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Abstract 

The existence of spiral-type beams with a predetermined intensity distribution is investigated by theoretical and 

experimental means. Spiral-type beams with an intensity distribution in the form of an arbitrary planar line were found. A 
correspondence between these laser beams and a specific quantum-mechanical situation - ground states of a charged 
particle in a uniform magnetic field - was found. The connection between spiral-type beams and coherent states is shown. 

Some methods of spiral-type beam synthesis are described. Experimental results of transformation of a gaussian beam into a 
triangle-line laser beam are presented. 

1. Introduction 

It is well known from publications on the phase-retrieval problem that relations between intensity and phase 
in one-dimensional and two-dimensional cases are essentially different. The physical aspects of this difference 
have been investigated in Refs. [l-3]. As has been shown there, the difference is closely connected to the 
possibility of the appearance of a vertical component of the energy flux field in the two-dimensional case. A 
nonzero curl of the energy flux field makes the relation between intensity and phase much more complicated in 
this case. On the other hand, this complexity is a source of new possibilities. In the two-dimensional case there 
is, in the paraxial approximation, a family of so-called spiral-type beams: vertical wave fields that leave the 
intensity unchanged under propagation and focusing, if we neglect scale and rotation [4]. In particular, these 
wave fields have been found as a generalization of gaussian beams in the form 

F(x, y,I)=;exp - l ( F),i?$?) 19 (1) 

where fl z) is an arbitrary analytic entire function, CT = 1 + 2il/kp2, 1 is a distance along the direction of 
propagation of the beam, p = const, k is a wave number and the argument sign of fl z> determines the rotation 
direction relative to the propagation direction. 
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It is seen from the given formula that the wave field family is extensive enough but the question of existence 
for a beam with predetermined intensity and constructive way to select it from the family is a non-trivial 
problem. 

In this paper we study some possibilities to create beams with a structurally stable intensity distribution under 
propagation and focusing. The beams found have various intensities and may be applicable in laser technology. 

Our paper is organized as follows. In Section 2, general properties of spiral-type beams are considered and 
some simple beams are constructed on this basis. In Section 3 the problem of construction of more general 
spiral-type beams with the topology of an arbitrary planar curve is investigated. In Section 4 some praperties of 
beams for closed curves and the quantum-mechanical aspects of the results found are presented. In Section 5 we 
deal with methods of realization of various spiral-type beams; experimental results are presented in the same 
section. The results of the paper are discussed in Section 6. 

2. Spiral-type beam properties and simple beams 

As the intensity of a spiral-type beam (1) is structurally stable for all 1, it is sufficient to consider them at the 
waist plane I = 0 (a = 1) with positive sign in the argument of function f only. Let us define 

9( z, Z) = exp( -z?/p’)f( z/p), (2) 

where z = x + i y, Z = x - i y are complex variables. Then 9( z, 2) gives a complete description of the 
F(x, y, I) in plane 1= 0 and its evolution under propagation. So, we will refer to 9(z, Z) as the spiral-type 
beam (1). 

Let us consider some general properties of the spiral-type beam family, which are deduced from (2) and will 
be used below. 

Property A. If 9$z, 2) = exp(- E/p2>f,(z/p) is a set of spiral-type beams, then a linear combination 
9(z, Z) = C,C,,~$Z, .?I is a spiral-type beam. More generally, if 9(z, 2, a> = exp(-zZ/p2)flz/P, a) is a 
spiral-type beam dependent on parameter a, then 9(z, Z) = lsP(z, Z, a) da is also a spiral-type beam. 

Property B. If 9c,(z, Z> = exp( - zZ/p2)f(z/p) is a spiral-type beam, then 9( z, Z) = exp( - E/p2) 
Xflze-‘“/p) is a spiral-type beam whose intensity is the same as that of ~%‘a( z, Z), but rotated over an angle 
(Y. 

Property C. If 9&z, Z) = exp(-E/p2)flz/P) is a spiral-type beam, then 

is a spiral-type beam whose intensity is the same as that of ._FO(z, Z>, but displaced to the point zO. In this case, 
in contrast with the previous one, substitution of the variable z * z - z0 does not lead to the desired result 
immediately. It is easy to see that 

exp 

i 
_ (z-zo)G-20) 

P2 
)f(y) =exp(_ .-.“p,“+i”i”),( zpzo) 

is not a spiral-type beam because of the factor exp(?.zo/p2). Multiplying it by a linear phase function 
exp< - ( U. - zZo>/p2) we keep the intensity distribution and obtain the requested spiral-type beam. 
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Fig. 1. Trajectories of maximum points of gaussian beams Yz4,(z, Z) - straight lines - at 

surface. 

1 z,, 1 = const are placed on the hyperboloid 

From Eq. (3) for flz> = 1 we have an “elementary” spiral-type beam 

LY,(z, z)=exp[-(u-2uo+zI,Z~)/p2], (4) 

with gaussian intensity distribution displaced to the point z0 2. The beam phase is a linear function of 
coordinates and, of course, the beam propagates along a straight line. In this connection it is instructive to 
consider how the beam rotation occurs under propagation. From Eq. (1) it follows that the trajectory of the point 
of maximum intensity of the beam (4) in (x, y, f> space is described by the expression 

x + iy = z0 I u I exp[i arg( a)] = (x0 + iy,)(l + 2il/kp2), (5) 

where x0, y0 are the coordinates of the point of maximum intensity z,, at 1 = 0. 
Let us consider the beam family (4) for 1 z. 1 = const. From (5) it is seen that the trajectories of the maximum 

intensity point of these beams form a hyperboloid of one sheet in (x, y, I) space: 

x2+y2- 
41 zJ2 
-12 = I z. I 2. 

k2p4 

The maximum-point trajectories for some beams on the hyperboloid surface are shown in Fig. 1. As for general 
spiral-type beams (see Ref. [4]), trajectories starting from z0 on plane 1 = 0 are on the same hyperboloid and are 
generally spirals. 

