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SEARCHING GENOME-WIDE DISEASE ASSOCIATION THROUGH SNP DATA

by

XUAN GUO

Under the Direction of Yi Pan, PhD

ABSTRACT

Taking the advantage of the high-throughput Single Nucleotide Polymorphism (SNP)

genotyping technology, Genome-Wide Association Studies (GWASs) are regarded holding

promise for unravelling complex relationships between genotype and phenotype. GWASs

aim to identify genetic variants associated with disease by assaying and analyzing hundreds

of thousands of SNPs. Traditional single-locus-based and two-locus-based methods have

been standardized and led to many interesting findings. Recently, a substantial number of

GWASs indicate that, for most disorders, joint genetic effects (epistatic interaction) across



the whole genome are broadly existing in complex traits. At present, identifying high-order

epistatic interactions from GWASs is computationally and methodologically challenging.

My dissertation research focuses on the problem of searching genome-wide association

with considering three frequently encountered scenarios, i.e. one case one control, multi-

cases multi-controls, and Linkage Disequilibrium (LD) block structure. For the first scenario,

we present a simple and fast method, named DCHE, using dynamic clustering. Also, we

design two methods, a Bayesian inference based method and a heuristic method, to detect

genome-wide multi-locus epistatic interactions on multiple diseases. For the last scenario, we

propose a block-based Bayesian approach to model the LD and conditional disease association

simultaneously. Experimental results on both synthetic and real GWAS datasets show that

the proposed methods improve the detection accuracy of disease-specific associations and

lessen the computational cost compared with current popular methods.

INDEX WORDS: Algorithm, GWAS, SNP analysis, epistatic interactions, epistasis, clus-
tering, Bayesian Theory, Markov Chain Monte Carlo
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PART 1

INTRODUCTION

Most common diseases, such as hypertension, cancer, diabetes and heart disease, are

complex traits resulting from the joint effects of various genetic variants, environmental fac-

tors or their interactions. It is of great interest to identify the genetic risk factors for complex

diseases, to understand disease mechanisms, develop effective treatments and improve public

health. The cost of genomic technologies is falling exponentially over time. For instance,

the Human Genome Project took 13 years and cost $2.7 billion, whereas the current cost

of sequencing a genome is approaching $1000 and takes less than a week. Within the next

ten years, it is expected to drop to as low as $10 and take just a few minutes to genotype

all 3 billion nucleotides in the human genome. With the availability of large-scale genotyp-

ing technologies together with their rapid improvement, the cost of genome-wide analyses

has been widely decreased, and a great number of large-scale genetic association studies is

initiated.

Complex diseases do not show the “pure” inheritance pattern observed in Mendelian

diseases, where alterations in a single gene or a unique locus are causal for a phenotype.

In a complex disease, multiple genes are involved, each with low-penetrance, where each

gene modestly increases the probability of disease and does not ultimately determine disease

status. These factors often render the traditional genetic dissection approaches, such as link-

age analysis, ineffective tools to study complex diseases. My dissertation research focuses

on three main problems in SNP data analysis, namely, detection of disease-related associ-

ations using one case, multiple cases, and modelling the block structure caused by linkage

disequilibrium. Giving one case and one control, we are possible to find some associations

connecting to a disease phenotype. With multiple disease cases, the same genetic factors

with varied effects on different diseases could be detected. Inferring the block-wise structure
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in the human genome can further diminish the significant false associations due to the LD

effects.

1.1 Single Nucleotide Polymorphism

The modern unit of genetic variation is the Single Nucleotide Polymorphism (SNP)

which refers to a single base change in a DNA sequence with an usual alternative of two

possible nucleotides at a given position [1]. SNPs are the most common and abundant form of

genetic variation amongst the human population. It is estimated that on average there is an

SNP per every 300bp of DNA, and about 11 million SNPs are on the whole genome of human

species. However, due to a genetic phenomenon called Linkage Disequilibrium (LD) and the

vast majority of them with minor impacts on biological systems, it is not necessary to study

all the SNPs [2][3]. The basic functional consequence of SNPs is amino acid change, which

leads to the fluctuation of mRNA transcript stability and the transcription factor binding

affinity through the central dogma [4]. In general, there are two commonly occurring base-

pair possibilities for the same sequence location in a population. In this case, we say that

the SNP has two alleles. An SNP is assigned a minor allele frequency or a frequency of less

common allele when it is observed less frequently in a particular population. For example,

if 20% of a population has the Cytosine allele versus the more common allele or the major

allele, which takes up 80% of the population, then this SNP has a minor allele (C) with

frequency of 0.2.

1.2 Genome-wide Association Studies

Genome-wide Association Studies (GWAS) have been proven to be a powerful tool

for investigating the genetic architecture of human disease over the last ten years. It is a

genomic and statistical inference study that involves statistical tests to measure and analyze

DNA sequence variations in different individuals to see if any variant is associated with

a trait. The ultimate goal of GWAS is to use genetic risk factors to predict who is at

risk and to identify the biological underpinnings of disease susceptibility for developing new
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preventions and treatment strategies. In the last two decades, extensive computational efforts

have been provided to study the functional and structural consequences of the SNPs [5].

High-throughput chip based microarray technology has made GWAS possible for assaying

one million or more SNPs. Currently, two primary platforms from Illumina (San Diego,

CA) and Affymetrix (Santa Clara, CA) have been used for most GWASs. The Illumina

platform uses a bead-based technology, which features better specificity at a little high cost,

with slightly longer DNA sequences to detect alleles. The Affymetrix platform prints short

DNA sequences as a spot on the chip that recognizes a particular SNP allele by differential

hybridization of the sample DNA. More details of these two competing technologies can

be found in [6]. By far, over 600 GWA studies have been launched for 150 diseases and

traits. In addition, aiming to examine the relationship between human genome sequence

variation and the associated disease phenotypes, various international consortia are collecting

information about variations in human genome, including HapMap Consortium, Human

Variation Project, 1000 Genomes Project and Wellcome Trust Case Control Consortium

(WTCCC).

The first exciting finding of GWAS is on Age-related Macular Degeneration (AMD),

which identified the Complement Factor H gene as a major risk factor [7]. The associated

Complement Factor H gene demonstrates not only the DNA sequence variations but also

the biological basis for the effect. Another successful application of GWAS is in the area of

pharmacology, which heavily depends on the understanding the biological basis of genetic

effects. The goal of pharmacogenetics is to identify associated DNA sequence variations with

drug metabolism and efficacy as well as adverse effects. Take warfarin for example, which is

a blood-thinning drug that helps prevent blood clots in patients. A recent validation studies

reveal that warfarin dosing can be largely influenced by the DNA sequence variations in

several genes [8]. Accordingly, GWAS is increasingly used to identify biological pathways

and underlying networks of complex diseases [9]. It has led to the exciting era of personalized

medicine and personal genetic testing aiming to tailor healthcare for individual patients based

on their genetic background and other biological features.
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1.3 Genome-wide Association Search

The concept of epistasis [10] was introduced around 100 years ago. It was referred as an

extension of the notion of dominance for alleles within the same allelomorphic pair [10].

In recent literature, epistasis has been defined as the interaction among different genes

(SNPs) [11]. In this paper, we also refer epistasis as a gene-gene interaction. Genome-

wide association studies provide an enormous opportunity to identify high-order epistatic

interactions among genetic variants throughout the genome. Without loss of generality, we

consider high-order epistatic interactions or epistasis as the statistically significant associa-

tions of k-SNP modules (k ≥ 2) with phenotypes.

The phenotypes in GWAS can be classified as either categorical (often binary case/con-

trol) or quantitative. Although quantitative traits are preferred, and they improve power

of detecting a genetic effect from the statistical perspective, well established quantitative

measures are not available for many disease traits. Consequently, individuals in standard

studies are usually categorized to the binary variables. Note that existing methods can han-

dle quantitative traits by discretizing a continuous phenotype with minor modification. A

routine in GWAS is the comparison between two groups of individuals: one has a higher

prevalence of susceptibility alleles for the interested trait, another has a lower prevalence of

such alleles [12]. The primary analysis paradigm for GWAS is dominated by the analysis

of the susceptibility of individual SNPs, which can only explain a small part of causal ge-

netic effects for complex diseases [13]. As a matter of fact, single locus-based approaches

are insufficient to detect all interacting genes, in particular for those with small marginal

effects. For better understanding underlying causes of complex disease traits, identifying

joint genetic effects (epistasis) across the whole genome has attracted more attentions [14].

Many studies have demonstrated that the epistasis is an important contributor to genetic

variation in complex diseases, such as asthma, breast cancer [15], diabetes, coronary heart

disease [16], and obesity [17].

Two challenges arise from finding high-order epistatic interactions associated with an
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interested trait among a large number of SNPs. The first comes from the combinatorial

nature of the problem that the number of SNP combinations exponentially increases as the

order goes up. Given a GWAS dataset with hundreds of thousands of SNPs, using brute-

force approaches to examine all combinations of SNPs is computationally challenging, and

even requires specialized hardwares [18][19][20]. For example, in order to detect pairwise

interactions from 500,000 SNPs, which is a typical size of data generated by the Affymetrix

platform, with thousands of samples genotyped, about 1.25 × 1011 statistical tests require

to be proceeded. The second challenge concerns the statistical power for high-order SNP

combination search. Since the vast number of hypothesis tests are often conducted on limited

sample sizes with a high degree of freedom, many false epistases are significantly associated

with a disease trait by random chance [21][22].

1.4 Main Contributions

The main contributions are as follows:

• A simple, fast, and cloud-based method, named DCHE, for detection of genome-wide

multi-locus epistatic interactions including:

– develop of the novel method for grouping genotypes displaying similar genetic

factors.

– develop of the evaluation of interaction based on χ2 statistic tests.

– compare the proposed method to other popular approaches on simulated data

with various main effects and join effects.

– experimental validation of the findings on two real GWAS data.

• Two novel methods for search of genome-wide multi-locus epistatic interactions from

multiple disease cases including:

– develop a novel method, named DAM, based on Bayesian inference model for

describing diverse join effects on distinct disease traits.
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– develop a novel heuristic approach, named SAM, for clustering SNP factors show-

ing almost identical effects on multiple disease outcomes.

– develop a novel evaluation of interaction accounting for redundant combinations

of SNPs.

– validation of the proposed methods on both simulated and real data.

• A novel Bayesian inference based method, named BAM, is designed to model the block

structure in human genome and identify multi-locus epistatic interactions including:

– develop an LD-block model to describe a block structure pattern.

– incorporate the Bayesian variable partition model with LD-block model to capture

the disease-related SNPs.

– propose a two-level MCMC scheme to sample the posterior distribution.

– validation of the block structure on simulated and real data.

1.5 Roadmap of the Rest of the Dissertation

The remainder of the dissertation is devoted to the detection of genome-wide high-order

epistatic interaction problem. Chapter 2 introduces the problem and discusses state-of-the-

art methods and models for the disease associations mapping. Chapter 3 presents a novel

method, DCHE, for high-order interaction searching via dynamic clustering and stepwise

evaluation of interaction. Chapter 4 describes a theoretical and algorithmic techniques using

Bayesian partition model for identifying disease-specific associations and also presents a

heuristic method based on Jensen-Shannon Divergence and a improved version of k-mean

clustering. Chapter 5 gives an advanced Bayesian inference model capable of capturing

block structure and disease associations at the same time. At last, chapter 6 summarizes

our conclusions and future work.
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PART 2

STATE-OF-THE-ART IN GENOME-WIDE ASSOCIATION DETECTION

The goal of detection of epistatic interactions is to identify d-SNP (d ≥ 2) modules

significantly associated with the phenotype. Furthermore, epistatic interactions can be clas-

sified into two types: epistasis displaying main effects (eME) and epistasis displaying no main

effects (eNME) [23]. There are two challenges in searching epistasis: First, the total number

of tests grows exponentially as k increases, leading to the inability of the exhaustive search

to examine all the combinations. For example, using epiSNP [24] to emulate and calculate

all the two-locus epistatic interactions on a GWAS dataset with 1,000,000 SNPs will take

5 years on a 2.66 GHz single processor. Second, because a vast number of hypotheses are

tested using limited samples, a high proportion of significant associations are expected to be

false positives. Therefore, retaining the statistical power while reducing false positive rate is

another important issue.

Two types of data are collected in GWAS: genotype data, which encodes the genetic

variants of individuals, and phenotype data that indicates the affected statuses of individuals.

Here, we only consider bi-allelic SNPs, which means that an SNP has only two alleles. The

SNP is termed as a minor allele if the allele occurs less frequently; otherwise it is termed as

a major allele if the allele occurs more often. Usually, we use lowercase letter to denote the

minor allele and uppercase letter to denote the major allele, like a and A; so the two alleles

form three genotypes - AA, Aa and aa - and they can be encoded as 0, 1 and 2 in raw data.

For phenotype data, the binary variable is used that 0 indicates unaffected, and 1 indicates

affected.
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2.1 Model-based VS. Model-free-based

There are two ways to categorize the methods for detection of epistatic interaction: one

is according to the assumption on the observed data; another is according to the searching

strategy. We will cover the latter one in next section. An overview of recently developed 43

methods is depicted in Figure 2.1, and eight of them with the names in bold are reviewed

and discussed in Section 2.2. If a predefined statistical model is set up between phenotypes

and genotypes, we say that it is a model-based approach in which some parameters require

to be estimated; otherwise it is a model-free method that no prior assumption is made on

the data or the model.

We describe two routines in this section: (1) model fitting using logistic regression

models and (2) Pearson’s χ2 test of goodness of fit. Obviously, the former is model-based,

and the latter is model-free. Assuming that there are L SNPs and N samples. We use S to

denote the ordered set of the L SNPs, si to denote the i-th SNP in S (i ∈ [1, L]), and Y to

denote the class label (1 for the case and 0 for the control). For the analysis of two-locus

epistatic interactions, we need to collect a contingency table (showed in Table 2.1), where

nijy is the count of individuals with genotype sa = i, sb = j, and phenotype Y = y.

Table 2.1 The Genotype Counts in Cases and Controls.

Y=0 sa=0 sa=1 sa=2 Y=1 sa=0 sa=1 sa=2
sb=0 n000 n100 n200 sb=0 n001 n101 n201

sb=1 n010 n110 n210 sb=1 n011 n111 n211

sb=2 n020 n120 n220 sb=2 n021 n121 n222

For the model-based methods, the model defining the epistasis via logistic regression

models must be established at first. The logistic regression model with both main effect

(marginal effect) terms and interaction terms, i.e., the full model has the following form:

log
P (Y = 1|sa = i, sb = j)

P (Y = 0|sa = i, sb = j)
= β0 + βsai + βsbj + βsasbij (2.1)
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Figure 2.1 Classification of the methods that detect epistasis.
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The null logistic regression model without main effect term or interaction terms has the

following form:

log
P (Y = 1|sa = i, sb = j)

P (Y = 0|sa = i, sb = j)
= β0 (2.2)

There are nine coefficients in Equation 2.1 and one coefficient in Equation 2.2. We

denote the log-likelihood of the full model as LF and the log-likelihood of the null model as

LN . According to the likelihood ratio test, the effect of epistasis in this paper is defined as

the difference between two log-likelihoods of models in Equation 2.1 and 2.2. By evaluating

the values at their Maximum Likelihood Estimations (MLEs), i.e., L̂F − L̂N , we are able

to estimate epistasis effect based on the departure of observed data from the null model

naturally.

