
Building Mashups By Example
Rattapoom Tuchinda, Pedro Szekely, and Craig A. Knoblock

Information Science Institute
University of Southern California

4676 Admiralty Way
Marina del Rey, CA 90292

pipet@isi.edu, pszekely@isi.edu, and knoblock@isi.edu

ABSTRACT
Creating a Mashup, a web application that integrates data
from multiple web sources to provide a unique service,
involves solving multiple problems, such as extracting data
from multiple web sources, cleaning it, and combining it
together. Existing work relies on a widget paradigm where
users address those problems during a Mashup building
process by selecting, customizing, and connecting widgets
together. While these systems claim that their users do not
have to write a single line of code, merely abstracting
programming methods into widgets has several
disadvantages. First, as the number of widgets increases to
support more operations, locating the right widget for the
task can be confusing and time consuming. Second,
customizing and connecting these widgets usually requires
users to understand programming concepts. In this paper,
we present a Mashup building approach that (a) combines
most problem areas in Mashup building into a unified
interactive framework that requires no widgets, and (b)
allows users with no programming background to easily
create Mashups by example.

Author Keywords
Mashups, Information Integration, Programming by
Demonstration.

ACM Classification Keywords

H.5.2 User Interfaces: User-centered design

I. INTRODUCTION
Recently, average Internet users have evolved from content
consumers to content providers. In the past, creating a
simple web application was a complicated process. Today,

we can create professional looking blogs or profile pages on
a social network site without knowing HTML.

The latest generation of WWW tools and services enables
web users to generate web applications that combine
content from multiple sources, and provide them as unique
services that suit their situational needs. This type of web
applications is referred to as a Mashup. A Mashup can be
created as easily as manually typing information into each
map marker in GoogleMap. More interesting Mashups,
such as Zillow (zillow.com) and SkiBonk (skibonk.com),
are much more complex because they need to deal with five
basic issues:

Data Retrieval involves extracting data from web pages
into a structured data source (i.e., table or XML). In
addition to figuring out the rules to extract particular data
from HTML pages [8,9], the structure of data on a page or
the location of data which can span multiple web pages can
make the process more complicated.

Source Modeling is the process of assigning the attribute
name for each data column so a relationship between a new
data source and existing data sources can be deduced.

Data Cleaning is required to fix misspellings and transform
extracted data into an appropriate format. For example, the
extracted data “Jones, Norah” might need to be transformed
to “Norah Jones” to conform to the format of existing data
sources.

Data Integration specifies how to combine two or more
data sources together. For example, building a Mashup that
lists all the movies ever performed by this year’s Oscar
award winners will require us to merge (a) an Oscar winner
list and (b) a movie database using a database join operation
on the winner’s names.

Data Visualization takes the final data generated by the user
and displays it (i.e., a table, a map, or a graph).
Customizing the display and specifying the interaction
model for the GUI often requires programming.

Our goal is to create a Mashup building framework where
an average Internet user with no programming experience
can build Mashups easily. Currently, there exist various
Mashup building tools, such as Microsoft’s Popfly

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish, to
post on servers or to redistribute to lists, requires prior specific permission
and/or a fee.

IUI'08, January 13-16, 2008, Maspalomas, Gran Canaria, Spain.
Copyright 2008 ACM 978-1-59593-987-6/ 08/ 0001 $5.00

139

(www.popfly.ms), Dapper (www.dapper.net), and Yahoo’s
Pipes (pipes.yahoo.com) to name a few. These tools aim at
allowing users to build Mashups without writing code.
However, not having to write code to build a Mashup does
not always mean building one is easy. Most existing
solutions employ a widget approach, where users select,
customize, and connect widgets to perform complex
operations. Figure 1 shows some widgets in Yahoo’s Pipes
that provide support for: fetching a RSS Feed, looping, and
replacing a string using a regular expression.

There are two problems with the widget approach. First,
the numbers of widgets (i.e., 43 for Yahoo’s Pipes, 300+ for

Microsoft’s Popfly) can increase as Mashup tools try to
increase their functionality. As a result, locating a widget
that will accomplish the task can be difficult and time
consuming. Second, while no programming is required,
users often need to understand programming concepts to
fully utilize them. Furthermore, most systems focus on
particular information integration issues while ignoring
others. As a result, the process of building Mashups is still
quite complicated and the range of Mashups that naïve
users can build is still limited.

In this paper, we illustrate how to address the first four
Mashup building issues, often solved separately or partially,
into one seamless process using the programming by
demonstration paradigm. Using our approach, users (a) do
not have to program or understand programming concepts
to build a Mashup, and (b) indirectly solve each issue
during the Mashup building process by only providing
examples.

