, in the on-line setting. In the maximum disjoint paths problem, we are given asequence of connection requests for some communication network. Each request consists ofa pair of nodes, that wish to communicate over a path in the network. The request has tobe immediately connected or rejected, and the goal is to maximize the number of connectedpairs, such that no two paths share an edge. In the call control problem, each requesthas additional bandwidth and bene�t speci�cations (the bene�t is usually proportional tothe bandwidth). The goal is to maximize the total bene�t of the connected pairs whilesatisfying the bandwidth constraints (assuming each edge has unit capacity).These classical problems were extensively studied in recent years, since they are appli-cable to routing and admission control in high speed networks [2, 5, 7] and optical networks[1, 3, 4, 17].The algorithms we consider are also preemptive, that is, they may, at any point of time,decide to stop an on-going call in the network. Of course, if a call is preempted, then it'sbene�t is not accounted in the total bene�t.We focus on the case where the bene�t is proportional to the bandwidth. This corre-sponds to maximizing the total throughput of the network. Also, we consider only the casewhere the network is a line, and thus the requested paths are intervals.The performance of the online algorithm is measured in terms of its approximationratio, called the competitive ratio. A deterministic or randomized algorithm is de�ned tobe c-competitive, if for any sequence of requests its (expected) bene�t is no less than c timesthe bene�t of the optimal o�ine algorithm.Our results. We present the �rst known constant-competitive algorithms for the maxi-mum disjoint paths problem and for the call control problem on the line. This settles anopen problem of [11, 14]. Moreover, to the best of our knowledge, all previous algorithmsfor any of these problems are 
(logn)-competitive, where n is the number of vertices in thenetwork (and obviously non-competitive for the continuous line). Constant approximationratios were achieved only in o�-line settings (see e.g [12, 13] and their references). Our algo-rithms are randomized and preemptive. Our results should be contrasted with the 
(logn)lower bound for deterministic preemptive algorithms in [11], and the 
(logn) lower boundfor randomized non-preemptive algorithms [5, 6, 16]. Also, non-constant lower bounds wereproved in [10] for randomized preemptive algorithms in various cases. However, these lowerbounds do not apply to the standard disjoint paths and call control problems.In the way of constructing our algorithm for the disjoint paths problem, we �rst designa 4-competitive deterministic algorithm for requests of bandwidth 1=2. This algorithm isused for establishing the randomized disjoint paths algorithm. Some techniques of [4] areused for transforming the above deterministic algorithm to an algorithm for requests ofbandwidth 1=k for k > 1.It is important to mention that our randomized algorithm for the disjoint paths problemdoes not su�er from the known undesired property of many randomized on-line call controlalgorithms, that high bene�t is attained only with very poor probability (see discussionin [15]). In fact, not only that our algorithm succeeds with constant probability, but the1



number of paths that the algorithm provides is quite concentrated around its mean.For constructing the general call control algorithm,we �rst design a constant-competitivedeterministic algorithm for requests of arbitrary bandwidth limited by � < 1=2. A crucialingredient of this algorithm is to ignore \stu�ed intervals" - intervals that contain a largemass of previous intervals. Then, we easily combine this algorithm with the disjoint pathsalgorithm using randomization and establish the �nal algorithm.We note that our algorithms are not memoryless, that is, the decision to accept orreject a new call depends not only on the currently active calls, but also on previouslyrejected calls. Attempting to remove this dependency, by modifying the algorithm in somenatural ways, can be shown to result in non constant-competitive algorithms. It seems veryinteresting to �nd out whether there exist memoryless constant-competitive algorithms.The constants of most of our algorithms are not large (although we make no speci�cattempt to make them small). We also prove a lower bound of 2 for deterministic