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a b s t r a c t

This paper studies the static output feedback (SOF) control problem of continuous-time linear systems
with polytopic uncertainties. Novel LMI conditions with a line search over a scalar variable for designing
robust SOF controllers are proposed, where the uncertain output matrix of the considered system is
allowed to be not of full row rank. In particular, it is shown that the new method can give less or at
least the same conservative results than thosemethods by inserting amatrix equality constraint between
system outputmatrix and Lyapunovmatrix. Furthermore, the result is extended to the case ofH∞ control.
Numerical examples are given to illustrate the effectiveness of the proposed method.
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1. Introduction

In control theory and practice, one of the most important and
challenging open problems is the synthesis of static output feed-
back (SOF) or reduced-order controllers. It has been proved to be
a non-convex problem (Syrmos, Abdallah, Dorato, & Grigoriadis,
1997), which means that a convex sufficient and necessary con-
dition for designing SOF or reduced-order controllers cannot be
obtained. However, in contrast to other control schemes, the SOF
or reduced-order controllers are with simpler structures andmore
easily realized in practice. Thus, much attention has been paid for
obtaining less conservative conditions for SOF or reduced-order
control synthesis, see the excellent survey paper (Syrmos et al.,
1997) and the reference therein.
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In recent years, various numerical algorithms for designing
SOF controllers have been proposed. In these algorithms, two-
step algorithms (Agulhari, Oliveira, & Peres, 2010; Mehdi, Boukas,
& Bachelier, 2004; Peaucelle & Arzelier, 2001) and iterative
algorithms (El Ghaoui, Oustry, & AitRami, 1997; Huang & Nguang,
2006; Leibfritz, 2001; Trofino, 2009) based on linear matrix
inequality (LMI) are widely used. Moreover, a class of numerical
tools based on nonsmooth optimization techniques is also a good
choice for designing SOF controllers, see Apkarian and Noll (2006),
Lewis (2007) and Yaesh and Shaked (2012). In contrast to the
above mentioned approaches, although the convex conditions
based on linear matrix inequalities (LMIs) are only sufficient,
they can be solved by interior-point algorithms, which work
very well in practice and are quite reliable like the methods for
solving linear programs (Boyd & Vandenberghe, 2004). Therefore,
various convex sufficient conditions for designing SOF controllers
are proposed. By forcing a Lyapunov matrix to have a special
structure (Ho & Lu, 2003; Lo & Lin, 2003) or inserting a linear
matrix equality constraint on a Lyapunov matrix (Crusius &
Trofino, 1999; De Souza & Trofino, 2000), sufficient LMI-based
conditions for designing SOF stabilizing controllers are given. For
exploiting more degrees of freedom in Lyapunov functions, special
congruence transformations are adopted in Bara and Boutayeb
(2005) and Prempain and Postlethwaite (2001) respectively
for continuous- and discrete-time systems. A linear parameter
dependent stabilization method for designing SOF controllers
is proposed in Shaked (2003). By using Hit-and-Run methods,
a mixed LMI/randomized method is proposed for SOF control
synthesis in Arzelier, Gryazina, Peaucelle, and Polyak (2010).
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By using the properties of the null space of output matrices
and introducing parameter-independent slack variables with a
lower-triangular structure, sufficient conditions for designing
SOF controllers are given in Dong and Yang (2007) and Dong
and Yang (2008). By introducing a stabilizing delay, a static
output feedback sliding mode controller is determined in Seuret,
Edwards, Spurgeon, and Fridman (2009). Moreover, the SOF
control synthesis problems for linear systems with an unknown
state/input delay (Du, Lam, & Shu, 2010), positive linear systems
(Ait Rami, 2011), Markovian jump linear systems (Shu, Lam, &
Xiong, 2010), fragility issues (Peaucelle & Arzelier, 2005), mixed
H2/H∞ control of discrete-time LPV systems (De Caigny, Camino,
Oliveira, Peres, & Swevers, 2010) and so on, have been studied.

In this paper, new convex SOF control synthesis conditions
with a line search over a scalar variable are proposed, where the
uncertain output matrix of the considered linear system is not
required to be of full row rank. In particular, it is proved that the
newmethod can give less or at least the same conservative results
than those methods by inserting a matrix equality constraint
between systemoutputmatrix and Lyapunovmatrix in Crusius and
Trofino (1999). Furthermore, the result is extended to the case of
H∞ control.

The paper is organized as follows. Section 2 presents a system
description and some preliminaries. Section 3 provides a robust
static output feedback controller design method for guaranteeing
the stability of the closed-loop systems. Further, the proposed
method is extended to the case of H∞ control. Four numerical
examples are given to illustrate the effectiveness of the new
proposed methods in Section 4. Concluding remarks are given in
Section 5.

2. System description and problem statement

Consider a linear time-invariant system (1) with polytopic un-
certainties described by state-space equations:

ẋ(t) = A x(t)+ B1w(t)+ B2u(t)
z(t) = C1x(t)+ D12u(t)
y(t) = C2x(t) (1)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rp is the control input,
w(t) ∈ Rm is the disturbance, y(t) ∈ Rr is the measured output,
z(t) ∈ Rq is the controlled output. The matrices [A ]n×n, [B1]n×m,
[B2]n×p, [C1]q×n, [C2]r×n, [D12]q×p belong to the following uncer-
tainty polytope:

Ω =


([A ]n×n, [B1]n×m, [B2]n×p, [C1]q×n, [C2]r×n, [D12]q×p)|

× ([A ]n×n, [B1]n×m, [B2]n×p, [C1]q×n, [C2]r×n, [D12]q×p)