For the model-free method using Pearson’s χ2 test of goodness of fit, the following steps

are conducted: (1) collect the contingency table as showed in Table 2.1. (2) obtain the

p-value using χ2 statistic (Equation 3) with 8 degrees of freedom [25].

χ2 =
n∑
i=1

(Oi − Ei)2

Ei
(2.3)

n is the count of genotype combinations by giving a set of SNPs. The observed frequency

O is corresponding to the count of the individual with certain genotype combinations and

a class label. SNP modules with p-value larger than a predefined threshold are reported

as significant epistasis. Note that not all model-free methods are using the above-described

approaches, but they share the same feature that similar tests are applied for detection

without any estimation of parameters of models.
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2.2 Methods in View of Searching Strategies

According to the search strategy, existing approaches for searching epistatic interactions

can be grouped into four broad categories, exhaustive search, stepwise search, stochastic

search and heuristic approaches. In the review of recent studies, we identify 43 methods

used to detect epistasis, excluding specializations, tweaks, and simply paralleled methods.

In the following sections, we scrutinize eight methods in these four categories and point out

their advantages and disadvantages.

2.2.1 Exhaustive Searching Methods

The naive solution to tackle the problem of detecting epistatic interaction is exhaus-

tive search using χ2 test, exact likelihood ratio test or entropy-based test for all modules

of multiple-locus. Marchini et al. [14] show that it is computationally possible to test two-

locus associations allowing for interactions in GWAS based on current computing capability.

Examples in exhaustive search, like MDR [15] and its extensions, utilize repeated cross-

validations and permutation tests to evaluate accuracy and significance of classification. A

major barrier for exhaustive search is the intensive computation, and thus parallel comput-

ing was adopted to further speed up the analysis of gene-gene interactions. For example,

GBOOST [26] is a GPU framework based implementation of BOOST, and PIAM [27] is

developed by Liu et al, which uses the multi-thread to perform Genome-Wide Interaction-

Based Association (GWIBA) analysis for exhaustive two-locus searches. However, finding

higher order (more than 2 loci) disease-related associations are too computationally expen-

sive to be feasible, especially for large GWAS datasets with millions SNPs. In this section,

we use BOOST and TEAM as examples of exhaustive searching methods. The overview and

resource information of method falling into exhaustive search is showed in Table 2.2.

BOOST BOOST is a model-based, exhaustive search method, which is the abbre-

viation of “BOolean Operation-based Screening and Testing” [18]. Indicated by the name,

there are two features of BOOST: first, a new boolean representation is used to accelerate
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Table 2.2 Exhaustive search methods for detecting epistasis.

Model-based

BNMBL Bayesian Network Minimum Bit Length score (2010) [28]
BOOST Boolean Operation-based Screening and Testing (2009) [18] http://

bioinformatics.ust.hk/BOOST.html

INTERSNP INTERSNP (2009) [29] http://intersnp.meb.uni-bonn.de
TM Tukey’s 1 d.f model for interaction (2006) [30]
FIM Full Interaction Model (2005) [14] http://www.cbil.ece.vt.edu/

ResearchOngoingSNP.htm

PLR Restricted Partitioning Method (2004) [31]

Model-free

GWIS Genome Wide Interaction Search (2013) [32] http://bioinformatics.

research.nicta.com.au/gwis

iLOLi Interacting Loci (2012) [33] http://www4a.biotec.or.th/GI/tools/iloci
TEAM Tree-based Epistasis Association Mapping (2010) [19] http://www.csbio.

unc.edu/epistasis/download.php

COE COE (2009) [34] http://www.csbio.unc.edu/epistasis/download.php
FastChi FastChi (2009) [35] http://www.csbio.unc.edu/epistasis/download.php
FastAVOVA FastANOVA (2008) [36] http://www.csbio.unc.edu/epistasis/
epiSNP epiSNP (2008) [24] http://animalgene.umn.edu/episnp/index.html
RPM Restricted Partitioning Method (2004) [37]
CPM Combinatorial Partitioning Method (2001) [16]
MDR Multifactor Dimensionality Reduction (2001) [15] http://sourceforge.net/

projects/mdr/

the collecting of contingency table; second, an upper bound for the likelihood ratio test

based on log-linear models and Kirkwood superposition approximation [38] is used to prune

insignificant epistatic interactions. Instead of using one row for each SNP, the boolean rep-

resentation uses three rows, with each row for one specific genotype from 0 through 2. Each

row consisted of two strings of boolean values (0 or 1), one for control samples and another

for case samples. Each bit in the string represented one individual, and its value was set to

1 if the individual had the corresponding genotype, otherwise 0. By transforming the data

representation to the boolean type, the collecting of contingency table information can be

efficiently accomplished by performing 64-bit AND operation in one instruction, and the

counting of “1” bits in a bit string can be treated as hamming weight.

The interested interactions focused by BOOST is not totally equivalent to the epistasis

http://bioinformatics.ust.hk/BOOST.html
http://bioinformatics.ust.hk/BOOST.html
http://intersnp.meb.uni-bonn.de
http://www.cbil.ece.vt.edu/ResearchOngoingSNP.htm
http://www.cbil.ece.vt.edu/ResearchOngoingSNP.htm
http://bioinformatics.research.nicta.com.au/gwis
http://bioinformatics.research.nicta.com.au/gwis
http://www4a.biotec.or.th/GI/tools/iloci
http://www.csbio.unc.edu/epistasis/download.php
http://www.csbio.unc.edu/epistasis/download.php
http://www.csbio.unc.edu/epistasis/download.php
http://www.csbio.unc.edu/epistasis/download.php
http://www.csbio.unc.edu/epistasis/
http://animalgene.umn.edu/episnp/index.html
http://sourceforge.net/projects/mdr/
http://sourceforge.net/projects/mdr/
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defined here. In the terms of the logistic regression model, the likelihood ratio test used in

BOOST is based on the deviance of difference between the full model and the main effect

model,

log
P (Y = 1|sa = i, sb = j)

P (Y = 0|sa = i, sb = j)
= β0 + βsai + βsbj

BOOST denotes the log likelihood of the full model under MLE as L̂F , the log likelihood

of the main effect model under MLE as L̂M , the log likelihood of log-linear saturated model

as L̂S, which was equivalent to the full logistic regression model, and the log likelihood of

the homogeneous model as L̂H , which is equivalent to the main effect model. According to

the likelihood ratio test, interaction effects are measured by the difference between two log

likelihood of the main effect model and the full model evaluated at their MLEs, i.e. (L̂M −

L̂F ). Directly using (L̂S−L̂H) to test interactions in GWAS still has some difficulties, because

iterative methods are needed in model fitting to compute L̂H , which is computationally

intensive when hundreds of billions of SNP pairs were required to test. The Kirkwood

superposition approximation (KSA) is used to approximate the homogenous association

model to get a lower bound, ( ˆLKSA ≤ L̂H) of (L̂S − L̂H). The reason for the replacement

is that the calculation of ˆLKSA was straightforward and no iteration is involved. BOOST

contains two stages: screening, evaluate all pairwise interactions by using the KSA; testing,

for each pair with 2(L̂S − ˆLKSA) > τ , test the interaction effect using the likelihood ratio

statistic 2(L̂S − L̂H).

BOOST only focuses on detecting the eNME, i.e. epistasis displaying no marginal ef-

fects, so it achieves high power when applied to simulated dataset with only eNME. One

weakness of BOOST is that it can only used to detect two-locus epistatic interaction, al-

though it runs very fast (it only takes 170 seconds to analyze 10,000 SNPs with 5,000 samples

on a 3.0 GHz CPU with 4G memory running the Windows XP Professional system.)
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TEAM TEAM (Tree-based Epistasis Association Mapping) [19] is a model-free, ex-

haustive search method to detect two-locus epistatic interactions in GWAS. TEAM is ded-

icated to address the heavy computation aroused by the permutation test. Because many

SNPs are correlated, and their correlation structures among genotype profiles can be pre-

served across enumeration, permutation test is preferred over simple Bonferroni correction.

In permutation test, we perform significance test each time when class labels were shuffled.

More details about permutation test are covered in Section 4.4. Following the above no-

tations, the entire search space of two-locus interaction is HLN(L − 1)/2 with H different

permutations. Considering a moderate GWAS setting that N = 1, 000, L = 100, 000 and

H = 1, 000, we need to conduct 5×1015 pairwise tests. Obviously, it is expensive to compute

the contingency table for every combination of SNPs on all permutations for calculating the

p-values.

Zhang et al. [19] stated that many statistics, such as χ2 test and likelihood ratio test,

were defined as the functions of the counts collected in contingency table. In particular,

calculating the two-locus test value needed all 18 observed frequencies in two-way contingency

table (Table 2.1). The authors proved that given a SNP pair and two single-locus contingency

tables of each SNP, once the value of (n111, n121, n211, n222) fixed, the two-locus test value

can be calculated for any permutations. In addition, these four values can be determined

incrementally utilizing a minimum spanning tree (MST) built on SNPs. In the MST, the

nodes were SNPs, and the edges were the SNP pairs with weights indicating the number of

individuals having different genotypes. In other words, the computation of a contingency

table in other permutations can be achieved by considering only the individuals with different

values, and they had been represented as weights in MST. As it is costly to construct a MST,

TEAM constructed an approximate MST instead.

The overall time complexity of TEAM is O(NLH + NL2 + WTNK), where O(NLH)

is for generating all single-locus contingency tables, O(NL2) is for building the minimum

spanning tree, and O(WTNK) is for updating the value of n111, n121, n211, n222 for H permu-

tations. Comparing to the complexity of brute force approach O(NL2H), the performance
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of TEAM was faster than the latter by an order of magnitude. As TEAM did not presume

any statistical model, it is applicable to any test statistic - e.g. χ2 test, exact likelihood ratio

test and entropy-based test - based purely on contingency table information, and to detect

both eME and eNME. However, if there is no close-form solution for calculating the statistic

test value, using the same framework in TEAM is still computationally intensive when we

deal with tons of SNPs.

2.2.2 Stepwise Searching Methods

Although the exhaustive search is computationally possible to test all two-locus epistatic

interactions for a moderate size of GWAS data, it requires enormous computation time

and loses statistic power when searching higher-order interactions. Instead of explicitly

enumerating all possible combinations of k-locus, stepwise search approaches first select a

subset of SNPs based on single-locus tests or model-free measures, then conduct tests for

multi-locus interactions on the selected subset of SNPs. Compared to exhaustive approaches,

stepwise algorithms usually are much faster, and may perform reasonably well for disease

associated interactions when the marginal effects exist. As showed in a recent theoretical

study [39], the possibility that a high-order (size-k) combination with strong differentiation

between case and control groups displaying zero differentiation in all of its subsets decreases

dramatically when k increases (generally become impossible for k greater than 5). However,

since it removes a considerable portion of SNPs, the stepwise search may not be able to find

interactions involving loci with small or no marginal effects.

epiForest Jiang et al. [41] proposed a stepwise approach, called epiForest (detection

of epistatic interactions using random Forest), for detecting multi-locus epistasis. EpiForest

uses SWSFS (sliding window sequential forward feature selection) algorithm to select a small

set of SNPs as candidates, and then statistically tests up to three-way interactions on the

candidates.

In epiForest, the GWAS can be treated as a binary classification problem where cases
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Table 2.3 Stepwise search methods for detecting epistasis.

Model-based

RanJungle Random Forests for high-dimensional data (2010) [40] http://www.

randomjungle.org/rjungle/rjunglenews

epiForest Random forest for the detection of epistatic interactions (2009) [41] http:

//bioinfo.au.tsinghua.edu.cn/epiForest

HapForest forest-based approach to identifying gene-gene interactions (2007) [42] http:
//c2s2.yale.edu/softwarepackages/HapForest/

FITF Focused Interaction Testing Framework (2006) [43] http://hydra.usc.edu/
fitf

TSTLM Two-Stage Two-Locus Models (2006) [44]

Model-free

DCHE Dynamic Clustering for High-order genome-wide Epistatic interactions detect-
ing (2014) [45] http://www.cs.gsu.edu/~xguo9/DCHE.html

EDCF Epistasis Detector based on the Clustering of relatively Frequent items
(2012) [46] http://www.cs.ucr.edu/~minzhux/EDCF.zip

PatternRec Genotype Pattern based on Difference Frequencies (2009) [47] http://www.
genemapping.cn

BGTA Backward Genotype-Trait Association (2006) [48] http://statgene.stat.

columbia.edu

ITMDR Information Theory and MDR (2006) [49] http://www.cbil.ece.vt.edu/

ResearchOngoingSNP.htm

are positive samples and controls are negative samples, and it utilizes the random forest

for the classification. The SNP markers are used as categorical features with three possible

values in the classification formulation. The random forest is an ensemble learning method-

ology originated by Leo Breiman [50]. The basic idea of ensemble learning is to boost the

performance of a number of weak learners via a voting scheme, where a weak learner can be

an individual decision tree, a single perceptron/sigmoid function, or other simple and fast

classifiers. To measure the contribution of a SNP to the classification performance, epiForest

uses the gini importance, which is defined as the summation of all gini decrease of a centain

feature over all trees in the forest. It shows that the gini importance and the raw impor-

tance were very consistent [50], and the computation cost of the gini importance is much

more economic [41].

There are two stages of epiForest. On the first stage, the random forest is built on

http://www.randomjungle.org/rjungle/rjunglenews
http://www.randomjungle.org/rjungle/rjunglenews
http://bioinfo.au.tsinghua.edu.cn/epiForest
http://bioinfo.au.tsinghua.edu.cn/epiForest
http://c2s2.yale.edu/software packages/HapForest/
http://c2s2.yale.edu/software packages/HapForest/
http://hydra.usc.edu/fitf
http://hydra.usc.edu/fitf
http://www.cs.gsu.edu/~xguo9/DCHE.html
http://www.cs.ucr.edu/~minzhux/EDCF.zip
http://www.genemapping.cn
http://www.genemapping.cn
http://statgene.stat.columbia.edu
http://statgene.stat.columbia.edu
http://www.cbil.ece.vt.edu/ResearchOngoingSNP.htm
http://www.cbil.ece.vt.edu/ResearchOngoingSNP.htm
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all SNPs to classify the GWAS data, and the objective is to obtain the contribution for

every SNP measured by gini importance. SWSFS algorithm greedily searches for a small

subset of SNPs that could minimize the classification error. It adds one SNP at a time

by the order from the most significant SNP to the least significant one. SWSFS selects a

small set of l (<< L, the total number of SNP markers) candidate SNPs that have the

most significant contribution to the discrimination of cases against controls. On the second

stage, a hierarchical procedure is adopted for one-, two- and three-way statistical tests to

declare the statistical significance that the candidate SNPs are associated with the disease.

In the one-way tests, the B statistic proposed by Zhang and Liu [51] is applied to every

candidate SNP. Given a predefined significance level α (e.g., 0.05), all SNPs whose p-values

are more significant than α after Bonferroni corrections for L tests, are reported. In the

two-way tests, the B statistic was also used, and interactions whose p-values were less than

α after Bonferroni corrections for L(L − 1)/2 tests, are reported. If both two SNPs in

two-locus interaction have already been detected in the one-way tests, further interaction

tests will be skipped, otherwise they are considered for two- and three-way interaction tests.

