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Abstract—Skid-steered vehicles are often used as outdoor mobile
robots due to their robust mechanical structure and high maneu-
verability. Sliding, along with rolling, is inherent to general curvi-
linear motion, which makes both kinematic and dynamic modeling
difficult. For the purpose of motion planning, this paper devel-
ops and experimentally verifies dynamic models of a skid-steered
wheeled vehicle for general planar (2-D) motion and for linear
3-D motion. These models are characterized by the coefficient of
rolling resistance, the coefficient of friction, and the shear deforma-
tion modulus, which have terrain-dependent values. The dynamic
models also include motor saturation and motor power limitations,
which enable correct prediction of vehicle velocities when travers-
ing on hills. It is shown that the closed-loop system that results from
inclusion of the dynamics of the [proportional–integral–derivative
(PID)] speed controllers for each set of wheels does a much bet-
ter job than the open-loop model of predicting the vehicle linear
and angular velocities. For a vehicle turning with small linear and
angular accelerations, the model provides accurate predictions of
velocities and reasonable predictions of torques. Hence, the closed-
loop model is recommended for motion planning.

Index Terms—Closed-loop control, dynamic modeling, path
planning, proportional–integral–derivative (PID), skid-steered
wheeled robot, velocity and torque prediction.

I. INTRODUCTION

DYNAMIC models of autonomous ground vehicles are
needed to enable realistic motion planning [1] in unstruc-

tured, outdoor environments that have substantial changes in
elevation, consist of a variety of terrain surfaces, and/or require
frequent accelerations and decelerations. At least four different
motion planning tasks can be accomplished using appropriate
dynamic models.

1) Time optimal motion planning: A dynamic model can
yield good predictions of a vehicle’s velocity as it tra-
verses a hill or gulley of a particular terrain, including the
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maximum climbing velocity of a given hill, the estima-
tion of the needed entry velocities to climb steep hills,
and the prediction of whether a vehicle is even capable
of climbing a hill. These predictions are key to comput-
ing the time-optimal trajectories, and hence, the dynamic
model is important for motion planning in an undulating
environment.

2) Energy efficient motion planning: This type of planning
is important, since finite energy availability is a critical
constraint that must be taken into account when planning
motion for vehicles. A dynamic model provides predic-
tions of torque and velocity and, hence, the power and
energy consumption. Related capabilities are the ability
to predict whether a given task can be completed with the
vehicle’s current energy supply and estimations of when
to refuel or recharge.

3) Reduction in the frequency of replanning: One of the pri-
mary reasons that replanning is necessary is due to discrep-
ancies between the predicted and actual vehicle motion.
Since a dynamic model can lead to more accurate motion
predictions in planning, it can reduce the frequency of
replanning.

4) Planning in the presence of a fault, such as flat tire or faulty
motor: A dynamic model includes the motor properties,
and the tire and ground interaction. Common vehicle faults
are faulty motors or flat tires. Their influence on vehicle
motion can be captured by the dynamic model utilized to
plan the vehicle trajectories. The dynamic model will en-
able more efficient mobility in the presence of these faults.

For the purpose of motion planning, this paper develops dy-
namic models of a skid-steered wheeled vehicle to help the
aforementioned motion planning tasks.

Ackerman steering, differential steering, and skid steering
are the most widely used steering mechanisms for wheeled and
tracked vehicles. Ackerman steering has the advantages of good
lateral stability when turning at high speeds, good controlla-
bility [2], and lower power consumption [3] but has the disad-
vantages of low maneuverability and the need for an explicit
mechanical steering subsystem [2]–[4]. Differential steering is
popular because it provides high maneuverability with a zero
turning radius and has a simple steering configuration [2], [5].
However, it does not have strong traction and mobility over
rough and loose terrain and, hence, is seldom used for outdoor
terrains. Like differential steering, skid steering leads to high
maneuverability [2], [6], [7] and faster response [8] and has a
simple [3], [4], [9] and robust mechanical structure [4], [10],
[11]. In contrast, it also leads to strong traction and high mobil-
ity [9], which makes it suitable for all-terrain traversal.
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A skid-steered vehicle can be characterized by two fea-
tures [2], [4]. First, the vehicle steering depends on controlling
the relative velocities of the left and right side wheels or tracks.
Second, all wheels or tracks remain parallel to the longitudi-
nal axis of the vehicle, and vehicle turning requires slippage
of the wheels or tracks. Due to identical steering mechanisms,
wheeled and tracked skid-steered vehicles share many prop-
erties [4], [10], [12], [13]. Many of the difficulties associated
with modeling and operating both classes of skid-steered ve-
hicles arise from the complex wheel (or track) and terrain in-
teraction [4], [13]. For Ackerman-steered or differential-steered
vehicles, the wheel motions may often be accurately modeled
by pure rolling, while for skid-steered vehicles, in general, are
modeled by curvilinear motion, the wheels (or tracks) roll and
slide at the same time [4], [10], [13], [14]. This makes it difficult
to develop kinematic and dynamic models, which accurately de-
scribe the motion. Other disadvantages are that the motion tends
to be energy inefficient and difficult to control [8], [11], and for
wheeled vehicles, the tires tend to wear out faster [15].

A kinematic model of a skid-steered wheeled vehicle maps
the wheel velocities to the vehicle velocities and is an important
component in the development of a dynamic model. In contrast
to the kinematic models for Ackerman-steered and differential-
steered vehicles, the kinematic model of a skid-steered vehicle
is dependent on more than the physical dimensions of the vehi-
cle, since it must take into account vehicle sliding and is hence
terrain-dependent [4], [16]. In [4] and [8], a kinematic model
of a skid-steered vehicle was developed by assuming a certain
equivalence with a kinematic model of a differential-steered ve-
hicle. This was accomplished by experimentally determining
the instantaneous centers of rotation (ICRs) of the sliding ve-
locities of the left and right wheels. An alternative kinematic
model that is based on the slip ratios of the wheels has been
presented in [12] and [16]. This model takes into account the
longitudinal slip ratios of the left and right wheels. The difficulty
in using this model is the actual detection of slip, which cannot
be computed analytically. Hence, developing practical methods
to experimentally determine the slip ratios is an active research
area [17]–[20].