The rest of the paper is organized as follow: we first
describe our motivating example, which highlights our
approach. Then, we outline our approach and the details of
each component. Next, we survey current Mashup
solutions from both industry and the research world. Then,
we provide the preliminary evaluation of our
implementation against the current state-of-the-art
offerings. Finally, we discuss our contributions and plans
for future work.

II. MOTIVATING EXAMPLE
This section shows how a user would interact with Karma,
our Mashup builder that incorporates the concept of
programming by demonstration, to build a Mashup that

Figure 1. Sample widgets offered in Yahoo’s Pipes.
The user would customize each widget and connect
them together to form complex operations.

Figure 2. The interface of Karma. The left window is an embedded web browser. The top right window
contains a table that a user would interact with. The lower right window shows options that the user can select
to get into different modes of operation.

140

combines the listing of the best sushi restaurants in Los
Angeles with information about their health ratings. Karma
allows users to solve each information integration issue
implicitly by simply providing examples. To build this
Mashup, the user needs to combine data from two web
sources: LA City Guide (http://losangeles.citysearch.com),
and the LA department of public health
(http://ph.locountry.gov/rating), and display the final result
on a map.

We will break the Mashup building process into four
consecutive modes: data retrieval, source modeling, data
cleaning, and data integration. In practice, however, the
user may switch freely back and forth between each mode.
Also, the user can preview the Mashup display (i.e., map) at
any time. Details of the inner workings will be elaborated in
the next section.

Figure 2 shows the interface for Karma. The left area is an
embedded web browser, where the user can navigate
through web pages. The upper right area is a blank table
where the data is populated based on the user’s interaction
with Karma. The lower right area shows multiple modes
and their options from which the user can select.

Data retrieval
First the user will extract the data from the sushi page on
the left into a table on the right side as shown in Figure 2.
The end result table should look like the table in Figure 4,
which contains restaurant names, addresses, descriptions,
and number of reviews. Karma’s goal is to let the user do
this by providing only a small set of examples.

Figure 3: By dragging “Japon Bistro” into the first
row, Karma automatically fills the rest of the column

Once the user navigates to the best sushi restaurants page,
he extracts the data by highlighting a segment of the text
(“Japon Bistro”) on the page, then dragging and dropping
the highlighted text into a cell in the table on the right.
Recognizing that the data element is a list on the web page,
Karma proceeds to extract the rest of the restaurants from
the page and fills the first column of the table in Figure 3.

The user can proceed to extract the address and the
restaurant description of Japon Bistro, and Karma will
automatically fill in the rest of the table. Note that the user
can also click the link of Japon Bistro to go to its separate

detail page and extract the number of reviews. Recognizing
that the detail page belongs to Japon Bistro, which in turn is
a part of the list in the original page, Karma then iterates
through each restaurant in the list and extracts the
corresponding data from detail pages. Figure 4 shows the
result table where the user has extracted the restaurant
name, addresses, description, and the number of reviews.
Note that the user only has to drag in the four values in the
first row to populate the entire table.

Figure 4: The user extracts the whole list by dragging

only four values into the first row of the table.

Source modeling
In the source modeling mode, Karma will help the user
assign the right attribute name to each data column. While
the user is busy extracting data from the page, Karma
compares extracted data with existing data in its repository
to identify possible attribute names.

For a column where Karma is confident, it fills in the
attribute name automatically (i.e., address in Figure 4). For
a column that Karma cannot identify or for which it is not
confident, the attribute name is entered as “select one,” as
shown in Figure 4. The user can select the source modeling
mode by clicking the “attribute” tab in Figure 2 and
specifying the correct attribute by entering his own or
searching from the list of existing attributes in the data
repository. We will assume that the following attributes are
assigned (by Karma and the user) to the table: restaurant
name, address, description, and number of reviews.

Data Cleaning
Frequently, the extracted data needs to be cleaned because
of misspellings and/or formatting. Karma lets the user
clean the data by specifying the end result of what the clean
data should look like. In this case, the user wants to get rid
of the string “Reviews” in the fourth column of Figure 4.

To enter the cleaning mode, the user selects the “Clean
data” tab in Figure 2. The user can then select which
column is to be cleaned from the menu under the tab. Let
us assume that the user selects the column “Number of
reviews”. The table will be in the cleaning mode as shown
in Figure 5.

In the cleaning mode, two extra columns (user-defined and
final) will be populated next to the column that the user

141

wants to clean. The user-defined column allows the user to
enter the end result, and Karma will try to deduce the
cleaning transformation from the user’s examples. For
example, if the user enters “28” in the first row, Karma will
deduce the transformation between “28 reviews” and “28”,
and apply the same transformation to the rest of the data
under the same column.

Figure 5: Karma in the cleaning mode. The user can
specify the clean result and Karma will try to induce
the cleaning transformation.