Similarly, in the three-way tests, the B or conditional B statistics were applied to all three-

way interactions of the candidates, and those with p-values less than α after Bonferroni

corrections for L(L− 1)(L− 2)/6 tests are reported.

With a limit on the size of subset of most important SNPs, the random forest is con-

structed very fast. EpiForest is capable to detect up to three-way epistatic interactions

including eME and eNME. However, the detection of epistasis is not as the same as the

feature selection process by tradition classification. Phenotype associated combinations of

SNPs may not be the only factor leading to the disease effects. Therefore, merely relying

on the decision tree, epiForest is insufficient to capture all the SNPs linked to the disease

status.

EDCF Xie et al. [46] proposed a stepwise search algorithm called EDCF (Epistasis

Detector based on the Clustering of relatively Frequent items) to detect multi-locus epistatic
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interactions in genome-wide case/control studies. The number of SNPs in current GWAS

ranges from several hundreds of thousands to a few millions. For interactions involving k loci

(k ≥ 3), it is impractical to exhaustively search the whole space since there are

L
k

 possible

combinations. Therefore, based on the assumption that the subsets of significant interaction

modules were possibly significant, EDCF selects top-dfs significant (k − 1)-locus modules

for k-locus interaction test. EDCF starts with searching for the top-dfs significant two-locus

interaction (where fs ≥ 1 is a scale factor), and EDCF evaluates all 2-locus combinations

(k = 2). It recursively searched the interaction space with the top selected SNPs until k

reaches user defined value. Due to the large number of reported significant interactions,

biologists may only be interested in the d most significant ones, so only top-d interactions

are generated by EDCF.

To measure the statistic significance of epistasis, the test utilized by EDCF is Pear-

son’s χ2 test. In order to give a reasonable elevation of SNP combinations, EDCF partitions

all 3k genotype combinations for k-locus into three groups, defined as G0, G1 and G2. G0

contains all combinations that occur significantly more frequently in cases than in controls

(presumably high-risk combinations); G2 contains those who occur significantly more fre-

quently in controls than in cases (presumably low-risk combinations); and G1 contains the

remaining genotypes. To group the genotype combinations, EDCF assumes the population

with the same genotype followed a Binomial distribution. For the Binomial distribution, the

parameter n equals to the total count of individual, and another parameter p equals to the

ratio of case or control count over n. To obtain high-risk combinations, EDCF uses case

count over n, while it used control count over n to obtain low-risk combinations. Given a

significance level αs, let Ta and Tu denote the critical value corresponding to αs for cases

and controls, respectively. The genotype is treated as high-risk if the count of cases in this

genotype is larger than Ta. Similarly, the genotype is treated as low-risk if the number of

controls in this genotype was larger than Tu. Once all genotype combinations for k SNPs

have been grouped into G0, G1 and G2, EDCF collects a 3 × 2 contingency table, where
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the rows represented three groups and the columns represented two class labels for case and

control. The χ2 statistic with 2 degrees of freedom [25] is used to measure the significance

of the interactions.

By combining the advantages of the χ2 test and high/low-risk genotype combinations,

EDCF is an effective and efficient algorithm for detecting epistatic interactions for GWAS,

especially when interactions contained strong main effects. Comparing to the model-base ex-

haustive search approaches, like BOOST, extensive experiments on simulated data illustrates

that EDCF tends to lose certain powers on detecting embedded disease models without main

effects (eNME) [46].

2.2.3 Stochastic Searching Methods

Instead of explicitly enumerating all possible combinations of k-locus, stochastic meth-

ods use random sampling procedures to search the space of interactions. Among them,

Bayesian Epistasis Association Mapping (BEAM) [51] is one representative. BEAM takes

case-control genotypes as input, and iteratively uses the Markov chain Monte Carlo (MCMC)

approach to calculate the posterior probability of a locus or multiple loci associated with the

disease. Tang et al. [52] extended BEAM in their epistatic MOdule DEtection (epiMODE)

method. epiMODE uses Gibbs sampling and a reversible jump MCMC procedure to search

for significant epistatic modules. A essential framework of stochastic search strategy can be

generalized as follows:

Given a set of states (or configurations) X = {X1, . . . , XM} and a function, Eval(· ),

that evaluates each configuration, four basic steps are employed in stochastic search to find

X∗ such that Eval(X∗) is greater than all Eval(Xi) for all other possible values of Xi:

• Step 1, initialize the configuration X.

• Step 2, calculate the function value, Eval(X).

• Step 3, randomly select X ′ in the neighbors of X.
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• Step 4, obtain the new function value, Eval(X ′); if Eval(X ′) is better than Eval(X),

set X to X ′; go to step 2 until reaching the maximum iteration count.

Particularly, the states are the assignments of SNPs (jointly associated with the disease

or not), and the function can be the posterior probability from predefined models. It is

necessary to note that existing methods falling to stochastic search are all model-based. In

the following, we use SNPHarvester and epiMODE to illustrate the basic idea in stochastic

search for detecting epistasis.

Table 2.4 Stochastic search methods for detecting epistasis.

Model-based

epiMODE epistatic MOdule DEtection (2009) [52] http://bioinfo.au.tsinghua.

edu.cn/epiMODE/

SNPHavester filtering-based approach for detecting epistatic interactions (2009) [53] http:
//bioinformatics.ust.hk/SNPHarvester.html

LogicFS logicFS (2008) [54] http://bioconductor.org/packages/2.4/bioc/html/
logicFS.html

BEAM Bayesian Epistasis Association Mapping (2007) [51] http://www.fas.

harvard.edu/~junliu/BEAM/

MCLR Monte Carlo Logic Regression (2005) [55] http://cran.r-project.org/

web/packages/LogicReg/index.html

SNPHarvester Yang et al. proposed a method, SNPHarvester, using a path selection

procedure to sample the searching space [53]. SNPHarvester first identifies disease-associated

SNP groups from thousands of SNPs to reduce the number of SNPs. It assumes that multiple

epistatic interactions rather than a single one are expected to be found due to the sophisti-

cated regulatory mechanism encoded in the human genome. SNPHarvester then generates

multiple paths with a generic score function to identify multiple significant SNP groups.

After that, L2 penalized logistic regression model [31] is used as a post-processing step to

extract epistasis from selected SNP groups. The screening process based on path selection

greatly reduces the number of SNPs for further statistic measure, and it make SNPHar-

vester possible to directly apply to large GWAS dataset for detecting high-order epistatic

http://bioinfo.au.tsinghua.edu.cn/epiMODE/
http://bioinfo.au.tsinghua.edu.cn/epiMODE/
http://bioinformatics.ust.hk/SNPHarvester.html
http://bioinformatics.ust.hk/SNPHarvester.html
http://bioconductor.org/packages/2.4/bioc/html/logicFS.html
http://bioconductor.org/packages/2.4/bioc/html/logicFS.html
http://www.fas.harvard.edu/~junliu/BEAM/
http://www.fas.harvard.edu/~junliu/BEAM/
http://cran.r-project.org/web/packages/LogicReg/index.html
http://cran.r-project.org/web/packages/LogicReg/index.html
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interaction.

Before giving the details of SNPHarvester, we need to introduce its assumption used by

it. SNPHarvester partitions the L SNP markers into three classes as follows [53]:

• Class 0: SNPs are unassociated to the disease.

• Class 1: SNPs influence the disease risk independently, i.e. they show marginal effects.

• Class 2: SNPs contribute little effects to the disease risk individually but influence the

disease risk jointly.

SNPHarvester consists of two steps: the filtering and the model-fitting steps. In the

filtering, it randomly initializes the starting point of each path, and generates the path by a

local search algorithm called PathSeeker. It uses the score function to measure the association

between a k-SNP group and the phenotype, and records the SNP group whose score exceeds

a fixed threshold. PathSeeker adopts the χ2 value as the score function, and the threshold

is determined by Bonferroni correction. It first removes significant single SNPs according

to their χ2 test values, since SNPHarvester is only interested in epistatic interactions that

have weak main effects but significant joint effect. Then it randomly picks k-SNPs to form

an active set S = {SNP1, SNP2, . . . , SNPk}, and leaves the rest of the SNPs to form a

candidate set Sc for the next random selection. A swapping operation is applied between S

and Sc to switch two SNPs, SNPi ∈ S, SNPj ∈ Sc, if the new k-SNPs group achieves better

χ2 test value. For generating one k-SNPs group, PathSeeker needs to try a total of k(n− k)

combinations. The identified group with the local optimum χ2 test value is removed from

the L SNPs. In next iteration, PathSeeker continues to select k-SNPs to form another active

set, and the rest n − 2k SNPs form a candidate set. The time complexity to generate m

groups is O(kLm), which is affordable even when there were > 100,000 SNPs. The identify

m k-SNP groups are employed for the model-fitting in step 2. The model fitting is used to

distinguish SNPs that have joint effects from those SNPs that only have marginal effects.

Due to the feature of randomization technique, SNPHarvester is expected to perform

no better than exhaustive search. Since there are numerous local optimal paths, the perfor-
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mance of the filtering step is poor, which leads to little power to detect the ground-truth

interactions. Comparing to brute-force approaches, SNPHarvester is suitable to detect three-

way or higher-order epistatic interactions. SNPHarvester focuses only on eNME, because it

utilizes the L2 penalized logistic regression model.

epiMODE Tang et al. [52] developed an extension of BEAM using the Gibbs sam-

pling strategy, named epiMODE (epistatic MOdule DE tection), to facilitate the detection

of epistatic modules. In epiMODE, the epistatic interaction module is considered as the fun-

damental units of disease susceptibility loci that independently influence the phenotype. On

the basis of this notion, it adopts a Bayesian marker partition model to explain the observed

case-control data, and further generalizes this model to account for the existence of Linkage

Disequilibrium (LD) between genetic variants. The genetic variants (SNPs) belonging to an

epistasis module are simulated in a procedure, called reversible jump Markov chain Monte

Carlo (RJ-MCMC), based on Gibbs sampling strategy. Further hypothesis testing is applied

to screen out statistically significant modules.

In epiMODE, the penetrance of the combinatory genotypes of two subsets, S1, S2 of

SNPs can be described as

p (D|GS1 , GS2) = f (GS1 , GS2)

where G represents a combinatory genotype of the multiple loci, and f(· ) is the function

denoting how combinatory genotypes determines the disease penetrance. If

p (D|GS1 , GS2) = f (GS1 , GS2) = f1(GS1)f2(GS2)

is always true, the relationship between the two subsets of loci S1 and S2 is defined as

“independently contributing” to the disease. Otherwise, the relationship between them is
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defined as ”epistasis.” With these concepts, the problem of finding epistatic interactions was

equivalent to a problem of assigning the SNP markers to the specified modules. Particularly,

the assignment for an SNP can be done by first calculating the probability of the observed

data given a particular partition pattern using a Bayesian model. EpiMODE assumes that

all loci are in linkage equilibrium (LD), also known as independent. It uses first-order Markov

model to account for the situation in which a set of SNPs is at LD with a disease susceptibility.

Finally, epiMODE resorts to hypothesis testing to screen out significant epistatic interactions.

As discussed in recent reviews, a weakness of epiMODE is that it can not deal with

datasets with more than 10,000 SNPs in affordable time [23]. Apparently, epiMODE spends

too much time on the iteration of the reversible jump Markov chain Monte Carlo procedure.

Another drawback of epiMODE is that it has no ability on datasets with 5% genotyping

error, which is common in real GWAS datasets.

2.2.4 Heuristic Searching Methods

Heuristics approaches adopt machine learning techniques, such as neural networks and

predictive rules, to search the space of epistatic interactions rather than explicitly enumer-

ating and testing all the combinations of k-locus. The overview and resource information of

method falling into heuristic search is showed in Table 2.5. Two examples falling into this

field are MECPM and MIC. MECPM proposes a phenotype posterior under a maximum

entropy principle and uses greedy searching to find epistatic interactions that are treated as

model constraints. MIC is a model-free method that defines significant tests based on mutual

information, and it also uses k-means clustering to narrow down the candidate groups.

MECPM Miller et al. [56] proposed a method, named MECPM (maximum en-

tropy conditional probability modeling), to identify markers/interactions by building the

phenotype-predictive models. MECPM treats the problem as a supervised feature selec-

tion in statistical classification where ’cases’ and ’controls’ are two classes. The goal is to

select the feature subset which leads to the best classification performance. According to
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Table 2.5 Heuristic Search methods for detecting epistasis.

Model-based

MECPM Maximum Entropy Conditional Probability Modelling (2009) [56] http://www.
cbil.ece.vt.edu/ResearchOngoingSNP.htm

GPNN Genetic Programming optimized Neural Network (2006) [57]
CMM Tree and spline based association analysis (2004) [58] http://lib.stat.cmu.

edu/

Model-free

epiMiner epistasis Miner (2014) [59] https://sourceforge.net/projects/epiminer/
files/

MIC Mutual Information (2014) [60]
DPM Discriminative Pattern Mining (2012) [61]
AES AntEpiSeeker (2010) [62] http://nce.ads.uga.edu/~romdhane/

AntEpiSeeker/index.html

SNPRuler Predictive rule inference for epistatic interaction detection (2010) [63] http:
//bioinformatics.ust.hk/SNPRuler.zip

AGR Association Graph Reduction (2009) [64]
MSH MegaSNPHunter (2009) [65]
RST Rough Set Theory (2009) [66]
TWG Trimming, Weighting and Grouping (2001) [67] http://linkage.

rockefeller.edu/ott/sumstat.html

the principle of maximum entropy (ME), a probability model should agree with all known

information and remain maximal uncertainty [68]. In the ME framework, a posterior model

(classifier) is defined by the interactions to satisfy the specified constraints and maximize

the conditional entropy at the same time. Without any constraint, the ME posterior is a

uniform probability mass function over all classes, and the accuracy of the resulting model

is compromised. Each encoded constraint reduces the (maximum) entropy, which yields a

more predictive posterior. The importance of constraint is measured by the amount of the

ME distribution’s entropy which is decreased by applying the constraint. The ME optimiza-

tion problem is convex with linear constraints, and the standard solutions guarantees to the

convergence.

A variant of greedy search based on BIC (Bayesian information criterion) is used for

choosing the ME constraints (interactions up to five-way) when model grows, and deter-

mining the number of constrains to terminate the model growing. BIC is a model selection

http://www.cbil.ece.vt.edu/ResearchOngoingSNP.htm
http://www.cbil.ece.vt.edu/ResearchOngoingSNP.htm
http://lib.stat.cmu.edu/
http://lib.stat.cmu.edu/
https://sourceforge.net/projects/epiminer/files/
https://sourceforge.net/projects/epiminer/files/
http://nce.ads.uga.edu/~romdhane/AntEpiSeeker/index.html
http://nce.ads.uga.edu/~romdhane/AntEpiSeeker/index.html
http://bioinformatics.ust.hk/SNPRuler.zip
http://bioinformatics.ust.hk/SNPRuler.zip
http://linkage.rockefeller.edu/ott/sumstat.html
http://linkage.rockefeller.edu/ott/sumstat.html
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criterion that it captures a trade-off between data likelihood and model complexity among

a finite set of models. In the seed selection and accretion of constraints, MECPM measures

the Kullback-Leibler divergence [69] between the probability mass functions for all possible

one- and two-way SNP constraints. It shows that at a given order, the constraints, which

are furthest from the existing model, will decrease BIC cost the most if they are added to

the model. Therefore, an alternative to accretion of all possible constraints is to use seed

pool, which comprises the constraints with largest Kullback-Leibler divergence at first and

second order, and MECPM adds one constraint at a time.

