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Local Search Strategies for the
Vehicle Fleet Mix Problem

Ibrahim H. Osman and Said Salhi

Abstract

The vehicle fleet mix (VFM) problem is the vehicle routing problem with additional
practical extensions. The VFM problem involves a heterogeneous fleet of vehicles
with their associated variable running and fixed purchasing/renting costs. The
objective is to find the optimal fleet composition of vehicles and a set of feasible
routes that minimize the total costs. In this paper, two techniques are proposed: a
constructive heuristic and a tabu search metaheuristic. The constructive heuristic is
an enhanced modification of the Salhi and Rand route perturbation procedure. The
tabu metaheuristic is new and it uses a compound-moves neighbourhood with a special
data structure. Computational results are reported on a set of 20 test problems from
the literature. The proposed methods obtain new results that improve upon the best
published results.

8.1 Introduction

The vehicle fleet mix (VFM) problem is the vehicle routing problem with a
heterogeneous fleet of vehicles. Each vehicle is characterized by the carrying capacity,
maximum travel time, variable running cost and fixed purchasing/renting cost. Each
vehicle route originates and terminates at a central depot in order to service a set of
customers with known demands. The total cost involved in the VFM problem consists
of the fixed vehicle utilization costs as well as the variable routing and scheduling costs.
The later costs include the distance and travel time costs in addition to the service
(loading/unloading) time costs. The constraints of the VFM problem are: (i) each
customer must be supplied by exactly one vehicle route; (ii) the total load carried by
any vehicle must not exceed its maximum capacity; (iii) the total length of any route,
which includes the inter-customer travel times and service times, must not exceed a
pre-specified limit. The objective is to find the optimal mix of heterogeneous vehicles
and the associated set of feasible routes that minimizes the total variable and fixed
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costs.

The VFM problem is practically more important than its counterpart, the vehicle
routing problem (VRP). The VRP, however, has attracted much more research
attention. The lack of VFM research is mainly due to the less obvious way of how
to determine the best mix of vehicles which is a medium-term decision problem. The
decision problem involves an important cost investment factor. If an unwise decision
was made to purchase a fleet of vehicles, it would be difficult to change such a decision.
In general, researchers have considered a homogeneous fleet of vehicles. Yet in real life,
the appropriate fleet is, by no means, homogeneous and a heterogeneous vehicle fleet is
likely to yield better results. Furthermore, the VFM problem still has the difficulty of
the operational routing decision which is encountered in the daily operations of vehicles
in the classical VRP. Hence, the VEM problem is computationally more complex
than the VRP which is known to be NP-hard (Lenstra and Rinnooy Kan[LR&81]).
Consequently, an exhaustive search of the solution space is impossible for VFM
problems of large size and there is no known algorithm that can solve the VFM problem
to optimality in a polynomial time. The complexity of the VFM problem therefore
necessitates the development of effective heuristics that are capable of providing high-
quality approximate solutions within a reasonable amount of computational effort.

Local search methods form a class of heuristics that proceed by examining some
neighbourhoods of the current solution. The simplest type of local search method
is the descent algorithm. It starts with any solution, neighbours are searched until
an improved solution is found. A further search is then initiated from the improved
solution and the algorithm continues until no further improvement is possible. The
solution obtained may deviate significantly from the optimum. Tabu search (TS) is
a metaheuristic which is superimposed on the descent algorithm to guide the search
process to avoid getting trapped in bad local optima. TS allows the search to proceed
to a neighbour even if it causes a deterioration in the objective function value.
TS has been proven to be a very effective and successful metaheuristic for solving
many combinatorial optimization problems. Particularly impressive results have been
obtained for many vehicle routing problems: Eglese and Li[EL96], Gendreau, Hertz and
Laporte[GHL94], Potvin, Kervahut, Garcia and Rousseau[PKGR96], Osman[Osm93],
Rego and Roucairol[RR96], Salhi and Sari[SS95], Taillard[Tai93], Thangiah, Osman
and Sun[TOS94] and Thangiah, Osman, Vinayagamoorthy and Sun[TOVS93]. For
recent bibliographies, we refer to Osman and Laporte[OL96] on metaheuristics, to
Laporte and Osman[L095] on routing problems. For an overview and an introduction
on metaheuristics, we refer to Osman[Osm95b] and Osman and Kelly[OK96b]. For
metaheuristic books, we refer to: Aarts and Lenstra[AL96), Laporte and Osman[LO96],
Osman and Kelly[OK96a], Rayward-Smith[RS95] and Reeves[Ree93]. Motivated by
tabu search successes, in this paper, we present a tabu search algorithm for solving
the mixed fleet vehicle routing problem. We design a special data structure to
evaluate efficiently trial solutions generated by the l-interchange (compound-moves)
neighbourhood mechanism{Osm95a, Osm93, OC94]. Finally, we introduce some
modifications and refinements to enhance the performance of the RPERT procedure
proposed by Salhi and Rand [SR93] for the VFM problem.

The paper is organized as follows. The vehicle fleet mix and its relevant literature
are reviewed in Section 8.2. The modified RPERT construction heuristic is described
in Section 8.3. The important features of the tabu search algorithm with its embedded
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data structures are discussed in Section 8.4. Computational comparisons on a set of
20 test problems with the best published methods in the literature are provided in
Section 8.5. Finally, our conclusion and perspectives on future research are presented
in Section 8.6.

8.2 The Vehicle Fleet Mix (VFM) Problem

8.2.1 Representation of the VFM

Let ‘0’ denote the depot with no service time and zero demand; the remaining notations
are defined as follows:

K = The set of different vehicle types, K = {1,... ,kmaz}-

F,, = The vehicle fixed cost of type k € K.

Qr = The vehicle capacity of type k € K.

T; = The maximum travel time for the vehicle capacity of type k € K.

v = The decision variable indicating the total number of mixed vehicles used in the
final solution of the VFM problem.