=

N
i=1

αi([Ai]n×n, [B1i]n×m, [B2i]n×p, [C1i]q×n,

× [C2i]r×n, [D12i]q×p), αi ≥ 0,
N
i=1

αi = 1


. (2)

Assume C T
1 D12 = 0, and the same assumption is also given on

p. 401 in Zhou, Doyle, and Glover (1996).
In this paper, a static output feedback controller

u(t) = Ky(t) (3)

will be designed, such that the resulting closed-loop system

ẋ(t) = (A + B2KC2)x(t)+ B1w(t)
z(t) = (C1 + D12KC2)x(t) (4)

is robustly stable or simultaneously meets the H∞ performance
bound requirement (5).
Definition 1. Suppose that the system (4) is asymptotically stable
and satisfies,

∞

0
zT (t)z(t) < γ 2


∞

0
wT (t)w(t)dt (5)

then H∞ norm of the system (4) is said to be less than γ .

In order to give a comparisonwith the existingmethods, the results
in Crusius and Trofino (1999) are recalled as follows:

Lemma 2 (Crusius & Trofino, 1999). Assume that there exists one i0,
such that C2i0 is full row rank,

(i): If there exist matrices W = W T > 0,M, R such that

He(AiW + B2iRC2j + AjW + B2jRC2i) < 0,

1 ≤ i ≤ j ≤ N (6a)
MC2i = C2iW , 1 ≤ i ≤ N (6b)

then the controller (3)with K = RM−1 stabilizes the system (1).
(ii): For a given scalar γ > 0, if there exist matrices W = W T >

0,M, R such that (6b) holds and satisfyingHe(AiW + B2iRC2j) B1i WCT
1i + CT

2jR
TDT

12i
BT
1i −γ 2I 0

C1iW + D12iRC2j 0 −I


+

He(AjW + B2jRC2i) B1j WCT
1j + CT

2iR
TDT

12j
BT
1j −γ 2I 0

C1jW + D12jRC2i 0 −I


< 0, 1 ≤ i ≤ j ≤ N (7)

then the system (1) is asymptotically stable via the SOF controller
(3) with H∞ norm less than γ , where the controller gain K =

RM−1.

Proof. By using the technique in Theorem 1 of Crusius and Trofino
(1999), the proof is routine and omitted. �

Remark 3. Note that the equality constraint (6b) is imposed be-
tween output matrix and Lyapunov matrix, which might lead to
a strict constraint if C2i, i = 1, . . . ,N are different. Moreover, in
order to guarantee reversibility of the matrix variable M , one of
C2i, 1 ≤ i ≤ N has to be full row rank, whichmight not be satisfied
for some uncertain systems. Therefore, this paper will explore new
methodswithout the equality constraint and the full row rank con-
straint on C2i. In particular, it will be proved that the new method
can give less or at least the same conservative results than those
methods by inserting amatrix equality constraint between system
output matrix and Lyapunov matrix in Crusius and Trofino (1999).

3. Robust static output feedback control

In this section, a new LMI-based method for designing SOF
controllers for guaranteeing stability is firstly presented, and it is
proved that the new method can give less (or at least the same as)
conservative results than Lemma 2(i). Subsequently, the result is
extended to the H∞ control case.

3.1. Static output feedback control synthesis

The following theorem gives a sufficient condition for designing
SOF stabilizing controllers.
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Theorem 4. If there exist a symmetricmatrix Q (α) > 0 andmatrices
G, L, a scalar τ > 0, satisfying the following matrix inequality,

He (A(α)Q (α)+ B2(α)LTC2(α)) ∗

C2(α)Q (α)− GTC2(α)+ τLTBT
2(α) −τG − τGT


< 0 (8)

where

T =


I, C2i, i = 1, 2, . . . ,N

are row non-full rank.
(C2i0C

T
2i0)

−1, ∃ some i0 ∈ {1, 2, . . . ,N},

s.t. C2i0 is row full rank.

(9)

then the system (1) withw(k) = 0 and

K = LG−1 (10)

is robustly stable.

Proof. From Q (α) > 0, we have that Q (α) > 0 is invertible. Let
vectors x(t) and x̄(t) satisfy

x̄(t) = Q−1(α)x(t). (11)

For x(t) ≠ 0, it follows that x̄(t) ≠ 0. Pre- and post-multiplying (8)
with


x̄T (t) x̄T (t)B2(α)K


and its transpose, then we have

x̄T (t)A(α)Q (α)x̄(t)+ x̄T (t)Q (α)AT (α)x̄(t)+ x̄T (t)
× B2(α)LTC2(α)x̄(t)+ x̄T (t)CT

2 (α)T
T LTBT

2(α)x̄(t)

+ x̄T (t)Q (α)CT
2 (α)K

TBT
2(α)x̄(t)

− x̄T (t)CT
2 (α)T

TGTK TBT
2(α)x̄(t)

+ τ x̄T (t)B2(α)LK TBT
2(α)x̄(t)+ x̄T (t)

× B2(α)KC2(α)Q (α)x̄(t)− x̄T (t)B2(α)KGTC2(α)x̄(t)
+ τ x̄T (t)B2(α)KLTBT

2(α)x̄(t)− τ x̄T (t)B2(α)KG

× K TBT
2(α)x̄(t)− τ x̄T (t)B2(α)KGTK TBT

2(α)x̄(t)

< 0, for all x(t) ≠ 0 (12)

where K is the same as in (10), which implies that L = KG. Substi-
tuting KG for L, then (12) can be rewritten as follows:

x̄T (t)A(α)Q (α)x̄(t)+ x̄T (t)Q (α)AT (α)x̄(t)+ x̄T (t)
×Q (α)CT

2 (α)K
TBT

2(α)x̄(t)+ x̄T (t)B2(α)KC2(α)Q (α)
× x̄(t) < 0, for all x(t) ≠ 0

i.e., 2x̄T (t)

A(α) + B2(α)KC2(α)


Q (α)x̄(t) < 0, for all x(t) ≠ 0,

which can be rewritten as (13) from (11).