To date, there is very little published research on the ex-
perimentally verified dynamic models for general motion of
skid-steered vehicles, especially wheeled vehicles. The main
reason is that it is hard to model the tire (or track) and terrain
interaction when slipping and skidding occur. (For each vehicle
wheel, if the wheel linear velocity computed using the angular
velocity of the wheel is larger than the actual linear velocity of
the wheel, slipping occurs, while if the computed wheel velocity
is smaller than the actual linear velocity, skidding occurs.) The
research of [6] developed a dynamic model for planar motion
by considering longitudinal rolling resistance, lateral friction,
moment of resistance for the vehicle, and the nonholonomic
constraint for lateral skidding. In addition, a model-based non-
linear controller was designed for trajectory tracking. However,
this model uses Coulomb friction to describe the lateral sliding
friction and moment of resistance, which contradicts the exper-
imental results [16], [21]. In addition, it considers none of the

motor properties. Furthermore, the results of [6] are limited to
simulation without experimental verification.

The research in [11] developed a planar dynamic model of a
skid-steered vehicle, which is essentially that of [6], using a dif-
ferent velocity vector (consisting of the longitudinal and angular
velocities of the vehicle instead of the longitudinal and lateral
velocities). In addition, the dynamics of the motors, although
not the power limitations, were added to the model. Kinematic,
dynamic, and motor-level control laws were explored for trajec-
tory tracking. However, as in [6], Coulomb friction was used to
describe the lateral friction and moment of resistance, and the
results are limited to simulation.

In [13], a functional relationship between the coefficient of
friction and longitudinal slip is used to capture the interaction
between the wheels and ground and, further, to develop a dy-
namic model of skid-steered wheeled vehicle. Also, an adaptive
controller is designed to enable the robot to follow a desired
trajectory. The inputs of the dynamic model are the longitudinal
slip ratios of the four wheels. However, the longitudinal slip ra-
tios are difficult to measure in practice and depend on the terrain
surface, instantaneous radius of curvature, and vehicle velocity.
In addition, no experiment is conducted to verify the reliability
of the torque prediction from the dynamic model and motor sat-
uration, and power limitations are not considered. In [22], the
dynamic model from [13] is used to explore the motion stability
of the vehicle, which is controlled to move with constant linear
velocity and angular velocity for each half of a lemniscate to
estimate wheel slip. As in [13], no experiment is carried out to
verify the fidelity of the dynamic model.

The most thorough dynamic analysis of a skid-steered vehi-
cle is found in [16] and [21], which consider steady-state (i.e.,
constant linear and angular velocities) dynamic models for cir-
cular motion of tracked vehicles. A primary contribution of this
research is that it proposes and then provides experimental ev-
idence that in the track–terrain interaction, the shear stress is
a particular function of the shear displacement (see (7) of Sec-
tion III). This model differs from the Coulomb model of friction,
adopted in [6] and [11], which essentially assumes that the max-
imum shear stress is obtained as soon as there is any relative
movement between the track and the ground. This research also
provides detailed analysis of the longitudinal and lateral forces
that act on a tracked vehicle, but their results had not been ex-
tended to skid-steered wheeled vehicles. In addition, they do not
consider vehicle acceleration, terrain elevation, actuator limita-
tions, or the vehicle control system.

Based upon the research in [16] and [21], this paper develops
dynamic models of a skid-steered wheeled vehicle for general
curvilinear planar (2-D) motion and straight-line 3-D motion.
As in [16] and [21], the modeling is based upon the functional
relationship of shear stress to shear displacement. Practically,
this means that for a vehicle tire, the shear stress varies with
the turning radius. This research also includes models of the
saturation and power limitations of the actuators as part of the
overall vehicle model. In addition, it shows that the closed-
loop model yields substantially better predictions of the vehicle
velocity than the corresponding open-loop model.
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Fig. 1. Circular motion of a skid-steered wheeled vehicle.

Preliminary research results on modeling of skid-steered ve-
hicles can be found in [14] and [23]. This paper is an extension
of this previous work. Here, we not only describe the open-
loop dynamic model, but we also detail the models of the addi-
tional components of the closed-loop system: the proportional–
integral–derivative (PID) controller, motor saturation, and motor
power limitations. Also, the experiments now include the very
important case of general curvilinear motion, which consists of
continuously changing linear and angular velocities.

The remainder of this paper is organized as follows. Section II
describes the terrain-dependent kinematic model needed for the
development of the dynamic model. Section III discusses the
wheel and terrain interaction of a skid-steered wheeled vehicle
and establishes the dynamic models. Section IV describes the
closed-loop model, including the discussion of the PID con-
troller, motor, and motor controller. Section V experimentally
verifies the dynamic models in planar and hill-climbing exper-
iments. Finally, Section VI concludes the paper and discusses
future research.

II. KINEMATIC MODELS

In this section, the kinematic model of a skid-steered wheeled
vehicle is described and discussed. It is an important component
in the development of the overall dynamic model of a skid-
steered vehicle.

To mathematically describe the kinematic models that have
been developed for skid-steered vehicles, consider a wheeled
vehicle moving at constant velocity about an ICR (see Fig. 1).
The local coordinate frame, which is attached to the body cen-
ter of gravity (CG), is denoted by x–y, where x is the lateral
coordinate, and y is the longitudinal coordinate.