Data Integration
In the data integration mode, Karma will analyze attributes
and data in the table to determine possible join conditions
between the data in the table and the data in the repository.
Based on the analysis, Karma can suggest existing data
sources in the repository that can be linked to the new data
in the table. For example, let us assume that the LA Health
Rating source has been extracted and stored in the
repository through a similar process, perhaps by a different
user. Based on the restaurant data in the user’s table,
Karma might suggest “Health Rating” as a new attribute
that can be added to expand the table. If the user chooses
“Health Rating” as the attribute for the new column, Karma
will generate a query to retrieve the health rating data from
the repository and fill the new “Health Rating” column.

The final result is the data table that contains restaurant data
integrated with health rating information. Note that while
Karma does not focus on the data visualization problem,
Karma still provides a basic GoogleMap display if the table
contains address information. The user can display the final
restaurant Mashup on a GoogleMap by selecting a map
option from the save tab in Figure 2.

While this example is about restaurants, the structure of the
problem (i.e., extracting a list from a page, cleaning and
integrating with other sources) is the same in general
Mashup building tasks.

III. APPROACH
The approach that we use in Karma is based on two main
ideas.

1. Instead of providing a myriad of widgets, we capture and
model most Mashup building operations from examples
that users can easily supply. In our case, users simply

provide examples that they understand well – data elements
from the website (i.e., Japon Bistro) or the resulting data
that they want to see as the finished product (i.e., ‘28’ from
‘28 reviews’). Providing examples should be easy, since
building a particular Mashup implies that users know a little
bit about the data from the web sources they want to extract
and manipulate. By letting users work on data instead of
programming widgets (i.e. stringtokenizer, loop, and
regex), users do not have to spend time locating widgets
and figuring out how to use them.

2. The reason that building Mashups can be difficult lies in
those information integration issues stated earlier. Those
issues are often solved separately, since each problem is
already difficult on its own. As a result, most Mashup tools
focus on some issues but ignore others, because subjecting
users to the whole process is tedious and complicated.
Karma overcomes this barrier by combining them together
under a single interaction platform – a table. In the
computer science research field, “divide and conquer” is
one of the golden rules. However, we believe that our
approach is logical and novel, because these issues are all
interrelated. By treating them as a single process, results
generated from solving one issue often help solve other
issues.

The rest of this section is devoted to the technical details of
how we implement our ideas in each of the problem areas
and how information from one area is used to help solve
problems in other areas.

Data Retrieval
In Karma, we use a Document Object Model (DOM)

tree as a basic structure for the extraction process. The
DOM tree is constructed based on the organization of
HTML tags in the web page. Figure 6 shows the simplified
DOM tree of the “best sushi restaurant” page from our
motivating example.

Figure 6. A simplified DOM tree that represents the
best restaurant page in the motivating example. The
gray nodes represent the HTML tags, while the white
nodes represent the data embedded within those tags.

Extracting data from the same page
Using a DOM tree is an effective way to identify a list. For
example, when the user drags the value “Japon Bistro” into

142

the table, we can (a) identify an XPath
(www.w3.org/TR/xpath) from the root to that value, and (b)
compute parallel Xpaths in different branches to extract
other nodes that store restaurant names. An XPath is an
expression language that is used to manipulate information
in XML documents. For example, an XPath for “Japon
Bistro” (i.e., /tbody/tr[1]/td[2]/a) means traverse the
following path: tbody, the first tr tag, the second td tag, and
retrieve all the a tag nodes. To find parallel paths, we can
generalize the path by discarding the ordering number of
nodes. For example /tbody/tr/td/a will return two nodes:
/tbody/tr[1]/td[2]/a and /tbody/tr[2]/td[2]/a.

After extracting the first column of data, Karma handles
extraction in other columns based on the position of the
nodes in the first column. The set of nodes from the first
column are used as markers to compute extraction rules
based on the relationship between a marker and the newly
extracted node.

For example, when the user starts dragging the restaurant’s
address (i.e. 970 E Colora…) into the same row as “Japon
Bistro,” Karma creates a mapping rule R: XPath_marker
XPath_neighbor, such that given a marker’s Xpath (i.e., an
Xpath to Japon Bistro), the rule can compute an Xpath for
the “970 E Colora..” node. This mapping rule is then
applied to other markers to extract their respective address
nodes. The mapping rule is computed by first finding the
common path between the marker and its neighbor. Then,
the path not in common with the neighbor is added to the
end.

XPath_marker: /tbody/tr[1]/td[2]/a
XPath_neighbor: /tbody/tr[1]/td[2]/br
Common Path: /tbody/tr[*]/td[*]/
Rule: common_path + br

So given an XPath for “Sushi Doro..” (/tbody/tr[2]/td[2]/a),
we can apply the rule by extracting the common path and
add br at the end, which will result in the XPath
(/tbody/tr[2]/td[2]/br) that can extract Sushi Doroko’s
address node.