2xT (t)P(α)

A(α)+ B2(α)KC2(α)


x(t) < 0,

for all x(t) ≠ 0 (13)

where P(α) = (Q (α))−1.
From Q (α) > 0, we have P(α) > 0 and choose Lyapunov func-

tion V (t) = xT (t)P(α)x(t), then

V̇ (t) = ẋT (t)P(α)x(t)+ xT (t)P(α)ẋ(t)

= 2xT (t)P(α)

A(α)+ B2(α)KC2(α)


x(t).

Combining it and (13), yields that V̇ (t) < 0 for all x(t) ≠ 0. There-
fore, we have that the closed-loop system (4) is asymptotically sta-
ble. Thus, the proof is complete. �

Remark 5. A condition for designing SOF controllers is given in
Theorem 4 and we have to point that the condition is only suffi-
cient. Ifwe substitute a newmatrix variableW (α) for TC(α) in The-
orem 4, then a sufficient and necessary condition can be obtained
for designing SOF controllers, where the condition and its proof are
given in Appendix. Inhere, W (α) is chosen as TC(α) for obtaining
LMI-based conditions and removing the equality constraint about
Lyapunov matrix in Crusius and Trofino (1999).

Remark 6. Note that the condition of Theorem 4 is a matrix in-
equality with the parameters αi, 1 ≤ i ≤ N , which can-
not be directly used for designing SOF controllers. The matrices
A(α), B2(α), C2(α) are the same as in (2), we can choose the ma-
trix Q (α) as a polynomial function of α, for example, Q (α) =N

i1=1 · · ·
N

iM=1(
M

j=1 αij)Qi1···ij , then less conservative results can
be obtained by increasingM . In this paper, Q (α) is chosen as a lin-
ear function of α, i.e., Q (α) =

N
i=1 αiQi, then the inequality (8)

becomes

N
i=1

N
j=1

αiαj


He


AiQj + B2iLTC2j


∗

C2iQj − GTC2i + τLTBT
2i −τG − τGT


< 0 (14)

where the parameters αi, 1 ≤ i ≤ N satisfy 0 ≤ αi ≤ 1,N
i=1 αi = 1. In the following theorem, a simple technique is ap-

plied to convert (14) into a set of LMIs. It should be noted that the
techniques in Oliveira and Peres (2005), Ramos and Peres (2002)
and Yang and Dong (2008), are also applicable to (14) for obtain-
ing less conservative conditions, but the computational complexity
will increase.

Remark 7. Motivated by thework in deOliveira, Geromel, andHsu
(1999) and Peaucelle, Arzelier, Bachelier, and Bernussou (2000),
some methods with extended LMI characterizations have been
proposed for robust control problems. In particular, a general,
projection lemma is proposed in Pipeleers, Demeulenaerea,
Sweversa, and Vandenbergheb (2009) and reproduces the known
extended LMIs and completes some currently missing results.
Inspired by these works, we introduce a matrix variable G by
a special change of variables in Theorem 4, further, an LMI
condition with a line search over a scalar variable for designing
robust SOF controllers is proposed. Note that many extended
LMI characterizations are covered by some excellent designs
of U and V with some special structures in Pipeleers et al.
(2009). The condition of Theorem 4 is not a particular case of
some of the results in Pipeleers et al. (2009), but it is also
obtained based on projection lemma by the design of the matrices
U =


−K TBT

2(α) I

, V =


TC2(α) τ I


, X = −G and Z =

A(α)Q (α)+ Q (α)AT (α) (C2(α)Q (α))
T

C2(α)Q (α) 0


(the notationsU, V , X, Z are the

same as in the projection lemma of Pipeleers et al., 2009).

Theorem 8. If there exist symmetric matrices Qi > 0, 1 ≤ i ≤ N
and matrices G, L, a scalar τ > 0 satisfying

He

AiQj + B2iLTC2j


∗

C2iQj − GTC2i + τLTBT
2i −τG − τGT


+


He


AjQi + B2jLTC2i


∗

C2jQi − GTC2j + τLTBT
2j −τG − τGT


< 0, 1 ≤ i ≤ j ≤ N (15)

then the system (1)withw(k) = 0 and the gain (10) is robustly stable.

Proof. Multiplying (15) by αiαj for 1 ≤ i < j ≤ N and summing
them, then we have
1≤i<j≤N

αiαj(Hij + Hji) < 0 (16)

where

Hij =


He


AiQj + B2iLTC2j


∗

C2iQj − GTC2i + τLTBT
2i −τG − τGT


.
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Multiplying (15) by 1
2α

2
i for 1 ≤ i ≤ N and summing them, then

we can obtain that
1≤i≤N

α2
i Hii < 0. (17)

From (16) and (17), it yields that
N

i=1
N

j=1 αiαjHij < 0, i.e., (14)
holds, which implies that (8) holds. Then we have that the system
(1) is robust stable by Theorem 4. Thus, the proof is complete. �

Remark 9. Note that Theorem 8 is a set of LMIs with a line search
over a scalar variable τ , then Theorem 8 is no longer convex.
Because τ is a scalar variable, a constructive numerical procedure
can be given. The procedure always achieves a reasonable solution
provided τ is initialized with a sufficiently large value and the
search is carefully performed (for instancewith small enough steps
near the optimum). Some methods for a line search can be found
in Bernussou, Geromel, and de Oliveira (1999); Sato (2011). Inhere,
the method in Sato (2011) is used, i.e., the line search for τ in
Theorem8may be conductedwith 100 points linearly gridded over
a logarithmic scale in the interval [10−5, 105

].

