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Abstract

We consider a stochastic model for distributed average consensus, which arises in applications such as load balancing for parallel processors,
distributed coordination of mobile autonomous agents, and network synchronization. In this model, each node updates its local variable with
a weighted average of its neighbors’ values, and each new value is corrupted by an additive noise with zero mean. The quality of consensus
can be measured by the total mean-square deviation of the individual variables from their average, which converges to a steady-state value.
We consider the problem of finding the (symmetric) edge weights that result in the least mean-square deviation in steady state. We show that
this problem can be cast as a convex optimization problem, so the global solution can be found efficiently. We describe some computational
methods for solving this problem, and compare the weights and the mean-square deviations obtained by this method and several other weight
design methods.
© 2006 Elsevier Inc. All rights reserved.

Keywords: Distributed average consensus; Least-mean-square; Convex optimization; Edge-transitive graphs

1. Introduction

1.1. Asymptotic average consensus

Average consensus is an important problem in algorithm de-
sign for distributed computing. Let G = (N , E) be an undi-
rected connected graph with node set N = {1, . . . , n} and edge
set E , where each edge {i, j} ∈ E is an unordered pair of dis-
tinct nodes. Let xi(0) be a real scalar assigned to node i at
time t = 0. The (distributed) average consensus problem is to
compute the average (1/n)

∑n
i=1 xi(0) at every node, via lo-

cal communication and computation on the graph. Thus, node
i carries out its update, at each step, based on its local state and
communication with its neighbors Ni = {j |{i, j} ∈ E}.

Distributed average consensus has been extensively studied
in computer science, for example in distributed agreement and
synchronization problems (see, e.g., [17]). It is a central topic
for load balancing (with divisible tasks) in parallel computers
(see, e.g., [3,9,35]). More recently, it has also found applications
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in distributed coordination of mobile autonomous agents (e.g.,
[13,20,22,26]), and distributed data fusion in sensor networks
(e.g., [28,29,34]).

There are several simple methods for distributed average
consensus. For example, each node can store a table of all ini-
tial node values known at that time. At each step each pair of
neighbors exchange tables of initial values (or just the entries
the other node doesn’t have), and update their tables. In this
simple flooding algorithm, all nodes know all initial values in
a number of steps equal to the diameter of the graph, at which
point each can compute the average (or any other function of
the initial values). Recently, Moallemi and Van Roy [18] have
developed an iterative algorithm for average consensus based
on consensus propagation.

In this paper, we focus on a particular class of iterative algo-
rithms for average consensus, widely used in the applications
cited above. Each node updates itself by adding a weighted sum
of the local discrepancies, i.e., the differences between neigh-
boring node values and its own

xi(t + 1) = xi(t) +
∑
j∈Ni

Wij (xj (t) − xi(t)),

i = 1, . . . , n, t = 0, 1, . . . . (1)
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Here, Wij is a weight associated with the edge {i, j}. These
weights are algorithm parameters. Since we associate weights
with undirected edges, we have Wij = Wji . (It is also possi-
ble to consider nonsymmetric weights, associated with ordered
pairs of nodes.) The state at each node in the iteration (1) con-
sists of a single real number, which overwrites the initial value.
The algorithm is time-independent, i.e., does not depend on t.
The algorithm is meant to compute the average asymptotically.

Setting Wij = 0 for j /∈ Ni and Wii = 1 −∑
j∈Ni

Wij , the
iterative method can be expressed as the simple linear iteration

x(t + 1) = Wx(t), t = 0, 1, . . . ,

with initial condition x(0) = (x1(0), . . . , xn(0)). By construc-
tion, the weight matrix W satisfies

W = WT , W1 = 1, W ∈ S, (2)

where 1 denotes the vector of all ones, and S denotes the ma-
trices with sparsity patterns compatible with the graph:

S = {W ∈ Rn×n|Wij = 0 if i �= j and {i, j} /∈ E}.
Conversely, any matrix W that satisfies these conditions can be
associated with a choice of weight parameters in the iterative
algorithm.

To achieve (asymptotic) average consensus no matter what
the initial node values are, we must have

lim
t→∞ x(t) = lim

t→∞ Wtx(0) = (1/n)11T x(0)

for all x(0). The (rank one) matrix on the right is the averaging
matrix: (1/n)11T z is the vector all of whose components are
the average of the entries of z. We will use this matrix often,
so we will denote it as

J = (1/n)11T .

The condition that we have asymptotic average consensus is

lim
t→∞ Wt = (1/n)11T = J.

Assuming that W satisfies the properties (2), this condition is
equivalent to

‖W − J‖ < 1, (3)

where the norm is the spectral or maximum singular value norm.
The norm ‖W − J‖ gives a measure of the worst-case, asymp-
totic rate of convergence to consensus. Indeed, the Euclidean
deviation of the node values from their average is guaranteed
to be reduced by the factor ‖W − J‖ at each step

‖x(t + 1) − Jx(0)‖�‖W − J‖‖x(t) − Jx(0)‖,
(The vector norm here is the Euclidean norm, ‖u‖ = (uT u)1/2.)

Weights that satisfy the basic constraints (2), as well as the
convergence condition (3), always exist. For example, we can
take

Wij =

⎧⎪⎨
⎪⎩

1/(d + 1) i �= j, {i, j} ∈ E,

1 − di/(d + 1) i = j,

0 i �= j, {i, j} �∈ E,

where di is the degree of node i, and d = maxi di is the
degree of the graph. These are called the max-degree weights.
If the graph is not bipartite, we can replace d + 1 in the
expressions above with d. Another simple set of weights that
always yield asymptotic average consensus are the Metropolis–
Hastings weights,

Wij =

⎧⎪⎨
⎪⎩

1/(max{di, dj }+1) i �= j, {i, j} ∈ E,

1−∑j∈Ni
1/(max{di, dj }+1) i=j,

0 i �= j, {i, j} �∈ E .

(4)

(See, e.g., [28,33].)
Many variations of the model (1) have also been studied.