V' = The set of desired vehicles of different types, V = {1,... ,v},V C K.

N = The set of customers, N = {1,...,n} where n is the total number of
customers.

q; = The demand of customer for i € N,

d; = The service time of customer for i € N.

d;; = The distance between customers i and j, d;; = d;; Vi,j € N U {0}.
oy = The variable cost per unit of distance for a vehicle of type k.

Br = The time factor per unit of distance for a vehicle of type k.

R, = The set of customers serviced by a vehicle p € V.

o = The function o : V' — K, where o(p) indicates the smallest type of vehicles
that can serve the customers in the set R,.

mp = The travelling salesman route which serves the set R, U {0}, where mp(i)
indicates the position of customer i in the route, mp.

D(mp) = The total distance of the route, =,.
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T(mp) = The total travel time of the route, Tp-
C(mp) = The total variable and fixed cost of the route, m,.
S= The feasible solution which is defined as S = {R;,... ,R,}.
IT = The set of all travelling salesman routes in S, IT = {my,... ,m,}.

Our goal is to solve the following optimization problem:

mJin C(S) = Y C(mp) (8.1)
pEV
such that
| R, = NandR, N R, = 0Vp# ge V (8.2)
peV
> 4 < QopVPEV (8.3)
i€R,
D(mp) = Y. dim,x)VpEV (8.4)
i€ Rpu{0}
T(rp) =Bop) X D(mp) + Y 8 < Ty¥pe V (8.5)
i€ R,
C(mp) = ap(p) X D(mp) + Fyy¥pe V (8.6)

Constraint (8.2) ensures that each customer is supplied in one route. The set of
constraints in (8.3) guarantees that the vehicle capacity is not exceeded. Equations in
(8.4) represent the total sum of distance of each route, 7,. Since the TSP is a hard
problem by itself, we have used approximate procedures to estimate each route, .
Equations (8.5) guarantee that the maximum travel time is not exceeded. Equations
(8.6) represent the total cost per route including variable and fixed cost while Equation
(8.1) is the total sum of costs in the solution to be minimized over all routes.

8.2.2 Literature Review of the VFM

There are few published works on the VFM problems. In the early 1980s, Golden,
Assad, Levy and Gheysens|GALG84] were among the first to address this problem.
They presented a mixed integer formulation, generated lower bounds on the optimal
solution and described various heuristics based on the savings method of Clarke and
Wright{CW64] and the route-first cluster-second algorithm. The later heuristic starts
with a giant route that visits all customers but not the depot. This giant route is
further improved by the Or-OPT exchange procedure before it is then partitioned into
feasible routes. This heuristic is then repeated using a sample of five initial routes,
hence leading to its name (MGT+OrOPT)®. Excellent results were reported using the
(MGT+OrOPT)? heuristic on problems ranging from 12 to 100 customers. Gheysens,
Golden and Assad[GGAB84] developed a cluster-first route-second heuristic. In the
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first stage, a heterogeneous fleet mix was obtained using a lower bound procedure
developed in Golden, Assad, Levy and Gheysens[GALGS84]. In the second stage, they
adopted a generalized assignment based heuristic to solve the VRP problem using the
vehicle fleet mix obtained in the first stage. This heuristic was also run for five different
times using the fleet compositions associated with each of the five best lower bounds
and it was denoted by LB5+VRP. Gheysens, Golden and Assad [GGA84] presented
another mixed integer formulation for the VFM problem with time windows and
performed a computational comparison of heuristics developed in Gheysens, Golden
and Assad[GGA86). Ferland and Michelon[FM88] showed that an exact method for
the VRP with time windows and a homogeneous fleet size can be extended to the
VRP with the heterogeneous fleet size. The proposed exact method was based on a
column generation approach with relaxed time windows but no computational results
were reported.

In the 1990s, Desrochers and Verhoog[DV91] presented a new savings heuristic
called MBSA which was based on successive route fusions. At each iteration, the best
fusion was selected by solving a weighted matching problem. The MBSA heuristic
was implemented considering several weights in the matching problem such as the
total savings in routing costs, savings in fixed costs, or opportunity savings associated
with each feasible combination. Computational results were provided for a number of
benchmark problems in order to compare the algorithm’s performance to that of other
methods. Ronen[Ron92] presented a mixed integer formulation to assign trips to mix
fleet vehicles with the minimal cost. A two-step heuristic was proposed based on the
assignment of trips to vehicles first, then slide-and-switch of trips between vehicles
second. The heuristic provided results within 1% of the linear relaxation bound.

Salhi, Sari, Saidi and Touati[SSST92] presented a mixed integer formulation for
the VFM problem with fixed and variable running costs. They assessed the effect
of neglecting the variable running cost on the solution of different procedures. They
modified the route-first cluster-second and the savings algorithms in order to take
into account both variable running and fixed costs. This mixed integer formulation
is similar to that of Gheysens, Golden and Assad[GGA84] which assumes the same
value of the unit running cost across the different vehicle types. Salhi and Rand[SR93]
presented a review on the VFM and also developed an interactive route perturbation
procedure (RPERT) consisting of a series of refinement modules. New best-known
solutions were reported by the RPERT procedure for some standard test problems.
Finally, the importance of the strategic decisions on the fleet make-up and the vehicle
number of each types was discussed in the context of distribution system design by
Bookbinder and Reece[BR88| and Beaujon and Turnquist[BT91].

8.3 Modified RPERT Procedure (MRPERT)

Salhi and Rand[SR93] proposed a successful interactive procedure denoted by RPERT.
The RPERT procedure constructs a VFM solution using a series of seven phases.
Each phase uses one perturbation module in order to improve upon the solution of its
predecessor. If the new solution is better and feasible in terms of vehicle capacities and
maximum travel times, it is then accepted as the current solution and passed into the

next phase for further improvements. Otherwise the previous solution is retained and
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the search continues until the RPERT procedure is terminated at the end of the last

phase. It was noticed that in some modules, the routing cost was increased but with
a greater decrease in the fixed cost. The aim was to explore the compromise between
having a higher total operating cost and a lower total fixed cost, while achieving a
maximum utilization of the whole fleet.