Remark 10. There exist many convex methods (or with a line
search) for designing SOF controllers in the existing literature, for
example, sufficient conditions with equality constraint on Lya-
punov matrix in Crusius and Trofino (1999) and De Souza and
Trofino (2000), the methods by using the properties of the null
space of output matrices in Dong and Yang (2007) and Dong
and Yang (2008), linear parameter dependent (LPD) stabilization
method in Shaked (2003) (which is a method with several line
searches), and so on. Moreover, some non-convex algorithms are
also proposed, for example, the iterative LMI algorithm in Cao, Lam,
and Sun (1998), the cone complementarity linearization algorithm
in El Ghaoui et al. (1997), convex–concave decompositions algo-
rithm in Dinh, Gumussoy, Michiels, and Diehl (2012) and so on.

The comparisons with the existing methods are given by test-
ing numerical examples in Section 4. In particular, it is shown in
Theorems 11 and 14 that the newmethods can give less or at least
the same conservative results than Lemma 2(the existing methods
in Crusius and Trofino (1999), where a linear matrix equality con-
straint is imposed on a Lyapunov matrix).

Theorem 11. If the condition of Lemma 2(i) holds, then the condition
of Theorem 8 holds.

Proof. If the condition of Lemma 2(i) holds, then there exists some
i0 ∈ {1, 2, . . . ,N} such that C2i0 is full row rank and

GTC2i = C2iW , i = 1, . . . ,N (18)

where G = MT−1 and T is the same as in (9).
For i = i0, right-multiply (18) by CT

2i0
, then it yields

GTC2i0C
T
2i0 = C2i0WCT

2i0 . (19)

Because C2i0 is row full rank, C2i0C
T
2i0

is invertible, then TC2i0C
T
2i0

= I
from (9). It can be obtained fromW > 0 and (19) that

G = C2i0WCT
2i0 > 0. (20)

On the other hand, for a simple description,we denoteHij = AiW+

WAT
i + B2iRC2j + CT

2jR
TBT

2i, then (6a) can be rewritten as follows:

Hij + Hji < 0, 1 ≤ i ≤ j ≤ N.

Then there exists a positive scalar τ ∗ such that

Hij + Hji + τ ∗I < 0, 1 ≤ i ≤ j ≤ N. (21)
Note that G + GT > 0 by virtue of (20), then there exists a positive
scalar τ , satisfying

1
2
τ(B2i + B2j)RT−1(G + GT )−1(RT−1)T (B2i + B2j)

T < τ ∗I,

1 ≤ i ≤ j ≤ N.

Combining it and (20)–(21), then we have

1
2
τ(B2i + B2j)RT−1(G + GT )−1(RT−1)T (B2i + B2j)

T

+Hij + Hji < 0, 1 ≤ i ≤ j ≤ N G + GT > 0

where G is the same as in (20).
By the Schur complement lemma, the above inequality is equiv-

alent to
Hij τB2iRT−1

τ(RT−1)TBT
2i −τG − τGT


+


Hji τB2jRT−1

τ(RT−1)TBT
2j −τG − τGT


< 0, 1 ≤ i ≤ j ≤ N.

Combining it and (6b), then we have
Hij ∗

C2iW − MC2i + τ(RT−1)TBT
2i −τG − τGT


+


Hji ∗

C2jW − MC2j + τ(RT−1)TBT
2j −τG − τGT


< 0,

1 ≤ i ≤ j ≤ N. (22)

Choose Qi = W , 1 ≤ i ≤ N, L = RT−1 and consider (20), then (22)
can be rewritten as follows:

He(AiQj + B2iLTC2j) ∗

C2iQj − GTC2i + τLTBT
2i −τG − τGT


+


He(AjQi + B2jLTC2i) ∗

C2jQi − GTC2j + τLTBT
2j −τG − τGT


< 0,

1 ≤ i ≤ j ≤ N (23)

i.e., (15) holds, which implies that the condition of Theorem 8
holds. Thus the proof is complete. �

3.2. H∞ SOF control synthesis

In this subsection, assume that the external disturbancew(t) ≢

0, and a method for designing H∞ SOF controllers is proposed by
extending the above results.

Theorem 12. For a given scalar γ > 0, if there exist a symmetric
matrix Q (α) > 0 and matrices G, L, a scalar τ > 0 satisfying the
following matrix inequality,

He

Ā(α)Q̄ (α)+ B̄2(α)LT C̄2(α)


∗ ∗ ∗

C̄2(α)Q̄ (α)− GT C̄2(α)+ τLT B̄T
2(α) −τG − τGT

∗ ∗

B̄T
1(α) 0

−γ 2I ∗

C̄1(α)Q̄ (α) 0 0 −I


< 0 (24)

where

Ā(α) =


A(α) 0

0 −
1
2
I


, B̄2(α) =


B2(α)
D12(α)


,

C̄2(α) =

C2(α) 0


, B̄1(α) =


B1(α)

0


,

C̄1(α) =

C1(α) 0


, Q̄ (α) =


Q (α) 0
0 I
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then the system (1) is asymptotically stable via the SOF controller
(3)with H∞ norm less than or equal to γ , where the controller gain K
is the same as in (10).

Proof. Applying Schur complement lemma to (24), then we have
Eq. (25) is given in Box I.