These include problems where the weights are not symmet-
ric, problems where final agreement is achieved, but not nec-
essarily to the average (e.g., [13,20,26]), and problems where
the final node values have a specified non-uniform distribution
(e.g., [11,27,33]). Convergence conditions have also been es-
tablished for distributed consensus on dynamically changing
graphs (e.g., [13,20,26,34]) and with asynchronous communi-
cation and computation ([2]; see also the early work in [31,32]).
Other work gives bounds on the convergence factor ‖W − J‖
for a particular choice of weights, in terms of various geomet-
ric quantities such as conductance (e.g., [30]). When Wij are
nonnegative, the model (1) corresponds to a symmetric Markov
chain on the graph, and ‖W − J‖ is the second largest eigen-
value magnitude (SLEM) of the Markov chain, which is a mea-
sure of mixing time (see, e.g., [6,8,10]).

In [33], we formulated the fastest distributed linear averag-
ing (FDLA) problem: choose the weights to obtain fastest con-
vergence, i.e., to minimize the asymptotic convergence factor
‖W − J‖. We showed that (for symmetric weights) this FDLA
problem is convex, and hence can be solved globally and effi-
ciently. In this paper we study a similar optimal weight design
problem, based on a stochastic extension of the simple averag-
ing model (1).

1.2. Average consensus with additive noise

We now consider an extension of the averaging iteration (1),
with a noise added at each node, at each step

xi(t + 1) = xi(t) +
∑
j∈Ni

Wij (xj (t) − xi(t)) + vi(t),

i = 1, . . . , n, t = 0, 1, . . . . (5)

Here, vi(t), i = 1, . . . , n, t = 0, 1, . . . are independent ran-
dom variables, identically distributed, with zero mean and unit
variance. We can write this in vector form as

x(t + 1) = Wx(t) + v(t),

where v(t) = (v1(t), . . . , vn(t)). In the sequel, we will assume
that W satisfies the conditions required for asymptotic average
consensus without the noises, i.e., that the basic constraints (2)
and the convergence condition (3) hold.
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With the additive noise terms, the sequence of node values
x(t) becomes a stochastic process. The expected value of x(t)

satisfies Ex(t + 1) = WEx(t), so it propagates exactly like the
node values without the noise term. In particular, each com-
ponent of the expected value converges to the average of the
initial node values.

But the node values do not converge to the average of the
initial node values in any useful sense. To see this, let a(t) =
(1/n)1T x(t) denote the average of the node values. Thus, a(0)

is the average of xi(0), and we have

a(t + 1) = a(t) + (1/n)1T v(t),

using 1T W = 1T . The second term (1/n)1T v(t) is a sequence
of independent, zero mean, unit variance random variables.
Therefore, the average a(t) undergoes a random walk, starting
from the initial average value a(0) = (1/n)1T x(0). In particu-
lar, we have

Ea(t) = a(0), E(a(t) − Ea(t))2 = t.

This shows that the additive noises induce a (zero mean) error
in the average of node values, which has variance that increases
linearly with time, independent of the particular weight matrix
used. In particular, we do not have average consensus (except
in the mean), for any choice of W.

There is, however, a more useful measure of consensus for
the sequence x(t). We define z(t) to be the vector of deviations
of the components of x(t) from their average. This can be
expressed in component form as zi(t) = xi(t) − a(t), or as

z(t) = x(t) − Jx(t) = (I − J )x(t).

We define the (total) mean-square deviation as

�(t) = E
n∑

i=1

(xi(t) − a(t))2 = E‖(I − J )x(t)‖2.

This is a measure of relative deviation of the node values from
their average, and can also be expressed as

�(t) = 1

n
E
∑
i<j

(xi(t) − xj (t))
2,

i.e., it is proportional to the average pairwise expected deviation
among the node values (the exact average need a factor 2/(n(n−
1)) instead of 1/n). This shows that the mean-square deviation
�(t) can be interpreted as a measure of how far the components
of x(t) are from consensus.

We will show that (assuming W satisfies (2) and (3)), the
mean-square deviation �(t) converges to a finite (steady-state)
value as t → ∞, which we denote �ss:

�ss = lim
t→∞ �(t).

This steady-state mean-square deviation is a function of the
weights W, so we will denote it as �ss(W). The steady-state
mean-square deviation �ss(W) is a measure of how well the
weight matrix W is able to enforce consensus, despite the ad-
ditive errors introduced at each node at each step.

1.3. Least-mean-square consensus problem

In this paper we study the following problem: given the
graph, find edge weights that yield the smallest steady-state
mean-square deviation. This can be posed as the following
optimization problem:

minimize �ss(W)

subject to W = WT , W1 = 1,

‖W − J‖ < 1, W ∈ S,

(6)

with variable W ∈ Rn×n. We call the problem (6) the least-
mean-square consensus (LMSC) problem.

For future use, we describe an alternative formulation of
the LMSC problem that is parametrized by the edge weights,
instead of the weight matrix W. We enumerate the edges {i, j} ∈
E by integers k = 1, . . . , m, where m = |E |. We write k ∼ {i, j}
if the edge {i, j} is labeled k. We assign an arbitrary direction
or orientation for each edge. Now suppose k ∼ {i, j}, with the
edge direction being from i to j. We associate with this edge the
vector aij in Rn with ith element +1, jth element −1, and all
other elements zero. We can then write the weight matrix as

W = I −
∑

{i,j}∈E
Wijaij a

T
ij = I −

m∑
k=1

wkaka
T
k , (7)

where wk denotes the weight on the kth edge. (Note that terms
aka

T
k are independent of the orientation assigned to the edges.

Indeed, these matrices have only 4 nonzero elements, with 1
at two locations on the diagonal, i, i and j, j , and −1 at two
locations off the diagonal, i, j and j, i.)

It can be verified that the parametrization (7) of W automati-
cally satisfies the basic constraints (2), and that conversely, any
W that satisfies the basic constraints (2) can be expressed in the
form (7). Thus, we can express the LMSC problem (6) as

minimize �ss

(
I −

m∑
k=1

wkaka
T
k

)

subject to

∥∥∥∥I − J −
m∑

k=1
wkaka

T
k

∥∥∥∥ < 1,

(8)

with variable w ∈ Rm. In this formulation the only constraint
is the convergence condition ‖W − J‖ < 1.