We shall briefly describe these modules in the same order as they were implemented
in the RPERT procedure. For more details, the reader should refer to Salhi and
Rand[SR93]. RPERT begins with the savings module developed for the vehicle routing
problem in Salhi and Rand[SR87]. The savings module constructs an initial set of
routes using a given vehicle capacity. This savings module uses a ‘shape’ parameter
to modify the savings function used in [Daw86] to compute the savings in distance if
pairs of customers were served in a single route. The shape parameter value was varied
between 0 and 2 to generate a set of different initial routes. A matching module was
then used to determine for each route the smallest type of vehicles that can serve the
customers on it. This module was followed by a reduction module which was attempted,
whenever possible, to eliminate a given route by relocating its customers and inserting
them in other routes or merging the route with another to build a larger single one.
A sharing module was also implemented. It attempted to split a given route into few
smaller routes to achieve a cost reduction, if possible. Finally, the RPERT procedure
improved the cost of routes by a swapping module which exchanged customers between
routes. Let us define a cycle of search to be a single execution of the above sequence
of the RPERT modules. The RPERT procedure was only performed using one cycle
and was terminated at the end of its last module. The best stored solution at the end
of this cycle was called the RPERT final solution.

In RPERT, a rigid restriction was imposed on the allowed type of moves in order
to speed up the procedure. A move is a transition from one solution to another
neighbouring solution. More precise, a move was not allowed to be performed if it
resulted in a utilization of larger-sized vehicles than the currently used ones when
implementing the reallocation and swapping modules, i.e, only feasible moves in terms
of capacity and maximum travel were allowed and infeasible moves were prohibited. To
alleviate these restrictions in this paper, we introduce the following two modifications.
First, to enlarge the neighbourhood size (set of available moves), the feasibility
restriction is relaxed, i.e., a move which leads to a utilization of a larger-sized vehicle
was allowed. Second, we also allow the RPERT procedure to restart for another cycle
starting from the best solution obtained at the end of previous cycle. The search
continues for a number of cycles and it is terminated when a cycle is performed
without finding any improvements. The reason is that RPERT performed only one
cycle before terminating its search. However, if an improvement happened in any (say
sharing) modules it may be possible to improve this solution by using an earlier (say
reallocate or reduction) module. These further improvements would not be detected
unless the RPERT procedure is restarted. The restart process and the allowance of
infeasible moves were not implemented in RPERT. These modifications form the basis
of the new procedure which is denoted by MRPERT.
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8.4 Tabu Search

Tabu search (TS) is a relatively novel technique for solving hard combinatorial
optimization problems. Tabu search ideas were proposed by Glover[Glo86]. It is based
on selected concepts from artificial intelligence. Its goal is to emulate intelligent uses of
memory for exploiting historical information. Tabu search uses memory structures to
record in a tabu list, TABL, attributes of the recently accepted solutions, i.e. the
changes occurred when performing a move from S to the best solution S’ in its
neighbourhood N (S). Moreover, attributes can consist of customers removed, added
or repositioned by the moves executed. Sometime, attributes can be strategically
combined to create other attributes. Selected attributes, that are stored in TABL, are
designated tabu-active. Solutions, that contain tabu-active elements, are designated
tabu. The duration that an attribute remains on the tabu list and hence remains
tabu-active, is called the tabu-list size which is denoted by t.

The approach of using attributes to identify the tabu status of future moves is very
easy to implement and requires less storage than the approach of using the actual
solutions which is very expensive to store and difficult to check and maintain. The
attributes-based approach, however, may wrongly forbid moves leading to unvisited
solutions that may be attractive. It is therefore necessary to override the tabu status
of such moves, if an aspiration level criterion is satisfied, in order to correct this wrong
diagnosis. A move is considered admissible if it is not a tabu move or its tabu status
is overridden by the aspiration criterion.

In general, TS uses an aggressive guiding strategy to direct any local search
procedure to carry out exploration of the solution space to avoid getting trapped
in local optima. When a local optimum is encountered, the aggressive strategy moves
to the best solution S’ in the whole neighbourhood N(S) even if it may cause a
deterioration in the objective function value. For situations, where the neighbourhood
is large or its elements are expensive to evaluate, candidate list strategies are used
to help restrict the number of solutions examined on a given iteration. A candidate
list of solutions N'(S) is generated either randomly or strategically using memory
structures[Osm93] in order to identify the best move exactly, or heuristically. Finally,
the rule for execution is generally expressed by a stopping criterion. Several stopping
criteria can be used to terminate the search: either a pre-specified limit on the number
of iterations or on the number of iterations since the last improvement was found. Since
TS embeds heuristic rules and different strategies to guide the search, it becomes a
metastrategy algorithm or simply a metaheuristic. The basic TS procedure is sketched
in Figure 8.1.
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Tabu Search Procedure (TSVFM).

Step 1: initialization:
- Generate an initial solution, S, for the VFM problem.
- Set the best current solution Sy.; = S.
- Evaluate all the moves in the neighbourhood N(S).
- Set values for: ¢, the tabu list size; TABL, the tabu list; DS,
the special Data Structure for attributes;
MAXBEST, the maximum number of iterations after Sy.s:.
- Set iteration counters: nbiter=0 (current iteration number) and
bestiter= 0 (iteration number of the best solution).

Step 2: Candidate list of solutions:
- Determine strategically using DS, the exact set of the candidate
list of best moves in the neighbourhood, i.e., N'(S) C N(S).
- Update DS after each iteration.

Step 3: Selection Strategy:
- Choose the best admissible solution S’ € N'(S).
- Set S = S’ and nbiter= nbiter +1.
-If C(S'") < C(Shest), then set Spe,: = S’ and bestiter = nbiter.
- Record in TABL the changed attributes.