This mapping rule is used to disambiguate the case when
there is a list within a list. In our example, we have a list of
restaurants. And under each restaurant td node, we also
have a list of two br nodes. If we did not use a mapping
rule, then locating all the parallel XPaths to find address
nodes with similar path structure to “970 E Colora..” will
result in getting all four br nodes in Figure 6. Among these
four br nodes, two of them contain the restaurant
description, which we do not want in the address column.

Extracting data from detail pages

In our example, each restaurant has a link to its detail page,
which contains more information about the restaurant. We
want to extract this information as well. Under the hood,
the following steps need to be performed to extract data
from detail pages: (a) specify that the data on the first page
is a list, (b) specify the link between each element in the list

of the first page to its detail page, (c) extract the data on the
detail page separately, and (d) specify how to combine the
data from the first page with the data from the detail pages.
Because of its complexity, most data Mashup tools do not
support detail page extraction. Karma abstracts these tasks,
so users can extract detail pages without explicitly doing all
the above steps.

In Karma, we leverage the structure of the table to allow
users to extract data from detail pages by example. While a
table is a simple structure, there are multiple implicit
constraints associated with it; the data in the same column
is a list belonging to the same attribute. Also, the data on
the same row is a combination of related content that forms
a tuple.

When the user extracts “Japon Bistro,” Karma can already
induce that the first column is a list. Next, when the user
navigates to the “Japon Bistro” detail page and drags the
number of reviews into the first row of the table, the user
indirectly specifies: (a) that a particular detail page is linked
to “Japon Bistro,” (b) the extraction rule for this new data
element, and (c) where the new data element from a new
page should be in the table with respect to the data from the
first page.

By computing the mapping rule between the node that
stores the URL of the detail page and its respective marker,
Karma can locate other URLs from other restaurants,
extract data from their detail pages, and fill the table
automatically. This approach allows users to navigate deep
into multiple levels of detail pages (not uncommon in many
complex websites) and extract data while retaining the
whole view of the overall extracted data in one table.

Source Modeling

In Karma, we keep a repository of data that can be used for
source modeling, data cleaning, and data integration. This
data is obtained from users previously extracting data and
building Mashups. When the user adds a new column to the
table, we use the repository to compute a set of candidate
attribute names for the new column. Let:

V: a set of values from the new column.
S: a set of all available data sources in the repository
att(s): a procedure that returns the set of attributes from the
source s where s ! S
val(a,s): a procedure that returns the set of values associated
with the attribute a in the source s.
R: ranked candidate set:

 {a |! a,s: a ! att (s) ! (val(a,s)

!

" V)}

Figure 7 shows the mapping according to the constraint
formulated for the first data column that contains restaurant
names in Figure 4. After the user extracts the first value
and Karma fills the rest of the column, Karma then uses all
the values in that column as a starting set to find out
possible attribute mappings. For each value in the starting
set, Karma queries the repository to determine whether that

143

value exists in any table. If it exists, Karma extracts the
attribute to which a value corresponds. For example, in
Figure 7, there exist “Sushi Sasabune” and “Japon Bistro”
under the attribute “restaurant name.” However, “Hokusai”
can be associated with multiple attributes {restaurant name,
artist name}.

In the case where all new values can be associated to only
one attribute, Karma sets the attribute name of that
particular column in the user table automatically. When
there is an ambiguity, Karma sets the attribute name for that
column to “select one.” Then, the user can select the
attribute from a ranked candidate list. The ranking is
computed by simply counting how many values can be
associated with a particular attribute. For example, the
attribute “restaurant name” will have a score of 3, while the
attribute “artist name” will have a score of 1.

Figure 7. A view of the overlapping between newly
extracted data and existing data in the repository.

Our method assumes that there is an overlap between newly
extracted data and existing data in the repository. If there is
no overlap, then Karma will also output “select one” as the
attribute name for that column, and let the user select from
the list of existing attribute names from the repository, or
allow him to specify the attribute name himself. In the
future, we plan to integrate the work on semantic modeling
[11] to generate a better ranked candidate set.

Data Cleaning
Data cleaning is considered tedious and time consuming,
because it involves detecting discrepancies in the data,
figuring out the transformation to fix them, and finally
applying the transformation to the dataset [13].

Usually, a Mashup is not considered an enterprise
application. As such, some forms of error can be tolerated.
However, it is still necessary to clean the data, especially
when integrating multiple data sources using a ‘join’
operation. For example, if we want to combine two sources
where the first one contain “jones, norah” and the second
one contains “Norah Jones” under the same attribute
“artist,” then the join condition will not produce a match.