orrandomized algorithms for all the problems that we consider.We note that our techniques can be easily applied to optical networks, that is, we canprovide constant throughput competitive algorithm for one or more wavelengths in the linenetwork.Related work. The disjoint paths problem was considered by Garay et al. [11]. Theyshowed an O(logn)-competitive deterministic preemptive algorithm for the line network.They also showed that no deterministic preemptive algorithm can achieve a better compet-itive ratio. Randomized non-preemptive algorithms for the line network were consideredin [6, 16]. They showed an O(logn)-competitive algorithm and a matching lower boundfor randomized non-preemptive algorithms. The randomized non-preemptive lower boundholds also for the call control problem, even when requests are limited to a small fractionof the available bandwidth. Note that for general networks one can achieve logarithmiccompetitive ratios by deterministic algorithms for requests of small bandwidth [5], whileno poly-logarithmic competitive ratio can be achieved for requests of full bandwidth evenby randomized algorithms [9]. For special networks, e.g., trees, meshes, classes of plannergraphs [6, 7, 13] it is possible to design logarithmic competitive algorithms for the call con-trol problem without limiting the requested bandwidth. Nevertheless, we are not aware ofany constant-competitive algorithm for disjoint paths problems or call control problem.Also, some work was done for di�erent measures of bene�t. For the disjoint pathsproblem on the line, [11] considered the case where the bene�t of an interval is equal to itslength. Here constant-competitive ratio is achieved by deterministic preemptive algorithms.For the call control problem on the line, [8] considered the case where the bene�t of a callequals the product of its length and its bandwidth. Here again, a constant-competitiveratio can be achieved by deterministic preemptive algorithms, with the additional constraintthat the requested bandwidths are limited to � < 1. They also showed that deterministicalgorithms have very poor competitive ratio on the line, if a call may request the entirebandwidth (that is, � = 1). For general bene�ts, [10] showed that even with randomizedpreemptive algorithms, one cannot achieve a constant competitive ratio even on the line.More speci�cally, they showed 
(plog�= log log�) lower bounds for randomized preemptivealgorithms, where � is the maximum among various variances in the parameters of di�erentcalls. Fortunately, the lower bounds are not applicable to our problems.2



Structure of the paper. In section 2 we present some de�nitions. In section 3 we de-scribe a 4-competitive algorithm for requests of bandwidth 1=2. Then, in section 4 we showhow to transform it to a randomized algorithm for the disjoint paths problem. In section 5we transform the algorithm of section 3 to an algorithm for requests of bandwidth 1=k.In section 6 we design the general algorithm for call control for any requested bandwidth,where we start by showing a deterministic algorithm for requests of bandwidth less than1=2. Some of the proofs are deferred to the appendix.2 PreliminariesWe consider a network G which is a line, i.e. consists of chain of links. We denote thesequence of call requests by � = �1; �2::�k. Call request i is characterized by a pair: (Ii; ri),where Ii is the requested path and ri is the requested bandwidth The requested bandwidthis assumed to satisfy 0 < ri � 1.A valid set of calls is a set of calls C � �, which satis�es the bandwidth constraints foreach of the links, that is: 8e 2 E(G) Xf�i2C j e2Iig ri � 1We focus on the case where the bene�t of a call is proportional to its bandwidth. Thusmaximizing the total bene�t corresponds tomaximizing the total throughput of the network.For any set of calls C, we denote by B(C) the total bene�t of the calls (which is equal tothe total bandwidths of the calls).The performance of the online algorithm is measured in terms of its competitive ratio,de�ned as follows: let OPT � be an optimal valid set for the given request sequence, andlet ON � be the valid set of calls produced by the online algorithm. Then randomized ONis �-competitive if for all sequences � we have E(B(ON �)) � 1�B(OPT �).We denote the set of the �rst i requests by Si , and denote by Ai the set of acceptedcalls just before the arrival of request i+ 1. We also denote S� = Sk , A� = Ak , where k isthe sequence length. We omit the index i from Si and Ai when it is clear from the context.When all the requested bandwidths are equal, we write jCj instead of B(C) for a set of callsC. Since our algorithms and bounds do not depend on the number of links, we may replacethe network by a continuous line, and replace each discrete path by an open interval. Wedenote by left(I) and right(I) the left and right endpoint of an interval I respectively. Wewill often refer to the calls as intervals, ignoring the attached bandwidth. We will also useinterval notations for calls, for example, we abuse the notation and use Si to denote the�rst i requested intervals.For simplicity, we assume that S� has no identical intervals (if there are, we can extendthe containment relation by ordering identical intervals in the order of arrival).3 A deterministic algorithm for bandwidth 1=2In this section we show a constant competitive online algorithm for the case where allrequested calls �i have ri = 1=2, that is, at most two calls are allowed to overlap for each3



link. Since all the bene�ts are equal, we set all of them to 1.De�nition 3.1 Given a set S of intervals, an interval I is a middle interval of S if there aretwo intervals IL; IR 2 S such that left(IL) � left(I) � left(IR) � right(IL) � right(I) �right(IR).Informally, the idea of the algorithm is the following: when there is a \collision" betweenmore than two intervals, none of which contains the other, it preempts the middle interval.Also, we need to reject calls that contain previous calls, even if the previous calls havealready been rejected or preempted. Note that the algorithm is not memoryless.More formally, given a new call request, I , the procedure in �gure 1 describes how thealgorithm decides whether to accept it or reject it.Procedure: BW 12begin(1) if there is a J 2 S such that J � I then(2) reject I(3) elseif there is a J 2 A such that J � I(4) preempt all intervals J 0 2 A such that J 0 � I(5) accept I(6) elseif I is a middle interval in A [ fIg then(7) reject I(8) else(9) preempt middle intervals J 0 2 A [ fIg(10) accept I(11) end ifendFigure 1: Algorithm for bandwidth 1=2 callsIn order to prove that the algorithm is valid (that is, it maintains a valid set A), we�rst observe the following immediate fact:Fact 3.2 Let S be a set of intervals. If there are no J1; J2 2 S such that J1 � J2, thenamong any 3 intersecting intervals there is a middle interval.Lemma 3.3 At any time, there is no J2 2 A such that J1 � J2 and J1 2 S.Proof: If J1 arrives �rst, when J2 arrives it fails condition (1), and it is rejected. Otherwise,if J2 2 A when J1 arrives then by condition (3) J2 is preempted in step (4).Lemma 3.4 The set A is a valid set of intervals.Proof: By induction on the number of input intervals. Initially the claim holds for A =S = �. Assume A is valid, and now a new interval I arrives. If I is rejected, A is unchanged.Otherwise, if step (4) is executed, at least one interval J 0 � I is preempted, so that I can be4



allocated in the evicted bandwidth. Otherwise, step (9) is executed. Let T = fJ 0jJ 0\I 6= �g.By lemma 3.3 each of the intervals in T intersects exactly one endpoint of I . Thus we canpartition T to TL and TR, such that jTLj � 2 and jTRj � 2, since A is valid. Let IR 2 TRand IL 2 TL. It follows from lemma 3.3 and lemma 3.2 that IR\ IL = �, otherwise I wouldbe a middle interval. Thus it is su�cient to show that the allocation of I would not violatethe bandwidth limitation on the left endpoint of I , and use the symmetrical claim for theright endpoint. If jTLj � 1 then I does not cause violation of the bandwidth constraint onit's left side. Otherwise, let J1 and J2 denote the intersecting intervals. By lemma 3.3 andlemma 3.2 one of the intervals J1 and J2 is a middle interval, it meets the condition of (9),and it is preempted. Thus, I can be allocated in the evicted bandwidth.Corollary 3.51. At most 2 intervals are preempted when step (4) is executed.2. At most 2 intervals are preempted when step (9) is executed.Proof: Claim 1 is obvious. Claim 2 follows from the proof above.Let OPT (k)� be an optimal solution for � when bi = 1 and ri = 1k for all �i 2 �.Lemma 3.6 jOPT (k)� j � kjOPT (1)� j.Proof: We use the fact that the clique number of an interval graph equals the coloringnumber. Since OPT (k)� is a valid set when all ri = 1k , the maximum clique size in OPT (k)�is no more than