Step 4: Stopping criterion: :
If { (nbiter - bestiter) > MAXBEST }, then Stop,
Else go to Step 1.

Figure 8.1 A basic TS procedure.

In the following, we shall give a description of the basic components of the above
TS procedure and practical implementation details for solving the vehicle fleet mix
problem. For recent details on tabu search, we refer to by Glover[Glo95a].

Initial solution: The initial solution, S, can be generated using any VFM or VRP
heuristic. In this study, we have used the VRP heuristic of Salhi and Rand[SR87]
to generate the initial set of routes, II. The simple matching module of Salhi and
Rand[SR93] is then used to determine for each route, m,, the type of the vehicle, o(p),
that can serve the set of customers R,. The total cost C(S) of this VFM solution is
computed using equations (8.1) and (8.6). An empty route with no customer assigned
to it is added to the set of routes with zero costs. The reason for this empty route is
to allow infeasible moves to be considered.
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Neighbourhood generation mechanism: The neighbourhood generation mecha-
nism describes how a given VFM solution S = {Rj,... ,Rp,... ,R,} can be altered
to generate another solution S’ in N(S), the neighbourhood of S. Here, we adapt the
A-interchange mechanism which was introduced in Osman[Osm93] and successfully
used for many problems, e.g., Chiang and Russell CR96], Hasan and Osman[HO95],
Osman[Osm95a], Thangiah, Osman and Sun[TOVS93, TOS94]. It has the property
that A-optimal solutions are p-optimal solutions for any integer g < A, Osman and
Christofides|OC94].

Given a pair of route sets R, and R, in S, a l-interchange generation mechanism
invokes two processes to generate neighbouring solutions: a shift process which
is represented by the (0,1), (1,0) operators and an interchange process which is
represented by the (1,1) operator. Note that the reallocation and swapping procedures
in Salhi and Rand[SR93] have some similarities with the shift and the interchange
processes. The (1,0) shift process denotes the reallocation of one customer (say 1)
from the set of customers, R,, to another set of customers, R,. This shift process,
if performed, would result in a new pairs of route sets: R, = R, — {i} and
R, = Ry U {i}. The (0,1) shift process denotes a shift in the opposite direction,
i.e., a shift of j from R, to R, and the new route sets become R, = R, U {j} and
R, = R, — {j}. The (1,1) interchange process combines the two shift processes
simultaneously to generate compound moves to reach solutions that can not be
generated by consecutively applying any of the shift process alone due to capacity/time
restrictions. Each customer i € R, is systematically attempted for interchange with
every other customer j € R, to get two new route sets R;, = (R, — {i}) U {j} and
R, = (R, — (7)) U {i}.

The advantage of the (1,0) and (0,1) shift processes is that an empty vehicle may be
produced or a single customer route may be formed. In both cases, savings in fixed costs
may be obtained. To allow a single route to be formed using the shift operators, at least
one empty set of customers, Ry, at any iteration needs to be available for usage among
the other non-empty route sets. If a decrease in the vehicle number has occurred, we
may have two empty route sets, one of which is redundant and can be deleted. Another
advantage of the empty set is that it allows infeasible moves to be considered when
searching the neighbours. Here, we have a non-monotonic increase/decrease in the
number of vehicles as well as a non-monotonic search of feasible/infeasible regions.
For more details on non-monotonic search strategies, we refer to Glover[Glo95b].

Finally, the neighbourhood, N(S), is defined to be the set of all solutions that
can be generated by considering a total number of v(v + 1)/2 pairs which is equal
to v(v — 1)/2 + v different pairs of route sets. The first term, v(v — 1)/2, determines
the number of pairs of route sets (R,,R;) where 1 < p < ¢ < wv, involving v
non-empty route sets, while the second term, v, is the number of pairs of route sets,
(Rp, Rg)¥Yp € V, considered by the (1,0) process operating on the pair of non-empty
and empty route sets. The customers in a given pairs of route sets are searched
sequentially and systematically for improved solutions by the shift and interchange
processes of the 1-interchange mechanism.

Evaluation of the Cost of a Move: Let 1IM denote a 1-interchange move from
a current solution S to one of its neighbours S’ € N(S) by either the shift or the

interchange processes, i.e., 1IM (S) = S'. Given a pair of route sets R, and R,, the
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cost of the move, 1IM depends on the type of operators involved. There are three type
of operators (1,0), (0,1) and (1,1).

(I) The cost of (1,0)-based move.
The (1,0)-based move involves shifting a customer ¢ from the
route m, of R, and inserting it in the best possible position
on arcs (least cost insertion) of the approximate TSP route 7,
of R,;. The (1,0) move would result in two route sets R,/ =
R, — {i} and R, = R, U {i}. Let a and b be the predecessor
and the successor of i in the old TSP route m, of R,. Let us
assume ¢ and e to be the predecessor and the successor in the
new TSP route 7, of R] where i is to be best inserted. The costs

q q

of the new TSP routes are then computed as follows:
D(my) = D(mp) + dap — (dai + dis) (8.7)
D(my) = D(mg) + dei — (die + dee) (8.8)
C(mp) = ag@e) x D(m) + Fop) (8.9)
C(ﬂ-:}) = a"'(@") X D(ﬂ-:;) + Fa(q’) (810)

Aq,0) = (C(my) — C(mp)) + (Cmg) — C(my)) (8.11)

where p' and ¢' are the vehicles that serve the new route sets
R, and Ry, respectively.

(II) The cost of (0,1)-based move.