When a skid-steered vehicle rotates, the inner wheel experi-
ences longitudinal skidding, while the outer wheel experiences
longitudinal slipping. The lateral sliding velocity is relatively

small [4], [8], [18] and, hence, is neglected in this paper. For
vehicles that are symmetric about the x and y axes, an ideal sym-
metric experimental kinematic model of a skid-steered wheeled
vehicle is given by [4][
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where ωl and ωr are the angular velocities of the left and right
wheels, respectively, vy is the vehicle velocity in the longitudi-
nal direction, ϕ̇ is the vehicle angular velocity, B is the vehicle
width, r is the wheel radius, and α is a terrain-dependent pa-
rameter that is a function of the ICRs. (Note that the lateral
velocity vx = 0.) Our experimental results show that the larger
the rolling resistance, the larger the value of α. For a Pioneer
3-AT mobile robot (see Fig. 7), α = 1.5 for a vinyl laboratory
surface and α > 2 for a concrete surface. (More experiments are
needed to obtain the precise α for a concrete surface.) Equation
(1) shows that the kinematic model of a skid-steered wheeled
vehicle of width B is equivalent to the kinematic model of a
differential-steered wheeled vehicle of width αB.

A more rigorously derived kinematic model for a skid-steered
vehicle is presented in [12] and [16]. This model takes into
account the longitudinal slip ratios il and ir of the left and right
wheels and, for symmetric vehicles, is given by[

vy
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where il
�
= (rωl − vl a)/(rωl), ir

�
= (rωr − vr a)/(rωr ), and

vl a and vr a are the actual velocities of the left and right wheels.
We have found that when

il
ir

= −ωr

ωl
and α =

1
1 − (2il ir )/(il + ir )

(3)

(1) and (2) are identical. Currently, to our knowledge, no analysis
or experiments have been performed to verify the left-hand
equation in (3) and analyze its physical significance.

III. DYNAMIC MODELS

This section develops dynamic models of a skid-steered
wheeled vehicle for the cases of general 2-D motion and linear
3-D motion. In contrast to dynamic models described in terms
of the velocity vector of the vehicle [6], [11], the dynamic mod-
els here are described in terms of the angular velocity vector of
the wheels. This is because the wheel (specifically, the motor)
velocities are actually commanded by the control system; there-
fore, this model form is particularly beneficial for control and
planning.

Following [11], the dynamic model considering the nonholo-
nomic constraint is given by

Mq̈ + C(q, q̇) + G(q) = τ (4)

where q = [θl θr ]T is the angular displacement of the left and
right wheels, q̇ = [ωl ωr ]T is the angular velocity of the left
and right wheels, τ = [τl τr ]T is the torque of the left and right

Authorized licensed use limited to: Florida State University. Downloaded on May 23,2010 at 03:05:35 UTC from IEEE Xplore.  Restrictions apply. 



YU et al.: ANALYSIS AND EXPERIMENTAL VERIFICATION FOR DYNAMIC MODELING OF A SKID-STEERED WHEELED VEHICLE 343

motors, M is the mass matrix, C(q, q̇) is the resistance term,
and G(q) is the gravitational term. The primary focus of the
following section is the derivation of C(q, q̇) to properly model
the ground and wheel interaction.

A. 2-D General Motion

When the vehicle is moving on a 2-D surface, it follows from
the model given in [11], which is expressed in the local x–y
coordinates and the kinematic model (1) that M in (4) is given
by

M =




mr2

4
+

r2I

αB2

mr2

4
− r2I

αB2

mr2

4
− r2I

αB2

mr2

4
+

r2I

αB2


 (5)

where m and I are the mass and moment of inertia of the vehicle,
respectively. Since we are considering planar motion G(q) = 0.
C(q, q̇) represents the resistance resulting from the interaction
of the wheels and terrain, including the rolling resistance, sliding
frictions, and the moment of resistance, the latter two of which
are modeled using Coulomb friction in [6] and [11]. Assume
that q̇ = [ωl ωr ]T is a known constant; then, q̈ = 0, and (4)
becomes

C(q, q̇) = τ. (6)

The remainder of this section describes how we apply this
constant velocity analysis to the development of an analytical
expression for C(q, q̇). The inputs to (8)–(16), shown below, are
the left and right wheel angular velocities ωl and ωr . We be-
gin by describing the relationship between the shear stress and
shear displacement associated with the sliding of the wheel over
the terrain [see (7), shown below]. Then, the constant angular
velocities for the left and right wheels (ωl and ωr ) are used to
determine the wheel sliding velocities [see (9) and (11), shown
below]. Then, we use the sliding velocities to derive the shear
displacements of the wheels [see (12)–(16), shown below]. Us-
ing (7), the corresponding shear stresses are integrated over the
contact patch to obtain the frictional forces [see (17) and (20),
shown below], which along with the rolling resistances deter-
mine the resistance term C(q, q̇) [see (18), (19), (21), and (22),
shown below].

Previous research [6], [11] assumed that the shear stress takes
on its maximum magnitude as soon as a small relative movement
occurs between the contact surface of the wheel and terrain.
Instead of using this theory for tracked vehicle, [16] and [21]
present experimental evidence to show that the shear stress of the
tread is function of the shear displacement. The maximum shear
stress is practically achieved only when the shear displacement
exceeds a particular threshold. In this section, this theory will
be applied to a skid-steered wheeled vehicle.

Based on the theory in [16] and [21], the shear stress τss and
shear displacement j relationship can be described as follows:

τss = pµ(1 − e−j/K ) (7)

where p is the normal pressure, µ is the coefficient of fric-
tion, and K is the shear deformation modulus. K is a terrain-

dependent parameter, like the rolling resistance and coefficient
of friction [16].