In Karma, we use a cleaning by example approach that lets
users specify how the cleaned data should look like. Karma
then will try to induce the cleaning transformation rule. We
adapt our cleaning by example approach from Potter’s
Wheel [13]. Given a string of data, we first break the string
into different tokens based on the following data types:
<word>, <number>, <blankspace>, and <symbol>. For
example, “jones, norah” would correspond to {<word1>,
<symbol>, <blankspace>, <word2>}. Once the user
specifies the cleaned result, for example “Norah Jones”, the
user-defined data will also be broken into different tokens
{<word1>, <blankspace>, <word2>}. Karma then tries to
determine the transformation as follows:

First locate tokens with the same value between the O (original)
and D (user-defined) set, and determine if the ordering has been
swapped or not. If yes, add the swap instruction for that token
into the set T, which stores all transformation sub-rules.

For each token in O that cannot be matched to D, apply a set of
pre-defined transformations S and see if the result of the
transformation can be matched to any value in D.

If no, then discard that token from O. If yes, add the pre-defined
transformation and the swap instruction, if any, to T.

S is a set of pre-defined transformations that can be
expanded to support more transformations. For example,
one of the transformations is the method capitalFirst, which
will transform the input word into the new word with the
first character capitalized. Applying our procedure to the
Norah Jones example above, the instructions in T would be:
{delete <symbol>, set <blankspace> to position 2, apply
capitalFirst to <word1>, set <word1> to position 3, apply
capitalFirst to <word2>, set <word2> to position 1}. Applying T
to “jones, norah” will result in “Norah Jones.” This T is
then used to apply to other data under the same attribute.

In our example, when the user selects the cleaning mode, he
can type in a new value (i.e., “28”) under the user-defined
column. Then, Karma will try to compute a T that captures
the transformation between “28 Reviews” and “28” and
apply it to other values to fill the user-defined column.
Note that Karma also lets the user define multiple cleaning
rules (T) under the same column, and it will apply the first
rule that matches the data in the cell. Finally, the user can
decide how to combine the original, and user-defined data
by checking the appropriate boxes shown in Figure 2.

Data Integration
Karma’s approach to the data integration problem is based
on our previous work [14]. In this paper, we will provide

144

the intuition of how Karma solves the data integration
problem. The theoretical constraint formulations that enable
our approach to work are described in [14].

Our goal in data integration is to find an easy way to
combine a new data source (that we extract, model, and
clean) with existing data sources. The general problems are
(a) locating the related sources from the repository that can
be combined with a new source, and (b) figuring out the
query to combine the new source and existing valid sources.

Karma solves these problems by utilizing table constraints
with programming by demonstration. The user fills an
empty cell in the table by picking values or attributes from
a suggestion list, provided by Karma. Once the user picks a
value, Karma calculates the constraint that narrows down
the number of sources and data that can be filled in other
cells.

Figure 8 shows how the user can integrate new data
with existing data through examples. When the user
selects more examples, the table becomes more
constrained. The value 1-6 designated empty cells.

To demonstrate how Karma handles the data integration, let
us assume, for the sake of simplicity, that the user first
extracts the list of restaurant names, and invokes the data
integration mode. We will assume that our data repository
only contains the three data sources from Figure 7.

Figure 8a shows a table with the newly extracted data,
where the empty cells that can be expanded are labeled with
numbers (1-6). Based on the existing data repository, there
is a limited set of values that can fill each cell. For
example, the value set that Karma will suggest to the user
for cell 1 would be {Katana, Sushi Roku}. The reason is
that to preserve the integrity of this column, each
suggestion for cell 1 must be associated with the attribute
“Restaurant name.” We call this a vertical constraint where
values under the same column must be associated with the
same attribute name. Currently, there are only two sources

with column “Restaurant name,” so Karma formulates the
query based on the vertical constraint to generate the
suggestion list.

In Figure 8b, we assume that the user picks “Katana” to fill
cell 1. To fill cell 6 (next to Katana), we need to ensure that
the values Karma suggests come from a row in the source
that has the value “Katana” associated with “Restaurant
Name.” We call this a horizontal constraint. These values
are shaded in Figure 9.

From the horizontal constraint, the possible values that can
be suggested in cell 6 would be {99, 23, 8439…}. The
reason is that since Katana is a restaurant, there are only
two valid rows that have Katana as a restaurant in the
repository (row 2 from the LA Health Rating source and
row 3 from the Zagat source).

Figure 9. Selecting Katana in cell 1 limits the choices
in other cells, such as cell 6 and cell 2, through the
horizontal constraint.

On the other hand, cell 2 is only limited to three attributes
(shaded in the attribute rows in Figure 9) since these
attributes come from sources that have “Restaurant name”
as one of the attributes. If the user picks cell 2 to be
“Health rating” in Figure 8c, Karma can narrow down the
choices through constraints and automatically fill the rest of
the column (cell 3,4,5,6) with the health rating value with
respect to each restaurant.