Using Property A to sum displaced gaussian beams (4) makes it possible to form various spiral-type beams. 

’ Spiral-type beams can be compared with coherent states 1 a> in quantum mechanics and paraxial optics [5]. For example, the scalar 

product of “elementary” spiral-type beams in the space L,(R’) (Yz:,, Yzg,) = $rp2 exp(-( I z. I * -2&r, + 1 z, I *j/p*) is similar to the 

scalarproductofcoherentstates(crl~)=exp(-~(I~I2-2iji~+~~~2)).Inamoregenemlway,if~(z,i)=exp(-d/p2)~(~/p) 

is a spiral-type beam, then (9, PzO)= $rp2P(z0). For coherent states this is similar to (a ( I$) = exp(- f 1 a I *)+(Cr), where 

l$>=Tizy_, c, I n). The connection between the astigmatic transformation of spiral-type beams and coherent states in coordinate and 

Fock-Bargman representations is shown in Appendix B. 
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a b c 
Fig. 2. Intensity (a), phase (b), and intensity level contours Cc) of a spiral-type beam in the form of segment [ - T, TJ. In the phase pattern 
black corresponds to phase cp = 0 and white to phase cp = 2~. The presence of six wave front dislocations in isolated zeros of the intensity 
is seen. 

A simple example of this kind that corresponds to uniformly dense filling of the segment [- T, Tl in the 
complex plane by beams (4) is 

9(z, z/f-T, T]) =exp( -;)/TrexP( -$+ y) dr. 

Intensity distribution, phase distribution and intensity level contours for this beam are shown in Fig. 2. The 
o~en~tion of the coordinate axes is shown in Fig. 2c. (This wavefield and subsequent ones were calculated 
using numerical methods.) The beam intensity has a gaussian decrease in any direction outside the segment 
I- T, T] and at p * T almost all energy is concentrated in a small neighborhood of this segment. 

From (6), with the help of Properties B and C, it is easy to obtain the spiral-type beam which has an in~nsity 
distribution in the shape of an arbitrary segment in the complex plane. Let us determine z0 = i(z, -t zz>, 
T=flq-- z, \ and 1y = arg(q - zi). Then the mapping z e z0 + zeia transforms the segment L-T, T] into 
the segment [ q, z,]. Hence, the beam for I q, z2 1 has the form of 

P(z, Zl[z,, z,l)=exp - 
i 

u-2i&+z*z* T 
p2 

I i 
I 

t2 
exp - 7 + 

2( z- z,) e-‘“t dt 

-T P P2 1 * 
(7) 

We will name [z,, z2] the generating segment for the beam (7). On the straight line cont~ning the segment 
[z,, zz], the beam complex amplitude in the point z, = cz, + (1 - c)q is 

.-qz,, ZJ[Zj, z,])= expli(2c- 1) Im(L,i,)/P*~I_~,l,;,, 
“-‘)’ ‘2-‘i ’ exp( _ t2/p2) dt_ 

Thus, the beam values 9T z, Z I[ zr, z,]> are complex conjugates in points of the line z = cq + (1 - c>zz, 
which are symmetrically located with respect to the point +( z, + z,). In particular, in the boundary points of 
segmeut [ zl, ~1, 

9(z,, Z,l[z,, z,])=-qz2, Z2 l[z,, z2]) =exp(i Im( 2t22)/pz)~ii-z’~xp(-tZ/p2) dt. (81 
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Due to the strong localization of beams (7) at p * T in the vicinity of their generating segments, the 
interference of these beams is weak, if they are distant from each other. Owing to this property, the intensity 
distribution of the field, which is the sum of these beams, is similar to the sum of their intensities. 

Consider now two adjoining segments [a, b] and [b, cl on the real axis. Then the spiral-type beams 
Y( z, Z I[ a, b]) and P(z, Z lib, cl> join seamlessly: 

P’( z, zl[a, c]) =5’( z, .?l[a, b]) +Y( z, Zl[b, cl). 

In general, when two segments [ z,, z21, [ z2, z,] lie on the same straight line, from definition (7) it follows that 
the analogous smooth junction of the beams P( z, Z I [ z,, z,l) and Y( z, Z I[ z2, z3 I> has the form 

Y(z, Zl[z,, z3])=exp(-iIm(Z2z3)/p2)P(z, Zl[z,, z2]) 

+exp(-iIm(Z2z,)/P2)Y(z, Zl[z2, z3]). (9) 
Therefore, this case, in contrast with the previous one, needs phase agreement between the summand beams. 
From Eqs. (8), (9) it follows that the phases of summands in the junction point z2 are equal: 

arg[exp(-i Im( Z2z3)/p2)y(z2, Z21[zI, z,])] =wg[exp(-i Im( Z2z1)/p2)9(z2, Z2 I[z2, z31)]. 
So, if one considers the beam P( z, Z I [ z,, z, ]> + ei 1p ~-3 z, i. I [ z2, z,]> for cp E [0, 2 IT I, then uniformity of 

the sum intensity distribution along the segment [z,, z,] is best at 

cp=arg Y(z2, Z21[zl, z23)-ars P(z2, Z21[z2, z31)=Im(Z2(z3-z,))/p2 (‘0) 

and Eq. (10) may be considered as an optimum condition to make the intensity distribution uniform for the 
junction of two “segment’‘-beams if points z,, z2, z3 are on a straight line 3. 