The (0,1)-based move involves shifting a customer j € R, to
another route set R,. This move is similar to the one in (I)
except that R, and R, are in reversed order. Hence the cost of
the (0,1) move is simply obtained by applying the (1,0) process
on the route sets Ry, Rp in a similar way. Let (f,g) and (I, m)
be the (predecessor, successor) of j in the routes m, and m;
respectively. Equations (8.7) to (8.11) can then be similarly
rewritten as follows:

D(my,) = D(mp) + dgj — (dyj +dygq) (8.12)
D(n})) = D(ry) + dim — (dij + djm) (8.13)
C(Tr:,) = Qg(pr) X D(?T;,) + Fo@p) (8.14)
C(my) = ag(g) % D(mg) + Foq) (8.15)
A0 = (C(my) — C(mp)) + (C(my) — C(my)) (8.16)

where p’' and ¢' are the vehicles that serve the new route sets
R, and Ry, respectively.

(III) The cost of (1,1)-based move.
The (1,1)-based move involves an exchange of i € R, with j €
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R,. This move can be seen as a combination of two simultaneous
shifts: a shift of ¢ into the route set (R, = R, — {j}) by
the (1,0) operator and another shift of j into the route set
(R, = R, — {i}) by the (0,1) operator. Note that, the change
in the objective function value A ;) due to the (1,1) operator
can be easily evaluated from the stored data used for computing
equations (8.7) to (8.11) and (8.12) to (8.16) bearing in mind
some special cases that need careful examinations. For example,
let us assume that the best insertion of customer ¢ inside the
route 7, is recorded to be between two customers (c and €) in the
old route m, where j was included. If ¢ and e are different from j,
then the new insertion cost of i into 7 is only the comparison
between the old insertion cost of ¢ in m, with that along the
newly created arc joining f to g (predecessor and successor of
j) due to the removal of j. However, if either ¢ or e is identical
to j, then the insertion cost of i into 7, needs to be evaluated
in the same way as indicated in (I). Similar analysis needs to
be conducted to find the insertion cost of j into m,. Then the
computed costs will be used to evaluate the cost of the (1,1)
move, A(l,l]‘

The best 1-interchange move involving either i or j or both is determined from the
values of the 1IM costs obtained by using the (1,0), (0,1) or (1,1) operators. Its value,
8ij, is the most negative or the least positive change in costs and it is computed as:

dij = min{Aq 0y, A¢0,1), A1)} (8.17)

The best l-interchange move, 1IM,,, involving the pair of routes (Rp, R,) is the
1IM move which gives the best change in costs over all §;; obtained by searching
systematically all possible shifts or exchanges of customers between R, and R,. Its
value, Ap,, is computed as:

qu = ie RI?}T'DE R, 5,;j (818)
The change in the objective function values, A = C(S') — C(S9), is then set equal
to A, if the best move, 1IM,,, is performed using the set of routes (R,, R;). The
1IMp, move can be identified by its attributes: the move value, A,,; the customer
indices, 7 and j; the operator type; the route indices and the new/old predecessors
and new/old successors. These attributes can be stored in a special data structure,
DS, to be retrieved fast and save computational effort.

Data structures for the candidate list of moves: Data structures (DS)
for strategically defining the set of best moves were introduced for the VRP in
Osman[Osm93] and resulted in big savings of more than a half of the required
computation time. Osman’s DS stored only the set of best moves between all pairs of
routes. However, it did not make use of any computed information generated in early
evaluations in relation to the best insertion/removal positions and their associated
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costs. These attributes could be shared among many moves. Hence, storing them would
generate further savings in computational effort. In this paper, we extend the previous
data structure to include the above mentioned information. TS selects the best move,
1IMpest, from S to its best neighbours S’ requiring the whole neighbourhood N (S ) to
be re-evaluated after each iteration. The neighbourhood N(S) consists of v(v + 1)/2
pairs of routes which is very expensive to compute for large-sized problems. The set
of best candidate moves N'(S) in N(S), which consists of the best 1IM,, moves for
all 1 < p < ¢ < v, can strategically be determined and updated using two levels
of memory structures. The aim is to identify the changes and intelligently update the
candidate list of 1IMp, moves with the minimal effort without scarifying the quality of
the 1IMjpes; move. At each iteration, we are able to find exactly the best move rather
than an inferior one which can be obtained by random sampling of the neighbourhood.
Hence, the importance of the DS structure can not be over-emphasized to achieve
efficient TS implementations.

There are two levels of memory structures. The first level stores the costs of all
l-interchange moves, 1IM, in the neighbourhood of S. For instance, the cost C (m)
of serving a route, m,, without a customer, i, as evaluated in (8.7), can be stored in
a cell COST_WITHOUT(p, i) of a v x n matrix. This value will remain unchanged
once computed, during all the (1,0) and (0,1) processes of evaluating the cost of
shifting customer ¢ into all other different routes, for at least the current iteration.
The COST_WITHOUT matrix can also help to evaluate quickly the cost of (1,1)
move with a little extra effort as explained earlier. The memory concept is not only
used for the move costs but can be extended to store other useful information on
m,, such as its current load, its type, and its status in terms of capacity and time
restrictions.

The second level of memory structure is mainly used to identify the set of all the
best v(v+1)/2 moves, 1IM,,4, obtained when all v(v+1)/2 pairs of route sets, (R,, R,)
for all p < ¢ € V , are considered by the l-interchange mechanism to generate the
neighbourhood N(S) after each iteration. This set of best 1IM,, moves defines the
list of elite candidate solutions, N'(S), in the neighbourhood. In Step 2 of the TS
procedure, we select the best move, 1IMp.,:, from the set of best moves and apply it
to the current solution S to obtain the next solution S’ € N'(S). At this stage, S’
is exactly the best solution in N'(S) and in N(S). Once, the best move, 1IM;.y:, is
performed S’ becomes the current solution for the next iteration. It can be seen after
performing the best move that the change between S and S’ is only in one pair of
routes, say (Rp, Ry), and the other routes remain intact. Consequently, 2 x (v—1) pairs
of route sets, (Rp, Rm) and (Rm, R,) (for all m € V, m # p, m # q), are necessary to
be re-evaluated in order to update the candidate list of best neighbouring solutions.