By choosing to fill an empty cell from values suggested by
Karma, the user (a) does not need to search for data sources
to integrate, (b) picks the value that is guaranteed to exist in
the repository, yielding the query that will return results,
(c) indirectly formulates a query through Karma, so the user
does not need to know complicated database operations,
and (d) narrows possible choices in other empty cells, as the
user provides more examples.

IV. RELATED WORK
First we survey existing Mashup tools. Then, we review
related fields of research.

145

Existing Mashup Tools
There exist a wide range of Mashup building tools from
both industry and academia. We list the tools that aim to
support average users in Table 1.

Simile [8], the earliest system among all, focuses mainly on
retrieving the data from web pages using a DOM tree.
Users can also tag sources with keywords that can be
searched later. Dapper improves over Simile by providing
an end-to-end system to build a Mashup. However, users
still have to do most of the work manually to define
attributes and integrate data sources together. Dapper
provides only one cleaning operation that enables users to
extract a segment of text (i.e., similar to Java’s substring).
Compared to Simile and Dapper, Karma extends the DOM
tree approach to support more data structures and extraction
from detail pages.

 Data
Retrieval

Source
Modeling

Data
Cleaning

Data
Integration

MIT’s
Simile

DOM Manual N/A N/A

Dapper DOM Manual Manual Manual

Yahoo’s
Pipes

Widgets Manual Widget Widget

MS’s
Popfly

Widgets Manual Widget Widget

CMU’s
Marmite

Widgets Manual Widget Widget

Intel’s
Mashmaker

Dapper Manual Widget Expert

Table 1. Approach comparison between different
Mashup tools segmented by problem areas.

Yahoo’s Pipes, MS’s Popfly, and CMU’s Marmite [15] are
similar structurally in terms of their approach. They rely on
the widget paradigm where users select a widget, drop a
widget onto a canvas, customize the widget, and specify
how to connect widgets together. The difference between
each system is the number of widgets (i.e., 43 for Pipes and
around 300 for Popfly), the type of widgets supported, and
the ease of use. For example, Marmite and Popfly will
suggest possible widgets that can be connected to existing
ones on the canvas, while Pipes will rely on users to select
the right widgets. Compared to these systems, Karma uses a
unified paradigm that does not require users to locate
widgets or understand how each widget works.

Intel’s MashMaker [5] took a different approach where its
platform supports multiple levels of users. In MashMaker,
expert users would do all the work in each area. For a
normal user, she would use the system by browsing a page
(i.e., Craigslist’s apartment), and MashMaker will suggest
data from other sources that can be retrieved and combined
(i.e., movie theaters nearby) with data on the user’s current
page. Note that MashMaker supports only web pages that
are already extracted through Dapper. Compared to Karma,

MashMaker limits choices for its normal users to pages that
exist in Dapper and data integration plans that have already
been specified by experts.

In terms of data visualization, all Mashups building tools,
including Karma, provide a set of display options for
Mashups (i.e., Map), but none provides any framework that
supports complex customization for the Mashup display.

Bungee Labs (www.bungeelabs.com), IBM’s QED wiki
(www.ibm.com), and Proto Software (www.protosw.com)
are example Mashup tools for enterprise applications.
These tools also use widgets to support most Mashup
building functionality, but experts are required to use them
because of their complexity. Google MyMaps allow users
to create and import map points from limited sources.
Aside from Google MyMaps, Google also has its own
Mashup Editor (editor.googleMashups.com). However, it
is aimed at programmers since programming is required.

D.Mix[6] and OpenKapow (openkapow.com) allow users to
‘sample’ or ‘cut’ data from web pages to be used later.
However, both systems assume some level of expertise in
programming in HTML and Javascript.

Related Research Fields
In the data retrieval domain, earlier work, such as Stalker
[9], uses machine learning techniques to capture the
extraction rules from users’ labeled examples. Simile [8]
employs the DOM approach, which requires less labeling.
While this approach makes data retrieval easier, the DOM
alone does not provide a mechanism to handle web pages
with multiple embedded lists or detail page extraction.
Karma fills these gaps by extending the DOM approach
with the use of marker and table constraints.

Source modeling [7] outlined in this paper is closely related
to the problem of schema matching. A good survey of
source modeling and schema matching techniques can be
found in [12]. While these techniques automatically
generate possible mappings, the accuracy of these
approaches is limited to 50-86% [4]. Karma solves the
source modeling problem by using existing schema
matching techniques [2] to generate possible candidate
mappings and relies on users to determine the correct
mapping. Since our users extract data from web pages
themselves, we believe they can select sensible mappings.

A good survey of commercial solutions for data cleaning
can be found in [1]. The data cleaning process in these
solutions usually lacks interactivity and needs significant
user effort to customize [13]. Karma’s cleaning by example
approach is based on an interactive data cleaning system
called Potter’s wheel [13], where users can specify the end
result instead of writing a complicated transformation.