Let now the points z, , z2, z3 not be on a straight line. In this case interdependence of the “segment’‘-beams 
is essential in the vicinity of point z2, so we have a reason to apply the phase agreement concept (10) to 
construct a spiral-type beam in the shape of the broken line [z,, z,] U [ z2, z,]. Numerical experiments show 
that the intensity distribution of the beam 

P(z, Zl[z,, zJu[z29 z3])=9( z, Zl[z,, z21)+exp(iIm(Z2(z3-z,))/p2)~(z, ?I[z2, z31) (11) 
along the broken generating line is uniform enough for various values of the angle between components [z,, z,] 
and [ z2, z3 I. Thus, the phase agreement principle is helpful to build spiral-type beams shaped as various broken 
lines. The generalization of Eq. (11) to polygonal lines is not difficult. 

Based on the fields presented in this section it is possible to construct spiral-type beams with rather varied 
topologies. A field example containing all kinds of the basic beams is given in Fig. 3. 

3. General type beams 

The results of the previous section naturally raise the following question. Let J(t) be an arbitrary planar 
curve, represented in complex-valued form, and parameter t run from 0 to T. Is there a spiral-type beam 
Hz, Z I l(t), t E [0, TI) shaped like this curve? Of course, the expression “beam shaped like the curve l(t)” 
demands a selection criterion but here we will not define more exactly the mathematical statement, assuming 
that the desired result is visually similar. That is, the beam intensity must be as large as possible in points of the 
curve l(r) and as small as possible in other points of the plane. 

We will construct a spiral-type beam .Y(z, i I l(t), f E [O, T]) as the limiting case of beams that realize 

3 It should be noted that Eq. (10) may be written with an additional summand 2~rN (N is an integer), since it connects arguments of 

complex exponential functions. 
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a 

b 
Fig. 3. Intensity (a) and phase (b) of the beam, which is a sum of simple spiral-type beams. 

approximating polygonal lines for l(r). Let parameter t of the curve .$(?I run from 0 to T, {H/n; k = 0, 1,. . . _ n) 
be a partition of the segment [O, T] and { & = [(IS/n); k = 0, 1,. . . , 

curve J’(t) (see Fig. 4). Then the polygonal line 
n} be a corresponding partition of the 

approximates the curve 5(t) and the corresponding “segment’‘-beams Ly)( z, i. I[ &, &, ,I> realize individual 
components of the line. 

Using representation (11) for a broken-line beam, let us construct an approximating spiral-type beam: 



Fig. 4. A ewe g(f) and its approximating polygonal line. 

Here 40, = 0 and other constants (pk are used for phase agreement in the points &. For each beam Pair whose 
generating segments have a common point, the phase agreement condition is presented by 

pk_,farg9(&,5, I[5k_,,~~l)=(Pkfarg~(5,,5, IEsdk+& k=l**..*n--I. 
Using Eq. (81, we obtain the following solution of the System: 

k=l ,...,n- 1. 

Substituting these expressions into Eq. (12) and reducing the length of each polygonal line component to zero, 
we have 
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Considering the given limit as that of the integral sum, we obtain 

= exp( - zZ/p2)_/crexp 
l(M(f) + km 

P2 
- + -+/o’( &)5’(r) - c(+?(r)) dr I[‘( t) I df. 

P2 I 

(13) 

Thus, we have built the spiral-type beam for the curve c(r). To what extent does its intensity distribution 
correspond to the shape of the curve? The beam representation (13) contains the curve invariants: the arc length 
differential, ( c’(r) ) dr, and the oriented area of sectorial domain, swept out under motion along the curve 
[1/(4i)l/d (&” - Si’> dT. A s a result, the beam is generated by the curve as a geometrical object in the plane. 
In particular, the beam does not depend on the parametrization of the curve. On the other hand, for the 
construction of the beam (13) the phase agreement principle has been used for two and only two adjoining 
components of the polygonal line, excluding other component’s contributions. It is evident that when the 
polygonal line component length is reduced, the corresponding field length does not tend to zero and the field 
interdependence increases. Besides, the shape of the curve is essential. As an example, in Fig. 5 the intensity 
and phase of a spiral-type beam for an Archimedes spiral &‘(t> = tei” are shown. The spiral pitch was selected 
to demonstrate the interference between coils. The coil interdependence increases with decreasing pitch, since it 
becomes comparable with the gaussian parameter p. 

For a closed curve l(t), t E [O, T], the interdependence arises under spiral-type beam construction for 
corresponding polygonal lines as an additional condition to adjust the phases of the first and the last links in the 
point lo = &. 

Thus. the relation between a curve c(t) and a spiral-type beam (13) is generally not evident. Some aspects of 
the problem will be considered in the next section. 

Fig. 5. Intensity (a) and phase (b) of a beam in the form of the Archimedes spiral. Isolated zeros of the beam intensity are seen between 

coils. 
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4. Closed-curve beams 

a) Quantization condition 

Beams for closed curves are special ones and require individual consideration. Let function J(t), t E [O, ~1 

describe a closed curve with no self-crossings. Without loss of generality we suppose that with growing t we 
move around the curve in the counter-clockwise direction. Let us define c(t) for all real t by continuing it 
periodically over the segment [0, IT]. Then the functions [(t + a), t E [0, T] at various real a describe the same 
curve. Do the beams coincide for ((t + a) at various a? Here we show that the beams constructed for a closed 
curve show certain quantization properties. This is shown by the following facts: first, the beam intensity 
distribution changes radically under similarity transformation t(t) + vl(t> and takes the shape of the curve 
v[(t) at definite discrete values of v only. Secondly, beam intensities are the same for v[(t I- a) at various a at 
the very same values of Y only. 