Fig. 1 depicts a skid-steered wheeled vehicle moving coun-
terclockwise (CCW) at constant linear velocity v and angular
velocity ϕ̇ in a circle centered at O from position 1 to posi-
tion 2. X–Y denotes that the global frame and the body-fixed
frames for the right and left wheels are given by the xr –yr

and xl–yl , respectively. The four contact patches of the wheels
with the ground are shadowed in Fig. 1, and L and C are the
patch-related distances shown in Fig. 1. It is assumed that the
vehicle is symmetric and that the CG is at the geometric center.
Note that because ωl and ωr are known, vy and ϕ̇ can be com-
puted using the vehicle kinematic model (1), which enables the
determination of the radius of curvature R, since vy = Rϕ̇.

In the xr –yr frame, consider an arbitrary point on the contact
patch of the front right wheel with coordinates (xfr , yfr). This
contact patch is not fixed on the tire but is the part of the tire
that contacts the ground. The time interval t for this point to
travel from an initial contact point (xfr , L/2) to (xfr , yfr) is as
follows:

t =
∫ L/2

y f r

1
rωr

dyr =
L/2 − yfr

rωr
. (8)

At the same time, the vehicle has moved from position 1 to posi-
tion 2 with an angular displacement of ϕ. The sliding velocities
of point (xfr , yfr) in the xr and yr directions are denoted by
vfr x and vfr y . Therefore

vfr x = −yfrϕ̇, vfr y =
(

R +
B

2
+ xfr

)
ϕ̇ − rωr . (9)

The resultant sliding velocity vfr and its angle γfr in the xr –yr

frame are as follows:

vfr =
√

v2
fr x + v2

fr y , γfr = π + arctan
(

vfr y

vfr x

)
. (10)

Note that when the wheel is sliding, the direction of friction is
opposite from the sliding velocity, and if the vehicle is in pure
rolling, vfr x and vfr y are zero.

In order to calculate the shear displacement of this reference
point, the sliding velocities need to be expressed in the global
X–Y frame. Let vfr X and vfr Y denote the sliding velocities in
the X- and Y -directions. Then, the transformation between the
local and global sliding velocities is given by[

vfr X

vfr Y

]
=

[
cos ϕ − sin ϕ

sin ϕ cos ϕ

][
vfr x

vfr y

]
. (11)

The shear displacements jfr X and jfr Y in the X- and Y -
directions can be expressed as follows:

jfr X =
∫ t

0
vfr X dt =

∫ L/2

y f r

(vfr x cos ϕ − vfr y sin ϕ)
1

rωr
dyr

=
(

R +
B

2
+ xfr

){
cos

[
(L/2 − yfr)ϕ̇

rωr

]
− 1

}

− yfr sin
[
(L/2 − yfr)ϕ̇

rωr

]
(12)
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jfr Y =
∫ t

0
vfr Y dt =

∫ L/2

y f r

(vfr x sin ϕ + vfr y cos ϕ)
1

rωr
dyr

=
(

R +
B

2
+ xfr

)
sin

[
(L/2 − yfr)ϕ̇

rωr

]
− L

2

+ yfr cos
[
(L/2 − yfr)ϕ̇

rωr

]
. (13)

The resultant shear displacement jfr in the X–Y frame is given
by jfr =

√
j2
fr X + j2

fr Y . Similarly, it can be shown that for the
reference point (xrr , yrr) in the rear right wheel the angle of the
sliding velocity γrr in the xr –yr frame is as follows:

γrr = arctan
[
(R + B/2 + xrr)ϕ̇ − rωr

−yrrϕ̇

]
(14)

the shear displacements jrr X and jrr Y are given by

jrr X =
(

R +
B

2
+ xrr

){
cos

[
(−C/2 − yrr)ϕ̇

rωr

]
− 1

}

− yrr sin
[
(−C/2 − yrr)ϕ̇

rωr

]
(15)

jrr Y =
(

R +
B

2
+ xrr

)
sin

[
(−C/2 − yrr)ϕ̇

rωr

]
+

C

2

+ yrr cos
[
(−C/2 − yrr)ϕ̇

rωr

]
(16)

and the magnitude of the resultant shear displacement jrr is
jrr =

√
j2
rr X + j2

rr Y .
The friction force points in the opposite direction of the slid-

ing velocity. Using jfr and jrr , derived earlier with (7) and
integrating along the contact patches yields that the longitudinal
sliding friction of the right wheels Fr f can be expressed as
follows:

Fr f =
∫ L/2

C/2

∫ b/2

−b/2
prµr (1 − e−jf r /Kr) sin(π + γfr)dxrdyr

+
∫ −C/2

−L/2

∫ b/2

−b/2
prµr (1 − e−jr r /Kr) sin(π + γrr)dxrdyr

(17)

where pr , µr , and Kr are the normal pressure, coefficient of
friction, and shear deformation modulus of the right wheels,
respectively. While most of the parameters in (17) can be directly
measured, as discussed next, the parameters µr and Kr must be
estimated.

Let fr r denote the rolling resistance of the right wheels,
including the internal locomotion resistance, such as resistance
from belts, motor windings, and gearboxes [24]. The complete
resistance torque τr Res from the ground to the right wheel is
given by

τr Res = r(Fr f + fr r ). (18)

Since ωr is constant, the input torque τr from right motor will
compensate for the resistance torque, such that

τr = τr Res . (19)

It follows that experiments that measure τr can be used to es-
timate the parameters µr and Kr . A procedure for performing
this estimation is given in Section V.