MECPM builds the phenotype posterior under a maximum entropy principle, and en-

codes constraints into the model with a 1-to-1 correspondence to the epistatic interactions.

From the experimental results, the time complexity is considerably high that it took 750

hours and 7.5 hours to detect five- and two-way interaction for a dataset with only 1,000

SNPs and 2,000 balanced samples. Another flaw of MECPM is that it does not give any

significance assessment, and thus it is hard to tell the types of reported epistatic interactions

(eME or eNME).

MIC Leem et al. [60] proposed an algorithm (MIC) based on mutual information for

detecting high order epistatic interactions in GWAS. As claimed by the authors, mutual

information does not suffer the approximation issue as other statistic tests. Take Pearson’s

χ2 test for example, the approximation to the χ2 distribution breaks down, if the expected

frequencies are too low. The issue can be even worse when we detect higher order epistatic

interactions. Mutual Information I(S;Y ) is defined to capture the amount of the information

shared by two random variables, S and Y . Let S denote a subset of L SNPs, and Y denote

the class labels. MIC uses the value of I(S;Y ) to imply the significance of the association

between the SNP combination and the disease. Let A = {A1, A2, . . . , An} be a partition of

S. The entropy H(A) of A is defined as follows:
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H(A) = −
n∑
i=1

|Ai|
L

log
|Ai|
L

Then the mutual information between the joined partition
{
A(1), A(2), . . . , A(k)

}
and a par-

tition Y can be defined as follows:

I(A(1), A(2), . . . , A(k);Y ) = H(A(1), A(2), . . . , A(k))

+H(Y )−H(A(1), A(2), . . . , A(k);Y )

where H(A(1), A(2), . . . , A(k)) is the extension of H(A) to multiple partition. Based on the

definition of mutual information, MIC tries to find the set of k SNPs that maximized the

value I(A(1), A(2), . . . , A(k);Y ).

Since the size of current GWAS data can reach up to hundreds of thousands of SNPs,

it takes too much time to calculate the I(A(1), A(2), . . . , A(k);Y ) for every k-modules (k ≥

3). Therefore, MIC uses k-means clustering to reduce time complexity by placing strongly

interacting SNPs into different clusters. Furthermore, MIC can be separated into three steps:

clustering, candidates selection, and finding the k-SNP module with high mutual information

value. The summary of three steps is as follows:

• Step 1. k-means clustering is used on the set of SNPs with the distance measured by

the mutual information between two SNPs.

• Step 2. Top d SNPs is selected in each cluster according to their scores, which is

calculated as the sum of all mutual information values measured between the selected

SNP to the rest SNPs in the same cluster.

• Step 3. MIC exhaustively searches k SNP modules with the highest value of mutual

information among kd candidates.
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An explicit advantage of MIC is that the speed of the algorithm is very fast since k-

means takes linear time to do the clustering, and the exhaustive search can be done fast when

f is small. However, MIC does not display its false control rate under the null hypothesis,

so the significance of reported interaction is unclear. Based on the experimental results of

MIC, it shows power to detect eME and eNME, although it cannot distinguish the types of

modules.

2.3 Summary

All eight methods reviewed in this chapter have demonstrated respective utilities based

on the experimental results conducted in the recent studies [70][23][60]. We summarize their

merits and weaknesses in Table 2.6. For the exhaustive methods, since they enumerate

and test all possible combinations of k-locus, it can report all significant epistasis without

losing any power. An explicit drawback of exhaustive search is the intensive computation.

To accelerate the process, finding an approximation with less intensive computation for

calculating the significance value is a possible solution, but it will lose power. Instead of

testing all the k-locus combinations of SNPs, stepwise, stochastic and heuristic search only

select a subset of SNPs for further tests. A common disadvantage of them is the power

lost. As showed in a recent theoretical study [39], the possibility that a high-order (size-

k) combination with high differentiation displaying zero differentiation in all of its subsets

decreases dramatically when k increases (generally become impossible for k greater than

5). Based on the above theory, stepwise methods usually exhaustively test all two-locus

interaction, and select top-d SNPs for higher-order tests. The scalability of stepwise methods

is good if one single test can be done very fast, like EDCF [46]. Stochastic methods use

random sampling procedures to search the space of interactions. The key factor influencing

the performance of the stochastic method is the selection of sampling procedure. As showed

in the experimental results from recent studies [70][23][60], stochastic methods lose more

power than the other three strategies, and the execution of stochastic methods is time-

consuming if the number of iteration of sampling is large for huge GWAS data. Heuristics
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Table 2.6 The advantages and disadvantages of existing method for searching epistatic in-
teractions.

Model-based Model-free

Exhaustive Search

A.
High power; Low complexity for single significant

test;
Discrimination of eME and eNME; Enumerating two-locus tests is compu-

tational possible;

D.
Time consuming in model fitting if the
size of SNP module k ≥ 3;

No discrimination on the model types;

Power lost if using approximation test;
Stepwise Search

A.
Discrimination of eME and eNME; Low Complexity for single significant

test;
The size of tested SNP module can reach
up to 5;

D.
Power lost if the higher-order modules displaying insignicant marginal effects;
Time consuming if the screening process is complicated;

Stochastic Search∗

A.
Performance is good if SNP models display strong marginal effects;

D.
Power lost if model cannot capture the relationship;
Time consuming if the number of iteration for sampling is huge;

Heuristic Search

A.
High power for GWAS data with mod-
erate size;

Low Complexity for single significant
test;
Screening process is efficient;

D.
Power lost if model cannot capture the
relationship;

Power lost if the high-order modules dis-
playing insignicant marginal effects;

Time consuming if model building is
compuatationally intensive;

Lack of controlling of false discovery
rate;

Note: A. stands for advantage, and D. stands for disadvantage.
∗Note: All stochastic search methods listed are belonging to model-free category.

approaches utilize machine learning techniques, such as neural networks and predictive rule,

to search the space of epistatic interactions. Most heuristic methods are running very fast

compared to the proceeding three strategies. However, most of them lack the control of

FDR, and thus it is hard to tell how good they are without control of type I error and to
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avoid false epistatic interactions.

As we have seen, there are numerous methods and an even larger number of software

implementations allowing investigators to examine disease-associated epistatic interaction

based on available GWAS data generated from large-scale genotyping projects. Although

the precise details of the methods are different, in many cases there are close conceptual

links between the approaches. Existing methods for searching epistasis can be grouped

into two types, model-based and model-free by considering the assumption on the data. In

addition, based on the searching strategies, they can also be categorized into four types,

i.e., exhaustive, stepwise, stochastic and heuristic approaches. We identify 43 methods for

detecting disease-associated epistatic interactions. Eight of them are discussed in details in

the chapter. Finally, we summarize the advantages and disadvantages of popular GWAS

tools.
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PART 3

SEARCHING HIGH-ORDER GENOME-WIDE EPISTASIS ON ONE

DISEASE

3.1 Introduction and Contributions

At present, traditional single-locus-based methods are insufficient to detect interactions

consisting of multiple-locus, which are broadly existing in complex traits. In addition, statis-

tic tests for high-order epistatic interactions with more than 2 SNPs propose computational

and analytical challenges because the computation increases exponentially as the cardinality

of SNPs combinations gets larger. In this chapter, we provide a novel method, named “Dy-

namic Clustering for High-order genome-wide Epistatic interactions detecting” (DCHE), to

address challenges. DCHE adopts an elaborate dynamic clustering procedure to maximize

statistic significance for SNP combinations and ranks top ones as results. DCHE conducts

statistic tests on merged groups of genotype categories determined by the dynamic clustering.

Each grouped genotype category tends to share a similar effect associating with correspond-

ing phenotypes. Truly disease-related joint genetic effects will gain higher ranking values

if genotype combinations can be correctly clustered together. Systematic experiments on

simulated two- and three-locus disease models datasets show that DCHE is more powerful

in finding epistatic interactions than some recently proposed methods including TEAM [19],

SNPRuler, BOOST and EDCF [46]. Our experiments on two real genome-wide case/control

datasets, Age-related macular degeneration (AMD) and Rheumatoid arthritis (RA) demon-

strate that DCHE is feasible for the full-scale analyses of multi-locus associations on large

GWAS datasets and it enriches a great deal of novel and significant high-order epistatic

interactions that have not been reported in the literature.
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3.2 DCHE: Dynamic C lustering for H igh-order Genome-wide Epistatic Inter-

actions Detecting

3.2.1 Notation

Suppose a GWAS dataset has M diallelic SNPs and N samples. In general, bi-allelic

genetic markers use uppercase letters (e.g. A, B,...) to denote major alleles and lowercase

letters (e.g. a, b) to denote minor alleles. For encoding three genotypes, one popular way

is to use {0, 1, 2} to represent {AA,Aa, aa}, respectively. In a GWAS case-control dataset,

NU denotes the number of cases (i.e. disease individuals) and ND denotes the number of

controls (i.e. normal individuals). X is utilized to indicate the ordered set of the M SNPs,

and Xi represents the i-th SNP in X. MAF (Xi) denotes the minor allele frequency of Xi

and gji denotes the genotype of j-th individual at Xi. For d-locus interaction, (Xi1 , . . . , Xid),

one genotype combination denotes as (gi1 , . . . , gid).

3.2.2 Dynamic Clustering

An intuitive strategy to detect genome-wide epistatic interactions is to test differences

of genotypes’ frequencies for single SNP or SNPs’ combinations in cases and controls. The

contingency table in Table 3.1 gives an example for two-locus disease model, where there

are 9 genotype combinations and NU = ND = 800. Numbers within the parentheses are

counted from controls. Cells with higher frequencies in cases are coloured by grey back-

ground. Some methods, like Multifactor dimensionality reduction (introEpsBreast) [15] and

its extensions [71], take the case/control ratio of each genotype combination to test asso-

ciations between SNP combinations and disease status. However, the frequency cannot be

a fair indicator to uncover disease-related associations, because it can be biased by many

factors, including effect size, allele frequency, linkage disequilibrium between markers and

disease loci as well as sampling errors. Other recent developed strategies use Pearson’s χ2

test, exact likelihood ratio test and entropy-based test to examine the independence of ob-

servations. For the example in Table 3.1a, the unadjusted p-value from Pearson’s χ2 test
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with 8 degrees of freedom is 1.724×10−18. If we use Bonferroni correction to adjust p-value,

this pair can still be significant with threshold 0.05 for a large GWAS dataset. However, it

will not always be the case, and some limitations, including uneven or insufficient samples,

tiny penetrance on single genotype, would dramatically affect the adjusted p-value. Another

toy example sampled from a two-locus multiplicative effects model (see Table 3.2) is showed

in Table 3.1b, where NU = ND = 400. Normally, the approximation to the χ2 distribution

breaks down if more than 20% expected frequencies below 5. The unadjusted p-value of

Table 3.1b is 1.09× 10−6 and the adjusted p-value is 0.547 if M = 1, 000, which is obviously

larger than 0.05. Another popular method, BOOST [18] which utilizes the likelihood ratio

to test statistic, cannot get a significant result for Table 3.1b by setting the significant level

to 0.1. We can observe the same result by applying EDCF, which utilizes the concept of the

frequent item to group genotype combinations and adopts the χ2 test with df = 2.

Table 3.1 Examples for contingency tables.
(a) (b)

BB Bb bb
AA 71(108) 97(151) 44(47)
Aa 89(138) 184(184) 93(55)
aa 29(43) 113(57) 80(17)

BB Bb bb
AA 40(55) 49(76) 13(21)
Aa 43(62) 110(103) 49(22)
aa 16(24) 50(27) 30(10)

To address the preceding issues, we propose a dynamic clustering procedure. Basically,

we first merge all 3n
d

genotype cells to nd groups based on certain combination criteria,

where nd ranges from 3 to 6. The criterion to combine two genotype categories is rooted

from their similar effects that associate with phenotypes. Secondly, we collect statistic test

values on merged groups. For better illustration, we take Table 3.2 for example. Although

there are 9 genotype categories, some have same penetrances, so we can partition them into 4

groups, where penetrances are α, α (1 + θ) , α (1 + θ)2 and α (1 + θ)4. In reality, it is different

to predict the order of complex disease model and its penetrance table. Therefore, we try

to find a statistically significant evaluation of interactions in a stepwise manner by merging

genotype categories into a range of the number of groups and test levels of significance. We
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select the most significant one as the evaluation for d SNPs interaction. The full algorithm

of dynamic clustering is as follows.

• Step 1. For a set of SNPs, cross-tabulate genotype combinations of SNPs with the

categories of the dependent variable (phenotype).

• Step 2. Find a pair of genotype combinations whose 2×2 sub-table is least significantly

different. If this significance does not reach a critical value, merge the two combinations

and consider this merger as a single compound combination, and repeat this step.

• Step 3. Calculate the significant evaluation for each merged group pattern when cat-

egories’ number is larger than three and less than six. Select the most significant one

as the unadjusted p-value as the evaluation for the current interaction.

Table 3.2 Two-locus interaction multiplicative effects.

BB Bb bb
AA α α α

Aa α α (1 + θ) α (1 + θ)2

aa α α (1 + θ)2 α (1 + θ)4

In Step 2, there are several ways to measure the difference of a 2-by-2 contingency

table, like Pearson’s χ2 test with df = 1 and phi coefficient. In our algorithm, we adopt

Pearson’s χ2 test with df = 1 to measure the difference. Following the dynamic clustering

procedure, we can get the most significant group pattern as 161, 129, 110 in cases and 238,

59, 103 in controls for Table 3.1. Note that the df varies when the number of clusters

changes. According to our setting that nd ranges from 3 to 6, the df changes from 2 to 5,

respectively. Along the clustering, we calculate the p−valueunadjusted for each clustering with

corresponding df . The trace of merging for Table 3.1b is (0, 1, 2, 3, 6), (5, 7, 8) and (4), if

cells are labelled from left to right, from top to bottom and start from 0. It is easy to output

this ground-truth interaction by the combination of Bonferroni correction and permutation

tests for controlling type-I error. ( p− valueunadjusted = 1.15× 10−9 and the significant level

is α = 3.0× 10−9 with false positive rate nearly equals to 0.1).
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3.2.3 Evaluation of Interactions

The goal of DCHE is to identify d-SNP (d ≥ 2) epistatic interactions significantly

associated with the phenotype. As stated in [11, 18], epistasis can be interpreted as the

statistical interaction or the full association. The evaluation of interactions used by DCHE

is similar to detect full associations in model-based methods. In terms of logistic regression,

the epistatic interaction we are looking for may contain main effects or interaction effects or

both. In order to detect the significant association between genotype and phenotype, we use

a model-free method and p-value from Pearson’s χ2 test to indicate the significance. Since

DCHE aims to find high-order genome-wide epistatic interaction, the high-order interaction

module may consist of one or some redundant SNPs, which do not contribute to increasing

the significance. To avoid such cases, we give a definition of the minimal significant epistatic

interaction.

Definition 1. A SNPs module (Xi1 , Xi2 , . . . , Xid) is considered as the minimal significant

epistatic interaction by giving the significant level α, if it meets the following two conditions:

(1) the p− value of clusters of (Xi1 , Xi2 , . . . , Xid) ≤ α;

(2) the p− value of clusters of any subset of (Xi1 , Xi2 , . . . , Xid) < the p− value of clusters

of (Xi1 , Xi2 , . . . , Xid).