Let


¯̄x(t)
w(t)


≠ 0, pre- and post-multiplying the above inequality

with

¯̄x
T
(t) ¯̄x

T
(t)B̄2(α)K wT (t)


and its transpose, it yields

from L = KG that

2¯̄x
T

Ā(α)Q̄ (α)+ B̄2(α)LT C̄2(α)


¯̄x + ¯̄x

T
Q̄ (α)C̄T

1 (α)

× C̄1(α)Q̄ (α)¯̄x + 2¯̄x
T
B̄2(α)KC̄2(α)Q̄ (α)¯̄x − 2¯̄x

T
B̄2(α)

× KGT C̄2(α)¯̄x + 2τ ¯̄x
T
B̄2(α)KLT B̄T

2(α)
¯̄x − 2τ ¯̄x

T
B̄2(α)

× KGTK T B̄T
2(α)

¯̄x + 2wT B̄T
1(α)

¯̄x − γ 2wTw

= 2¯̄x
T
Ā(α)Q̄ (α)¯̄x + ¯̄x

T
Q̄ (α)C̄T

1 (α)C̄1(α)Q̄ (α)¯̄x

+ 2¯̄x
T
B̄2(α)KC̄2(α)Q̄ (α)¯̄x + 2¯̄x

T
B̄1(α)w − γ 2wTw

< 0, for all


¯̄x(t)
w(t)


≠ 0. (26)

Since Q (α) > 0, Q̄ (α) is invertible, let P(α) = (Q (α))−1, P̄(α) =

diag

P(α) I


= (Q̄ (α))−1. Therefore, (26) can be rewritten as

follows:

x̃T (t)

P̄(α)


Ā(α)+ B̄2(α)KC̄2(α)


+


Ā(α)+ B̄2(α)KC̄2(α)

T
P̄(α)+ C̄T

1 (α)C̄1(α)

x̃(t)

+ x̃T P̄(α)B̄1(α)w + wT B̄T
1(α)P̄(α)x̃ − γ 2wTw < 0,

for all

x̃(t)
w(t)


≠ 0 (27)

where

x̃(t) = Q̄ (α)¯̄x(t). (28)

(27) is equivalent to
He


P̄(α)


Ā(α)+ B̄2(α)KC̄2(α)


+ C̄T

1 (α)C̄1(α) ∗

B̄T
1(α)P̄(α) −γ 2I


< 0

which can be rewritten as follows:He

P(α)


A(α)+ B2(α)KC2(α)


+ CT

1 (α)C1(α) ∗ ∗

D12(α)KC2(α) −I ∗

BT
1(α)P(α) 0 −γ 2I


< 0.

Applying Schur complement to the above inequality, then we can
obtain

ψ(α) P(α)B1(α)

BT
1(α)P(α) −γ 2I


< 0 (29)

where ψ(α) = He

P(α)


A(α)+ B2(α)KC2(α)


+ CT

1 (α)C1(α)+

CT
2 (α)K

TDT
12(α)D12(α)KC2(α).

From CT
1 (α)D12(α) = 0, it follows thatψ(α) = He(P(α)A(α)+

P(α)B2(α)KC2(α))+ (C1(α)+D12(α)KC2(α))
T (C1(α)+D12(α)KC2

(α)).
Pre- and post-multiplying (29) with

xT (t) wT (t)


≠ 0 and

its transpose, then we have

2xT (t)P(α)

A(α)+ B2(α)KC2(α)


x(t)+ xT (t)

×

C1(α)+ D12(α)KC2(α)

T 
C1(α)+ D12(α)KC2(α)


× x(t)+ 2xT (t)P(α)B1(α)w(t)− γ 2wT (t)w(t) < 0. (30)

Choose

V (t) = xT (t)P(α)x(t)

as Lyapunov function, then (30) can be rewritten as follows:

V̇ (t)+ zT (t)z(t)− γ 2wT (t)w(t) < 0. (31)

Integrating both sides of this inequality yields
∞

0
V̇ (t)+


∞

0
zT (t)z(t)− γ 2


∞

0
wT (t)w(t)

= V (∞)− V (0)+


∞

0
zT (t)z(t)− γ 2


∞

0
wT (t)w(t)

< 0.

Using the fact that x(0) = 0 and V (∞) ≥ 0, we obtain
∞

0
zT (t)z(t)dt ≤ γ 2


∞

0
wT (t)w(t)dt.

Hence, (5) holds and the H∞ performance is fulfilled.
If the disturbancew(t) ≡ 0, then from (31), we have V̇ (t) < 0.

Hence, based on the Lyapunov theorem, the closed-loop system
(4) is asymptotically stable when w(t) ≡ 0. Thus, the proof is
complete. �

Applying the same technique as Theorem 8, we can obtain Theo-
rem 13 from Theorem 12.

Theorem 13. For a given scalar γ > 0, if there exist symmetric
matrices Qi > 0, 1 ≤ i ≤ N and matrices G, L, a scalar τ > 0
satisfying

He

ĀiQ̄j + B̄2iLT C̄2j


∗ ∗ ∗

C̄2iQ̄j − GT C̄2i + τLT B̄T
2i −τG − τGT

∗ ∗

B̄T
1i 0 −γ 2I ∗

C̄1iQ̄j 0 0 −I



+


He


ĀjQ̄i + B̄2jLT C̄2i


∗ ∗ ∗

C̄2jQ̄i − GT C̄2j + τLT B̄T
2j −τG − τGT

∗ ∗

B̄T
1j 0 −γ 2I ∗

C̄1jQ̄i 0 0 −I


< 0, 1 ≤ i ≤ j ≤ N, (32)

where

Āi =


Ai 0

0 −
1
2
I


, B̄2i =


B2i
D12i


, C̄2i =


C2i 0


B̄1i =


B1i
0


, C̄1i =


C1i 0


, Q̄i =


Qi 0
0 I


(33)

i = 1, . . . ,N, then the system (1) is asymptotically stable via the
SOF controller (3) with H∞ norm less than or equal to γ , where the
controller gain K is the same as in (10).