Now we will find the condition under which the spiral-type beams constructed for the curves l(t) and 
CC t + a) coincide: 

l~(z,ZI5(t),tt[Ea,a+T~)l2~l~(~,ZI5(t),t~[O,Tf)12. 

This identity may be written in the form 

e’@(a’5@( 2, Z I {(I), t E [a, fz + T]) =9( z, Z I 5(t), t E [O, T]), (14) 

where @(a) is some real-valued function not depending on z (otherwise, removing the gaussian functions from 
both parts of Eq, (14), we have that Qi is an analytical function of z and, therefore, is not a real-valued function 
for all z). Diffe~ntiating Eq. (14) with respect to a and taking into account the periodicity of i(t), we have 

e”(‘)SP( z, Z I {( t), t E [a, a + T]) i@‘(a) 
!z(Q)l’(~> - 5(45’(4 

- 
P2 I 

fexp i@(a) - 

Substituting the spiral-type beam in this expression in accordance with Q. (14) and removing gaussian factors, 
we represent this equation in symbolic form as: 

f(z)&(a) +exp(2z5(~Vp2)M~) =O, 

where fl Z) is an entire analytic function and F,(a), F,(a) are some functions of a. The validity of this equation 
for all Z, a is possible only if F,(a) = F,(a) = 0 (if fl z) has a zero, this follows immediately. The case when 
flz) has no zeros is also trivial). Thus, 

and, therefore, 

where S is the area of the domain, bounded by the contour l(t). 



E. Abramochkin, V. Volostnikou / Optics Communicarions 125 f’1996) 302-323 311 

a b c 
Fig. 6. Intensity (a), phase (b), and phase outside of the waist piane (c) of the beam in the shape of a triangular boundary. The triangle was 
modelled as the hypocycloid t(t) = iv(2e” + ieWzi’), t E [0,27r]. For the iv-quantized curve, v = pm. The present beam example 
corresponds to N = I. 

So, the beam intensity does not depend on the integration starting point a only for those curves for which the 
restricted domain area satisfies the quantization condition 

s = $rp2N, N= I, 2,.... (15) 

We name the closed curves which satisfy Eq. (15) N-qu~ti~d ones, and spiral-type beams for these curves 
N-quantized beams (see Appendix A). 

The quantization condition (15) comes out naturally from a consideration of closed polygonal lines as the 
limiting case of the additional phase agreement condition for the first and the last segments Pi_ 1 = q+, + 2-N 
(see note 3 after Eq. (10)). 

In Figs. 6 and 7, the quantized triangle-line beam and square-line beam are presented (compare Figs. 6c and 
7c with the vertical axicon in Ref. [4]). Restricted domain areas are gnp2 and 4np2, respectively. In Figs. 6b 

a b 
Fig. 7. Intensity (a), phase (b), and phase outside of the waist plane (c) of the beam in the shape of a 
modelled as the epicycloid {(t) = i v(3e” - &e- 3ir), t E [O, 2-f. For the N-quantized curve, Y = p 
example corresponds to N = 8. 
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and 7b, the presence of phase dislocations (optical vortices) is seen; their numbers are : 
respectively. 

b) Beam intensity and phase on the generating curve 

There exists a characteristic property of quantized beams. Let l(t), t E [O, ~1 be a closed curve without 
self-crossings and let it satisfy conditions (15). Then 9( 5(to), &to) I C(t), t E [O, ~1) # 0 for all to E to, Tl. 
In other words, the entire function 

i(t)!%) + 22(t) 
P2 

-+- 
P2 

;2,:(&-ii’)dr ll’(t)ldt 
1 

has no zeros on the quantized curve z E ( l(t), t E [O, ~11. 
In order to analyze this assertion let us consider the asymptotic behavior of beams 2% Z. ? 1 ~5, > for large 

values of the parameter v/p by means of the saddle-point method [8l. Here 5, is some closed l-quantized 
curve without self-crossings. Here and below we will use a simpler notation 9’( Z, 2 1 L’ ) for a spiral-type beam 
when the curve C does not need detailed description. Changing variables z * VZ, we have 

9’( YZ,Y? I ~5,) = ~/rexp( - v2P( t),‘p2) I S:(t) I dt, (16) 
0 

where p(t) = Zz - 2 zz,(t) + II(t - /d (s, l,’ - Cl i,‘> dr. 
The saddle-point equation P’(t) = 2l;(tX c,(t) - z) = 0 has solutions only for z E {J,(t), 1 E [O. ~11 as a 

result of the absence of singular points ( S,‘C t> # 0 for all t> and self-crossings ( J1( t, I f [,(Q) for t I I t2 E (0, T) 
and tl + rZ), Let z = [,(to) for some to E [0, Tl, and v = 6 * p. Then &l, is an n-quantized curve and the 
integrand in (16) is a T-periodic function. Then Eq. (16) may be written as 

9(6z, J;;Zl q=q “+r’*exp( -nP( t)/p*) 1 c;(t) I dt. 
to- T/2 

Here we used the property 1: f(t) dt = 1:” fit) dt, which is valid for any T-periodic function. Since t = to is 
the only (and simple) saddle point, then 

From (17) it is seen that the intensity at n/p2 + CC tends to the nonzero constant ITP’, and hence the inequality 
Y(Gc,( t,), &z,( t,) I&l1 > # 0 is valid starting at some n (which, of course, depends on the shape of the 
curve 5,(t)>. It should be noted that with growing n/p ‘, the intensity dis~bution on the curve All(t) 
becomes more and more uniform, and the absence of saddle points for z e { [,(t>, t E li0, ~1) leads to an 
intensity decrease away from the curve 65&t). So, the asymptotic behavior of the intensity of a spiral-type 
beam provides the ma~ematical basis for the expression “a beam in the shape of the curve l(t)“. 