1.4. Applications

The model of average consensus with additive noises (5) and
the LMSC problem (6) arise naturally in many practical ap-
plications. Here, we briefly discuss its role in load balancing,
coordination of autonomous agents, and network synchroniza-
tion.

In the literature of load balancing, most work has focused
on the static model (1), which is called a diffusion scheme
because it can be viewed as a discretized diffusion equation
(Poisson equation) on the graph [3]. Nevertheless, the stochastic
version (5) is often more relevant in practice, in particular,
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for dynamic load balancing problems where a random amount
of (divisible) tasks are generated during the load balancing
process. In fact, one of the first models for a diffusion scheme
proposed in [9] is of this kind

qi(t + 1) = qi(t) +
∑
j∈Ni

Wij (qj (t) − qi(t)) − c + ui(t).

Here, qi(t) is the amount of (divisible) tasks waiting to be
processed at node i at time t (the queue length), c is the con-
stant number of tasks that every processor can complete in unit
time, and ui(t) is a nonnegative random variable that accounts
for new tasks generated at time t for processor i. The quantity
Wij (qj (t)− qi(t)) is the amount of tasks transferred from pro-
cessor j to i (a negative number means transferring in the oppo-
site direction). As discussed in [9], the most interesting case is
when Eui(t) = c, and this is precisely the model (5) with the
substitutions vi(t) = ui(t) − c and xi(t) = qi(t) − qi(0). (In-
stead of adding the constraint qi(t)�0, we assume the initial
queue lengths qi(0) are large so that qi(t) remain nonnegative
with very high probability.)

In dynamic load balancing problems, it is desirable to keep
the mean-square deviation as small as possible, i.e., to distribute
the loads most evenly in a stochastic sense. This is precisely
the LMSC problem (6), which (to our knowledge) has not been
addressed before.

For distributed coordination of mobile autonomous agents,
the variable xi(t) can represent the position or velocity of each
individual agent (e.g., in the context of [13,22]). The additive
noises vi(t) in (5) can model random variations, e.g., caused
by disturbances on the dynamics of each local agent. Here, the
LMSC problem (6) is to obtain the best coordination in steady-
state by optimizing the edge weights.

Another possible application of the LMSC problem is drift-
free clock synchronization in distributed systems (e.g., [25]).
Here, xi(t) represents the reading of a local relative clock (with
the constant rate deducted), corrupted by random noise vi(t).
Each node of the network adjusts its local clock via the diffu-
sion scheme (5). The LMSC problem (6) amounts to finding
the optimal edge weights that give the smallest (mean-square)
synchronization error.

1.5. Outline

In Section 2, we derive several explicit expressions for the
steady-state mean-square deviation �ss(W), and show that the
LMSC problem is a convex optimization problem. In Section
3 we discuss computational methods for solving the LMSC
problem, and explain how to exploit problem structure such
as sparsity in computing the gradient and Hessian of �ss. In
Section 4, we consider a special case of the LMSC problem
where all edge weights are taken to be equal, and illustrate its
application to edge-transitive graphs. In Section 5, we present
some numerical examples of the LMSC problem, and compare
the resulting mean-square deviation with those given by other
weight design methods, including the FDLA weights in [33].

2. Steady-state mean-square deviation

In this section we give a detailed analysis of the steady-
state mean-square deviation �ss, including several useful and
interesting formulas for it. We start with

x(t + 1) = Wx(t) + v(t),

where W satisfies the basic constraints (2) and the convergence
condition (3), and vi(t) are independent, identically distributed
random variables with zero mean and unit variance. The de-
viation vector z(t), defined as z(t) = (I − J ) x(t), satisfies
1T z(t) = 0, and the recursion

z(t + 1) = (W − J )z(t) + (I − J )v(t). (9)

Therefore, we have

Ez(t) = (W − J )tEz(0) = (W − J )t (I − J )x(0),

which converges to zero as t → ∞, since ‖W − J‖ < 1.
Let �(t) = Ez(t)z(t)T be the second moment matrix of

the deviation vector. The total mean-square deviation can be
expressed in terms of �(t) as

�(t) = E‖z(t)‖2 = Tr �(t).

By forming the outer products of both sides of Eq. (9), we have

z(t + 1)z(t + 1)T = (W − J )z(t)z(t)T (W − J )

+(I − J )v(t)v(t)T (I − J )

+(W − J )z(t)v(t)T (I − J )

+(I − J )v(t)z(t)T (W − J ).

Taking the expectation on both sides, and noticing that v(t) has
zero mean and is independent of z(t), we obtain a difference
equation for the deviation second moment matrix,

�(t + 1) = (W − J )�(t)(W − J ) + (I − J )I (I − J )

= (W − J )�(t)(W − J ) + I − J. (10)

(The second equality holds since (I −J ) is a projection matrix.)
The initial condition is

�(0) = Ez(0)z(0)T = (I − J )x(0)x(0)T (I − J ).

Since ‖W − J‖ < 1, the difference equation (10) is a sta-
ble linear recursion. It follows that the recursion converges to
a steady-state value �ss = limt→∞ �(t), that is independent
of �(0) (and therefore x(0)), which satisfies the discrete-time
Lyapunov equation

�ss = (W − J )�ss(W − J ) + (I − J ). (11)

We can express �ss as

�ss =
∞∑
t=0

(W − J )t (I − J )(W − J )t

= (I − J ) +
∞∑
t=1

(
W 2 − J

)t
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=
∞∑
t=0

(
W 2 − J

)t − J

=
(
I + J − W 2

)−1 − J.

In several steps here we use the conditions (2) and (3), which
ensure the existence of the inverse in the last line. We also note,
for future use, that I + J −W 2 is positive definite, since it can
be expressed as I + J − W 2 = (�ss + J )−1.