Proof. From the proof of Theorem 12, the proof is routine and
omitted. �

As follows, it is proved that the condition of Theorem 13 is more
relaxed than that of Lemma 2(ii), where the equality constraints
on Lyapunov matrix and system output matrix are required.
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5)
He

Ā(α)Q̄ (α)+ B̄2(α)TLC̄2(α)


+ Q̄ (α)C̄T

1 (α)C̄1(α)Q̄ (α) ∗ ∗

C̄2(α)Q̄ (α)− GT C̄2(α)+ τLT B̄T
2(α) −τG − τGT

∗

B̄T
1(α) 0 −γ 2I

 < 0. (2

Box I.
Theorem 14. If the condition of Lemma 2(ii) holds, then the condi-
tion of Theorem 13 holds.

Proof. If the condition of Lemma 2(ii) holds, then choose G =

MT−1, further by the same proof in the first part of Theorem 11,
we have that G + GT > 0.

Now, applying Schur complement to (7), then we have
φij B1i + B1j

(B1i + B1j)
T

−2γ 2I


< 0, 1 ≤ i ≤ j ≤ N (34)

with

φij = He(AiW + B2iRC2j + AjW + B2jRC2i)

+
1
2


(C1i + C1j)W + D12iRC2j + D12jRC2i

T

×


(C1i + C1j)W + D12iRC2j + D12jRC2i


.

Because C2(α)
TD12(α) = 0, then CT

2iD12j = 0, which implies that

φij = He(AiW + B2iRC2j + AjW + B2jRC2i)

+
1
2
W (C1i + C1j)

T (C1i + C1j)W

+
1
2
(D12iRC2j + D12jRC2i)

T (D12iRC2j + D12jRC2i).

Then applying the Schur complement to (34), it follows thatHe(AiW + AjW + B2iRC2j + B2jRC2i) ∗ ∗ ∗

D12iRC2j + D12jRC2i −2I ∗ ∗

(B1i + B1j)
T 0 −2γ 2I ∗

C1iW + C1jW 0 0 −2I


< 0, 1 ≤ i ≤ j ≤ N

which can be rewritten as follows:He(ĀiW̄ + B̄2iRC̄2j) B̄1i (C̄1iW̄ )T

B̄T
1i −γ 2I 0

C̄1iW̄ 0 −I


+

He(ĀjW̄ + B̄2jRC̄2i) B̄1j (C̄1jW̄ )T

B̄T
1j −γ 2I 0

C̄1jW̄ 0 −I


< 0, 1 ≤ i ≤ j ≤ N (35)

where Āi, B̄1i, B̄2i, C̄1i, C̄2i are the same as in (33), and W̄ =

diag

W I


.

From (35) and G + GT > 0, we have that there exists a scalar
τ > 0, such thatHe(ĀiW̄ + B̄2iRC̄2j) B̄1i (C̄1iW̄ )T

B̄T
1i −γ 2I 0

C̄1iW̄ 0 −I


+

He(ĀjW̄ + B̄2jRC̄2i) B̄1j (C̄1jW̄ )T

B̄T
1j −γ 2I 0

C̄1jW̄ 0 −I


+

 τ2 (B̄2i + B̄2j)RT−1(G + GT )−1(RT−1)T (B̄2i + B̄2j)
T 0 0

0 0 0
0 0 0


< 0, 1 ≤ i ≤ j ≤ N.
Applying the Schur complement to the above inequality, then
yields
He(ĀiW̄ + B̄2iRC̄2j) τ B̄2iRT−1 B̄1i (C̄1iW̄ )T

τ(RT−1)T B̄T
2i −τG − τGT 0 0

B̄T
1i 0 −γ 2I 0

C̄1iW̄ 0 0 −I



+


He(ĀjW̄ + B̄2jRC̄2i) τ B̄2jRT−1 B̄1j (C̄1jW̄ )T

τ(RT−1)T B̄T
2j −τG − τGT 0 0

B̄T
1j 0 −γ 2I 0

C̄1jW̄ 0 0 −I


< 0, 1 ≤ i ≤ j ≤ N.

Choose Qi = W , 1 ≤ i ≤ N, L = RT−1, then the above inequality
can be rewritten as follows:
He(ĀiQ̄j + B̄2iLT C̄2j) τ B̄2iL B̄1i (C̄1iQ̄j)

T

τLT B̄T
2i −τG − τGT 0 0

B̄T
1i 0 −γ 2I 0

C̄1iQ̄j 0 0 −I



+


He(ĀjQ̄i + B̄2jLT C̄2i) τ B̄2jL B̄1j (C̄1jQ̄i)

T

τLT B̄T
2j −τG − τGT 0 0

B̄T
1j 0 −γ 2I 0

C̄1jQ̄i 0 0 −I


< 0, 1 ≤ i ≤ j ≤ N.

Combining it and (6b), we can obtain that
He(ĀiQ̄j + B̄2iLT C̄2j) ∗ ∗ ∗

C̄2iQ̄j − GT C̄2i + τLT B̄T
2i −τG − τGT

∗ ∗

B̄T
1i 0 −γ 2I ∗

C̄1iQ̄j 0 0 −I



+


He(ĀjQ̄i + B̄2jLT C̄2i) ∗ ∗ ∗

C̄2jQ̄i − GT C̄2j + τLT B̄T
2j −τG − τGT

∗ ∗

B̄T
1j 0 −γ 2I ∗

C̄1jQ̄i 0 0 −I


< 0, 1 ≤ i ≤ j ≤ N

i.e., (32) holds, which implies that the condition of Theorem 13
holds. Thus, the proof is complete. �

4. Example

In this section, several exampleswill be given for illustrating the
effectiveness of the proposed method. The implementations are
done inMatlab 7.9.0 (2009b) running on a PC Desktop Intel(R) Core
i5 and 4 GB RAM. We use the LMI toolbox in Matlab 7.9.0 (2009b).