3.2.4 Algorithm

Since testing all high-order SNP combinations is impossible for large GWAS datasets of

millions of SNPs, we utilize a stepwise strategy to emulate and run dynamic clustering on all

two-locus SNPs combinations. As showed in a recent theoretical study [39], the possibility

that a high-order (size-d) combination with strong differentiation shows zero differentiation

in all of its subsets decreases dramatically when d increases (generally it becomes impossible

for d ≤ 5 ). Therefore, we use top-ld low-order SNPs combinations which demonstrate some

significance as candidates. For higher order, we add one SNP X each time to interactions

and re-invoke the dynamic clustering procedure until d reaches the defined value. We adopt
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same bitwise operations and Boolean Representation as introduced in BOOST [18] to collect

and compress contingency tables. The details of the sequential algorithm are showed in

Algorithm 1.

Algorithm 1: The DCHE Algorithm

Input: An N × (M + 1) matrix, where N = ND +NU and the first column denotes
disease statuses; d, critical level α and l = {l2, ..., ld}

Output: The top-ld significant d-locus interaction with p− valueadjusted > α
1 Read N × (M + 1) matrix file;
2 Boolean represent N × (M + 1) matrix as (3×M)×N matrix W ;
3 Initialize an ascending list L with length as max(l);
4 Set d′ = 2;
5 for each pair of SNPs, (Xi, Xj), (1 ≤ i < j ≤M) do
6 Collect the contingency table Ci,j ;
7 Set p− valuei,j = DynamicClustering(Ci,j);
8 Insert p− valuei,j into L;

9 end
10 d′ = d′ + 1;
11 Initialize another ascending list L′ with length max (l);
12 while d′ <= d do
13 for each interaction

(
Xi1 , . . . , Xid′

)
in top-ld′ positions of L do

14 for each SNP Xj, (1 ≤ j ≤M) do
15 if j /∈ {i1, . . . , id′} then
16 Collect the contingency table Ci1,...,id′ ,j ;
17 Set p− valuei1,...,id′ ,j = DynamicClustering

(
Ci1,...,id′ ,j

)
;

18 Insert p− valuei1,...,id′ ,j into L′;

19 end

20 end

21 end
22 Clean list L, Initialise Ld′ , Copy top-ld′ elements in L′ to L,Ld′ , Clean list L′;

23 end
24 for each interaction (Xi1 , . . . , Xid) in the top-ld position of {L2, . . . , Ld} do
25 if p− valuei1,...,id ≤ α then
26 for subset Q of (Xi1 , . . . , Xid) do
27 if Q ∈ {L2, . . . , Ld−1} and p− value of Q ≥ the p− value of (Xi1 , . . . , Xid)

then
28 break;
29 end

30 end
31 Write 〈(Xi1 , . . . , Xid) , p− valuei1,...,id〉 into result file;

32 end

33 end
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Each column in matrix M is converted to 3 rows in matrix W based on Boolean Repre-

sentation (line 1-2). An ascending list where redundancy is not allowable is initialized with

size max (l). The structure of an element in L consists a pair of key and value that the key

is SNPs combinations and value is the unadjusted p-value (line 3). DCHE uses bitwise op-

erations to collect contingency tables for all two-locus interaction and calculates evaluations

of significance via DynamicClustering procedure. The p-value will be inserted into L (line

4-9). DCHE only selects top-ld′ interactions to extend in DynamicClustering procedure and

inserts estimated significance into another candidate list L′. At the end of each iteration

for specific d, list L gets cleaned and DCHE transfers top-ld′ elements from L′ to L and

new list Ld′ (line 10-23). When d reaches the defined value, top-ld interaction modules with

p− value > α will be written into the result file (line 24-33).

The time complexity of dynamic clustering is O
(
3d
)
. According to the theory in [39],

we only need to apply dynamic clustering procedure for up to 4 order of SNPs combinations.

So when d = 2, the time complexity to test all 2-locus interactions is O (NM2). Inserting

an element into ascending list takes time O (log (max (l))). The total time complexity for 2-

locus interaction detection is O (NM2)+O (log (max (l))). When d = 3, the time complexity

to extend all candidate 2-locus interactions to 3-locus modules is O (l3M). Hence, the entire

time complexity reaches to O (l3M) + O (NM2) + O (log (max (l))), if the user plans to

search 3-locus interaction. Similar time complexity analysis can be applied to higher order

interaction detection by using our DCHE.

3.3 Experiment Results

We first give definitions of 6 simulated disease models and the power metric used to

evaluate the effectiveness of DCHE in comparison with other 4 popular epistatic interac-

tions detecting methods, i.e. TEAM [19], SNPRuler [63], EDCF [46], BOOST [18]. Three

reasons for choosing above 4 approaches are as follows: (1) TEAM, EDCF and BOOST all

use the exhaustive search strategy for detecting two-locus interactions, so the comparison of

their performance is fair; (2) a recent review tested five available methods and recommended



39

BOOST and TEAM as a powerful tool for searching epistatic interactions on a genome-wide

scale [70]; (3) our goal is to discover high-order epistatic interactions from GWAS data, and

among 4 detectors excluding DCHE, only SNPRuler and EDCF are equipped the ability to

search interactions with more than 2 SNPs. Before experiments on simulated datasets, a

discussion on how to control the false positive rate is illustrated because the Bonferroni cor-

rection, the most common method for controlling error rate, can be too conservative to filter

significant interactions. We also present results of DCHE on two real GWAS dataset, Age-

related macular degeneration (AMD) and Rheumatoid Arthritis (RA). Interactions detected

by DCHE from different orders demonstrate a considerable number of novel, potentially

disease-related genetic factors.

3.3.1 Experimental Design

Data Simulation To evaluate the effectiveness of DCHE, we perform extensive

simulation experiments using six disease models with two- and three-locus associations. The

unassociated SNP genotypes are generated by the same procedure used in previous stud-

ies [18]. Minor allele frequencies (MAFs) are uniformly sampled from the set [0.05, 0.5]. By

assuming HardyWeinberg equilibrium, we can sample the genotype gji for individual j. For

embedded disease models, 4 two-locus epistasis models and 2 three-locus epistasis models

are chosen by given odds tables or penetrance table that can be found in [45] and named

these six models from model 1 to 6. In addition, we conduct tests on 50 two-locus epistasis

models without marginal effects as BOOST and EDCF did in [18][46]. For models 1 to 4 and

50 models without marginal effect, each simulated dataset contained M = 1000 SNPs and

N = 800 or 1600 with balanced samples in case and control under each parameter setting.

For model 5, one dataset has 1000 SNPs and 2000 or 4000 samples with NU = ND. For

model 6, M = 2000 and N is reduced to 400 and 800 with balanced cases and controls.

A disease model can be defined either by specifying the penetrance table or the odds

table. Relations among penetrance p (D), odds ODDgi and the probability p (D|gi) that

an individual will be affected with a given genotype combination gi can be calculated as
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Equation 3.1,3.2.

ODDgi =
p (D|gi)
p
(
D|gi

) =
p (D|gi)

1− p (D|gi)
(3.1)

p (D|gi) =
ODDgi

1 +ODDgi

(3.2)

Following [18], the disease prevalence p(D) and genetic heritability h2 are given by

Equation 3.3,3.4.

p (D) =
∑
i

p (D|gi) p (gi) (3.3)

h2 =

∑
i (p (D|gi)− p (D))2 p (gi)

p (D) (1− p (D))
(3.4)

For simplicity, we adopt same parameters as used in [18] for model 1 to 4, i.e.

p (D) = 0.1, h2 = 0.03 for model 1 and h2 = 0.02 for Models 2, 3 and 4, MAF ∈ {0.1, 0.2, 0.4}.

For model 5, we adopt similar setting in [46], i.e. p (D) = 0.1, effect size λ = 0.2,

β ∈ {4, 1.5, 1, 0.7, 0.5} and MAF ∈ {0.1, 0.2, 0.3, 0.4, 0.5}. For model 6, MAFs of disease

associated loci are fixed to 0.5. Effect parameters α and θ in odds tables for all six models

are determined numerically using same procedures in [51]. Settings for 50 models without

marginal effect are similar to [72], i.e. h2 ranges from 0.05 to 0.4 with five intervals and

MAF equals to 0.2 or 0.4.

Statistical power In the comparison of performances on simulated data, 100

datasets are generated for each setting. In one dataset, we embed one ground-truth epistatic

interaction. The measure of discrimination power used in [18] is adopted, which is defined as
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the fraction of 100 datasets on which only top interaction given by the method matches the

ground-truth. For all programs, the ground-truth interaction are detected if it is set to the

most significant one and its adjusted p-value is larger than the critical value that is setted

to 0.1 in following experiments.

3.3.2 False Positive Rate

Since DCHE uses stepwise strategy similar to EDCF, we also adopt two levels of multiple

comparisons: (1) test
M

d

 combinations for d loci for a dataset with M SNPs; (2) test

dynamic clustering results, which could end with up to 3d possible genotype combinations

with k groups, d ∈ {3, 4, 5, 6}. If we use the Bonferroni correction for above two-level

multiple tests, the upper bound of possible ways to do combination is
M

d

 63
d . Hence, it is

too conservative to obtain significant interaction modules. In order to reasonably loose the

strictness, inspired by EDCF we combine the Bonferroni correction and permutation tests for

these two levels, that is Bonferroni corrections for d loci combinations and permutation tests

for the dynamic clustering procedure. More specifically, the significant level of an epistatic

interaction is calculated from Equation 3.5.

α = α0/

M
d

 (3.5)

In Equation 3.5, α0 is estimated from permutation tests for different ds on null simula-

tions and
M

d

 represents the Bonferroni correction. To accurately control the false positive

rate, we simulated datasets with five different settings for each d, i.e. we either fix M = 1000

and set N to 400, 800 and 1600 or fix N = 800 and set M to 1000, 2000 and 4000. Note that

one thousand datasets are generated under one setting. The false positive rate is defined as

nfalse/1000, where nfalse is the number of datasets where DCHE has found one or more inter-

action modules. Test results showed in Figure 3.1 illustrate: for a general setting of critical

level 0.1, a recommended α0 is 1.5×10−3 for two-locus disease model detection, 1.2×10−8 for
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three-locus disease model detection and 1.0×10−21 for four-locus disease model detection. In

addition, the false positive rates tend to decrease or remain nearly unchanged as the number

of samples and SNPs go up (Figure 3.1B and 3.1C). Therefore, in tests of simulated datasets

and two real GWAS datasets, we set α0 = 1.5× 10−3, 1.2× 10−8, 1.0× 10−21 for d = 2, 3, 4,

respectively, to control the overall false positive rate for DCHE, unless otherwise stated.
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Figure 3.1 False positive rates under null models. The plot in A shows the false positive
rates of DCHE using different α0s for different ds, and the plots in B and C show the false
positive rates of DCHE for different ds when sample size and the number of SNPs vary.

3.3.3 Two-locus Disease Models

For a fair comparison, interactions reported by all programs are filtered using the critical

value 0.1 as the significant threshold. Test results are illustrated in Figure 3.2 for model 1 to

4. A common trend for all programs is that power is increasing as sample size increases from

800 to 1600. Most methods show more power when ground-truth model interactions’ MAFs

are larger, except that BOOST shows less power on model 1 and 2 when MAFs goes up.

We can see that DCHE achieves highest or comparable powers on almost all datasets. More

specifically, with 24 parameter settings for four disease models, DCHE outperforms other
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four methods at 9 settings and obtains full powers at 10 settings and gains comparable results

at 5 settings. Taking results from datasets with N = 1600 for example, it is obvious that

DCHE defeats other approaches with nearly 100% powers. For a more straight comparison,

we introduce a new concept, the overall quality q = ncorrect/ntotal, where ncorrect is the

number of datasets where programs successfully detect the ground-truth interactions and

ntotal is the total number of datasets. When N = 800,M = 1000, the overall quality for

DCHE, TEAM, SNPRuler, EDCF and BOOST are 0.541, 0.455, 0.087, 0.508 and 0.31,

respectively. When N = 1600,M = 1000, all five programs achieve higher accuracies than

former settings and q are 0.981, 0.912, 0.162, 0.944 and 0.681, respectively. Note that

DCHE, TEAM, and EDCF have abilities to achieve more than 90% powers, and powers

for DCHE reach to at least 98% on datasets with 1600 samples. Note that BOOST is

designed to identify significant statistical interaction without considering the main effects,

so it is reasonable that our method DCHE and other two methods, i.e. EDCF and TEAM,

outperform BOOST for detecting the Model 1 through 4. The reason we still put the BOOST

into the experiments is that the biologists might be more interested in epistatic interaction

as long as it shows significant association genotypes with phenotypes. In addition, similar

designs of experiments can be found in other studies [46, 70, 18].

Moreover, we conduct tests on 50 disease models with little marginal effects. For conve-

nience, penetrance tables for 50 models are not listed, and they are available in literature [72].

Since most methods gain near full powers, we use box plots to demonstrate overall perfor-

mances in Figure 3.3. We can see that DCHE, EDCF and BOOST achieve comparable

results in two subfigures. Specifically, they can accurately detect embedded associated SNPs

interactions under most settings. On the contrary, TEAM and SNPRuler lose significant

powers on both datasets with MAFs = 0.2 or 0.4. A common trend to previous experi-

mental results is that five methods tend to possess more powers as MAFs increase. After

carefully examining results from five techniques, we can find that DCHE apparently out-

performs other three methods except BOOST, although the difference is not too much. A

possible explanation is that these embedded models with little main effects are more suit-
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N=800 N=1600 N=800 N=1600

N=800 N=1600 N=800 N=1600

Figure 3.2 Performance comparison of DCHE, TEAM, SNPRuler, EDCF and
BOOST on disease models 1-4. Performance comparison of DCHE, TEAM, SNPRuler,
EDCF and BOOST on four disease models for different allele frequencies and sample sizes.
The red, green, blue, cyan and magenta bars show powers of DCHE, TEAM, SNPRuler,
EDCF and BOOST, respectively. Models are ordered from top to bottom and from left to
right and they are model 1, model 2, model 3 and model 4.

able for model-based detection strategy, and DCHE is a model-free based method. If we

adopt the same overall quality defined in previous paragraph to evaluate performances, q

are 0.972, 0.656, 0.891, 0.951 and 0.984 for DCHE, TEAM, SNPRuler, EDCF and BOOST,

respectively.

Figure 3.3 Performance comparison on 50 models without main effects. For each
model, we simulate data using sample size 800 and MAF ∈ {0.2, 0.4}. The red, green, blue,
cyan and magenta boxes show powers of DCHE, TEAM, SNPRuler, EDCF and BOOST,
respectively.
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3.3.4 Three-locus Disease Models

For comparisons of three-locus disease models, two methods are dropped, i.e. TEAM

and BOOST, because both of them are designed only for detecting two-locus interactions.

Based on settings of Model 5 given in previous sections, we get 10 groups of datasets with

100 replicates, which can be further categorized into two families with N = 2000 or 4000.