The earlier discussion is for the right wheels. Exploiting the
same derivation process, one can obtain analytical expressions
for the shear displacements jf l and jrl of the front and rear left
wheels and the angles of the sliding velocity γf l and γrl . The
longitudinal sliding friction of the left wheels Fl f is then given
by

Fl f =
∫ L/2

C/2

∫ b/2

−b/2
plµl(1 − e−jf l /Kl) sin(π + γf l)dxldyl

+
∫ −C/2

−L/2

∫ b/2

−b/2
plµl(1 − e−jr l /Kl) sin(π + γrl)dxldyl

(20)

where pl , µl , and Kl are the normal pressure, coefficient of fric-
tion, and shear deformation modulus of the left wheels, respec-
tively. Let fl r denote the rolling resistance of the left wheels.
The input torque τl of the left motor equals the resistance torque
of the left wheel τl Res , such that

τl = τl Res = r(Fl f + fl r ). (21)

Using (19) and the left equation of (21) with (6) yields

C(q, q̇) = [τl Resτr Res]T . (22)

Substituting (5), (22), and G(q) = 0 into (4) yields a dynamic
model that can be used to predict 2-D movement for the skid-
steered vehicle


mr2

4
+

r2I

αB2

mr2

4
− r2I
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4
− r2I

αB2

mr2

4
+

r2I

αB2


 q̈ +

[
τl Res

τr Res

]
=

[
τl

τr

]
.

(23)
In summary, in order to obtain (22), the shear displacement

calculation of (12), (13), (15), and (16) is the first step. The inputs
to these equations are the left and right wheel angular velocities
ωl and ωr . The shear displacements are employed in (17) and
(20) to obtain the right and left sliding friction forces Fr f and
Fl f . Next, the sliding friction forces and rolling resistances
are substituted into (18) and (21) to calculate the right and left
resistance torques, which determine C(q, q̇) using (22).

B. 3-D Linear Motion

For 3-D linear motion, each wheel of the skid-steered vehicle
can be assumed to be in pure rolling. The Fr f in (18) and
Fl f in (21) are zero. Fig. 2 is the free body diagram of a
skid-steered wheeled vehicle for this case. It is assumed that
the surface elevation is described by Z = f(Y ), such that the
left and right front wheels experience the same elevation and
likewise for the rear wheels. Let β denote the angle between the
global coordinate axis Y and the body-fixed axis yr [which can
be determined analytically from Z = f(Y )], W is the weight of
vehicle, fr r is the rolling resistance of the right wheels, and Fr

is the traction force that acts on the vehicle. The left wheel forces
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Fig. 2. Free-body diagram for vehicle hill climbing.

are identical to those of the right wheels and are not shown in
Fig. 2.

The gravitational term G(q) is generally nonzero and is given
by

G(q) =
mgr sin β

2
[1 1]T . (24)

Substituting (5), (22), and (24) into (4) yields a dynamic model
that can be used to predict 3-D motion, given the assumption
Z = f(Y ):


mr2

4
+

r2I

αB2

mr2

4
− r2I

αB2

mr2

4
− r2I

αB2

mr2

4
+

r2I

αB2


 q̈ +

[
τl Res

τr Res

]

+




mgr sin β

2
mgr sin β

2


 =

[
τl

τr

]
. (25)

For the experimental verification in Section V, β is constant,
since the experiments were performed on surfaces with constant
slopes.

IV. CLOSED-LOOP CONTROL SYSTEM

The dynamic models described earlier are essential parts of
simulation models used to predict the vehicle motion. However,
no matter how detailed the analysis, these models will have
uncertain parameters, e.g., the coefficient of rolling resistance,
coefficient of friction, and shear modulus.

The models of open-loop and closed-loop control systems
that can be utilized to predict motion are shown in Fig. 3 for one
side of the vehicle. The complete control system for the vehicle
is the combination of the two control systems for each side of
the vehicle. The open-loop system consists of four parts: vehicle
dynamics, terrain interaction, motor, and motor controller. The
closed-loop control system additionally includes the PID speed
controller for the motor in a unity feedback. As is experimentally
illustrated in Fig. 16, the open-loop system is highly sensitive
to these uncertainties and, hence, can yield poor velocity pre-
dictions, while the feedback system can dramatically reduce the
effects of the model uncertainty. In most of the experimental
results described in the next section, the closed-loop model is
employed as the simulation model.

Fig. 3. Open-loop and closed-loop control systems for the left or right side of
a skid-steered wheeled vehicle.

Fig. 4. Modified PID controller.

The vehicle dynamics and terrain–vehicle interaction were
described in Section III. The remaining three parts, i.e., the PID
controller, motor, and motor controller, are described next.

A. PID Controller

In our research, a modified PID controller in Fig. 4, for which
the input to the derivative term is the reference signal, not the
error signal, was adopted from [25]. The variables vd and va are
the desired velocity and actual velocity. The PID parameters are
tuned by following the rules from [25, ch. 9].

B. Motor

The moment of inertia and viscous friction of the motor are
given in Table II and are small with respect to the vehicle inertia
and friction (also shown in Table II). Hence, the dynamics of the
motor have been neglected. However, the speed versus current
curve for a dc motor was used to model the motor.

In the following, τm , Im , and ωm are the torque, current,
and angular velocity of the motor, respectively, τs is the stall
torque, ωn is the no-load speed, τmax is the maximum contin-
uous torque, Imax is the maximum continuous current, and Vm

is the motor voltage. Fig. 5 shows the torque–speed property of
the dc motor, which can be expressed as follows [26]:

τm

τs
+

ωm

ωs
= 1 (26)

where

τs =
Vm KT

Ra
, ωs =

Vm

KB
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Fig. 5. Speed versus torque curve for a dc motor.

and KT , KB , and Ra are the torque constant, voltage constant,
and armature resistance, respectively. The shaded area in Fig. 5
is the safe working region, i.e., if the motor works outside of the
shaded area continuously, the motor will overheat and will be
in danger of burning out.