2.1. Expressions for steady-state mean-square deviation

Now we can write the steady-state mean-square deviation as
an explicit function of W:

�ss(W) = Tr �ss = Tr
(
I + J − W 2

)−1 − 1, (12)

which we remind the reader holds assuming W satisfies the
average consensus conditions W = WT , W1 = 1, and ‖W −
J‖ < 1. This expression shows that �ss is an analytic function
of W, since the inverse of a matrix is a rational function of the
matrix (by Cramer’s formula). In particular, it has continuous
derivatives of all orders.

We give another useful variation of the formula (12). We start
with the identity

I + J − W 2 = (I − J + W)(I + J − W),

which can be verified by multiplying out, and noting that J 2 =
J and JW = WJ = J . Then we use the identity

((I − B)(I + B))−1 = (1/2)(I + B)−1 + (1/2)(I − B)−1,

with B = W − J to obtain

(I + J − W 2)−1

= (1/2)(I + W − J )−1 + (1/2)(I − W + J )−1.

Therefore, we can express �ss(W) as

�ss(W) = (1/2)Tr(I + J − W)−1

+(1/2)Tr(I − J + W)−1 − 1. (13)

The condition ‖W −J‖ < 1 is equivalent to −I ≺ W −J ≺ I ,
where ≺ denotes (strict) matrix inequality. These inequalities
can be expressed as

I + J − W 
 0, I − J + W 
 0.

This shows that the two matrices inverted in expression (13)
are positive definite. We can therefore conclude that �ss is a
convex function of W, since the trace of the inverse of a positive
definite symmetric matrix is a convex function of the matrix
[7, Exercise 3.57]. This, in turn, shows that the LMSC problem
(6), and its formulation in terms of the edge weights (8), are
convex optimization problems.

Finally, we give an expression for �ss in terms of the eigen-
values of W. From (13), and using the fact that the trace of a

matrix is the sum of its eigenvalues, we have

�ss(W) = (1/2)

n∑
i=1

1

�i (I + J − W)

+(1/2)

n∑
i=1

1

�i (I − J + W)
− 1,

where �i (·) denotes the ith largest eigenvalue of a symmet-
ric matrix. Since W1 = 1 (which corresponds to the eigen-
value �1(W) = 1), the eigenvalues of I − J + W are one,
together with 1 + �2(W), . . . , 1 + �n(W). A similar analysis
shows that the eigenvalues of I +J −W are one, together with
1 − �2(W), . . . , 1 − �n(W). Therefore, we can write

�ss(W) = (1/2)

n∑
i=2

1

1 − �i (W)
+ (1/2)

n∑
i=2

1

1 + �i (W)

=
n∑

i=2

1

1 − �i (W)2 . (14)

This simple formula has a nice interpretation. To achieve
asymptotic average consensus, the weight matrix W is required
to have �1(W) = 1, with the other eigenvalues strictly be-
tween −1 and 1 (since ‖W − J‖ < 1). It is the eigenvalues
�2(W), . . . , �n(W) that determine the dynamics of the average
consensus process. The asymptotic convergence factor is given
by

‖W − J‖ = max{�2(W), −�n(W)}
and so is determined entirely by the largest (in magnitude)
eigenvalues (excluding �1(W) = 1). The formula (14) shows
that the steady-state mean-square deviation is also a function of
the eigenvalues (excluding �1(W) = 1), but one that depends
on all of them, not just the largest and smallest. The function
1/(1 − �2) can be considered a barrier function for the inter-
val (−1, 1) (i.e., a smooth convex function that grows without
bound as the boundary is approached). The steady-state mean-
square deviation �ss is thus a barrier function for the constraint
that �2(W), . . . , �n(W) must lie in the interval (−1, 1). In other
words, �ss grows without bound as W approaches the boundary
of the convergence constraint ‖W − J‖ < 1.

2.2. Some bounds on steady-state mean-square deviation

Our expression for �ss can be related to a bound obtained in
[9]. If the covariance matrix of the additive noise v(t) is given
by �2I , then it is easy to show that

�ss(W) =
n∑

i=2

�2

1 − �i (W)2 .

The upper bound on �ss in [9] is

�ss(W)� (n − 1)�2

1 − ‖W − J‖2
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which is a direct consequence of the fact |�i (W)|�‖W − J‖
for i = 2, . . . , n.

We can give a similar bound, based on both the spectral norm
‖W − J‖ (which is max{�2(W), −�n(W)}), and the Frobenius
norm ‖W − J‖F ,

‖W − J‖2
F =

n∑
i,j=1

(W − J )2
ij =

n∑
i=2

�i (W)2.

For |u|�a < 1, we have

1 + u2 � 1

1 − u2 �1 + 1

1 − a2 u2.

Using these inequalities with a = ‖W − J‖ and u = �i , for
i = 2, . . . , n, we obtain

n − 1 +
n∑

i=2

�i (W)2 ��ss(W) =
n∑

i=2

1

1 − �i (W)2

and

�ss(W)�n − 1 + 1

1 − ‖W − J‖2

n∑
i=2

�i (W)2.

Thus we have

n − 1 + ‖W − J‖2
F ��ss(W)�n − 1 + ‖W − J‖2

F

1 − ‖W − J‖2 .

2.3. Computing the steady-state mean-square deviation

In this section we describe methods that can be used to com-
pute �ss for a fixed W (the weight matrix) or w (the vector of
edge weights). One straightforward method is to compute all
the eigenvalues of W, which allows us to check the convergence
condition ‖W −J‖ < 1, as well as evaluate �ss(W) using (14).
If we exploit no structure in W (other than, of course, symme-
try), the computational cost of this approach is O(n3).

We can also use the formula (12). We first form the matrix
I + J − W 2, and then carry out Cholesky factorization of it
(which serves to verify ‖W − J‖ < 1):

UT U = I + J − W 2,

where U is upper triangular. We then form the inverse U−1,
and evaluate �ss(W) as

�ss(W) = Tr(I + J − W 2)−1 − 1

= Tr U−1U−T − 1

= ‖U−1‖2
F − 1

=
∑
i,j

(U−1)2
ij − 1.

Ignoring all structure in W (other than symmetry) this method
is also O(n3).