Note that when MAF = 0.5, there is no marginal effect, otherwise disease models have

λ = 0.2. Experimental results are illustrated in Figure 3.4. Similar to Models 1 to 4, three

programs tend to get more powers as MAF or sample size increases. Considering parameter

β in (β,MAF ), we can see that powers go up when β goes down for all methods. A

significant difference can be found is that SNPRuler can only obtain acceptable results when

(β = 0.5,MAF = 0.5); otherwise SNPRuler hardly gets powers. Although the distinction

between DCHE and EDCF is not too much, we can still observe that DCHE hits more

ground-truth SNPs interactions than EDCF does at datasets with N = 4000. Additionally,

overall qualities for DCHE and EDCF are 0.514 and 0.52 with N = 2000, and the overall

quality for DCHE rises to 0.914 comparing with 0.866 for EDCF.

N=2000 N=4000

Figure 3.4 Performance comparison on the three-locus epistasis models. Perfor-
mance comparison of DCHE, SNPRuler and EDCF on two three-locus epistasis models,
Model 5 and Model 6, for different allele frequencies and sample sizes. The red, blue and
cyan bars show powers of DCHE, SNPRuler and EDCF, respectively.

For Model 6, we set MAF = 0.5 and population prevalence p = 0.01 as EDCF does

in [46]. Note that Model 6 gets the maximum h2 when p ∈ (0, 1
16

]. Three methods’ results
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are showed in Figure 3.4, from which we can see that all methods can get nearly full powers

for Model 6. With considering the overall quality, DCHE and EDCF both reach 100% and

SNPRuler hits to 0.965.

3.3.5 Experiments on AMD Data

Age-related macular degeneration (AMD) is an acquired degeneration of the retina that

usually affects older adults and results in a loss of vision in the centre of the visual field. Like

many other chronic diseases, AMD is caused by a combination of genetic and environmental

risk factors, including and not limited to macular degeneration gene, too much exposure

to sunlight and smoking. The reported AMD dataset contains genotypes of 103,611 SNPs

from 96 affected individuals and 50 controls [73]. Before applying DCHE on AMD dataset,

the same quality control used in [18] is applied: SNPs with more than 10% missing data or

MAF < 0.05 or p-values from Hardy-Weinberg Equilibrium (HWE) tests less than 0.001 are

removed. Subsequently, 90,449 SNPs from 50 controls and 96 cases are left in the dataset.

The setting of parameters for DCHE is as follows: l = {10000, 4000, 2000}, d = 2, 3, 4 and

α0 = 1.5×10−3, 1.2×10−08, 1.0×10−21 for two-, three- and four-locus interactions detections,

respectively.

Table 3.3 Centre SNPs identified in top-1000/500 SNPs interactions on AMD dataset.

# SNPs per interaction
Centre SNPs from analyses of AMD dataset
Centre SNPs (Genomic position) #Interacting SNPs

2

rs380390 (Ch1: 196701051) 524
rs1329428 (Ch1: 196702810) 253
rs1394608 (Ch5: 155783294) 23
rs1740752 (Ch10: 38538771) 20
rs1363688 (Ch5: 174609731) 11
rs10512174 (Ch9: 88886574) 11

3

rs380390 (Ch1: 196701051) 709
rs1329428 (Ch1: 196702810) 106
rs1363688 (Ch5: 174609731) 63
rs618499 (Ch11: 108148839) 47
rs1926489 (Ch13: 92667989) 35
rs3781868 (Ch11: 108059569) 34

4

rs380390 (Ch1: 196701051) 459
rs618499 (Ch11: 108148839) 188
rs3781868 (Ch11: 108059569) 115
rs294278 (Ch3: 31127911) 36
rs300780 (Ch2: 110819) 35
rs315511 (Ch1: 84849116) 28
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When we set α0 = 1.5×10−3 to filter out insignificant interactions for two-locus epistatic

interactions detecting, DCHE can hardly report any qualified modules, so we select top-k

modules to conduct the analysis. For d = 3 and 4, DCHE generates more than 1000 pairs

epistatic interactions. In order to give a straight view of results, we introduce two concepts,

“centre SNPs” and “centre genes”, similar to those in [33]: we arrange those SNPs and

genes in descending manner according to their frequencies showing in top-k interactions,

and select top-s SNPs or genes as “centre”. Based on the previous procedure, Table 3.3 and

Table 3.4 give a general view of DCHE’s results on AMD dataset with k = 1000 for d = 2,

3, k = 500 for d = 4, and s = 6. Names of SNPs or genes showed in bold font indicate

that they present in tables. As we can see, top-k-s SNPs or genes tend to share some

common elements among different settings of the order of interactions, d. For AMD dataset,

two SNPs (rs380390 and rs1329428) already have been reported as the disease-associated

SNPs with AMD based on results from single allelic association tests with df = 1 [73]. In

our findings, DCHE also ranks rs380390 and rs1329428 as top 2 centre SNPs both in two-

and three-locus epistatic interactions detecting. Both rs380390 and rs1329428 locate inside

the gene CFH whose location is 1p32, and their protein products have an essential role in

the regulation of complement activation and restricting the innate defence mechanism to

microbial infections. In addition to rs380390 and rs1329428, we also find another interesting

SNP, rs3781868, in the category d = 4. rs3781868 locates in the gene NPAT with location

11q22-q23 that is known to be essential for histone mRNA 3’ end processing and recruiting

CDK9 to replication-dependent histone genes.

We also analyse results using gene only from the top-1000/500 SNPs subset. Top-

1000/500 SNPs are mapped to disease-related genes, which have been annotated in the

HuGE Navigator database, and we get 720, 851 and 424 genes for d = 2, 3, 4 showed in

Table 3.5. It is obvious that the majority of centre genes have not yet been reported by

HuGE as associated with the AMD disease. Applying the similar analysis used in [33],

we submit centre genes indicated in Table 3.5 to the ToppGene, a candidate gene priori-

tization tool [74], to evaluate biological significances of these novel genes. From DCHE’s
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Table 3.4 Centre genes identified in top-1000/500 SNPs interactions on AMD dataset.
#Genes per
interaction

Centre genes from gene-only SNP analyses
Centre genes #Interacting genes

2

CFH: complement factor H 777
ZNF25: zinc finger protein 25 23
SGCD: sarcoglycan, delta (35kDa dystrophin-associated glycoprotein) 23
LRIG3: leucine-rich repeats and immunoglobulin-like domains 3 14
DRD1: dopamine receptor D1 11
ISCA1: iron-sulfur cluster assembly 1 11

3

CFH: complement factor H 815
DRD1: dopamine receptor D1 63
ATM: ataxia telangiectasia mutated 47
GPC5: glypican 5 43
NPAT: nuclear protein, ataxia-telangiectasia locus 34
KDM4C: lysine (K)-specific demethylase 4C 25

4

CFH: complement factor H 459
ATM: ataxia telangiectasia mutated 191
NPAT: nuclear protein, ataxia-telangiectasia locus 115
LRIG3: leucine-rich repeats and immunoglobulin-like domains 3 73
TGFBR2: transforming growth factor, beta receptor II (70/80kDa) 38
ACP1: acid phosphatase 1, soluble 35

results, ToppGene enriches a cell-cell communication pathway with the name ’REAC-

TOME ADHERENS JUNCTIONS INTERACTIONS’. Reported in Reactome, this path-

way contains 14 centre genes and only one gene in this pathway presents in HuGE Navigator

database. As gene names are given in HGNC, these genes are PVRL3, CDH18, CDH10,

CDH11, CDH12, CDH13, CDH2, CDH4, CDH7, CDH6, CDH9, CDH8, CADM1, CADM3.

Table 3.5 The disease association of DCHE selected genes from gene-only SNP analyses.

# SNPs per interaction # DCHE genes in top 1000 (500) SNP pairs
Reported in HuGE Navigator database
# Analyzed genes # DCHE genes

2 720
151

20
3 851 28
4 424 13

For the detection of two-locus epistatic interaction on AMD dataset, DCHE success-

fully identifies rs380390 and rs1329428 reported in the original paper. Comparing with

results obtained by other existing methods, we find that there are some overlaps be-

tween them. For example, DCHE lists two pairs of SNPs with ranking 246 and 247

(rs1394608 and rs3743175, rs1394608 and rs2828155), which have been identified by epi-

MODE applied on AMD dataset [52]. In addition, DCHE reports another interaction mod-

ule (rs1394608 and rs6847164), whose p − value is more significant than the above two

(p − valueunadjusted = 6.78 × 10−10). rs1394608 resides within the intron of SGCD, a gene
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located on chromosome 5q33-34, which has been implicated in AMD [52]. rs6847164 re-

sides within PDE5A, a gene located on chromosome 4q27. According to the databases of

NCBI and Entrez, PDE5A is involved in the regulation of intracellular concentrations of

cyclic nucleotides and is important for smooth muscle relaxation. DCHE has also detected

other significant three-locus and four-locus interaction modules: (rs10487833, rs10495593,

rs1740752) and (rs9302001, rs10497231, rs380390, rs1940041) whose unadjusted p-values are

3.24 × 10−18 and 8.28 × 10−28, respectively. rs10487833 locates about 0.3Mb upstream of

gene NAMPT on chromosome 10. NAMPT encodes a protein that is thought to be in-

volved in many important biological processes, including metabolism, stress response and

aging. rs10497231 resides at about 0.3Mb downstream of gene KCNH7 on chromosome 2.

KCNH7 encodes a member of the potassium channel, voltage-gated, subfamily H related

to the functions including regulating neurotransmitter release, heart rate, insulin secretion,

neuronal excitability, epithelial electrolyte transport, smooth muscle contraction, and cell

volume. rs9302001 locates about 0.4Mb upstream of gene ABCC4 on chromosome 13. The

protein encoded by ABCC4 is a member of the superfamily of ATP-binding cassette (ABC)

transporters, which is thought to play a role in cellular detoxification as a pump for its sub-

strate, organic anions. The clustering details of genotype combinations of the above three

interaction modules can be found in [45].

3.4 Conclusion

In this chapter, a novel algorithm DCHE, for detection of high-order genome-wide

epistatic interactions is proposed. The critical step of DCHE is the dynamic clustering

procedure, which is used to guide on how to merge genotype categories to a limited and

variable number of groups. By dynamic clustering, DCHE tries to categorize approximately

genotypes with similar genetic effects on phenotypes. Comprehensive and systematic com-

parisons of simulated datasets shows that DCHE can obtain more or comparable powers for

both two- and three-locus interaction modules detecting comparing to other four recently de-

veloped algorithms, i.e. TEAM, SNPRuler, EDCF and BOOST. Furthermore, experiments
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on two real datasets of AMD and RA demonstrate that DCHE discovers many novel high-

order associations that are significantly enriched in cases and many centre-SNPs and genes

which only appear in detections of high-order epistatic interactions. Therefore, our method

provides a promising way to accelerate large genome-wide association studies accurately.
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PART 4

SEARCHING HIGH-ORDER GENOME-WIDE EPISTASIS ON MULTIPLE

DISEASES

4.1 Introduction and Contributions

To the best of our knowledge, current epistasis detecting tools are only capable of

identifying interactions on the data of GWAS with two groups, i.e. case-control studies.

These tools are incompetent to discover the genetic factors with diverse effects on multiple

diseases. Moreover, only use limited case samples, they may lose the benefit of alleviating

deficiency of statistical powers by pooling different disease samples together. In this chapter,

we first introduce a novel designed and implemented Bayesian inference method for Detecting

genome-wide Association on Multiple diseases, named DAM, to address challenges. DAM

employs Markov Chain Monte Carlo (MCMC) sampling based on the Bayesian variable

partition model.

One of the limitations of DAM is that it takes very long time to analyze fully a real

large GWAS data due to the enormous number of iterations needed by the MCMC. Thus,

we present a heuristic method, named SAM, by using Jensen-Shannon divergence and a

modified k-mean clustering to filter out a candidate set of SNPs showing potentially diverse

effects on multiple phenotypic traits. A stepwise evaluation of association is engaged for both

DAM and SAM to further determining the genetic effect types of associations. Systematic

experiments on both simulated and real GWAS datasets demonstrate that our methods are

feasible for identifying multi-locus interaction on GWAS datasets and enriches some novel,

significant high-order epistatic interactions with specialties on various diseases.
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4.2 DAM: A Bayesian Method for Detecting Genome-wide Associations on

Multiple Diseases

4.2.1 Notations

Suppose we have M SNPs, L groups and each group with N l samples, l ∈ {1, 2, ·, L}.

Let D be the genotypes of all samples at SNP loci. We use B to denote the count of

partitions for L groups. The number is also known as Bell numbers. The M SNPs are

assigned to 2B different label types, where the SNPs of the first B types are independently

associated with the phenotype traits, and the SNPs of the last B types are jointly associated

with the phenotype traits. Let T̃ denote the set of the independent B types, and T denote

the dependent B types. We use Tk to denote the kth type and T can be either T̃ or

T . An example to show the partitions and types for a three-group dataset is showed in

Figure 4.1, where there are 10 possible types in which type 1 through 5 indicate those SNPs

are independently associated with phenotypes, and types 6 through 10 indicate the SNPs are

dependently associated with the phenotypes. We use P to represent the total disjoint sets in

a partition of L groups, and there are |PTk | disjoint sets for Type Tk. Let I = (I1, . . . , IM) be

the memberships of M SNPs, in which Ii ∈ T̃
⋃
T . Let MTk denote the number of SNPs in

type Tk (
∑|T |

i=1 Mi = M), D(Tk) denote the genotypes of SNPs of type Tk, and D
(Tk)
i denote

the genotypes in ith disjoint set of partition for SNPs in type Tk. Please note that the

superscript inside the parenthesis is merely a label and does not represent the exponent.

In the experiment of 3 groups GWAS data, we use group 1 and 2 as two case groups and

group 3 as the shared control group. Since we only interested in identifying SNPs associated

with disease traits, SNPs in types 2 through 5 and types 7 through 10 are the target ones.