Having defined the set of elite moves and solutions, we shall describe our data
structure (DS) to update the candidate list of moves and N’(S) with a small number
of re-evaluations. The data structure DS consists of two matrices. DSTABLE takes the
form of a v x v matrix, whereas DSINF is a {v(v + 1)/2} x A matrix where ‘4’ is the
number of attributes required to identify a move in DS. Each entry of the top triangular
part of DSTABLE is used to store the best change in the objective value associated
with one of the v(v+1)/2 pairs of routes (R,, Ry). For example, DSTABLE(p, q) stores
Ap, associated with the best 1IM,, between the pair (R,, R,), or a large positive
value if no such move exists. The lower triangular part DSTABLE(q,p) is used to
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store a positional index 1 associated with the pair (Rp, R,) in the set of possible pair
combinations {1, ...,v(v+1)/2}. Note that the determination of the index needs special
care as the number of vehicles may increase during the computation. Increasing the
vehicle number option was not considered in Osman’s data structure whereas it is of
a primary importance in the VFM.

In this study, we have used a value of six for ‘A’ indicating that six attributes are to
be saved in DSINF. For instance, the best move, 1IM,,4, between R, and R, is identified
by its Ap, value in DSTABLE, the index 1 associated with the (R;, R,) pair that is used
to identify other attributes in DSINF as follows: DSINF(I,1) = I, DSINF((,2) = p,
DSINF(l,3) = ¢, DSINF(i,4) = i, DSINF(I,5) = j, DSINF(I,6) = A,,. Note that
both DSINF(I,1) and DSINF({,6) could be ignored as they are already recorded in
DSTABLE, but are introduced for convenience. If A, is associated with (1,0) or (0,1)
operators, then we replace the values of ¢ or j by 0 in DSINF so that we can identify
easily the type of the operators applied to this move. The columns in DSINF can be
increased easily to store more information, if necessary.

The management of DS occurs in Step 1 of the TS procedure. At the first iteration,
all the moves in the neighbourhood N(S) are evaluated and the best moves are
stored in the appropriate matrices. When the TS procedure returns to this step, the
DSTABLE matrix is updated considering only the 2 x (v — 1) pairs of routes that
may contain improved moves due to performing the previous move. After this quick
update, DSTABLE is scanned to identify the best move, 1IMjeq, in N'(S) for the
next iteration. 1IMp.4; is identified by comparing the A,, stored values of the 1IM,,
moves. The attributes of the identified move are then retrieved from DSINF. The
corresponding new routes, 7, and 7, are further checked for possible improvements
applying the 2-OPT or 3-OPT post optimization procedures of Lin[Lin65]. After the
post optimization procedure is applied, this best move, 1IMg.:, is performed to update
the current solution. The tabu list is also updated before the search continues for
another iteration. The selection of the best moves based on the above data structure
has an advantage over the random sampling approach as it is performed with the
minimal computational effort. Random sampling is normally used to reduce the
computational effort as the systematic search is expensive to use without a data
structure. Consequently, good moves may be missed and can not be detected unless a
systematic search is used.

Tabu list: TABL takes the form of a (v + 1) x n matrix (v rows: one for each route
set Rp, one for the empty route; n columns: one per customer). In the tabu list, we
store some attributes of the best 1-interchange move, 1IM;.,; which was accepted to
transform S to S’ € N(S). To prevent reversing the accepted move from returning
back to S, its attributes are stored in TABL for ¢ iterations, in the hope that we would
be in a different region. The reverse move can be regenerated by returning immediately
i to R, and j to R,. Let us assume that the current iteration number is nbiter and the
best 1-interchange move involves the pair of customers (i, j) in (Rp, R;). The return
to previous solutions during the next ¢ iterations can be prevented by storing in TABL
the future value (nbiter +t) in both TABL(%, p) and TABL(j, ¢) entries. After nbiter+t
iterations, customers i and j are allowed to return to R, and R,, respectively.
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Tabu condition: One way to prevent cycling is to store exactly all previously accepted
solutions, but this approach can be computationally very expensive for checking and
maintaining solutions. Another approach is to use hashing functions (Hasan and
Osman[HO95]) to represent these solutions. We found in many implementations that
tabu conditions based on move attributes provided good results. Therefore, we did not
try other types of tabu conditions and the reader may refer to Osman[Osm95a] for a
comprehensive computational study on the effect of different types of tabu conditions
on the quality of solution.

In this paper, we implemented one type of tabu condition. A 1-interchange move,
1IM, is considered tabu if ¢ is returned to R, and j is returned to R,. At iteration
nbiter, we can check the status of a move 1IM involving the pairs (, ) and (R,, R,)
using the simple test in equation (8.19) and the information in TABL as follows. A
move is considered tabu if

TABL (p,i) > nbiter and TABL(q,j) > nbiter

TABL is initialized with zeros so that all moves are not considered tabu by the test.

Tabu list size: Tabu list size seems to be related to tabu conditions, selection
strategy of neighbours and problem characteristics, such as the number of customers,
the number of vehicles and the ratio of the total required demands to the available
capacities. Osman[Osm93] established such linkages and used a statistically derived
formula to find an estimate of the tabu list size, t. Then, in a systematic way, the tabu
list sizes were varied every 2 x t iterations over three different values (£10% centred
at the estimate). In this paper, a simpler way is used with a static value of ¢ such as

"1;-“ for p varying between 2 and 7 to watch the best range between these extremes.

The aim is to identify the value of ¢ for other problems. A small value may lead to
cycling with poor results while a large value may lead to deterioration in solution
quality caused by forbidding too many moves.

Aspiration criterion: Tabu conditions are based on stored attributes of moves; it
may be possible to forbid wrongly unvisited solutions which share these attributes.
Aspiration criteria are tests to correct such prevention. We use the following aspiration
criterion. If 1IM is a tabu move but gives a new solution which is better than the best
found so far, then we drop its tabu status. Therefore, a move from S to S’ is considered
admissible, if it is a non-tabu move, or a tabu move which passed an aspiration level
criterion, C(S") < C(Shest)-

Stopping criterion: Our TS procedure is terminated after a pre-specified number of

iterations MAXBEST= 5 x n is performed after the best iteration number, bestiter,
at which the best solution was found without finding any improvement.