The last method we describe is based on the formula (13),
and has the advantage that it can be modified to exploit sparsity

of the graph. We first describe the basic method, which does not
exploit sparsity of W. We first carry out Cholesky factorizations,

F = I − J + W = UT U, G = I + J − W = ŨT Ũ , (15)

which also serves to verify that F and G are positive definite,
which is equivalent to ‖W − J‖ < 1. We then compute the
inverses of these Cholesky factors, and compute their Frobenius
norms:

Tr F−1 = Tr U−1U−T = ‖U−1‖2
F =

∑
i,j

(U−1)2
ij ,

Tr G−1 = Tr Ũ−1Ũ−T = ‖Ũ−1‖2
F =

∑
i,j

(Ũ−1)2
ij .

Finally, we have �ss(W) = (1/2) Tr F−1 + (1/2) Tr G−1 −
1. If we exploit no structure in W, the computational cost of
this approach is O(n3), the same as the two methods already
described.

This last method, however, can be adapted to exploit spar-
sity of W, and therefore can handle larger graphs. Assuming
that the graph (and therefore W) is sparse, both F and G have
the form of a rank one matrix plus a sparse matrix. Using
the Sherman–Morrison–Woodbury formula, we can compute
Tr F−1 and Tr G−1 efficiently. We start with

F−1 = (I+W−(1/n)11T )−1

= (I+W)−1− 1

n(1−(1/n)1T (I+W)−11)

×(I+W)−111T (I+W)−1. (16)

Taking the trace we obtain

Tr F−1 = Tr(I+W)−1− 1

n−1T (I+W)−11
‖(I+W)−11‖2

=
∑
i,j

(U−1)2
ij − 1

n − ‖U−T 1‖2 ‖U−1U−T 1‖2,

where U is the Cholesky factor, after re-ordering, of I + W

(which is sparse and positive definite):

PUT UP T = I + W.

(Here P is the permutation matrix chosen to reduce the num-
ber of nonzeros elements of U.) Let N denote the number of
nonzero elements in U. The effort of forming the inverse U−1

will be dominated by the n back-substitutions, i.e., computing
U−1e1, . . . , U

−1en, which has cost O(nN). (That is, we can
ignore the cost of the Cholesky factorization, as well as com-
puting the quantity on the right-hand side of the last equation
above.) Thus the cost of computing Tr F−1 is O(nN). The
matrix U−1 is never needed all at once; we can compute its
columns one by one, and accumulate the sum of the squares of
the entries of the columns to obtain the Frobenius norm. Thus,
the storage requirement of this method is O(N), not O(nN).
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A similar method can be used to compute Tr G−1, although
there is a subtlety involved, since I−W is singular (its nullspace
is the line generated by 1). To use the Sherman–Morrison–
Woodbury formula, we need to express G as the sum of a
nonsingular sparse matrix and a low rank matrix. One way to
do this is

G = I − W + e1e
T
1 + (1/n)11T − e1e

T
1

= I − W + e1e
T
1 + V DV T ,

where e1 is the vector with its first entry being one and all other
entries being zero, and

V = [ 1 e1 ] ∈ Rn×2, D =
[

1/n 0
0 −1

]
.

The matrix I − W + e1e
T
1 is sparse and positive definite, since

I − W is positive semidefinite, and the second term e1e
T
1 is

nonzero on the nullspace of I − W (i.e., the line generated by
1). Now we use the Sherman–Morrison–Woodbury formula to
obtain

G−1 = (I − W + e1e
T
1 )−1 − (I − W + e1e

T
1 )−1

×V CV T (I − W + e1e
T
1 )−1, (17)

where

C = (I + V T (I − W + e1e
T
1 )−1V )−1 ∈ R2×2.

Now we can find Tr G−1 efficiently as follows. Let U be the
Cholesky factor, after re-ordering, of I − W + e1e1:

PUT UP T = I − W + e1e
T
1 .

Then we have

Tr G−1 = Tr
(
I − W + e1e

T
1

)−1 − Tr
(
I − W + e1e

T
1

)−1

×V CV T
(
I − W + e1e

T
1

)−1

=
∑
i,j

(
U−1

)2

ij
− Tr

(
C
(
V T PU−1U−T P T

)

×
(
PU−1U−T P T V

))
.

The second term in the last expression, which is the trace of a
2×2 matrix, looks complicated but is easily computed. Indeed,
the n×2 matrix U−1U−T P T V is nothing more than (I −W +
e1e1)

−1[1e1], which can be found (as the formula suggests) by
a back and a forward substitution. Evaluating the first term, the
sum of the squares of the elements of U−1, can be done by
back substitutions of e1, . . . , en. Thus the computational cost of
computing Tr G−1 is O(nN), the same as computing Tr F−1.

All together, the total flop count of this method is O(nN).
When N is on the order of n, this gives an O(n2) algorithm,
one order faster than the methods described above (that do not
exploit sparsity), which are O(n3). The storage requirement in
O(N).

2.4. Derivation via spectral functions

In this section we show how convexity of �ss(W), with the
expression (14), can be derived using the theory of convex spec-
tral functions [4, Section 5.2]. For y ∈ Rn, we write [y] as
the vector with its components rearranged into nonincreasing
order; i.e., [y]i is the ith largest component of y. A function
g : Rn → R is called symmetric if g(y) = g([y]) for all vec-
tors y ∈ Rn. In other words, a symmetric function is invariant
under permutation of its arguments. Let g be a symmetric func-
tion and �(·) denote the vector of eigenvalues of a symmetric
matrix, arranged in nonincreasing order. The composite func-
tion g ◦ � is called a spectral function. It is easily shown that a
spectral function is orthogonally invariant; i.e.,

(g ◦ �)(QWQT ) = (g ◦ �)(W)

for any orthogonal Q and any symmetric matrix W in Rn×n.
A spectral function g◦� is closed and convex if and only if the

corresponding symmetric function g is closed and convex (see,
e.g., [14] and [4, Section 5.2]). Examples of convex spectral
functions include the trace, largest eigenvalue, and the sum of
the k largest eigenvalues, for any symmetric matrix; and the
trace of the inverse, and log determinant of the inverse, for
any positive definite matrix. More examples and details can be
found in, e.g., [14,23].