k. Thus OPT (k)� can be colored in k colors. Each of the color classes is anindependent set of intervals, and one of them has size at least jOPT (k)� j=k. Now this set isalso valid when all ri = 1, resulting in: jOPT (k)� j=k � jOPT (1)� j as claimed.Lemma 3.7 jBW 12 � j � 12 jOPT (1)� jProof: Let OPT (1)� be an optimal set of intervals for bandwidth equal to 1, as de�nedabove, and m = jOPT (1)� j. By de�nition, the set OPT (1)� is a set of pairwise disjointintervals. Let us denote the intervals by I1; I2 :: Im. We can also assume that no I 2 OPT (1)�contains an interval of S. De�ne the following intervals, referred to as \cells", as follows:cell j for 1 � j � bm2 c, denoted by Cj, is the interval (left(I2j�1)::right(I2j)). (See �gure2). If m is odd then we add another cell, Cbm2 c+1 = (left(Im);+1). We refer to cells 1::bm2 cas \regular", and to Cbm2 c+1, if it exists, as the \in�nite" cell. The following claim showsthat after a certain point of time, cell Cj always contains an interval, more speci�cally,there will always be an interval J 2 A s.t. J � Cj . The claim completes the proof of thetheorem, since the cells are disjoint.Claim 3.8 For regular cells, after the intervals I2j�1 and I2j have arrived, there is alwaysan interval J 2 A, s.t. J � Cj. If an in�nite cell exists, after Im arrives, there is alwaysan interval J 2 A s.t. J � Cbm2 c+1. 5



I1 I2 I3 I4C1 C2Figure 2: De�nition of cellsProof: First we consider \regular" cells, and prove the claim by induction on the numberof intervals that have arrived.� Initial step: Assume I2j�1 arrives after I2j. The proof is symmetrical for the othercase. If I2j�1 is accepted, then the claim holds. Otherwise, since I2j�1 contains noother intervals, condition (6) in the algorithmmust hold. Let IR be a right interval, asin de�nition 3.1. It follows that left(Cj) = left(I2j�1) � left(IR). Since IR intersectsI2j�1 and I2j�1 lies to the left of I2j , left(IR) � left(I2j). Since IR 2 A, by lemma 3.3it does not contain I2j, and thus right(IR) � right(I2j) = right(Cj). Hence, IR � Cjas claimed.� Induction: Assume J � Cj is preempted when a new interval I arrives. If condition (3)in the algorithm holds, then I � J � Cj satis�es the claim conditions. Otherwise, step(9) in the algorithm is executed, and J is a middle interval. Thus there are intervalsIL; IR 2 A such that left(IL) � left(J) � left(IR) � right(IL) � right(J) �right(IR). Since J � Cj , we get right(IL) � right(Cj) and left(Cj) � left(IR).Assume by contradiction that left(IL) < left(Cj) and right(Cj) < right(IR) hold,then we get that IL [ IR � Cj � I2j�1 [ I2j . Since IL \ IR 6= �, one of IL and IRcontains I2j�1 or I2j , which is impossible by lemma 3.3. Thus left(Cj) < left(IL) orright(IR) < right(Cj), yielding IL � Cj or IR � Cj respectively, which completes theproof.Now, for the \in�nite" cell the proof is similar, observing the fact that if J � Cbm2 c+1 isrejected or preempted, IR is always contained in the cell.Theorem 3.9 BW 12 is 4-competitive.Proof: By lemma 3.7 jBW 12 �j � 12 jOPT (1)� j. Now by lemma 3.6, jOPT (2)� j � 2jOPT (1)� j.4 A randomized algorithm for bandwidth 1Next we show how an algorithm for bandwidth 1=2, like BW 12 , can be used to constructa randomized constant-competitive algorithm for bandwidth 1. Actually, any deterministic6



algorithm, with following properties can be used to construct such an algorithm, as is provedby the sequel theorem.Consider a deterministic preemptive algorithm for call control DET , that maintains aset of intervals D, with the following properties:� jDET�j � 1c jOPT (1)� j.� There is a constant d such that any newly accepted interval I intersects at most dother intervals in D (after it has been accepted).Theorem 4.1 Any algorithm DET with the above properties can be used to construct arandomized algorithm for bandwidth 1 with competitive ratio 4dc.Proof: We construct a randomized algorithm RAND. RAND maintains a valid set ofintervals (for bandwidth 1) denoted by R. R is initially empty. Let p satisfy 0 � p < 12 .Given a new interval I , we simulateDET on the new interval, and take the actions describedin �gure 3.begin(1) preempt from R those intervals that were preempted by DET(2) if I was rejected then(3) reject Ielse(4) toss a p-coin(5) if coin shows \success" and there is no J 2 R s.t. J \ I 6= � then(6) accept Ielse(7) reject Iend ifend ifendFigure 3: A randomized reduction from bandwidth 1 to an algorithm with the above prop-ertiesIt follows immediately that the algorithm is correct: initially R is valid, and wheneveran interval I is accepted, by condition (5), R remains valid.Let R� (respectively D�) denote the �nal set of intervals accepted by RAND (respec-tively DET ). We proceed to show that E(jR�j) � 14dc � jOPT (1)� j.� Every interval I is accepted by RAND with probability at most p, because in orderfor an interval to get accepted, the coin-toss in step (4) has to show \success".� The set R satis�es R � D, since every interval is accepted by RAND only if it isaccepted by DET . 7