Our data integration approach is based on our past work in
[14], which also contains survey of existing data integration
approaches and systems. In [14], we assume that the
problems of data retrieval, source modeling, and data

146

cleaning have already been addressed. Our work in this
paper addresses that assumption and integrates four data
integration techniques into a unified framework.

By combining these research problems, often solved
separately, Karma can simplify and interleave each process,
allowing greater flexibility. Karma pipelines data from one
problem area to the next as soon as it is available. For
example, as soon as the extracted data is available, it is sent
to solve the source modeling problem automatically. Users
can also switch seamlessly back and forth between each
problem area during the Mashup building. For example,
they can choose to extract and clean a particular column
before moving on to extract more data in the next column.

Our framework is based on the concept called programming
by demonstration [3,10], where methods and procedures are
induced from users’ examples and interaction. Clio [16] is
a system for schema matching and data integration that also
employs the programming by demonstration approach.
However, it is intended for semi-expert users as
understanding of source schemas and database operations
are required.

V. EVALUATION
In this section, we perform an evaluation comparing Karma
with Dapper and Yahoo’s Pipes (we will refer to it as
Pipes). The reasons for choosing these two systems are: (a)
Dapper is an improvement, over Simile, (b) Pipes
represents the widget approach and is readily available and
more popular than Microsoft’s Popfly, and (c) Intel’s
Mashmaker relies on experts to do most of the work, while
our focus is on do-it-yourself Mashup building.

Claim and hypothesis

For the Mashup tasks that the combination of Dapper and
Pipes (DP) can do, Karma lets users do it easier and faster.

Experimental setup

Designing the experiments that include qualitative and
quantitative measurements between these systems is a
challenge. First, Dapper and Pipes do not cover all the
problem areas; Dapper’s main focus is on data extraction
from web sources and it outputs the result as an RSS feed.
On the other hand, Pipes has widgets for cleaning and
combining sources, but it cannot extract data from web
sources that do not provide RSS feeds. Second, these
systems have a high learning curve; users must read
tutorials, try out examples, and understand programming
concepts.

For our evaluation, we solve the first problem by combining
Dapper and Pipes to finish our designed tasks; we use
Dapper for data extraction and Pipes for the other data
processing tasks. Note that the approach of combining
tools to build a Mashup is not uncommon and is widely
practiced by developers at MashupCamp
(www.Mashupcamp.com), a biannual conference on cutting
edge Mashup technology. For the second problem, we use

an expert that knows every system used in the evaluation to
do all the tasks. Then, the measurement is done as a unit of
“steps.” Each of the following actions constitutes one unit
step: (a) typing values in a textbox, (b) clicking a button, (c)
selecting options from a list, (d) dragging and dropping
widgets from one area to another area, and (e) connecting
one widget to another widget.

In our experiment, the expert will carry out three Mashup
building tasks. Each task is designed to address some
specific problem areas in the Mashup building process.
Performance will be measured in the number of “steps”
segmented by each problem area.

Tasks

1. Extracting a list of female adult contemporary artists (i.e.,
album name, artist name, description) created by an
Amazon.com user at http://www.tiny.cc/0ctOx Notice that
cleaning is needed to correct some artist names (“Jones,
Norah” to “Norah Jones”). This is a simple task of extracting
a list of data that requires simple cleaning.

2. Extract and combine cheapest gas prices from Los
Angeles (www.losangelesgasprices.com), and Orange
County (http://www.orangecountygasprices.com). These
two data sources have identical structure and will require a
database “union” to combine the two sources. There is no
cleaning in this task.

3. Extract and combine the best sushi restaurant data with
LA health ratings. This task is the same as the motivating
example and we will assume that LA health rating data has
already been extracted. This task requires using a database
“join” to combine the two sources.

Result

 Data
Retrieval

Source
Modeling

Data
Cleaning

Data
Integration

Task1 K 3 7 6 0

Task1 DP 8 10 21 9

Task2 K 9 10 0 0

Task2 DP 18 30 0 28

Task3 K 5 10 4 5

Task3 DP 8 11 16 12

Table 2. Evaluation results for the tree tasks. The
number of steps is broken down according to each
problem area. K represents Karma, while DP
represents a combination of Dapper/Pipes.

Table 2 shows the number of steps for each, task segmented
by problem areas. K represents Karma, while DP
represents Dapper/Pipes combination. Overall, Karma
takes fewer steps in each area to complete the three tasks.

Task 1 involves extracting and cleaning data from one
source. Karma allows the user to clean by example,
resulting in fewer steps compared to DP. Figure 1 shows an
actual snapshot of how the data cleaning is done in Pipes

147

for task 1. In addition, DP incurs a fixed cost of 9 steps to
send the extracted data from Dapper to be cleaned in Pipes.