From the expression (14), we see that the function �ss(W) is
a spectral function, associated with the symmetric function

g(y) =
⎧⎨
⎩

n∑
i=2

1

1 − [y]2
i

if [y]ni=2 ∈ (−1, 1)n−1,

+∞ otherwise.

Since g is closed and convex, we conclude that the spectral
function �ss is also closed and convex. Furthermore, �ss is twice
continuously differentiable because the above symmetric func-
tion g is twice continuously differentiable at [y]. We can derive
the gradient and Hessian of �ss following the general formulas
for spectral functions, as given in [4, Section 5.2, 15]. In this
paper, however, we derive simple expressions for the gradient
and Hessian by directly applying the chain rule; see Section 3.

3. Solving the LMSC problem

In this section we describe computational methods for solv-
ing the LMSC problem (6). We will focus on the formulation
(8), with edge weights as variables. We have already noted that
the steady-state mean-square deviation �ss is a barrier function
for the convergence condition ‖W − J‖ < 1, which can there-
fore be neglected in the optimization problem (8), provided we
interpret �ss as ∞ when the convergence condition does not
hold. In other words, we must solve the unconstrained problem

minimize f (w) = �ss

(
I −

m∑
k=1

wkaka
T
k

)
, (18)
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with variable w ∈ Rm, where we interpret f (w) as ∞ whenever
‖I −∑m

k=1 wkaka
T
k − J‖�1.

This is a smooth unconstrained convex optimization prob-
lem, and so can be solved by many standard methods, such as
gradient descent method, quasi-Newton method, conjugate gra-
dient method, or Newton’s method. These methods have well
known advantages and disadvantages in speed of convergence,
computational cost per iteration, and storage requirements; see,
e.g., [16,1,7,21]. These algorithms must be initialized with a
point, such as the Metropolis–Hastings weight (4), that satis-
fies f (w) < ∞. At each step of these algorithms, we need to
compute the gradient ∇f (w), and for Newton’s method, the
Hessian ∇2f (w) as well. In the next few sections we derive
expressions for the gradient and Hessian, and describe methods
that can be used to compute them.

3.1. Gradient

We start with the formula (13), with W = I −∑m
k=1 wkaka

T
k ,

f (w) = (1/2) Tr F(w)−1 + (1/2) Tr G(w)−1 − 1,

where

F(w) = 2I −
m∑

k=1

wkaka
T
k − J, G(w) =

m∑
k=1

wkaka
T
k + J.

Suppose that weight wk corresponds to edge {i, j}, i.e., k ∼
{i, j}. Then we have

�f

�wk

= −(1/2) Tr

(
F−1 �F

�wk

F−1

)
−(1/2) Tr

(
G−1 �G

�wk

G−1

)

= (1/2) Tr
(
F−1aka

T
k F−1

)
−(1/2) Tr

(
G−1aka

T
k G−1

)
= (1/2)‖F−1ak‖2−(1/2)‖G−1ak‖2

= (1/2)

∥∥∥∥(F−1
)
:,i −

(
F−1

)
:,j

∥∥∥∥2
− (1/2)

∥∥∥∥(G−1
)
:,i

−
(
G−1

)
:,j

∥∥∥∥2
, (19)

where (F−1):,i denotes the ith column of F−1 (and similarly
for G). In the first line, we use the fact that if a symmetric
matrix X depends on a parameter t, then

�X−1

�t
= −

(
X−1 �X

�t
X−1

)
.

The formula (19) gives us the optimality conditions for the
problem (18): a weight vector w� is optimal if and only if
F(w�) 
 0, G(w�) 
 0, and, for all {i, j} ∈ E , we have

∥∥∥∥(F(w�)−1
)

:,i −
(
F(w�)−1

)
:,j

∥∥∥∥
=
∥∥∥∥(G(w�)−1

)
:,i −

(
G(w�)−1

)
:,j

∥∥∥∥ .

The formula (19) also gives us a simple method for comput-
ing the gradient ∇f (w). We first compute F−1 and G−1. Then
for each k = 1, . . . , m, we compute �f/�wk , using the last line
of (19). For each k, this involves subtracting two columns of
F−1, and finding the norm squared of the difference, and the
same for G−1, which has a cost O(n), so this step has a total
cost O(mn). Assuming no structure is exploited in forming the
inverses, the total cost is O(n3 + mn), which is the same as
O(n3), since m�n(n − 1)/2. If W is sparse, we can compute
F−1 and G−1 efficiently using the method described in Section
2.3 based on the formulas (16) and (17).

3.2. Hessian

From the gradient formula above, we can derive the Hessian
of f as

�2
f

�wl�wk

= �
�wl

(
(1/2) Tr

(
F−1aka

T
k F−1

)
−(1/2) Tr

(
G−1aka

T
k G−1

))
= +(1/2) Tr

(
�F−1

�wl

aka
T
k F−1 + F−1aka

T
k

�F−1

�wl

)

−(1/2) Tr
(

�G−1

�wl

aka
T
k G−1 + G−1aka

T
k

�G−1

�wl

)

= +(1/2) Tr
(
F−1ala

T
l F−1aka

T
k F−1

+F−1aka
T
k F−1ala

T
l F−1

)
+(1/2) Tr

(
G−1ala

T
l G−1aka

T
k G−1

+G−1aka
T
k G−1ala

T
l G−1

)
= (akF

−1al)(a
T
k F−2al) + (akG

−1al)
(
aT
k G−2al

)
.

In the last line, we use the formula Tr AabT = bT Aa for a, b ∈
Rn and A = AT ∈ Rn×n. Suppose that weight wl corresponds
to edge {p, q}, i.e., l ∼ {p, q}. Then we have

�2
f

�wl�wk

= �
(
(F−1):,i − (F−1):,j

)T
((

F−1
)

:,p −
(
F−1

)
:,q

)

+�

((
G−1

)
:,i −

(
G−1

)
:,j

)T

×
((

G−1
)

:,p −
(
G−1

)
:,q

)
,

where

� = akF
−1al

=
((

F−1
)

i,p
−
(
F−1

)
i,q

−
(
F−1

)
j,p

+
(
F−1

)
j,q

)
,

� = akG
−1al

=
((

G−1
)

i,p
−
(
G−1

)
i,q

−
(
G−1

)
j,p

+
(
G−1

)
j,q

)
.
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Once the matrices F−1 and G−1 are formed, for each k, l =
1, . . . , m, we can compute �2

f /�wl�wk using the last formula
above, which has a cost O(n). The total cost of forming the
Hessian is O(n3 + m2n), which is the same as O(m2n), irre-
spective of the sparsity of the graph (and hence W). The com-
putational cost per Newton step is O(m2n + m3), which is the
same as O(m3) (the Hessian is fully dense even when the graph
is sparse).