8.5 Computational Experience

It is a common practice to compare the performance of a heuristic with that of existing
techniques on a set of benchmarks (test problems) in terms of solution quality and
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computer requirements. Other measures such as simplicity, flexibility, ease of control,
interaction and friendliness are also of interest but are not considered here.

Test problems: A set of 20 test problems are used. These problems were proposed by
Golden, Assad, Levy and Gheysens[HN93]. They vary in size from 12 to 100 customers,
there is no restrictions on maximum travel time (T = oo, for all ¥ € K) nor on the
number of vehicles. There are at least three types of vehicles and can be up to six for
some problem instances, i.e., k varies between 3 and 6. The unit running cost, ay, and
B are set to a constant equal to one (ax = 1,8r = 1, for all k € K) to be able to
compare with published results which do not consider these two factors. However, the
fixed cost, F}, increases with the vehicle capacities.

Quality of solutions: A common measure to decide on the quality of a heuristic
solution is the relative percentage deviation from the optimal solution. However, if
an optimal solution can always be easily obtained, we do not need to use a heuristic.
Due to the difficulty of finding an optimal value, either a good lower bound from a
linear relaxation of a mixed integer formulation or the best known solution can be
used to replace the optimal value in the analysis. For each test problem, the relative
percentage deviation over the best known solution is computed as follows:

{heuristic solution - best known solution } « 100
best known solution

In this study, we also report the actual solution, the average relative percentage
and standard deviations, and the number of times a particular heuristic found the
best solution. In Table 8.1, the actual solutions for our heuristics are given. The
first and second columns give the problem number and the number of customers,
respectively. The results of RPERT are in Salhi and Rand[SR93], our results of the
MRPERT (modified RPERT) and the TSVFM (tabu search) with their respective
CPU computation time in seconds on VAX 4500 are next in the table. The ‘Old
Best’ are the cost of the best known solutions in the literature. These results can be
found in either Golden, Assad, Levy and Gheysens|[GALG84] or Gheysens, Golden
and Assad[GGA84|, Desrochers and Verhoog[DV91], and Salhi and Rand[SR93]. The
final column contains the ‘New Best’ known solutions adjusted to reflect our findings.
The new best solutions are indicated in bold while the references of the old best
solutions are put between brackets [.]. It can be seen from Table 8.1 that we have
found seventeen new or equal best known solutions for the twenty test problems using
either the TSVFM or MRPERT heuristics. In fact, twelve out of sixteen are new best
known solutions and the other five problems are equal to the published ones. Looking at
the performance of each individual heuristic, we notice that the tabu search heuristic,
TSVFM, has obtained fifteen best known values out of which ten are new best results.
The modified heuristic, MRPERT, has obtained six best known solutions out of which
two are new best results. MRPERT provides an improvement over RPERT in thirteen
problems and is equal in the remaining instances.
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Table 8.1 Comparison of the best known solutions

No. Size RPERT MRPERT CPU TSVFM CPU Old Best New
Best

1 12 614 606 03 602 3 602[TL92] 602 [7]
2 12 722 722 0.2 722 2 722[GALGS84] 722 [¥]
3 20 1003 971.95 0.7 971.24 5 965[HO95] 965
4 20 6447 6447.80 0.2 6445.10 6 6446[GALGS84] 6445 [¥]
b 20 1015 1015.13 0.2 1009.15 5 1013[GALG84] 1009 [*]
6 20 6516 6516.56 0.2 6516.56 4 6516[SR93] 6516 [*]
7 30 7402 7377 4.6 7310 15 7298[GALGS84] 7298
8 30 2367 2352 34 2348 17 2349[GALGS84] 2348 [¥]
9 30 2209 2209 0.8 2209 14 2209[SR93] 2209 [*]
10 30 2377 2377 0.6 2363 14 2368[GALGS84] 2363 [*]
11 30 4819 4787 04 4755 19 4763[GALG84] 4755 [*]
12 30 4092 4092 0.3 4092 10 4092[SR93] 4092 [*]
13 50 2493 2462.01 7.8 2471.07 62 2437[GALG84] 2437
14 50 9153 914169 9.3  9125.65 71  9132[GALGS84] 9125 [¥]
15 50 2623 2600.31 2.8 2606.72 46 2621[TL92] 2600 [*]
16 50 2765 2745.04 1.2 2745.01 35 2765[SR93] 2745 [¥]
17 75 1767 1766.81 6.3 1762.05 85 1767[SR93] 1762 [*]
18 75 2439 2439.40 4.5 2412.56 116 2432[GALGS84] 2412 [¥]
19 100 8751 8704.20 8.1 8685.71 289 8700[TL92] 8685 [*]
20 100 4187 4166.03 61.1 4188.73 306 4187[SR93] 4166 [*]

[x]: x indicates the reference in which the best known solution is reported

and, * refers to this paper.
RPERT: Interactive procedure of Salhi and Rand[SR93].

MRPERT: The modified RPERT in this paper.