In task 2, DP needs to extract and define the output for each
source separately, while Karma allows the expert to extract
two sources into the same table. Also, the structure of the
Karma table allows the union to be done implicitly; the
expert can stack the data from the second source as new
rows in the table under the first source. DP, however, needs
3 widgets to union the two sources together.

In task 3, the number of steps for each system is fewer
compared to that of task 2 because we assume that the
Health Rating source is already extracted. Note that DP is
unable to extract detail pages as specified, so the result
shown is actually (a) the steps DP takes to finish the task
without extracting detail pages, and (b) the steps Karma
takes to fish the task including detail page extraction.

Each scenario requires Dapper to be linked to Pipes causing
additional steps in Data Integration. However, even if we
ignore the cost of linking, Karma still performs better in
each problem area.

VI. CONCLUSION AND FUTURE WORK
Our contribution in this paper is an approach to build
Mashups by combining four common information
integration techniques, often solved separately, into a
unified framework. In this framework, users can build
Mashups, without writing code or understanding
programming concepts, by providing examples of what the
end result for each intended operation should look like.

While existing work shares the same vision of building
Mashups without programming, the widget approach still
requires users to understand basic programming concepts.
Furthermore, other tools lack a unified framework to make
tasks simple for users and address only some of the Mashup
building issues.

In terms of the future work, we plan to do an extensive user
evaluation comparing our system to current state-of-the-art
systems. We also plan to apply the same programming by
demonstration principle to the problem of visualization to
allow users to customize Mashup displays.

VII. ACKOWLEDGMENTS
This research is based upon work supported in part by the
NSF under Award No. IIS-0324955, in part by the Air
Force Office of Scientific Research under grant number
FA9550-07-1-0416, and in part by DARPA, through the
Department of the Interior, NBC, Acquisition Services
Division, under Contract No. NBCHD030010.

The U.S. Government is authorized to reproduce and
distribute reports for Governmental purposes
notwithstanding any copyright annotation thereon. The
views and conclusions contained herein are those of the
authors and should not be interpreted as necessarily
representing the official policies or endorsements, either

expressed or implied, of any of the above organizations or
any person connected with them.

REFERENCES
1. S. Chaudhuri and U. Dayal. An overview of data

warehousing and OLAP technology. In SIGMOD
Record, 1997

2. W. W. Cohen, P. Ravikumar, and S. E. Fienberg. A
comparison of string distance metrics for name-
matching tasks. In Proc. of the IJCAI, 2003.

3. A. Cypher, Watch what I do: Programming by
demonstration, MIT Press, 1993.

4. R. Dhamanka, Y. Lee, A. Doan, A. Halevy, and P.
Domingos. Imap: Discovering complex semantic
matches between database schemas. In Proc. of
SIGMOD, 2004.

5. R. Ennals and D. Gay. User Friendly Functional
Programming for Web Mashups. In ACM ICFP, 2007.

6. B. Hartmann, L. Wu, K. Collins, and S. Klemmer.
Programming by a Sample: Rapidly Prototyping Web
Applications with d.mix, UIST, 2007.

7. A. Heß and N. Kushmerick, Learning to attach semantic
metadata to web services. In Proc. of ISWC, 2003.

8. D. Huynh, S. Mazzocchi, and D. Karger. Piggy Bank:
Experience the Semantic Web Inside Your Web
Browser. In Proc. of ISWC, 2005.

9. C.A. Knoblock, K. Lerman, S. Minton, and I. Muslea.
Accurately and reliably extracting data from the web: A
machine learning approach. Intelligent Exploration of
the Web, Springer-Verlag, Berkeley, CA, 2003.

10. T. Lau, Programming by Demonstration: a Machine
Learning Approach, PhD Thesis, University of
Washington, 2001.

11. K. Lerman, A. Plangrasopchok, and C. A. Knoblock,
Semantic Labeling of Online Information Sources, In
Pavel Shaiko (Eds.) IJSWIS, Special Issue on Ontology
Matching, 3(3), 2007.

12. E. Rahm and P. Bernstein. On matching schemas
automatically. VLDB Journal, 10(4), 2001.

13. V. Raman and J. M. Hellerstein. Potter's Wheel: An
Interactive Data Cleaning System. In Proc. of VLDB,
2001.

14. R. Tuchinda, P. Szekely, and C.A. Knoblock Building
Data Integration Queries by Demonstration, In Proc. of
IUI, 2007.

15. J. Wong and J.I. Hong. Making Mashups with Marmite:
Re-purposing Web Content through End-User
Programming. In Proc of ACM Conference on Human
Factors in Computing Systems, CHI Letters, 9(1), 2007.

16. L. Yan, R. Miller, L. Haas, and R. Fagin. Data driven
understanding and refinement of schema mappings. In
Proc. of SIGMOD, 2001.

148