� For all s 2 D�, s 2 R� if and only if s is accepted by RAND: If s is accepted byRAND, then it is never preempted by RAND, since RAND preempts intervals onlyin step (1), only if DET preempts them.For s 2 S de�ne the indicator random variable �s to be 1 if s 2 R�, and 0 otherwise.By the above observations, for s 2 D� we haveE(�s) = Pr[s 2 R�] = Pr[s is accepted by RAND]:For s 2 D�, RAND accepts s if and only if condition (5) holds. By DET 's properties,s intersects at most d intervals in D when it is accepted by DET , and thus it intersectsat most d intervals in R � D. The probability that none of those intervals is accepted byRAND is no less than 1� dp, soPr[s is accepted by RAND] � p(1� dp):Thus,E(jR�j) � E(Xs2D��s) � Xs2D� p(1� dp) � p(1� dp) � jD�j � p(1� dp) � jOPT (1)� jcTo complete the proof, choose p = 12d .Using the theorem we get the following result:Theorem 4.2 There is a 16-competitive randomized online algorithm for bandwidth 1.Proof: Use the algorithm BW 12 for theorem 4.1. The algorithm satis�es the propertiesabove with c = 2 (by lemma 3.7) and d = 2 (any accepted interval intersects at most 2intervals in the valid set).5 A constant competitive algorithm for bandwidth 1=kIn this section we give a constant competitive algorithm for the case where all the intervalsrequest bandwidth of 1=k, for some �xed k � 2. We �rst note that by lemma 3.7 andlemma 3.6, the algorithm BW 12 is at most 2k-competitive for this problem. Here, however,we present an algorithm whose competitive ratio does not depend on k.We apply a general method of allocation in bins as in [4], with adaptation to handlepreemption. In the general setting of [4], the algorithm has to accommodate a new itemin one of several independent \bins". A �-competitive allocation algorithm is used for eachof the bins, and when an item is rejected from one bin, it proceeds to the next bin. Inthe above algorithm, however, the bin-algorithms are not allowed to preempt items. Wegeneralize the algorithm for the preemptive case. We will use the term preemptive allocationalgorithm for algorithms, which decide, for a new item, whether to accept it or reject it,and may preempt old items when a new item is accepted. We prove the following theoremsin the appendix: 8



Theorem 5.1 Assume there are k \abstract" bins, and an online algorithm has to assignitems into one of the bins. Assume A is a �-competitive preemptive allocation algorithm forone bin. Then there is a �+ 1-competitive preemptive allocation algorithm for allocationinto k bins.Theorem 5.2 There is a 5-competitive algorithm for bandwidth allocation of bandwidth 1kintervals for even k, and a 7-competitive algorithm for odd k, k � 3.We also show in the appendix a lower bound theorem for arbitrary bandwidth:Theorem 5.3 For any k no deterministic or randomized online algorithm can achievecompetitive ratio less than 2 for intervals with bandwidth = 1k .6 A randomized algorithm for bandwidth � 1In this section we consider a generalized setting, in which all requested calls �i have band-width ri � �, for some �xed �, � � 1, and the bene�t accrued from the interval is it'sbandwidth i.e. bi = ri.First we show a deterministic constant-competitive algorithm for the case � < 12 , thenwe show how this algorithm can be used to construct a randomized constant competitivealgorithm for the case � = 1.6.1 A constant competitive algorithm for � < 12As mentioned before, we now focus on the case � < 12 . We �rst introduce some usefulde�nitions and notations. Let I be an interval, and S be an interval set.� S � I i� 8s 2 S; s � I .� S[I ] = fs 2 S j s � Ig is the induced subset of S on I . Note that S = S[I ] i� S � I .