4. LMSC with constant edge weight

In this section we consider a special case of the LMSC prob-
lem, where all edge weights are taken to be equal. This special
case is interesting on its own, and in some cases, the optimal
solution of the more general LMSC problem can be shown to
occur when all edge weights are equal.

When the edge weights are equal we have wk = �, so

W = I − �
m∑

k=1

aka
T
k = I − �L,

where L is the Laplacian matrix of the graph, defined as

Lij =
⎧⎨
⎩

−1 {i, j} ∈ E,

di i = j,

0 otherwise,
(20)

where di is the degree of node i. The Laplacian matrix is positive
semidefinite, and since we assume the graph is connected, it
has a single eigenvalue �n(L) = 0, with associated eigenvector
1. We have

�i (W) = 1 − ��n−i+1(L), i = 1, . . . , n,

so the convergence condition ‖W − J‖ < 1 is equivalent to
0 < � < 2/�1(L).

The steady-state mean-square deviation is

�ss(I − �L) =
n−1∑
i=1

1

1 − (1 − ��i (L))2

=
n−1∑
i=1

1

�i (L)�

1

2 − �i (L)�
.

The LMSC problem reduces to

minimize
n−1∑
i=1

1

�i (L)�

1

2 − �i (L)�
, (21)

with scalar variable �, and the implicit constraint 0 < � <

2/�1(L). The optimality condition is simply ��ss/�� = 0,
which is equivalent to

n−1∑
i=1

1

�i (L)

1 − �i (L)�

(2 − �i (L)�)2 = 0. (22)

The left-hand side is monotone decreasing in �, so a simple
bisection can be used to find the optimal weight �. A Newton
method can be used to obtain very fast final convergence.

From (22) we can conclude that the optimal edge weight ��

satisfies �� �1/�1(L). To see this, we note that the left-hand
side of (22) is nonnegative when � = 1/�1(L) and is −∞ when
� = 2/�1(L). Thus we have

1

�1(L)
��� <

2

�1(L)
. (23)

So we can always estimate �� within a factor of two, e.g., with
� = 1/�1(L).

4.1. LMSC problem on edge-transitive graphs

For graphs with large symmetry groups, we can exploit sym-
metry in the LMSC problem to develop far more efficient
computational methods. In particular, we show that for edge-
transitive graphs, it suffices to consider constant edge weight
in the (general) LMSC problem.

An automorphism of a graph G = (N , E) is a permutation
� of N such that {i, j} ∈ E if and only if {�(i), �(j)} ∈
E . A graph is edge-transitive if given any pair of edges there
is an automorphism which transforms one into the other. For
example, rings and hypercubes are edge-transitive.

For edge-transitive graphs, we can assume without loss of
generality that the optimal solution to the LMSC problem is a
constant weight on all edges. To see this, let w� be any optimal
weight vector, not necessarily constant on all edges. Let �(w�)

denote the vector whose elements are rearranged by the permu-
tation �. If � is an automorphism of the graph, then �(w�) is
also feasible. Let w denote the average of such vectors induced
by all automorphisms of the graph. Then w is also feasible (be-
cause each �(w) is feasible and the feasible set is convex), and
moreover, using convexity of �ss, we have �ss(w)��ss(w

�).
It follows that w is optimal. By construction, w is also in-
variant under the automorphisms. For edge-transitive graphs,
this implies that w is a constant vector, i.e., its components
are equal. (See [7, Exercise 4.4].) More discussion of exploit-
ing symmetry in convex optimization problems can be found
in [5,12,24].

4.2. Edge-transitive examples

In this section, we consider several examples of graphs that
are edge-transitive. The optimal weights are therefore constant,
with value � (say) on each edge.

4.2.1. Rings
For rings with n nodes, the Laplacian matrix is circulant, and

has eigenvalues

2

(
1 − cos

2k�

n

)
, k = 0, . . . , n − 1.

Therefore we have

�ss =
n−1∑
k=1

1

1 −
(

1 − 2
(

1 − cos 2k�
n

)
�
)2 .
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Fig. 1. Average mean-square deviation �ss/n (left) and convergence time 	 (right) for paths with n nodes.

For n even, �1(L) = 4 so by (23) we have 1/4��� < 1/2. For
n odd, �1(L) = 2(1 + cos(�/n)), so we have

1

2(1 + cos(�/n))
��� <

1

1 + cos(�/n)
.

4.2.2. Meshes
Consider a two-dimensional mesh, with n nodes in each di-

rection, with wraparounds at the edges. This mesh graph is the
Cartesian products of two n-node rings (see, e.g., [19]). The
Laplacian is the Kroneker product of two circulant matrices,
and has eigenvalues

4

(
1 − cos

(k + j)�

n
cos

(k − j)�

n

)
, k, j = 0, . . . , n − 1.

Therefore,

�ss = −1 +
n−1∑

k,j=0

1

1 −
(

1 − 4
(

1 − cos (k+j)�
n

cos (k−j)�
n

)
�
)2 .

Again we can bound the optimal solution �� by Eq. (23). For
example, when n is even, we have �1(L) = 8, so 1/8��� <

1/4.

4.2.3. Stars
The star graph with n nodes consists of one center node and

n − 1 peripheral nodes connected to the center. The Laplacian
matrix has three distinct eigenvalues: 0, n, and 1. The eigenvalue
1 has multiplicity n − 2. We have

�ss = 1

2n� − n2�2 + n − 2

2� − �2 .