Example 15. Consider a continuous-time systemwhich belongs to
the 2-polytopic convex polyhedron in the form of (2) withw(t) =

0 and

A1 =


−1 4 0
0 0 1
a 6 −1


, A2 =


−1 1 0
0 −5 1
10 1 −1


,

B21 =

0
0
1
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Table 1
Stabilization interval.

Theorem8 Lemma 2(i) Corollary 1 of
Crusius and
Trofino (1999)

Methods in Arzelier et al.
(2010); Dong and Yang
(2007); Trofino (2009)

a [3.682.2] Infeasible [8.7 11.5] Non-applicable

Table 2
The number of the feasible examples.

MA MB MC MD

Number 75 24 70 87

B22 =

0
0
1


, C21 =


1 1 0
0 1 0


, C22 =


1 1 0
0 0 0


.

Note that the output matrix C(α) = α1C21 + α2C22 is not always
of full row rank. For the case of α1 = 0, α2 = 1, the output
matrix C(α) = C22, which implies that the second sensor for
measuring output variables is failed. The methods in Arzelier et al.
(2010); Dong and Yang (2007); Trofino (2009) are not applicable.
However, Theorem 8, Lemma 2(i) and Corollary 1 of Crusius and
Trofino (1999) can be used for designing SOF controllers. Now
the stabilization intervals of a are computed by Theorem 8 and
Corollary 1 of Crusius and Trofino (1999) and the computational
results are given in Table 1.

It can be seen from Table 1 that the new method can give less
conservative results.

Example 16. 100 stability critical systems (A; B; C)’s of 5th order
systems are generated randomly.

We use the existing method in Cao et al. (1998); Crusius and
Trofino (1999); El Ghaoui et al. (1997) and Theorem 8 to design PI
controllers for these generated systems. By augmenting the system
description to include the integral of the measured output, the PI
control problem becomes one of finding a SOF control (He &Wang,
2006; Yaesh & Shaked, 1997). Theorem 8, Lemma 2(i), the iterative
LMI (ILMI) method in Cao et al. (1998) and the cone complemen-
tarity linearization (CCL) algorithm in El Ghaoui et al. (1997) are
applied to these generated examples to testing proposed method.
For a simple description, Theorem 8, Lemma 2(i), the iterative LMI
(ILMI) method in Cao et al. (1998) and the cone complementarity
linearization (CCL) algorithm (MD) in El Ghaoui et al. (1997) are
respectively represented as MA, MB, MC and MD.

The number of the feasible examples by the different methods
are shown in Table 2. It can be found from Table 2 that Theorem 8
(MA) may stabilize more linear systems in these examples by PI
controllers than Lemma 2(i) (MB) and ILMI method in Cao et al.
(1998) (MC). The CCL algorithm (MD) in El Ghaoui et al. (1997)
can stabilize the most linear systems in these examples. By the
computational results, it can be seen that the CCL algorithm (MD)
are with less conservatism. Note that the CCL algorithm is non-
convex, can only be applied to linear determinate systems, cannot
be extended to the case of H∞ control. However, Theorem 8 is
convex with a line search and can be used for linear uncertain
systems and it is extended to the case of H∞ control.

Example 17. Consider a continuous-time systemwhich belongs to
the 2-polytopic convex polyhedron in the form of (2) with

A1 =


−0.9896 17.41 96.15
0.2648 −0.8512 −11.39

0 0 −30



Table 3
Controller gain and H∞ performance.

Lemma 2(ii) Crusius and
Trofino (1999)

Theorem 4 of Shaked
(2003)

Theorem 13
with τ = 0.05

γ 9.7315 6.8028 2.3267
K [0.5558 5.0823] [0.0536 0.6384] [0.44744.1860]

Fig. 1. The trajectory of z1(t).

A2 =


−1.702 50.72 263.5
0.2201 −1.418 −31.99

0 0 −30


, B11 = B12 =

0
1
1


,

B21 =


−97.78

0
30


, B22 =


−85.09

0
30



C11 = C12 =

1 0 0
0 1 0
0 0 1


, C21 = C22 =


1 0 0
0 1 0


D121 = 0, D122 = 0.

Theorem 4 of Shaked (2003), Lemma 2(ii) (the method in Cru-
sius and Trofino (1999)) and Theorem 13 are applicable for de-
signing H∞ SOF controllers (note that our earlier work in Dong
and Yang (2007) cannot be used for H∞ control synthesis). The ob-
tained optimal H∞ performance indices are shown in Table 3.

From Table 3, it can be seen that the obtained optimal H∞

performance bound by Theorem 13 is smaller than those by
Lemma 2(ii) and Theorem 4 of Shaked (2003).

Now the simulations are performed by using the obtained
controller gains under assuming that the initial condition x(0) = 0,
and the exogenous disturbance input w(t) =


1, 5 ≤ t ≤ 6
0, others . The

response curve of the output z1(t) and the square root of ratio of
the regulated output energy to the disturbance input noise energy
are respectively depicted in Figs. 1 and 2. From the figures, it can
also be seen that the controller designed by Theorem 13 achieves
the best H∞ performance.