C. Motor Controller

The motor controller can be viewed as an electrical drive sys-
tem for the motor. For speed control of the motor, the motor
controller has two patterns: current control and voltage control.
In this research, the current control pattern was used, as indi-
cated in Fig. 3. The voltage signal from the PID controller is
transferred into the current signal through the motor controller.

The Maxon 4-Q-dc motor controller has been utilized in this
research and has a maximum output voltage Vm,max , which is
governed by

Vm max = PWM(VCC − Uloss) −
(∆nm /∆τm )KT Im

Kn
(27)

where PWM is the pulsewidth modulation, VCC is the battery
supply voltage, Uloss is the voltage loss in the motor controller,
∆nm /∆τm is the speed–torque gradient of the motor, and Kn is
the speed constant. From Fig. 5, it is seen that Vm max controls
the maximum speed of the motor.

D. Application of the Dynamic Models in Motion Planning

An important objective of this research is to develop dynamic
models that are useful for motion planning. It is envisioned
that these models will be used in conjunction with sampling-
based model predictive control (SBMPC) [27], which is an in-
put sampling algorithm that was designed to enable real-time
motion planning using potentially complex dynamic models.
In SBMPC, the nodes are states, and the edges are the inputs
that cause the system to transition from one state (i.e., node)
to another. An edge cost can be the distance traveled, the time
traveled, the energy expended, etc., depending upon the global
cost that is being optimized.

Fig. 6 shows how the closed-loop model and kinematic model
are used to calculate the edge cost. Note that the kinematic model
is needed to compute the simulated state X(ti+1) and falls out-

Fig. 6. Calculation of the edge cost (distance traveled, time traveled, energy
expended, etc.) for the SBMPC algorithm. (Notation: For a function f (t) and a
time interval T , f (T ) ={f (t) : t ∈ T }.)

side the feedback loops of the closed-loop model. In Fig. 6, the
inputs at time ti are the the current state X(ti) and the sampled,
desired angular velocities of the left and right wheels ωl,d(t) and
ωr,d(t) on the interval T =[ti ti+1], where ti+1 = ti + T , and
T is the planning sample period. Next, the closed-loop dynamic
model of Fig. 3 is used to determine (on the interval T ) the simu-
lated angular velocities of the left and right wheels ωl sim (t) and
ωr sim (t) and the simulated torques of the left and right wheels
τl sim (t) and τr sim (t). The kinematic model is then used to
determine the next state X(ti+1). The inputs and outputs of
the closed-loop model and kinematic model blocks are used in
the edge cost analysis block to compute the corresponding edge
cost.

The kinematic model is used differently when evaluating a
dynamic model. In particular, the inverse kinematic model is
used as discussed later in Section V, regarding the experiments
of Sections V-A and C, which are used to test the accuracy of
the model for 2-D general motion.

V. EXPERIMENTAL VERIFICATION

This section describes parts of the experiments that have been
conducted to verify the closed-loop control system, including
the PID controller, motor controller, motor, vehicle dynamics,
and terrain interaction. The model was simulated in SIMULINK
to provide the theoretical results, which were compared with the
experimental results.

The experimental platform is the modified Pioneer 3-AT
shown in Fig. 7. The original, nontransparent, speed controller
from the company was replaced by a PID controller and motor
controller. PC104 boards replaced the original control system
boards that came with the vehicle. Two current sensors were
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Fig. 7. Modified Pioneer 3-AT entering a white-board ramp.

TABLE I
K , µsa , AND µop FOR DIFFERENT N ON VINYL LAB SURFACE

mounted on each side of the vehicle to provide real-time mea-
surement of the motors’ currents.

Let µsa denote the coefficient of friction for the wheels when
the current and angular velocity of the motor have the same
sign, such that the motor applies a propulsive force. Let µop
denote the coefficient of friction for a wheel when the two have
the opposite sign, resulting in the motor applying a braking
force. The values of the parameters K, µsa , and µop are terrain-
dependent and are difficult to determine by direct measurement.
As a result, the values of K, µsa , and µop are computed by
solving the nonlinear optimization problem

min
K,µ s a ,µo p

N∑
i=1

[(
∆τ

(i)
l Res

)2 +
(
∆τ

(i)
r Res

)2]
(28)

where i denotes the ith of N experiments, and ∆τ
(i)
l Res and

∆τ
(i)
r Res are the values of the difference between the steady-state

simulation and experimental torques. The commanded turning
radius R is defined as the turning radius resulting from applying
the wheel speeds ωl and ωr to the kinematic model (2) assuming
no slip. The set of experimental indexes i given by {1, 2, . . . , 31}
map to the set of commanded turning radii R given by
{0.2, 0.3, . . . , 1, 2, . . . , 101 , 101.2 , . . . , 102 , 102.2 , . . . , 103.2 ,
103.6 , 104}. The optimal K, µsa , and µop for various values of
N ∈ {2, 3, . . . , 31} were found using the MATLAB optimiza-
tion toolbox function lsqnonlin and are given in Table I. For
each N , the corresponding i were chosen to be evenly spaced.
Although, as N increases, Table I shows that the values of these
parameters (for the vinyl lab surface) appeared to converge, the
variation from N = 2 to 31 is modest (16.7% for K, 9.9% for
µsa , and 7.0% for µop ). Hence, these results show that only

TABLE II
PARAMETERS FOR CLOSED-LOOP SYSTEM MODEL

a small number of experiments are needed to determine the
coefficients of friction and shear moduli.

The other terrain-dependent parameter, i.e., coefficient of
rolling resistance µroll , is computed by commanding a constant
velocity to a vehicle going straight on a specific terrain. The
rolling resistance is obtained from the average applied torque to
the wheel. The coefficient of rolling resistance is then the rolling
resistance divided by the weight of vehicle.