The optimality condition (22) boils down to

1 − n��

n(2 − n��)2 + (n − 2)
1 − ��

(2 − ��)2 = 0.

This leads to a cubic equation for ��, which gives an analytical
(but complicated) expression for ��. In any case, the bounds
(23) give 1/n��� < 2/n.
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Fig. 2. LMSC and FDLA optimal edge weights on a path with n = 100 nodes.

4.2.4. Hypercubes
For a d-dimensional hypercube, there are 2d vertices, each

labeled with a binary word with length d. Two vertices are con-
nected by an edge if their words differ in exactly one compo-
nent. The Laplacian matrix has eigenvalues 2k, k = 0, 1, . . . , d,

each with multiplicity
(

d
k

)
(e.g., [19]). Substituting these eigen-

values into (21), we find that

�ss =
d∑

k=1

(
d

k

)
1

4k� − 4k2�2 ,

with domain 0 < � < 1/d. The bounds (23) give 1/(2d)��� <

1/d.
According to the numerical results in Section 5, we conjec-

ture that the optimal solution is �� = 1/(d + 1), but we have
not been able to prove this yet. The value � = 1/(d +1) is also
the solution for the FDLA problem studied in [33] (see also
[9,19,24]).
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Fig. 3. Average mean-square deviation �ss/n (left) and convergence time 	 (right) for rings with n nodes.
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Fig. 4. LMSC and FDLA edge weight for rings with n varying from 3 to 100.

5. Examples

In this section, we give some numerical examples of the
LMSC problem (6), and compare the solutions obtained with
the Metropolis weights (4) and weights that yield fastest asymp-
totic convergence, i.e., a solution of

minimize ‖W − J‖
subject to W ∈ S, W = WT , W1 = 1.

(24)

This FDLA problem need not have a unique solution, so we
simply use an optimal solution. (See [33] for details of the
FDLA problem.)

For each example, we consider a family of graphs that vary
in the number of nodes or edges. For each graph instance, we
report both the average mean-square deviation �ss/n, which
gives the asymptotic mean-square deviation per node. We also
report the asymptotic convergence time, defined as

	 = 1

log(1/‖W − J‖) .

This gives the asymptotic number of steps for the error ‖x(t)−
Jx(0)‖ to decrease by a factor e, in the absence of noise. The
FDLA weights minimize the convergence time 	.

5.1. Paths

Fig. 1 shows �ss/n and 	 for paths with a number of nodes
ranging from 2 to 100. We see that the LMSC weights achieve
much smaller average mean-square deviation than the FDLA
weights, and the Metropolis weights (in this case a constant
weight 1/3 on all edges) have a mean-square deviation in be-
tween. In terms of the convergence time, however, there is
not much difference between the LMSC weights and FDLA
weights, with the Metropolis weights giving much slower con-
vergence. Fig. 2 shows the distribution of both the LMSC
weights and FDLA weights on a path with 100 nodes (and 99
edges), where the edges are labeled k = 1, . . . , 99 on the hori-
zontal axis. The Metropolis weights, which are not shown, are
1/3 on all edges.

5.2. Rings

Fig. 3 shows �ss/n and 	 for rings with a number of nodes
ranging from 3 to 100. The relative comparison of different
weights are similar to those on paths, but the average mean-
square deviation and convergence time are much smaller for
the rings. Since rings are edge-transitive, the optimal weights
for both the LMSC and FDLA problems are constant on all
edges. Fig. 4 shows the optimal weights on rings with number
of nodes from 3 to 100. In general, the LMSC weights are
smaller than the FDLA weights, i.e., the LMSC weights have
larger self weights at the nodes.

5.3. Grids and meshes

Fig. 5 shows �ss/n2 and 	 for n × n grids with n ranging
from 2 to 10. Similar results for meshes (grids with wrap-
arounds at two ends of both directions) are shown in Fig. 6.
The n × n meshes are edge-transitive, so both the LMSC abd
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Fig. 5. Average mean-square deviation �ss/n2 (left) and convergence time 	 (right) of n × n grids.
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Fig. 9. Average mean-square deviation �ss/n (left) and convergence time 	 (right) of a random family of graphs. The horizontal axis shows the number of
edges (the number of nodes n is fixed).

FDLA optimization problems have only one variable, allowing
very large scale problems to be solved using the formulation in
Section 4.

5.4. Stars

Fig. 7 shows the average mean-square deviation and con-
vergence time for stars with n nodes. The LMSC weight and
FDLA weight give almost identical results for large n, which is
much better than the Metropolis weight � = 1/n. For n�3, the
optimal solution to the FDLA problem is ��

FDLA = 2/(n + 1),
which is an excellent approximation for the LMSC weight. For
stars with large n, the minimum mean-square deviation and
fastest convergence can be achieved almost simultaneously.

5.5. Hypercubes

Fig. 8 shows the average mean-square deviation and con-
vergence time for d-dimensional hypercubes. Again, these are

edge-transitive graphs and there is only one variable in both
the LMSC and FDLA problems. The numerical results show
that the optimal constant weights for these two problems co-
incide, which is also obtained by the simple Metropolis meth-
ods. So the hypercubes are special graphs that the minimum
mean-square deviation and fastest convergence can be achieved
simultaneously.

5.6. A random family

We generate a family of graphs, all with 100 nodes, as fol-
lows. First we generate a symmetric matrix R ∈ R100×100,
whose entries Rij , for i�j , are independent and uniformly dis-
tributed on [0, 1]. For each threshold value c ∈ [0, 1] we con-
struct a graph by placing an edge between vertices i and j for
i �= j if Rij �c. By increasing c from 0 to 1, we obtain a fam-
ily of graphs. This family is monotone: the graph associated
with a larger value of c contains all the edges of the graph as-
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sociated with a smaller value of c. We start with a large enough
value of c that the resulting graph is connected.

Fig. 9 shows �ss/n and 	 for the graphs obtained for 10 dif-
ferent values of c (in the range [0.05, 0.2]). Of course both the
average mean-square deviation and convergence time decrease
as the number of edges m increases. For this random family of
graphs, the Metropolis weights often give smaller mean-square
deviation than the FDLA weights.
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