For V# ~6 (i.e. for a nonquantized curve vc&t)) the asymptotic estimate is similar to Eq. (17) if the point to 
is not near the boundary points t = 0 or t = T. However, if t0 = T or To = 0, then the integrand in (16) is not a 
T-periodic function and the change of integration segment [O, ~1 into [to - +T, to + ;T] is impossible. For this 
reason the points z = 0 and t = T should be considered as two different solutions of the saddle-point equation, 
and the asyniptotic estimate in this case is 

From this equation it is seen that at Y # 6, the intensity on the curve vyl(t) does not tend to np* at v/p c* 00 
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Fig. 8. Spiral-type beam intensities for the nonquantized triangle curve ((2) = l.0425ip(2ei’ + +e- Z’ ) for two integration starting points. 

Integration segments are t E [ - TT, IT] (a) and t E [O, 2~1 (b). 

and, moreover, the position of the intensity nonuniformity point on the curve Y[,(I) is defined by the start of the 
integration interval. Fig. 8 illustrates the change of the intensity distribution of nonquantized beams in a triangle 
shape for two different starting points of the integration interval. 

The asymptotic nature of the formulae found should be noted once more. For any fixed Y it is not difficult to 
find an example of a curve for which the second term in the expansions is comparable to the first. However, the 
preceding investigation shows the validity of the inequality Y(6Sl(r,,), &i5,(to> !6l,) Z 0 for all n 2 1. At 
present we have no rigorous mathematical proof of this assertion. 

c) The number of zeros inside the generating curve region 

Let us consider now the phase gradient circulation of a quantized beam 9( z, Z 1 fi 5, > = \l-iei ‘p along the 
contour C, described by the curve fi[,(t). From Refs. [I, 31 it follows that 

# 
Vq dr = 2 n c sign rot, j( z,) , 

C n 

where 

is the longitudinal component of the curl of the light energy flux field j and the summation is taken over all 
zeros z, of the spiral-type beam which are placed inside the contour C, zero orders taken into account. If a zero 
z, is nonsimple, then the sign of rot, j( z,) is defined as lim z ~ z. sign rot,j(z). For spiral-type beams (131, 
sign rot, j( z,,) = - sign 8, = 1 (see Appendix A), and we have 

9 V(p dr = 2nN,, 
C 
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where N, is the number of zeros of the beam Y( z, Z 1 fi[,) inside the contour C, zero orders taken into 
account. 

Here we show that for quantized beams 

N,=N. (18) 

As N = 2 S/rip’, (18) links a quantized beam number of zeros inside the domain bounded by the generating 
curve with the area of this domain. To prove this, let us first consider the construction of spiral-type beams for a 
circumference. Using Eq. (13) and removing a multiplicative constant, we have 

m sin(2R2/p2 - n)7r 
Y( z, Z I Re”, t E [0, 21~1) = exp( -.r,Z/p2) C 

( - 2 zRR/p)’ 

n-0 2R2/p2-n ’ ’ n. 1 

From the quantization condition for the circumference S = 7~ R* = fvp2N it follows that 2 R2/p2 = N and the 
expansion is reduced to the Nth term: 

P( z, Z I pfie”, r E [0, 21~1) = exp( -Z/p2)zN. ( 19) 

Thus, quantized spiral-type beams for a circumference are the well-known Laguerre-Gaussian beams. The 
validity of Eq. (18) in this case is evident. 

Let us suppose now that there is some N-quantized curve s^<f> for which Eq. (18) is not satisfied. Then we 
can construct a parametric set of curves C(t, c), which starts at the N-quantized circumference l(t, 0) = fieir, 

finishes at l(t. 1) = f(f), and has a fixed area of the interior region S = $rp*N for every curve ,J’(t, c). This 
ensures the validity of the quantization condition (15) for all c E [O, 11 under continuous deformation of the 
circumference. On the other hand, the spiral-type beam for the circumference satisfies Eq. (181, but the 
spiral-type beam for the curve f(r) does not satisfy Eq. (18). Then for some c the number of zeros of the 
N-quantized beam Y(z, Z 1 [(t, c)) changes inside the contour [(t, c). As for the realization of changes in 
zero number of a spiral-type beam with changes in the generating curve the following arguments may be used. 
Spiral-type beam zeros are zeros of corresponding analytic functions, and from the maximum modulus principle 
[9] it follows that an analytic function modulus has no minimum inside a region, except when the minimum is a 
zero of the function. Therefore, no zero can arise from a nonzero minimum of the function modulus or 
transform into the minimum inside the contour when changing the parameter c, because no such minimum for 
an analytic function exists. Thus, the number of zeros changes as a result of a zero moving into or out of the 
region bounded by the curve [(r, c>. But in this case there is a c parameter value cc, for which the spiral-type 
beam 5’(z, Z I 5(t, co>) has a zero on the contour l(t, c,>. As has been noted above, this situation for 
quantized beams is impossible. So, for a quantized beam the number of optical vortices inside the domain 
bounded by the generating curve depends on the domain area, but not its shape. Hence it follows that under a 
change of area, for example from S = $vp*N to S = frp2(N + l), the beam zero number inside the generating 
curve region increases as a result of the intrusion of a zero from the outside. In Fig. 9 an evolution of a 
spiral-type beam for the circumference l(r) = Rei’, t E [O, 2n] at 2R2/p2 E [4.0, 5.01 is presented and a 
process of zero intrusion into the contour is visible. As it has already been noted, a zero intrusion zone is 
defined by the integration beginning 4. 