Example 18. The data from the COMPleib library (Leibfritz & Lipin-
ski, 2003) is used for testing H∞ control algorithm in Theorem 13.
COMPleib library consists of more than 120 examples collected
from the engineering literature and real-life (engineering) appli-
cations. These examples can be considered as the Benchmark Ex-
amples, see Leibfritz and Lipinski (2003).

The numerical results are computed by Theorem 13, Lemma 2
(ii) (the method in Crusius and Trofino (1999)), Theorem 4 of
Shaked (2003), themethod of Dinh et al. (2012), HIFOO (Gumussoy,
Henrion, Millstone, & Overton, 2009), and PENBMI (Henrion, Loef-
berg, Kocvara, & Stingl, 2005). Thesemethods are respectively rep-
resented as M1, M2, M3, M4, M5 and M6 for a simple description.
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Table 4
H∞ synthesis benchmarks on COMPleib plants.

Problem M2 M3 M4 M5 M6 M1 τ in M1 Time of M1 (s)

EB1 – 6.4095 3.1225 39.9526 2.0276 1.3780 3.1623 × 10−5 30.5294
EB2 – 2.4487 2.0201 39.9547 0.8148 0.8149 1 × 10−5 0.8148
DIS1 11.3735 4.5584 4.1716 – 4.1943 2.7335 0.4786 40.1256
DIS2 1.1865 0.9895 1.0548 1.7423 1.1546 1.1069 1 × 10−5 35.9156
DIS3 1.1545 2.5785 1.0816 – 1.1382 1.3569 1 × 10−5 54.0038
DIS4 0.9315 1.7483 0.7465 – 0.7498 0.9036 1 × 10−5 77.5972
AC2 – 0.1192 0.1115 – 0.1140 0.2076 1 42.2145
AC3 12.9870 11.7428 4.7021 – 3.4859 3.4488 0.3311 29.0162
AC6 14.8442 12.5441 4.1140 – 4.1954 5.8944 0.1445 92.9142
AC7 – 2.3944 0.0651 0.3810 0.0548 0.1687 0.1 35.3317
AC8 – 2.7881 2.0050 – 3.0520 1.9943 0.2630 43.6520
Fig. 2.


∞

0 zT (t)z(t)dt/


∞

0 wT (t)w(t)dt .

Among these methods, Lemma 2(ii) (M2) is convex with a ma-
trix equality constraint; Theorem 4 of Shaked (2003) (M3) is con-
vexwith several line searches; HIFOO (Gumussoy et al., 2009) (M4)
is an open-sourceMatlab package for fixed-order controller design
by using a hybrid algorithm for nonsmooth, non-convex optimiza-
tion; PENBMI (Henrion et al., 2005) (M5) is a commercial software
for solving optimization problems with quadratic objective and
BMI constraints; The method of Dinh et al. (2012) (M6) combines
convex–concave decomposition and linearization approaches for
solving BMIs. The numerical computational results by using the
above-mentioned algorithms (M1–M6) are shown in Table 4.

It can be seen from Table 4 that the optimal values by Theo-
rem 13 (M1) are less than or equal to the ones by Lemma 2(ii)
(M2). In contrast to the non-convex methods (M3–M6), the new
method can give better performances than Theorem 4 of Shaked
(2003) (M3) and PENBMI (M5) in most of the examples, and gives
similar results to HIFOO (M4) and convex–concave decomposition
and linearization approaches (M6). In particular, Theorem 13 gives
the best results for examples EB1 and DIS1.

5. Conclusion

In this paper, the problem of designing static output feedback
controllers for continuous-time linear systems has been studied.
Sufficient conditions for designing static output feedback con-
trollers have been given in terms of solutions to a set of linear ma-
trix inequalities with a line search over a scalar variable, and the
results are also extended to H∞ static output feedback controller
design. In contrast to the existing results, the new proposed ap-
proach is applicable for linear polytopic systems, whose uncertain
output matrices are not required to be full row rank. In particu-
lar, it has been proved that the new proposed conditions are more
relaxed than the existing ones with equality constraints between
outputmatrix and Lyapunovmatrix. The numerical examples have
shown the effectiveness of the new design methods.
Appendix

Theorem 19. If there exist a symmetric matrix Q (α) > 0 and ma-
trices W (α),G, L, a scalar τ > 0, satisfying the following matrix in-
equality,

He (A(α)Q (α)+ B2(α)LW (α)) ∗

C2(α)Q (α)− GW (α)+ τLTBT
2(α) −τG − τGT


< 0 (36)

if and only if the system (1) withw(k) = 0 and

K = LG−1

is robustly stable.

Proof. The sufficiency can be obtained from the proof of Theo-
rem 4. The necessary part is given as follows:

If the system (1) with w(k) = 0 is robustly stable, then from
Lyapunov theory, there exists a symmetric matrix P(α) > 0, such
that

He (P(α)A(α)+ P(α)B2(α)KC2(α)) < 0

which is equivalent to

He (A(α)Q (α)+ B2(α)KC2(α)Q (α)) < 0 (37)

with Q (α) = P−1(α).
Choose a matrix G satisfying G + GT > 0, which implies that G

is invertible. Let L = KG,W (α) = G−1C2(α)Q (α), then (37) can be
rewritten as follows:

He (A(α)Q (α)+ B2(α)LW (α)) < 0

then there exists a positive scalar τ , such that

He (A(α)Q (α)+ B2(α)LW (α))
+ τB2(α)L(G + GT )−1LTBT

2(α) < 0.

Applying the Schur complement lemma to the above inequality,
then it yields that
He (A(α)Q (α)+ B2(α)LW (α)) τB2(α)L

τLTBT
2(α) −τG − τGT


< 0.

Combining it and W (α) = G−1C2(α)Q (α), then we have that (36)
holds. Thus, the necessity is proved. �
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