TSVFM:
CPU:

The Tabu search procedure.
The CPU time in seconds on VAX 4500.
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Table 8.2 The relative percentage deviation above the best known solution.
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No Size (MGT- LB5+ MBSA RPERT MRPERT TSVFM OLBBEST
OrOPT)® VRP

1, 12 3.32 2.65 0.00 1.99 0.66 0.00 0.00
2 12 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3 20 0.10 0.31 0.10 3.93 0.72 0.62 0.00
4 20 7.52 0.09 1.70 0.03 0.03 0.00 0.01
b 20 0.39 2.08 2.27 0.59 0.59 0.00 0.39
6 20 7.02 0.03 0.01 0.00 0.00 0.00 0.00
iF 30 1.24 0.76 1.69 1.42 1.08 0.16 0.00
8 30 0.80 0.59 0.21 0.80 0.17 0.00 0.04
9 30 0.49 239 126  0.00 0.00 0.00 0.00
10 30 0.29 1.05 228 0.59 0.59 0.00 0.21
11 30 0.16 0.69 2.56 1.34 0.67 0.00 0.16
12 30 1.07 0.97 3.39 0.00 0.00 0.00 0.00
13 50 0.04 - 0.28 2.29 1.02 1.39 0.00
14 50 0.06 0.32 0.06 0.29 0.17 0.00 0.06
15 50 1.53 0.80 0.80 0.88 0.00 0.23 0.08
16 50 2.80 - 2.33 0.72 0.14 0.00 0.72
17 75 1.19 - 6.52 0.28 0.28 0.00 0.28
18 75 0.82 - 3.10 T2l 111 0.00 0.82
19 100 0.41 - 0.17 0.75 0.21 0.00 0.17
20 100 0.69 - 1.99 0.50 0.00 0.55 0.50
Average deviation 1.50 091 154 0.88 0.36 0.14 0.21
Standard deviation 2.10 0.83 1.59 0.94 0.39 0.35 0.28
# best solutions 1 1 2 4 T 14 8

(MGT-OrOPT)5:

LB5+VRP:

MBSA:
Bold:

Others:

Golden et al.[GALG84].

Cluster First-route Second algorithm of

Gheysens et al.[GGA84].

Matching based savings algorithms of Desrochers and

Verhoog[DV91].
shows the worst instance performance of each algorithm and

the best average over all problems.
As explained in Table 8.1.

Route first-cluster second algorithm of
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In Table 8.2, we have reported the relative percentage deviation over the new best
known solutions for most of the state-of-the-art algorithms in the literature. We have
included those heuristics which have produced at least one of the best known solutions.
The first row contains the headers of the considered heuristics: (MGT-OrOPT)>3
is the route first-cluster second heuristic based on route partitioning approach by
Golden, Assad, Levy and Gheysens|GALG84]; LB5+VRP is the cluster first-route
second heuristic based on the generalized assignment approach by Gheysens, Golden
and Assad[GGA84]; MBSA is the matching based savings heuristic by Desrochers
and Verhoog[DV91] and those remaining are our own algorithms. It should be noted
that the relative percentage deviations for the MBSA column are the best relative
percentage deviations from several variants (CM, OOM, ROM, ROM-vy, ROM-p) of
the matching based savings heuristic. Desrochers and Verhoog[TL92] did not report the
objective solution values, we had to estimate these results from their best percentage
deviations in order to compute the data in the MBSA column.

It can be seen from Table 8.2 that TSVFM has the best performance as it
produces the largest number of best known solutions and the smallest average relative
percentage deviation of 0.14%. The MRPERT, however, produces the second largest
number of best solutions, has the second average percentage deviation and the least
worst percentage deviation value. These best average and worst relative percentage
deviations for each heuristic are shown in bold in Table 8.2. The statistical analysis
demonstrates the robustness of our heuristics when compared to the best available
algorithms in the literature.

Computational effort. The computer programs are coded in Fortran 77 and run on
a VAX 4500 computer. In the previous section, we have shown that TSVFM is the
best heuristic; however, there is a cost for a such good performance. In Table 8.1, the
CPU time for both TSVFM and MRPERT heuristics are reported and the average
CPU time over all the twenty instances for TSVFM and MRPERT are 56.2 and 5.7
CPU seconds respectively.

Comments: In this section, we discuss observations and issues related to our
experimental results. In Table 8.1, we observe that MRPERT has produced better
solutions than TSVFM in three problems, namely: 13, 15 and 20. We attempted to see
if any link may exist between this failure and the existence of many vehicle types since
problem 13 has six different vehicle types. We are not yet able to justify the link since
TSVFM has produced results better than or equal to MRPERT for other problems
of similar types. Further, both methods have failed to find the best known solutions
for three problems. The failure may be attributed to the combinatorial structure of
these problems. In our view this observation may need a closer look. A further study
is needed to find a concrete answer for this failure.

The second observation is that there is a good range for ¢ values which vary with
the size of problems. Figure 8.2 shows the average relative and standard percentage

deviations of the best solutions for different values for the tabu list sizes, t = [';‘] for

p =2 to 7, from the best known solutions for all the twenty test problems. From the
figure, it can be seen that the performance of tabu search depends on the values of ¢.
A good range for t values seem to lie between [2] and [2]. Outside this range t is



LOCAL SEARCH STRATEGIES FOR THE VEHICLE FLEET MIX PROBLEM 149

either too small or too big. In the former case, cycling would occur and relatively bad
solutions would be generated. In the later case, many moves are prevented leading
to unvisited solutions that may be attractive and longer computation time is needed
to find good solutions. It was found that when using the right interval of the tabu
list size value, the total CPU time required by the TS algorithm was reduced by a
half of that needed for other values of p. To derive a better range for tabu list size,

we could generate a random permutation of ’-g.l values with p = 3, 4 and 5 and

let t takes each value in this permutation. Then ¢ can be kept at each value, say T,
for 2 x T iterations before it can be changed to take the other values. Varying tabu
list size values has been shown to be effective in Taillard[Tai93] and Osman[Osm93].
Other recent approaches based on a reverse elimination method or the reactive tabu
method can be used and merit further investigations. These approaches are reviewed
in Battiti[Bat96] and Vof3[Vos96].

/
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Figure 8.2 Effect of tabu list size on the quality of solution.

The initial starting solution was generated by solving a VRP problem using one
vehicle type at a time by Salhi and Rand VRP’s heuristic. The best VRP solution is
then used to start both MRPERT and TSVFM for further improvements. No other
starting solutions were considered for convenience, simplicity and consistency. It may
be possible to use other VFM heuristics and lower bounds on the fleet composition
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