� S[x] = fs 2 S j x 2 sg, the subset of intervals of S which contain x.In the algorithm for the bandwidth 1 case, we used the fact that there is an optimalsolution with no \containing" intervals. We introduce the de�nition of \stu�ed" intervals,which are intervals that contain calls of large total bene�t. Such intervals, as shown in thesequel, can be excluded from constant-factor approximations to the optimum, since theycan be replaced by non-\stu�ed" intervals in the approximation.De�nition 6.1 Let S be a set of intervals. Let 0 < � � 1.An interval K 2 S is stu�ed in S if B(S[K] n fKg) � �.De�nition 6.2 Let x be violation point of A. Let LR be the list of the intervals in A[x],ordered by ascending order of their right-endpoint. Similarly, let LL be the list of the inter-vals, ordered by descending order of their left-endpoint.The right-closest intervals of x in A, 	R(x), is the maximal pre�x of LR which has totalbandwidth � 12 . The left-closest intervals of x in A, 	L(x), is the maximal pre�x of LLwhich has total bandwidth � 12 . 9



Procedure: STICKY(interval I)begin(1) if I is stu�ed in S then reject I and return(2) add I to A(3) while there are bandwidth violations do(4) pick a violation point, x(5) remove all the intervals K such that x 2 K andK =2 	L(x)[ 	R(x)end Figure 4: Algorithm for � < 12Figure 4 shows the deterministic algorithm STICKY which handles an arriving intervalI .Lemma 6.3 Algorithm STICKY maintains a valid set A of intervals.Proof: When the algorithm terminates there are no bandwidth violations in A, by condi-tion (3). The algorithm terminates, since when an iteration of the loop in (5) is executed,at least one interval is removed, and there is a �nite number of intervals.In the appendix, we prove the following theorem:Theorem 6.4 For � = 13 , algorithm STICKY is constant competitive for � < 12 . Speci�-cally, for � = 14, the algorithm is 72-competitive.We note that the algorithm does not need to know � in advance, as long as � < 12 .6.2 A randomized algorithm for � = 1Now we can construct a randomized competitive algorithm for � = 1 by classifying therequest series, and applying one of the previous algorithms on each class.More speci�cally, the requests are classi�ed into the following 2 classes:� All the requests with ri � 14 . Those requests are handled with the 16-competitiverandomized algorithm, setting all ri = 1.� All the requests with ri < 14 . Those requests are handled by STICKY.The algorithm for � = 1 randomly chooses one of the classes, each with probability 12 , andhandles only requests of this class by the appropriate algorithm.Theorem 6.5 The above algorithm is 144-competitive.Proof: The �rst algorithm is 16*4-competitive with respect to the requests of the �rstclass, by lemma 3.6. The second algorithm is 72-competitive with respect to the requestsof the second class, by theorem 6.4. Since each algorithm is chosen with probability 12 , astandard argument shows that the �nal algorithm is 2 �maxf64; 72g= 144 competitive.10
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AppendixA The bandwidth 1k caseProof of theorem 5.1:We describe an algorithm A0 for k bins, in terms of a procedure Bi for 1 � i � k, whichmaintains the i'th bin. The procedure Bi proceeds as follows, given a new item t:Procedure Bibegin(1) run A on t for bin i(2) if t was rejected then(3) if i < k then call Bi+1 on t(4) else reject telse(5) accept I into bin i(6) if items r1; r2::rm were preempted then(7) if i < k then(8) for each 1 � j � m sequentially call Bi+1 on rj(9) else preempt r1; r2::rmend ifend ifendFigure 5: A procedure Bi for allocation into bin iAlgorithm A0 calls B1. It is easy to see, by induction from k to 1, that procedure Biterminates, and thus A0 terminates. We claim that A0 is a �+ 1-competitive algorithm fork bins.For 1 � i � k, let Oi denote the set of items accepted into bin i by the optimal algorithm,and let Ti denote the set of items accepted into bin i, which were not preempted in step(9).By construction of the algorithm, procedure Bi is presented with at least all the itemsin the set Oi n [j<iTj (not necessarily in the original order). Since Bi uses A internally, itis � competitive, so it will gain at least:B(Ti) � 1� �B(Oi n ([j<iTj)) = 1�B(Oi)� 1�B(([j<iTj) \Oi) :It follows thatkXi=1B(Ti) � kXi=1 1�B(Oi)� kXi=1 1�B(([j<iTj) \Oi) � kXi=1 1�B(Oi)� 1�B([i�kTi)� kXi=1 1�B(Oi)� 1� kXi=1B(Ti) ;13