Since they are terrain-dependent, the coefficients of friction
(µsa and µop ), shear modulus (K), and coefficient of rolling
resistance (µroll) must be determined for each surface via the
aforementioned optimization procedure. Hence, the dynamic
model changes with the terrain being traversed.

All of the key parameters for the model of the closed-loop
system are listed in Table II. These parameters include the gains
of the PID controller, which are the controller gains for the
skid-steered vehicle of Fig. 7.

The experiments described in Sections V-A and C re-
quire the vehicle to traverse particular trajectories (circles in
Section V-A and a lemniscate in Section V-C). These trajecto-
ries are characterized in terms of desired linear velocity vy,d

and desired turning radius ρd . The inverse kinematic model was
used, as shown in Fig. 8, at the sample instants to convert vy,d

and ρd to the desired (i.e., commanded) velocities of the left
and right wheels ωl,d and ωr,d , which were then input to the
closed-loop model of Fig. 3 to calculate the simulated velocities
of the left and right wheels ωl sim and ωr sim along with the
corresponding torques τl sim and τr sim .
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Fig. 8. Use of the inverse kinematic model to generate the desired left and
right wheel velocities corresponding to the desired linear velocity vy ,d and the
desired turning radius ρd in Sections V-A and C.

Fig. 9. Vehicle left and right wheel torque comparison during steady-state
CCW rotation for different commanded turning radii on the lab vinyl surface.

A. 2-D Circular Movement

In this section, 2-D circular motion results are presented.
When a skid-steered wheeled vehicle is in constant velocity cir-
cular motion, the left and right wheel torques are governed by
(21) and (18), respectively. The theoretical and experimental
torques for different commanded radii are shown in Fig. 9. If
shear stress is not a function of shear displacement, but instead
takes on a maximum value when there is a small relative move-
ment between wheel and terrain, the left and right motor torques
should be constant for different commanded turning radii, which
is a phenomenon not seen in Fig. 9. Instead, this figure shows
that the magnitudes of both the left and right torques reduce
as the commanded turning radius increases. The same trend is
found in [16] and [21].

The extreme case is that when the vehicle is in straight-line
movement, the sliding friction is zero, and the motor torque only
has to compensate for the rolling resistance torque. It should be
mentioned that if the load transfer from the left wheel to the
right wheel is not large, experimental results have shown that

Fig. 10. Closed-loop vehicle left and right wheels velocity comparison for
2-D circular movement on the lab vinyl surface.

Fig. 11. Closed-loop vehicle left and right wheels torque comparison corre-
sponding to Fig. 10.

the steady-state torques of the left and right wheels for different
commanded turning radii are nearly the same for commanded
linear velocities from 0.1 to 0.6 m/s, which is modeled accurately
by (21) and (18).

Figs. 10–13 show the results when the vehicle is commanded
to rotate at a constant velocity, beginning from a zero initial
velocity. The commanded linear velocity and commanded radius
to the vehicle are 0.2 m/s and 4 m on the lab vinyl surface.
Note that there is some mismatch between the experimental
and simulation velocities during the acceleration phase of the
motion (<1 s). This is not surprising, since constant velocity was
assumed in the development of the resistance term C(q, q̇), and
the experimental results of Fig. 10 correspond to a maximum
acceleration greater than 3.39 m/s2 . Therefore, if the vehicle
has large acceleration during rotation, the prediction becomes
inaccurate for the acceleration period. It should be noted that
our current models are fairly precise in taking into account the
influence of acceleration through the mass matrix (i.e., by Mq̈),
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Fig. 12. Closed-loop trajectory comparison corresponding to Fig. 10.

Fig. 13. Closed-loop trajectory errors (experiment–simulation) in X and Y
coordinates corresponding to the trajectories of Fig. 12.

which allows them to accurately describe acceleration when
moving linearly and take into account some of the influence of
acceleration when turning.

B. 2-D and 3-D Linear Movement

Figs. 14–16 show comparisons of both open-loop and closed-
loop experimental and simulation results for linear 2-D motion.
The vehicle is commanded at an acceleration of 1 m/s2 to a ve-
locity of 0.2 m/s for straight-line movement on the lab vinyl sur-
face. Fig. 16 essentially uses the experimental torque of Fig. 15
as the system input. It is seen that the closed-loop system gives a
much better prediction of the vehicle velocity than the open-loop
system.

Fig. 17 shows the velocity comparison of closed-loop exper-
imental and simulation results for linear 2-D motion when the
vehicle is commanded to an unachievable velocity of 1.5 m/s.
From Fig. 17, it can be seen that due to the saturation and
power limitation of actuators, the vehicle can only reach the fi-
nal velocity of around 0.93 m/s but not the desired 1.5 m/s. The
kinematic model is incapable of this type of motion prediction,

Fig. 14. Closed-loop vehicle velocity comparison when the vehicle is com-
manded to 0.2 m/s for straight-line movement on the lab vinyl surface.

Fig. 15. Closed-loop motor torque comparison corresponding to Fig. 14.

Fig. 16. Open-loop vehicle velocity comparison when the vehicle is com-
manded with the voltage V that corresponds to the torque τ of Fig. 15. (In the
open-loop model of Fig. 3, τ = Kτ V , where Kτ is a constant.)
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Fig. 17. Closed-loop vehicle velocity comparison when the vehicle is com-
manded to 1.5 m/s for straight-line movement on the lab vinyl surface.

Fig. 18. Closed-loop vehicle velocity comparison when commanded linear
velocity = 0.7 m/s for asphalt hill climbing with slope β = 5.4◦.

since it cannot take into account motor limitations. However, it is
important to also recognize that even when the kinematic model
yields accurate motion prediction, it does not yield the torque
predictions that are key to energy-efficient motion planning.