4 For the quantum-mechanical analog - ground state in a magnetic field - a noninteger value of 2S/7rpz corresponds to a 

nonquantized magnetic flux through the contour l(t): @ =(2~fic/ lel)N+ E and the situation has a certain resemblance with the 

Aharonov-Bohm effect [lo]. 
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Fig. 9 

Black 

a b C 

I. spiral-type beam evolution when changing the radius of the generating circumference: intensity (a), phase (b), and sign of rot0 j cc). 

corresponds to negative values of rot, j and white to positive values. 
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5. Experiment 

a) Amplitude-phase mask method 

~x~rirnen~l realization of the beams (13) was done in the following way. Amplitude halftone masks for 
~plitude and phase of a spiral-type beam were calculated by computer and produced by a photoplotter 
(resolution 1024 X 1024 pixels on a 10 X 10 mm2 square). An amplitude mask for the phase was used to create 
a phase element on dichromated gelatin. Combination of the masks for amplitude A and phase P gives the 
necessary amplitude-phase distribution. We realized a triangle-line spiral-type beam outside the waist plane (cf. 
Figs. 6a and 6c; the wave front curvature is 0.002 mm- ’ >. The spatial frequency of the phase distribution in Fig. 
6c is higher than that in Fig. 6b and there is an increase of the diffraction efficiency with the phase element on 
dicromated gelatin. The experimental setup is shown in Fig. 10. The beam from a laser L lights up the 
amplitude-phase element AR (the element has been rotated by 90” with respect to the distribution shown in Fig. 
6). Lens 3 (f= 250 mm) focuses diffraction orders + 1, 0 and - 1 in the + 1, 0 and - 1 planes, respectively. 
Diffraction efficiencies in these orders are ql : q. : q_, = 10: 7: 3, r], = 40%. The intensity distribution 
structure is shown schematically at the bottom of Fig. 10. In orders -I- 1 and - 1, spiral-type beams rotate 
opposite to each other: P+, = exp( -z?l>flz>, sP_ , = exp(-zZ)f( z). An ordinary diffraction pattern in the 
amplitude ~~sp~ency A may be observed in the zero order. This field is not a spiral-type beam and when 
focused in plane 0 the field does not conserve its structure. In Fig. 11 an experimental dis~bution of intensity in 
diffraction order + 1 is shown in plane + 1. 

b) Astigmatic transformation method 

Now we consider another and not so evident way of realization of spiral-type beams. In Ref. ill], the 
~~sfo~ation of Hermite-Gauss beams into Laguerre-Gauss beams with the help of astigmatic optics was 
presented. A particular case of this transformation is 

2 AP 3 

Fig. 10. Experimental setup for the synthesis of the triangle-line spiral-type beam. 



E. Abramochkin, V. Volostni~v/~pti~s Communications 125 r19!W) 302-323 .: I7 

Fig. I 1. Experimental intensity distribution of triangle-line spiral-type beam (+ 1 diffraction order). 

This equation offers a possibility to synthesize spiral-type beams exp(-x2 - yzXx + i y)” and may be 
generalized in the following way: 

2itq 2 
-i(x&+yv) + - - > 

P2 
d5 drl 

=~%p* exp(-$p’~)S@(p(x+iy), p(x-iy)), 

where g( 4) E L,(R) and the spiral-type beam S? z, 2) is 

~(2, i)=exp(-~~+~~z~~~exp(-~2-izzS)g(5) dS. 

(20) 

EQ. (20) suggests the following ex~riment~ procedure to synthesize spiral-type beams: a) form a fight field 
exp( - ~2/p2)g( &‘p) for some function g( 5 ), b) perform an astigmatic transformation and c) compensate for 
the astigmatic factor after the ~~sfo~ation. 

For example, if g( 5 I= rect( e/a), then a realized “segment’‘-beam is similar to the beam presented in Fig. 
2. If g( 5) = rectS iF/a>Cf= _NeinwS then a realized spiral-type beam has the form of 2N + 1 parallel vertical 
‘pigment”-bus: 

At w w w0 = 2v%, neigh~~ng beams stick together and beam (21) looks like a zero lattice symmetrical in x 
and y (see Fig. 12). The frequency w0 may be deduced from the following consideration. At a * 1 and N + m 
the beam (21) may be written in the form 

y?,(z, YQ=J;;exp(--$E-$2’) 2 exp(-$w2n2i-tovl). 
n= -CC 

The last series is the theta-function fi3. From the Poisson formula for this theta-function [12], 

g exp(-nn2 +2inz) =exp(-z2/?r) i exp( --3~n~+2nz) 
“=--P nni -m 
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a b 
Fig. 12. Intensity (a) and phase (b) of a spiral-type beam in the shape of a zero lattice (numerical experiment). 

at w = oO, and we have symmetry and periodicity of the intensity: 

IZ(z, ?)I’= IZ(iz, -iZ)12= IX(zfw,, Z+wa)l*= I%(z+iw,, Z-io,)l*. 