where the second inequality follows since the sets Oi are pairwise disjoint. Thus (1 +�)Pki=1B(Ti) �Pki=1B(Oi), and A0 is �+ 1-competitive.Proof of theorem 5.2:We divide the total bandwidth into bins, and use the previous theorem to allocate intervalsto the bins, in the following way:� For even k, divide the total bandwidth into k2 \bins", each consisting of bandwidth2k , and use algorithm BW 12 for allocation in each bin. By lemma 3.7 BW 12 is 4-competitive on each bin, so we get a 5-competitive algorithm.� For odd k, divide the total bandwidth into bk2c \bins", bk2c � 1 of which consisting ofbandwidth 2k , the remaining one consisting of bandwidth 3k , and use algorithm BW 12for allocation in each bin. As mentioned before, BW 12 is 6-competitive on each bin,so we get a 7-competitive algorithm.Proof of theorem 5.3:For an appropriate M , the adversary requests k calls in the interval (0;M + 1) (left sidecalls), and k more calls in the interval (M; 2M + 1) (right side calls). De�ne the \internalpart" of the left side (right, respectively) to be (0;M) ((M + 1; 2M + 1), respectively).Since all the calls overlap, in at least one of the sides the expected number of callsaccepted by the online algorithm is at most k2 . Then the adversary accepts all the calls inthis side (k calls), and continues the construction recursively in the \internal part" of theopposite side.Repeating the construction recursively n times we conclude that the expected gain ofthe online algorithm is at most 1 + (n� 1)12 , whereas the adversary gains n, which provesthe claim.B STICKY is constant competitiveIn this appendix we prove theorem 6.4.The following claim follows immediately from the fact that the bandwidth of each in-terval is at most �:Claim B.1 Let A be an interval set. If � < 12, then B(	R(x)) � 12 � �; B(	L(x)) � 12 � �,Lemma B.2 Let the intervals J1; J2 satisfy J1 � J2. If interval J1 is removed in step (5),then by the time step (5) is over, J2 =2 A.Proof: Let x;LL;LR be as in de�nition 6.2, at the moment J1 is removed in step (5).Now x 2 J1, x 2 J2, so if J2 2 A by the time J1 is being removed, J2 appears in LLand LR . Since J1 � J2, J2 appears after J1 in both of the lists LL and LR , and sinceJ1 =2 	L(x)[ 	R(x), J2 =2 	L(x)[ 	R(x), so J2 is now removed.De�nition B.3 For an interval set N , interval C � < is a cell of N , if it contains twodisjoint intervals CL, CR (CL is the left one) such that B(N [CL]) � 1 and B(N [CR]) � 1.14



Next is a \subdivision" lemma, which demonstrates how to split the original intervalset S into 
(B(OPT �)) cells, like the ones in the proof of lemma 3.7.Lemma B.4 Let N be a valid set of intervals. Then there exist at least B(N)2(2+�) � 32 pairwisedisjoint cells of N .Proof: Order the intervals of N from left to right by their left-endpoint. Now, scanningthe list, pick minimal subsets fLigi�0 from the start of the list, such that B(Li) � 2. ThenB(Li) < 2 + �. Thus, there are at least bB(N)2+� c � B(N)2+� � 1 such subsets.Let xi be the left most left endpoint of the intervals in Li. By construction fxigj�0 isan ascending sequence. Add a last element xlast =1 to the sequence.De�ne Ni = fn 2 Li j xi+1 =2 ng. Then B(Ni) � 1, otherwise N violates the bandwidthconstraint on xi+1. Thus B(N [(xi; xi+1)]) � 1.Now let C(i) = (x2i; x2(i+1)) for i � 0. By the above, C(i) satis�es the de�nition of acell of N , with the following subintervals: C(i)L = (x2i; x2i+1), and C(i)R = (x2i+1; x2i+2).By de�nition, the intervals C(i) are pairwise disjoint, and there are at least b B(N)(2+�)�12 c �B(N)2(2+�) � 32 such intervals, as claimed.Lemma B.5 Let J � <, and let N be a set of intervals, with no stu�ed intervals of the�nal set S�. If B((St \ N)[J ]) � 2� and there is K 2 At s.t. K � J (K 6= J), thenB(At[J ]) � �.Proof: Suppose K � J , K 6= J is in At. Denote by t0 the time when K arrived. Since Kwas not rejected in step (1), B((St0 \N)[J ]) � B(St0 [J ]) < �. Let N 0 = (St n St0) \N , theintervals of St \N which arrived after t0. Then B(N 0[J ]) � (2�� �) = �. By lemma B.2,if one of the intervals in N 0[J ] is removed, K is removed too, since K strictly contains allthe intervals of N 0[J ]. Thus by time t none of the intervals in N 0[J ] was removed, andB(At[J ]) � B(N 0[J ]) � �.Lemma B.6 Let N be a valid set with no stu�ed intervals of S�, and let C be a cell of N .Assume � � 13. Then B(A�[C]) � minf12 � �; �g.Proof: Since B(St\N) is non-decreasing with t, let tr be the �rst time B((Str \N)[CR]) �2�, and tl be the �rst time B((Stl \N)[CL]) � 2�. Since CL and CR are disjoint, tl 6= tr,and we can assume tr < tl. The proof for the other case is symmetrical.Now there are three cases:� No interval is removed from A[C] in time tl, or later.Let N 0 = (S� n Stl�1)\N . Since N contains no stu�ed intervals of S�, no interval ofN 0 can be rejected in step (1). Thus all the intervals in N 0 are accepted, and neverremoved, so B(A�[C]) � B(N 0[CL]) � 1� 2� � �, which completes the proof.� Interval J is removed from A[C] at time tl.Denote by x the violation point that caused the removal of J . Then x 2 CL, sincex is in the last arriving interval, which belongs to N [CL], by the assumption. Nowexamine the intervals in 	L(x). Since J was removed, by the de�nition of 	L(x) we15