4.2.2 Bayesian Variable Partition Model

Consider a categorical variable x, which can be sampled in t different distributions{
∆(1),∆(2), . . . ,∆(t)

}
with t different parameter settings

{
Θ(1),Θ(2), . . . ,Θ(t)

}
, where Θk is

the parameter set used for describing x following kth distribution. The model used to
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Figure 4.1 Illustration for 10 types on 3 groups.

capture the sums of independently and identically distributed mixture categorical variables in

different distributions is referred as a ‘multinomial model’, meaning that it can be partitioned

into t inseparable multinomial models. Consider a model for a vector of M categorical

variables X = {x1, x2, . . . , xM}. If all variables are independent, the model can be simply

treated as the union ofM univariate multinomial models. If interactions exist among multiple
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variables, we can replace these multiple variables with a new model in which a single variable

is used to collapse the interacting variables. The sample space of the collapsed variable is the

product of the sample spaces of the variables before collapsing. Bayesian variable partition

model (BVP) is a multinomial model based on Bayesian theorem, and we use BVP to

capture the associations in the GWAS SNP data. For simplicity, we first describe the BVP

by assuming independence between SNPs. The likelihood for the BVP of a variable of kth

type distribution is

P (D(i)|∆k) =

∫
P (D(i)|∆k,Θk)dΘk

=

∫
θ1,θ2,...,θg

P (D|θ1, θ2, . . . , θg)P (θ1, θ2, . . . , θg)dp (4.1)

where D(i) is the observations for the categorical variable xi, and g is the number of

category value for the variable xi. Assuming a Dirichlet prior Dir(α1, α2, . . . , αg) for

P (Θ = (θ1, θ2, . . . , θg)), we obtain a closed form for Equation 4.1:

P (D(i)|∆k) =

∫
θ1,θ2,...,θg

P (D(i)|θ1, θ2, . . . , θg)P (θ1, θ2, . . . , θg)dp

=

∫
θ1,θ2,...,θg

1

Beta(α1, α2, . . . , αg)

g∏
i=1

pni+ai−1
i dp

=

(
g∏
i=1

Γ(ni + αi)

Γ(αi)

)
Γ(|α|)

Γ(N + |α|)
(4.2)

where pi is the probability of the ith category, N is the total number of observations, ni is

the frequency of ith category, and |α| is the sum of (α1, α2, . . . , αg). Suppose the vector I is

a vector of the memberships of distribution types for the categorical variable vector X, we

obtain the posterior distribution of I as
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P (I|D) ∝

(
M∏
i=1

P (D(i)|I)

)
P (I) (4.3)

Based on Bayesian theorem, we design the specific BVP for the genome-wide association

mapping as follows. For the SNPs independently associated with phenotypes, we use Θ
(T̃k)
ij =

((θj1, θj2, θj3) : Ij ∈ T̃k) to denote the genotype frequencies of SNP in ith disjoint set of the

partition of type T̃k. Note that the SNP with membership value in T̃ does not have interaction

with other SNPs. The likelihood of DT̃ based on BVP model is that

P (D(T̃ )|Θ(T̃ )) =

|T̃ |∏
k=1

∏
Ij=k

|Pk|∏
i=1

(Θ
(T̃k)
ij )n

(T̃k)

ij , (4.4)

where

(Θ
(T̃k)
ij )n

(T̃k)

ij =
3∏
s

θ
njs

js

and n
(T̃k)
ij = (nj1, nj2, nj3) are the genotype counts of SNP j in ith disjoint set of partition of

type T̃k. Similarly, assuming a Dirichlet distribution Dir (α) with parameter α = (α1, α2, α3)

to Θ
(T̃k)
ij , we can integrate out Θ

(T̃k)
ij and obtain the marginal probability:

P (D(T̃ )|I) =

|T̃ |∏
k=1

∏
Ij=k

|Pk|∏
i=1

((
3∏
s=1

Γ(njs + αs)

Γ(αs)

)
Γ(|α|)

Γ(Nij + |α|)

)
(4.5)

where Nij is the count of samples in groups belonging to ith disjoint set of partition of type

T̃k for the SNP with Ij, and |α| represents the sum of all elements in α. Please note that,

for simplicity of the equation, we omit the disjoint set labels and type labels of njs, αs and

α.
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For the rest SNP assigned to types T , they are supposed to contribute to the phenotype

traits with interactions. Thus, we concatenate SNPs of type T k into a single categorical

variable to resolve the interactions. Note that there are 3
MTk possible concatenated genotype

combinations. Let Θ
(Tk)
ij = ((φ1, φ2, . . . , φ

3
M
Tk

) be the concatenated genotype frequencies

over MTk
SNPs in the ith disjoint set of the partition of type T k. Similarly, we use a

Dirichlet prior Dir (β) for Θ
(Tk)
ij , β = (β1, β2, . . . , β

3
M
Tk

). According to Equation 4.2, we

obtain the marginal probability:

P (D(T )|I) =

|T |∏
k=1

Pk∏
i=1

3
M
Tk∏

s=1

Γ(ns) + βs
Γ(βs)

 Γ(|β|)
Γ(Ni + |β|)

 (4.6)

where Ni is the count of individuals belonging to ith disjoint set of partition of type T k, ns

is the count of sth concatenated genotype combination, and for simplicity, we again omit

the type labels for Ni, n
(ω)
i , and β.

Combining Equation 4.3, 4.5 and 4.6 , we obtain the posterior distribution of I as

P (I|D) ∝ P (D(T̃ )|I)P (D(T )|I)P (I) (4.7)

We set P (I) ∝
∏|T̃ |

k=1 p
M

T̃k

T̃k

∏|T |
k=1 p

MTk

Tk
to incorporate the prior knowledge of the pheno-

type association types of SNPs. In our experiments with three groups, we set pk = 0.001, k ∈

{2, . . . , 10}, and αs = βs = 0.5,∀s.

4.2.3 MCMC Sampling

We apply MCMC method to sample the indicator I from the distribution defined by

Equation 4.7. According to the prior P (I), DAM first initializes I randomly, then use the

Metropolis-Hastings (MH) algorithm [75] to construct a MCMC to update I. Three types

of updating strategies are employed: (i) randomly change an SNP’s type, (ii) randomly
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exchange two SNPs’ types when their types are different, or (iii) randomly shuffle the SNP

set with types of T . At each iteration, the acceptance of newly generated indicator is based

on the MH ratio, which is a Gamma function. DAM begins to record the membership

of all SNPs from the accepted indicator after the burn-in process. The frequencies of the

memberships of types are treated as the posterior distribution SNPs being associated with

one or more phenotype traits. The number of iteration in the burn-in process is fixed to

10M , and the number of sampling iteration is set to M2 in our experiments, where M is the

number of SNPs. We also apply a distance constraint that the physical distance between two

SNPs in a multi-locus module is at least 1Mb. This constraint is used to avoid associations

that might be attributed to the LD effects [11].

4.3 SAM: A Jensen-Shannon Divergence Based Method for Detecting Genome-

wide Associations on Multiple Diseases

One of the limitations of DAM is that it takes very long time to analyze fully a real large

GWAS data due to the enormous number of iteration of MCMC. We propose a fast algorithm

for detection of high-order epistatic interactions in GWAS with considering multiple disease

cases. The basic idea of SAM is to group SNPs displaying similar association effects on

one or more diseases together based on JensenShannon divergence, a traditional method of

measuring the similarity between two probability distributions, and an improved k-means

clustering algorithm. These candidates are examined to find the representative SNPs from

groups for further statistic association tests. Before we directly apply k-means clustering

algorithm, there are three questions needs to clarify:

1. What distance could be a good measure for two distributions?

2. How to decide the centroids of clustered groups?

3. What SNPs in the clusters that we select for further statistic tests?

From Chapter 2, χ2 statistic test can be used as the statistical correlation between two

loci for the filtering stage by choosing appropriate thresholds. There are two defects of χ2
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test: 1) the approximation of χ2 distribution is broken when cells’ frequencies in contingency

tables are less than 5; 2) χ2 test is not satisfying the conditions to be a distance measure,

which make us impossible to apply distance-based clustering algorithms. To capture the

correction between SNPs and interest traits, the Jensen-Shannon divergence is employed.

Since the genotypes of samples and SNPs are not mapping to Euclidean space, the centroid

of clusters cannot be obtained by averaging the coordinates of the SNPs in the cluster. So

the SNPs with the sum of distance to the rest SNPs in the cluster is treated as the centroid,

and we use a heuristic routine to sample the centroids instead of emulate all the pair-wise

distances between all SNPs. At last, a score function also on the basis of Jensen-Shannon

divergence is employed to select candidates from each cluster.

4.3.1 Notation

We follow the most common notations used in the previous section. Let L denote the

total number of groups including L−1 case groups and one control group. Let N be the total

count of individuals from L groups, and M be the number of SNP markers in the GWAS

data.

4.3.2 Jensen-Shannon Divergence

The Jensen-Shannon divergence (JS) is a popular distance measurement based on

Kullback-Leibler divergence [76], which evaluate the similarity between two probability distri-

butions. Given two probability distributions, p and q with g categories, the Kullback-Leibler

divergence (KL divergence) is defined as follows:

KL (p ‖ q) =

g∑
i=1

pglog
pg
qg

(4.8)

The KL divergence is not a distance since it is not symmetric. One symmetric version

of the KL divergence is the Jensen-Shannon divergence, defined as follows:
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JS (p, q) = 0.5KL
(
p ‖ p+ q

2

)
+ 0.5KL

(
q ‖ p+ q

2

)
(4.9)

By given a L groups GWAS data, there are |H| =
L

2

 combinations of two groups out of

L groups. Let H denote the set of all possible combinations. For each combination hi and

two SNPs, xa and xb, two probability distributions, phi for the first group and qhi for the

second group where each category indicates the possibility of individuals having a certain

genotypes defined by xa and xb. Based on the Jensen-Shannon divergence, we define the

distance between two SNPs, xa and xb as follows

Dist(xa, xb) = max
hi∈H

JS
(
phi , qhi

)
(4.10)

4.3.3 K-means Clustering

We want to find the set of d SNPs that maximizes the JS dissimilarity between any two

groups. But it is computational expensive to examine every d-combinations of nearly million

SNPs for d ≥ 3. In order to diminish time complexity, we make use of k-means clustering to

group SNPs into clusters where interacting SNPs tend to be placed into separate clusters and

SNPs with similar genotype frequencies distributions between groups tend to be put into the

same clusters. Using some ranking technique, we only need to investigate the interactions of

those SNPs that are assigned to different clusters. We define the distance of an SNP, xa, to

a cluster, C, as follows

Dist(xa, C) =
1

|C|
∑
xi∈C

Dist(xa, xi) (4.11)

where |C| is the number of SNPs in that cluster. There is no geometric coordinate of
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each SNP in our distance measure, so it is inexplicit to calculate the centroid of each cluster

by averaging the sum of coordinates of all SNPs. Instead of doing so, we define the centroid

of a cluster as the SNP with the smallest amount of distance to the rest of SNPs in the same

cluster. To avoid emulating all pairs of SNPs to obtain the centroid, we design a heuristic

routine, Centralizing, as follows. Note that, assumption made on the clustering data is that

the SNPs are around particular centroid, and the probability of an SNP showing near the

centroid is larger than the possibility of an SNP showing far away the centroid. We say this

kind of data as a centred data. First, an SNP, xb, is randomly selected from a cluster, and

the distances from xb to the rest of SNPs, C/xb, in the same cluster are computed and sorted

according to the magnitude. Next, we put those SNPs, C/xb, into bins with fixed width,

like using the histogram to represent graphically the distribution of numerical data. Along

the increasing of these distances, the bin in which the number of SNPs starts to decrease is

marked and the corresponding distance value is used as threshold τ to filter out SNPs. At the

end, only those SNPs with distances larger than τ will be selected to calculate the centroid.

The correctness of this heuristic routine to locate the centroid is ensured in Theorem 1.

Theorem 1. For a centred data in any dimensional space, given an arbitrary point xa,

the distance, Dist, between xa and the rest points is considered as a random variable. The

distance between the centroid x0 and xa, Dist(xa, x0) is indicating the last mode (if exists)

for the probability distribution of Dist.

Proof. Without loss of generality, we prove the theorem in 2-dimensional space, and for the

other dimensional spaces, similar proof can be applied. As shown in Figure , there are two

rings, RA, RB, whose area amounts are equal. RA and RB have the same centroid, xa, and

x0 is also inside these two rings. Two lines can be drawn to cut out two pieces, sa, sb, as

illustrated in the figure, where the areas of sa and sb are equal. Obviously, the possibility of

points falling in sa is larger than the possibility of points falling in sb because of the centred

data assumption. We can cut the rest of RA and RB in the same way and we can gain that

the possibility of points falling in Ra is larger than the possibility of points falling in Rb.

Therefore, as the distance getting larger than Dist(xa, x0), the possibility to have a point is
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decreasing. Based on the mode definition, Dist(xa, x0) is indicating the last mode for the

probability distribution of Dist.

x0 xa

RA

RB

Sa
Sb

Figure 4.2 Illustration for a centred data in 2-dimensional space.

Based on the above theorem, we can further reduce the computation by choosing mul-

tiple SNPs and narrow down the searching space for the centroid.

After clustering, top d × k candidates from all clusters based on a ranking score. A

candidate in a cluster is an SNP, which shows high dissimilarity between any two groups, in

other words, far away from the elements in the other clusters. We define the score as follows,

where Ci is the centroid SNP of ith cluster.

Score(x) =
∑

x∈Cj ,j 6=i

Dist(x,Ci) (4.12)
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4.3.4 Algorithm

The details of the SAM algorithm is showed in Algorithm 2 consisting two parts: clus-

tering and candidates ranking. The convergence of K-means clustering is very fast on the

simulated data. Usually setting the number of iteration to 10 is large enough to get an

overview of the SNPs’ belongings. Inside the k-means clustering, the distance between each

SNP and the centroid is computed according to Equation 4.11 and the Centralizing proce-

dure is employed to update the centroids. In the second part, all SNPs are ranked based on

Equation 4.12 and inserted into a size-limited descending list to select promising candidates.

Algorithm 2: The SAM Algorithm

Input: An N × (M + 1) matrix
Output: The top-kd SNP candidates

1 Read N × (M + 1) matrix file;
2 Initialize niteration;
3 Randomly select k SNPs as centroid;
4 for i in niteration do
5 for each SNP x do
6 Calculate DIST (x,C) ;
7 Assign x to a cluster ;

8 end
9 Apply the procedure Centralizing;

10 i+ +;

11 end
12 t′ = t′ + 1;
13 Initialize descending list List with length kd;
14 for each SNP x do
15 Calculate Score(x);
16 Place x into List if Score(x) is among top kd SNPs ;

17 end

4.4 Stepwise Evaluation of Interaction

With the candidate SNPs generated by MCMC and BVP, we apply the χ2 statis-

tic and the conditional χ2 test to measure the significance for a module of SNPs. Let

A = (x1, x2, . . . , xd : Tk) denote an SNP module A with d SNPs of type Tk. We use
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χ2(x1, x2, . . . , xd : Tk) to denote the χ2 statistic of A and χ2(x1, x2, . . . , xd|xc1 , xc2 , . . . , xcd′ :

Tk) as the conditional χ2 statistic by given a subset of A′, (xc1 , xc2 , . . . , xcd′ ) with d′ SNPs.

The χ2 statistic can be calculated as

χ2(x1, x2, . . . , xd : Tk) =

|PTk
|∑

i=1

3d∑
s=1

(ni,s − ei,s)2

ei,s
(4.13)

where ni,s is the frequency of sth genotype combination in ith disjoint set of the type Tk,

and ei,s is the corresponding expected frequency. The degrees of freedom for Equation 4.13

is (|PTk | − 1) · (3d − 1).

The conditional independent test based on the χ2 statistic is defined as follows

χ2(x1, . . . , xd|xc1 , . . . , xcd′ : Tk) =

3d
′∑

ι=1

|PTk
|∑

i=1

3d−d′∑
s=1

(n
(ι)
i,s − e

(ι)
i,s)

2

e
(ι)
i,s

(4.14)

where we calculate χ2 statistic for A − A′ separately for the given genotype combinations

of A′. The degrees of freedom for Equation 4.14 is 3d
′ · (|PTk | − 1) · (3d−d′ − 1). We treat

those SNPs as redundant SNPs when they are conditional independent by giving a subset

of the SNP module. To avoid these redundant SNPs, we define an SNP module (d ≥ 2) as

a compact epistatic interaction by the following Definition.

Definition 2. an SNPs module A = (x1, x2, . . . , xd : Tk) is considered as a significant

compact interaction by giving a significant level αd, if it meets the following three conditions:

(1) the p-value of χ2(x1, x2, . . . , xd : Tk) ≤ αd;

(2) the p-value of χ2(x1, x2, . . . , xd : Tk) = the minimum p-value of χ2(x1, x2, . . . , xd : T );

(3) the p-value of χ2(x1, x2, . . . , xd|xc1 , xc2 , . . . , xcd′ : Tk) ≤ αd for ∀A′ = (xc1 , xc2 , . . . , xcd′ :

Tk) whose p-value ≤ αd′.