We realized the beam (21) using a Dammamr grating with spatial frequency wa as a muItipIication element. The 
experimental setup is shown in Fig. 13. A laser beam is collimated by spherical lenses 1, 2. cylindrical lenses 
3, 4 compress the beam in one dimension and together with spherical 5 and cylindrical 6 form a field 
exp(- 77*/p*) rect( ,$/a) exp(2i&q/p*) in the plane of diffraction grating 7, which gives 17 orders of equal 
intensity (see theory and experiment in Ref. ill]>. Behind the grating, the astigmatic transformation (20) is 
realized in the Fraunhofer zone and the intensity dis~ibution of the output field looks like a zero lattice. 
Remaining astigmatism in the Fraunhofer zone is compensated by two cylindrical lenses, the long-focus positive 
8 and the negative 9. The reference beam is used for interference visibility of the spiral-type beam phase on the 
screen 10. In Fig. 14 the results of the experiment are shown. As can be seen in Fig. 14b, the fringe ramifies in 
each isolated zero that corresponds to the presence of a phase singularity. The curl values of the light energy 

Fig. 13. Experimental setup for the synthesis of the beam in the shape of a zero lattice. 
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a 
Fig. 14. A zero lattice beam: intensity (a) and pattern of interference between this beam and a reference beam (b). 

flux field have the same sign in every intensity zero. The distortion of the experimental lattice structure in 
comparison with the theoretical distribution shown in Fig. 12 is the result of some residual aberrations. 

A more general method to form spiral-type beams (1) which is similar to the above one may be deduced from 
results in Ref. [ill. As an example, let us consider an astigmatic transformation of a spiral-type beam (13): 

2i57) 
-i( xt+y7I) + - 

P2 
~(S+ill,5-iBIi)dbdrl=~exp(-aip2~-Bp2XZ)h(py,i), 

(22) 

It is easy to see that all information about the spiral-type beam structure is contained in the integral part of Eq. 
(22), which is a function of one variable. Therefore, this function implements an original one-dimensional 
coding of the planar curve l(t) and we have the following method to create spiral-type beams: a) synthesize a 
one-dimensional amplitude-phase element h( py 1 5 ), b) “restore” the intensity of the spiral-type beam with 
the help of an astigmatic gaussian beam exp<- ip”< x2 + 2j xy)) in the far diffraction zone or in the Fourier 
plane. In Fig. 15 an example of this amplitude-phase element used to synthesize a “triangle’‘-beam is shown 
(cf. Fig. 6). The one-dimensional structure of this element permits the use of all capabilities of microlithography 
and, hence, this method may be preferable for technology tasks. 
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a b 
Fig. 15. Amplitude (a) and phase. (b) of the one-dimensional optical element h( py lip(2e” + ie-- ‘if), r E [O, 2~1, for astigmatic synthesis 
of the triangle-line spiral-type beam (cf. Fig. 6). 

Experimental realization of 
published later. 

spiral-type beams by means of one-dimensional elements is planned to be 

6. Discussion and conclusions 

The main results of this work can be summarized as follows: 
(i) a family of laser beams with predetermined intensity shape was found (in particular, the shape of an arbitrary 
curve, be it closed or open>; 
(ii) a relation between this beam family and a known qu~~rn-mech~ical situation - ground states of a 
charged particle in a uniform magnetic field - was discovered; 
(iii) each beam with the topology of a closed curve without self-crossings satisfies a specific quantization 
condition. This property is similar to the quantization of the magnetic flux field through the curve; 
(iv) some methods of synthesis of spiral-type beams were proposed and an example of an ampli~de-ph~e 
optical element to convert a gaussian beam into a beam with triangle-line topology has been calculated and 
realized in practice. 

A few theoretical results concerning spiral-type beam optics are presented in Appendix B, but some questions 
(for example, the properties of spiral-type beams for closed curves with self-crossings) are not included. 
Spiral-type beam optics is a wide and active field, not fully covered by this article. Nevertheless, the tools 
described here for optical manipulations are various enough. In Fig. 16 an example of a beam with complex 
topology is presented. It illustrates all possibilities at our disposal by the time the article was written. In spite of 
the “man-made” form, it is as natural a solution of the Schrodinger equation as the Hermite-Gauss and 
Laguerre-Gauss modes. 

One more relation between this work and quantum mechanics should be noted. It concerns the problem of 
mechanical action of light on atoms. Ponderomotive laser action may be used in various applications such as 
atomic and molecular beam control, isotope separation, spatial localization and formation of atom grids in light 
fields [ 131. Spatially inhomogeneous light fields with a possibility to control not only the magnitude but also the 
structure of the action attract much attention. In this case the light field phase is as important as the intensity and 
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a 

b 
Fig. 16. intensity (a) and phase(b) of a spiral-type beam with complex topology. 

beam tools described in this work may be used for these tasks. For example, from Ref. [4] and the present work 
it follows that spiral-type beams are light fields with essentially nonzero curl of the light energy flux field 
rot, j = [VZ, Vtp],/k. OR the other hand 1131, a light field action on atoms which is linearly dependent on its 
velocity may be presented as a Lorentz force with some effective magnetic field H,,, - [VI, VP] with a 
structure similar to rot, j, as was shown. 