get 8l 2 	L(x); right(CL) � x � left(l) � left(J). Now, if there is an intervall 2 	L(x) such that right(l) > right(CR), l strictly contains CR, and by lemma B.5,B(A[C]) � B(A[CR]) � � holds. Otherwise, all the intervals in 	L(x) are containedin C, so B(A[C]) � B(	L(x)) � 12 � � holds.� Interval J is removed from A[C] after time tl.Denote by x 2 C the violation point that caused the removal of J . Then x 2 J � C.Now examine the intervals in 	L(x) and 	R(x). Since J was removed, by the de�nitionof 	L(x) and 	R(x), we get that 8r 2 	R(x); right(r) � right(J) � right(C) and8l 2 	L(x); left(l) � left(J) � left(C). If there is an interval l 2 	L(x) andan interval r 2 	R(x) such that left(r) < left(C) and right(l) > right(C), thenone of the intervals l or r would strictly contain one of the intervals CL or CR,and then by lemma B.5, either B(A[CL]) � � or B(A[CR]) � �. Otherwise, either8r 2 	R(x); left(r) � left(C) or 8l 2 	L(x); right(l) � right(C). In either case,	R(x) � C and B(	R(x)) � 12 � � or 	L(x) � C and B(	L(x)) � 12 � �, whichcompletes the proof.Lemma B.7 For � � 1� � let T = ft 2 S j t is stu�ed in Sg, and let S 0 = S n T .Let O = OPT �, and O0 be an optimal subset of S'. Then B(O0) � �1+� � B(O), and thebound is tight.Proof: We construct a valid set N � S 0, such that B(N ) satis�es the above inequality.Since for t 2 T , B(S[t]) � �, there is a subset Ft � S[t] such that � � B(Ft) < �+ �.De�ne the mapping F � : T ! 2S0 by the following recursive de�nition:F �(t) = ( Ft if Ft � S 0F �(t0) otherwise, for some t0 2 Ft \ TSince T is �nite, and there are no identical intervals, F � is well de�ned. By de�nition,F �(t) � t and � � B(F �(t)) � �+ �.Let U be a (maximum size) set of pairwise-disjoint intervals in T \O de�ned as follows:order all the intervals in T \O from left to right by their left endpoint, and keep adding thenext interval with the left-most right endpoint, which does not intersect previously addedintervals, until the intervals are exhausted.By construction, every interval of T \ O intersects the right endpoint of some intervalin U . For u 2 U , denote by Tu the set of intervals t 2 T \ O for which u is the left-most interval such that t intersects the right endpoint of u. Then O \ T = Su2U Tu, andB(O \ T ) =Pu2U B(Tu), where the union above is disjoint.Now de�ne N 0 = Su2U F �(u). It is clear that N 0 � S 0. N 0 is valid, since F �(u) � u,u 2 U are disjoint, and B(F �(u)) � �+ � � 1. Since Tu is a subset of a valid set, andright(u) 2 \v2Tvv, we have B(Tu) � 1 � 1�B(F �(u)). ThusB(O \ T ) = Xu2U B(Tu) � Xu2U 1�B(F �(u)) � 1�B(N 0)16



where the last inequality follows from the fact F �(u) � u are disjoint. Let N = N 0 ifB(N 0) > B(O \ S 0) or N = O \ S 0 otherwise. We claim that B(N ) � ��+1B(O).To prove the claim, assume B(O \ S 0) = �B(O), and thus B(O \ T ) = (1 � �)B(O).Then B(N ) � maxf�B(O); (1� �)�B(O)g, which attains it's minimal value for � = ��+1 ,for which B(N ) � ��+1B(O), as claimed.The following set S shows an upper bound of �1+� for B(O0)B(O) : for small �, pick �� disjointintervals of bandwidth �, and one more interval of bandwidth 1� � which contains all theother intervals. Then: B(O0)B(O) = ��+ 1� � �!0! ��+ 1Proof of theorem 6.4:Let S 0; O0 be as in lemma B.7. Then B(O0) � �1+�B(OPT �). By lemma B.4, there exist atleast B(O0)2(2+�)� 32 pairwise disjoint cells C 2 C of O0. By lemmaB.6, B(A[C]) � minf12 � �; �gfor each such cell, so summing over all cells we get:B(A) � XC2CB(A[C]) � minf12 � �; �g � ( �1+�B(OPT �)2(2 + �) � 32)Thus choosing � = 13 , the competitive ratio of the algorithm is 8(2+�)minf 12��; 13 g , i.e., for � � 16 thealgorithm is 24(2 + �)-competitive, and for 16 � � < 12 the algorithm is 8(2+�)12�� -competitive.Speci�cally, the algorithm is 72-competitive for � = 14 .
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