Figs. 18–20 illustrate hill climbing for these three cases: 1) the
ability to traverse a ramp at the commanded velocity; 2) the abil-
ity to traverse a ramp that is so steep that the vehicle deceler-
ates while climbing, regardless of the commanded velocity; and
3) the inability to traverse a steep ramp because of inadequate
initial velocity. These results clearly demonstrate the ability of
the model to predict traversal times on undulating terrains and
to predict the inability of the vehicle to traverse a steep hill.

C. 2-D Curvilinear Movement

In this section, the model is further tested for curvilinear
motion. The vehicle was commanded to move in lemniscate
trajectory. During the lemniscate movement, both the linear
velocity and turning radius of the robot continuously change.

Fig. 19. Closed-loop vehicle velocity comparison when commanded linear
velocity = 1.2 m/s with 0.49 m/s initial velocity for wood-board hill climbing
with slope β = 15.0◦.

Fig. 20. Closed-loop vehicle velocity comparison when commanded linear
velocity = 1.2 m/s with 0.57 m/s initial velocity for white-board hill climbing
with slope β = 13.5◦.

The chosen trajectory is described by

X(t) =
9 cos(t/50)

1 + sin2(t/50)
(29)

Y (t) =
27 sin(t/50) cos(t/50)

1 + sin2(t/50)
(30)

where t is the time, and (X(t), Y (t)) is the position in global
coordinates. The trajectory was chosen to test whether the dy-
namic model can give accurate predictions of velocities and
torques when the vehicle is turning with linear and angular
accelerations, since the resistance term in dynamic model is de-
rived using a constant linear and angular velocity assumption.
This trajectory was also chosen to ensure that the wheel veloc-
ities do not violate the motor power limitations, which leads to
motor saturation during the motion. In addition, this trajectory
tests a large range of vehicle velocities and turning radii.

Due to lab-surface limitations, the vehicle was required to
traverse only part of the lemniscate. The three terrain parame-
ters for the testing surface are K = 0.0009, µsa = 0.6488, and
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Fig. 21. Partial and whole lemniscate trajectories.

Fig. 22. Desired linear velocity corresponding to partial lemniscate in Fig. 21.

µop = 0.4601. Fig. 21 shows the partial lemniscate trajectory
used in the experiment and the complete lemniscate trajectory
from (29) to (30). Figs. 22 and 23 show the desired linear ve-
locity vy,d and desired turning radius ρd of the vehicle for the
corresponding partial lemniscate trajectory in Fig. 21.

The vehicle was first commanded at an acceleration of 1 m/s2

to achieve the initial velocity in Fig. 22 within 3 s. It was then
commanded to follow the desired linear velocity and desired
turning radius for 18 s, as shown in Figs. 22 and 23. Figs. 24
and 25 show linear velocity and angular velocity comparisons of
the experimental and simulation results. Figs. 26–28 show the
corresponding torque and trajectory comparisons. (Note that the
experimental and simulation trajectories in Fig. 28 are indistin-
guishable.) Fig. 29 shows the trajectory error comparison in
the X and Y coordinates corresponding to Fig. 28. From these
results, it is seen that for the vehicle turning with continually
changing acceleration (in the range [0 0.02] m/s2), the model
provides accurate predictions of velocities and reasonable pre-
dictions of torques.

Fig. 23. Desired turning radius corresponding to partial lemniscate in Fig. 21.

Fig. 24. Closed-loop vehicle linear velocity comparison corresponding to
lemniscate movement in Fig. 21.

Fig. 25. Closed-loop vehicle angular velocity comparison corresponding to
lemniscate movement in Fig. 21. (The experimental angular velocity was filtered
with a low-pass filter (1/(0.04s + 1)) to reduce the noise.)
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Fig. 26. Closed-loop left-wheel-torque comparison corresponding to lemnis-
cate movement in Fig. 21.

Fig. 27. Closed-loop right-wheel-torque comparison corresponding to lem-
niscate movement in Fig. 21.

Fig. 28. Closed-loop trajectory comparison corresponding to lemniscate
movement in Fig. 21.

Fig. 29. Closed-loop trajectory errors (experiment–simulation) in X and Y
coordinates corresponding to the trajectories of Fig. 28.

VI. CONCLUSION

This paper developed dynamic models for skid-steered
wheeled vehicles for general 2-D motion and linear 3-D mo-
tion. An important contribution of this research is that unlike
most previous research, these models were developed assuming
a specific functional relationship between the shear stress and
shear displacement and did not simply assume a constant (max-
imum) value for the shear stress when an arbitrarily small shear
displacement occurs. The development of the resistance term
C(q, q̇) is similar to the results of [16] and [21] for constant
velocity motion of skid-steered tracked vehicles. However, this
research also considers the acceleration and gravitational terms
in addition to taking into account the PID controller, the motor,
and motor controller. Another contribution of this research is its
focus on the closed-loop dynamics, which enables more accu-
rate predictions of the vehicle velocity than that achievable with
an open-loop model. The dynamic models are validated using
extensive experimentation and seen to yield accurate predictions
of velocity and reasonable predictions of torque.

One limitation of the research is that the resistance term was
developed using a constant linear and angular velocity assump-
tion, and hence, although the models tend to give good results
for linear and curvilinear motions with small acceleration, they
tend to lead to prediction inaccuracies when the vehicle has large
acceleration during rotation, as shown in Fig. 10. Another limi-
tation is that the resistance term only applies to hard terrains in
which significant sinkage does not occur. In addition, no model
was developed for general 3-D motion.

Future research will include online calibration of terrain-
dependent parameters (coefficient of rolling resistance, coef-
ficient of sliding friction, and shear deformation modulus) and
develop a model for general 3-D motion. In addition, the models
will be used for motion planning using SBMPC [27].
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