Finally it should be noted that, from the formal point of view, the basis of the theory of focus-wave modes 
and electromagnetic directed-energy pulses trains [14] is the Schrijdinger equation and, therefore, the results of 
this work apply also in that field. 
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Appendix A 

The connection between paraxial optics and quantum mechanics has been considered by various authors (see, 
for example, Ref. [6]). What concrete quantum-mechanical situation corresponds to spiral-type beams? As was 
shown in Ref. 141, the equation for spiral-type beams in scaled polar coordinates R, p is 

V2F + 4i8$F/a(p - 4F( R2 - yO) = 0, 

where Reiq = ( x f i y) exp(i B0 arg o)/p 1 CF I, CT= 1 + 2il/kp2 and BO, y0 are constants. On the other hand 
@I), the Schrijdinger equation for a charged particle with mass M and charge e in a uniform magnetic field H 
in ordinary polar coordinates R, cp is 

V21fi+4isign(eH)&J/&p--44JI(R2-2cCME/&(eHi)=O, 

where E is the particle energy. The equivalence of these equations for y0 = 2&E/& [ eH 1, &, = sign(eH) is 



322 E. Abramochkin, V. Volostnikov/ Optics Communications 125 (1996) 302-323 

seen. So, spiral-type beams (1) (in this case 5, = + 1, y. = 1) correspond to the particle wave functions of the 
ground state in the uniform magnetic field ( E = ii I eH I /2 CM). Eq. (15) corresponds to the quantized magnetic 
flow through the contour l(t): Cp = (2 IT&/ I e 1 )N. It should be noted that the above equations are the same in 
different coordinate systems. 

Appendix B 

Here we present some properties of spiral-type beams and the relation with certain tr~sfo~ations. 
1. Let us return to the astigmatic transformation (20) and rewrite the obtained spiral-type beam 9’( z, 2) in the 
form 

~(2iz,-2i~)=exp(-~~)~~exp~-~~z~2~~-~2)~(~~ dc=expf-izZ)f(z). 

Then we have the continuous counterpart of the Gabor expansion [ 151 of the function g( 0, in which the 
analytic function j7 z) is connected with g( 5) through an integral transformation with kernel exp< - $z’ + 2 zt 
- 5 *). On the other hand, in quantum mechanics [5], the coordinate representation of the state I q) and the 
Fock-Bargman represen~tion ( z 1 are connected by the integral ~ansfo~ation with kernel 

(z~q>=_!- _.C+%_~ 
4aexp i I 2 JZ 2ii . 

Thus, the astigmatic ~~sfo~ation (20) realizes a connection between two qu~~rn-mech~ical representations 
by optical methods. 
2. Eq. (20) indicates the possibility of an optical realization of an analytic continuation of the Fourier image of 
the field g( 5) with the help of the astigmatic ~~sfo~ation. As an example for a finite field g(t) with 
support [ -a, a], the action order is as follows. First, the field g( 5) is passed through the amplitude mask 
exp( - a* + 5 * - 7’) and the astigmatic phase element exp(2itq). Then an optical Fourier transformation is 
realized. The output field zeros are zeros of the analytic continuation of the Fourier image of the field g( 6 1. 
This optical analytic continuation may be used as the basis of the new phase retrieval method (see also Refs. 
i[16,2,31). 
3. A symmetry of a closed curve appears in the properties of the corresponding spiral-type beams. Let 
J(t), TV [O, 21~1 b e parametrized by the polar angle and be stable under rotation by an angle 277/M, i.e. 
l(t + 27r/M) = l(t) exp(2rri/M). Then the quantized spiral-type beams 9$z, 7) for the corresponding 
quantized curves L(t) have the following properties: 

(i) Pfi( ze2ni/M, Ze -2ni/M) =,i;“,( z, T)e2nin/M; 

(ii) the point z = 0 is zero with order n - [ n/M]M of the beam Pn( z, Z). If n 2 M, then other zeros within 
the contour [,,(t) are placed at comers of regular M-gons (one or several). For example, M = 3 for a 
hypocycloid t(t) = ip(2e” + te-“i’), t E [O, 2 rr 1. So, the beam 9’,( z, Z) has a prime zero z = 0 and 6 others 
at the corners of two regular triangles (see Fig. 6). 

(iii) If (n - ml/M is noninteger, then the beams 9,,( z, Z) and sL?,(z, Z> are orthogonal in the space 
L,(lR*). To prove this, it is sufficient to note that 

For example, M is an arbitrary integer for circumferences. So, in this case (Sp,, Pm)L2Cw~, = 0 for all n # m. 
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The integral equality is well-known as a particular case of the Laguerre-Gauss beam orthogonality (see Eq. 

(191). 
4. Evolution of the field F(x, y, 0) = exp(- $p2y2)h( px 1 5) from (22) under propagation is given by 

where CT= 1 + ilp2/4k. Comparing (22) and (B.l) it is seen that the above field F(x, y, I>, with scale and 
phase factors neglected, is the astigmatic transformation of the spiral-type beam y1( ze-’ arg V, Ze’ arg u 1 5 ). 
This beam is deduced from the initial one by rotation over an angle arg c+. The ~~sfo~ation (k.1) and 
corresponding astigmatic transformation have a geometrical interpretation. Following Ref. ill], let us consider 
the three-dimensional complex distribution 

W(x, U, y) =exp(-2i.xU/p2-2y2/p2)9(x+iu, x-iul S). 

The projection of this distribution on the plane u = 0 is 

wp( x, y) = 1 w( X, U, y) du = &p exp( -2Y2/P2)ht4x/P 15 )+ 
R 

This projection is similar to F(x, y, 0). If W(x, U, y) is rotated around the y axis through angle arg fl then its 
projection on the plane u = 0 is equal to F( X, y. i), if we neglect scale and phase. factors. Therefore, the 
evolution of the field F( X, y, 1) under propagation looks like a change of the projection of W( X, U, y) under 
rotation around the y axis. 
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