Based on the Definition 2, we develop a stepwise algorithm to search for top-f significant
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d-locus significant compact interactions, where the searching space only includes the SNP

markers generated by MCMC and BVP. Here, f is a user defined number. We assume

that one SNP can only participate in one significant interaction with one type. For the SNP

markers of type T̃ , we first searches all the modules with just one SNP based on Definition 2,

then we recursively tests all the possible combinations by setting the module size with one

more SNP. For the SNPs reported as jointly contributing to the disease risk, we calculate the

p-value under different types and use the conditional test if part of SNPs already reported

as significant. All SNPs with significant marginal associations after a Bonferroni correction

are reported in a list L. The algorithm recursively searches the interaction space with larger

module size until d reaches a user pre-set value. We add all novel d-way interactions (i.e.

none of the SNPs in the module has been reported earlier) that are significant to L after the

Bonferroni correction for B ·
(
M
d

)
tests. For the interactions whose subsets have been reported

as significant before, we use the conditional independent test, and put the interaction in L if

it is still significant after Bonferroni correction of B ·
(
M
d

)
·
(
d
d′

)
tests. We also apply a distance

constraint that the physical distance between two SNPs in a multi-locus module should be

at least 1Mb. This constraint is used to avoid associations that might be due to the linkage

disequilibrium effects [11].

4.5 Experiment Results

We first give definitions of 8 simulated multi-disease models and the metric power mea-

surement, and then evaluate the effectiveness of our two methods. We also apply DAM and

SAM on two real GWAS datasets, Rheumatoid Arthritis (RA) and Type 1 Diabetes (T1D),

and we find not only the results reported by other literature but also some novel interesting

interactions.

4.5.1 Experimental design

Data simulation To evaluate the effectiveness of DAM and SAM, we perform

extensive simulation experiments using four disease models with two-locus associations on



65

three groups. The genotypes of unassociated SNP are generated by the same procedure

used in previous studies [45] with Minor Allele Frequencies (MAFs) sampled from [0.05, 0.5].

The odds tables for four models are identical to the first four models in Section 3.3.1. The

settings for four datasets are showed in Table 4.1. In a setting, all models are using the same

MAF ∈ {0.1, 0.2, 0.4}, we generate 100 replicas per setting. Therefore, by given an MAF, a

dataset contains at most 8 associations labeled as Ep 1 to 8, where there are 4 single-locus

associations and 4 two-locus associations. Note that there are 3 epistatic interactions in

Model 5, because the combination of three 2-locus models does not exist when MAF = 0.1.

Each simulated replica contained M = 1000 SNPs. The sizes of three groups are set to

(1000, 1000, 2000) or (2000, 2000, 4000), where the first two groups are the case groups and

the third one is the control group.

Table 4.1 Four settings of model combinations for four datasets.

Epistasis (Ep) 1 2 3 4
Type 7 8 9 10
Setting 1 Model 1 Model 1 Model 1 Model 1 & 2
Setting 2 Model 2 Model 2 Model 2 Model 2 & 3
Setting 3 Model 3 Model 3 Model 3 Model 3 & 4
Setting 4 Model 4 Model 4 Model 4 Model 4 & 1

Statistical power In the evaluation of performances on simulated data, 100

datasets are generated for each setting. The measure of discrimination power is defined as

the fraction of 100 datasets on which the ground-truth associations are identified as compact

and significant by DAM or SAM.

4.5.2 Null Simulation to Test Type I Errors

Here we examine the false positive rate for varied sizes of interaction, i.e. d = 2, 3, 4.

We generate 1000 null data sets for 6 settings, respectively. Specifically, we fix the number

of SNP to 1000 and vary the number of samples in each group. The first four settings

regarding the numbers of the individuals are N1 = {200, 200, 400}, N2 = {400, 400, 800},
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N3 = {800, 800, 1600}, and N4 = {1600, 1600, 3200}, where the first two numbers indicate

the sizes of two case groups, and the last number is the size of the control group. For

the rest two settings, using N4 as the sizes for groups, we increase the number of SNP

to 2000 and 4000. All of the SNPs are generated independently, with MAFs uniformly

distributed in [0.05, 0.5]. Note that we set the significance level to 0.1 and also apply the

Bonferroni correction introduced in Section 4.4. The degree of freedom for Pearson’s χ2 test

is df = (|T | − 1)(|G| − 1), where T denotes the type and G is the set of genotype given the

SNP module. The degree of freedom for conditional χ2 test is |G′|(|T |−1)(|G/G′|−1), where

G′ is the set of genotype given the subset of SNP module and G/G′ is the set of genotype

for the rest SNPs. We use the same measurement defined in the Section of Statistical power

to record the false positive rates. The result is showed in Figure 4.3.
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Figure 4.3 False positive rates of DAM under null models. The plots in (A) and (B) show
the false positive rates of DAM for different ds when sample sizes and the numbers of SNP
vary.

By setting the significance level to 0.1, we observe that the false positive rates of SAM

and DAM under different sizes of interactions are all below 0.1, which complies with the

fact that Bonferroni correction is too conservative. The overall false positive rate does not

fluctuate too much as the increasing of the numbers of samples or SNPs.
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Figure 4.4 False positive rates of SAM under null models. The plots in (A) and (B) show
the false positive rates of SAM for different ds when sample sizes and the numbers of SNP
vary.

4.5.3 Simulation Experiment from Four Epistasis Models

Test results for SNPs contributing jointly to the disease risks are illustrated in Figure 4.5.

We can find that both methods can report nearly 100% of embedded interactions for dataset

1 and 2. It also obtained nearly full power when MAF is 0.1 for dataset 1, 2, and 4.

Similar to the results on single-locus disease models, after the stepwise procedure, more

interactions were assigned to correct types. The overall quality of SAM and DAM are 0.732

and 0.805 for the sample size of {1000, 1000, 2000}, and 0.9195 and 0.9197 for the sample

size of {2000, 2000, 4000}, respectively. We can find that along the increasing of the sample

size, the accuracies of SAM and DAM do not differ very much.

4.5.4 Computation Time

We tested the running time of SAM and DAM on our desktop computer. The results

are showed in Table 4.2. We can see that SAM is much faster than DAM under these three

cases, and the speed-up of SAM is becoming higher when the number of SNPs is increasing.
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Table 4.2 Time Comparison of SAM and DAM

Data size SAM DAM
N=6,000, M=1,000 8.6s 131.4s
N=6,000, M=5,000 60.4s 793.2s
N=6,000, M=10,000 359.8s, 2165.1s

4.5.5 Experiments on The WTCCC Data

We applied DAM to analyze data from the WTCCC (3999 cases in total and 3004 shared

controls) on two common human diseases: Rheumatoid Arthritis (RA), Type 1 Diabetes

(T1D), where RA is treated as group 1, T1D is treated as group 2, and control group is

group 3. The procedure of quality control is the same as presented in the [45]. After the

SNP filtration, the data set finally has 333,739 high-quality SNPs. DAM ran about 36 hours,

for a total of 1× 1011 iterations. We started the MCMC chains 10 times independently and

pool the posterior distribution about the whole human genome together showed in Figure 4.6.

Table 4.3 Some significant interactions obtained by DAM on the WTCCC data. Following
each SNP is its the chromosome index.

State
Index

DAM
p-value

SNP 1 SNP 2 SNP 3

10 1.33E-95 rs3099844 (Chr6) rs3135376 (Chr6)
9 3.01E-21 rs1230649 (Chr1) rs11984645 (Chr8)
8 1.70E-18 rs9467704 (Chr6) rs12924729 (Chr16)
7 5.84E-13 rs2958371 (Chr8) rs1420247 (Chr16)
10 1.09E-10 rs9393713 (Chr6) rs2104286 (Chr10)
10 2.04E-9 rs9358932 (Chr6) rs7085631 (Chr10)
10 5.58E-96 rs2488457 (Chr1) rs2894254 (Chr6) rs2958371 (Chr8)
10 3.07E-89 rs3099844 (Chr6) rs3135376 (Chr6) rs11984645 (Chr8)
10 1.03E-18 rs1230649 (Chr1) rs9467704 (Chr6) rs12924729 (Chr16)
10 9.47E-12 rs9393713 (Chr6) rs2104286 (Chr10) rs1420247 (Chr16)

The MHC region in chromosome 6 with respect to infection, inflammation, autoimmu-

nity, and transplant medicine has been heavily reported [77] [18] [78], which is also verified

by the results from DAM on Chromosome 6, that most SNPs with high posterior proba-

bilities are located inside chromosome 6. But we still can find some inconsistency between
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what has been reported by other methods and what DAM has reported. For example, many

SNPs contributing to RA are not located within the MHC region, while the SNPs associ-

ated with T1D gather in MHC region, where we can see two vertical lines of blue dots in

Type 7 with one higher line in the MHC region. We select top 30 SNPs according to their

posterior probabilities and analyze them with the stepwise evaluation procedure introduced

in Section 4.4. Table 4.3 summarizes some novel findings of the significant interactions with

p-values adjusted by 2.78×1011 for two loci and 3.10×1016 for three loci interactions, respec-

tively. We again find some epistasis with diverse associations, and they are not only located

in chromosome 6. For example, rs1230649 is located inside the coding region of the gene,

PHTF1 (putative homeodomain transcription factor 1). PHTF1 can recruit FEM1B to the

endoplasmic reticulum membrance and FEM1B belonging to the death receptor-associated

family of proteins plays an important role in mediating apoptosis. The associated SNP with

rs1230649 is rs11984645, which is located near the gene, MRPL15, mitochondrial riboso-

mal protein L15. By using the LD plot from HapMap and the NCBI dbSNP (Figure 4.7),

we found rs1230647 and MRPL15 are both inside a block caused by LD effect. MRPL15

is encoded by nuclear genes and helps in protein synthesis within the mitochondrion, and

MRPL15 is also recognized as associated with T1D by other study [79]. For another SNP,

rs2488457 is in the coding region of the gene, AP4B1-AS1, which has been inferred to be

associated with RA by many studies [80][81]. rs2488457 is also linked to rs2958371 on Chro-

mosome 8. rs2958371 is inside the coding region of gene NCOA2, which encodes nuclear

receptor coactivator 2. NCOA2 helps in the function of nuclear hormone receptors that

plays important roles in various aspects of cell growth and development. Although the bi-

ological verifications of these interactions beyond this work, they still provide some insight

relations between RA and T1D.

4.6 Conclusion

The enormous number of SNPs genotyped in genome-wide case-control studies poses a

significant computational challenge in the identification of gene-gene interactions. During the
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last few years, many computational and statistical tools are developed to finding gene-gene

interactions for data with only two groups, i.e. case and control groups. Here, we present two

novel methods, named “DAM” and “SAM”, to address the computation and statistical power

issues for multiple diseases GWASs. We have successfully applied our methods to systematic

simulation and also analyzed two datasets from WTCCC. Our experimental results on both

simulated and real data demonstrate that our methods are capable of detecting high-order

epistatic interactions for multiple diseases at the genome-wide scale.
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Figure 4.5 Performance comparison between DAM and SAM on simulated disease datasets
1-4 embedded with Joint effect SNPs. Note that the combinations of model 1 with the rest
three 2-locus models does not have a mathematical solution when MAF = 0.1.
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Figure 4.6 Posterior probabilities of SNPs on the chromosome 1 to 22. Type 7 to 10 are
the disease association types. The x-axis indicates the position orders of SNPs on the
chromosomes, and the y-axis shows the posterior probabilities of SNPs.
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Figure 4.7 The 54120k - 54220k region of Chromosome 8. The LD plot from HapMap shows
that a block structure exists from 54120k to 54220k.
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PART 5

BLOCK-BASED DETECTION OF HIGH-ORDER GENOME-WIDE

EPISTASIS ON MULTIPLE DISEASES

5.1 Introduction and Contributions

Linkage disequilibrium (LD) is the well-known dependence structure between adjacent

SNPs in the human genome. We say two loci at LD if they are non-randomly inherited,

and we say they at linkage equilibrium (LE) if the inheritances are independent to each

other. One of the applications resulting of LD in whole-genome SNP association studies is

the SNP tagging. An SNP is selected as a tag SNP to represent a region of the genome

if it is in high LD with the group of SNPs in that region. Although the SNP data from

large GWASs are already using tag SNPs to sample the genetic variants, it is inevitable to

have SNPs at strong LD. If some of genuinely causal SNPs are correlated with nearby SNPs

due to the LD effect, most popular association detecting tools are incapable to tell whether

the significance is caused by the interaction or the LD effect. In this chapter, we extend

the DAM method to model the block structures (referred as LD-block [79]) and capture

the significant associations within and between the inferred blocks. We name the novel

method as BAM, B lock-based detection of genome-wide Association on M ultiple diseases.

Experimental results on simulated data sets demonstrate that BAM is capable to recover

perfectly the LD-blocks and complicated embedded associations. We also applied BAM on

two real WTCCC data sets, and some novel and interesting findings were reported. The

chapter is organized as follows. In Section 5.2, we present the extended Bayesian variable

partition model with the incorporation of the LD-block model. We design a two-level MCMC

updating scheme and a stepwise interaction evaluation in Section 5.2.5. In Section 5.3, we

demonstrate the superior performance of BAM by simulation studies comparing to two other

approaches, DAM and SAM. We also report our results by applying BAM to the RA and
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T1D data from WTCCC. We conclude the article in Section 5.4.

5.2 BAM: A B lock-Based Method of Genome-wide Association on Multiple

Diseases

5.2.1 Notations

We follow most of the notations introduced in Section 4.2. Let B denote the block set

with |B| blocks, and Bi be the ith block with |Bi| SNPs. Let D(Bi) be the genotypes of SNPs

of ith block.

5.2.2 Assumptions

To embed the LD effects in identifying genome-wide associations, we make the following

assumptions:

• Each SNP only belongs to one and only one LD-block.

• The epistatic interaction may contain SNPs from more than one LD-blocks.

• At most one SNP in an LD-block for a type T k ∈ T .

5.2.3 LD-block Model

We assume that the genotypes, D(Bi), follows a multinomial distribution with the fre-

quency parameters Θ = (θ1, . . . , θg, . . . , θ3|Bi|), where θg is frequency parameter for a particu-

lar genotype or genotype combination. There are up to 3|Bi| possible genotypes or genotype

combinations. Assuming a Dirichlet prior distribution on Θ, we obtain the likelihood of

observations in the block as follows

P (D(Bi)|Θ) =
3|Bi|∏
g=1

θng
g (5.1)

(5.2)
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where ng denotes the combined count of the genotype combination g observed in the data,

and

P (Θ) =
Γ(α◦)∏3|Bi|

g=1 Γ(αg)

3|Bi|∏
g=1

θαg−1
g (5.3)

Here, α◦ denotes the sum of values over all elements in α. By integrating out {θg}, we can

obtain the marginal probability of the data in the block as

P
(
D(Bi)|Bi

)
=

∫
Θ

P
(
D(Bi)|Bi,Θ

)
P (Θ) dΘ (5.4)

=
Γ(α◦)∏|Bi|
g=1 Γ(αg)

∫
Θ

|Bi|∏
g=1

θng+αg−1dΘ

=

 |Bi|∏
g=1

Γ(ng + αg)

Γ(αg)

 Γ(α◦)
Γ(N + α◦)

By default, we set α = ϕ

3|Bi|
for a genotype combination g, and let ϕ = 1.5.

5.2.4 Bayesian Variable Partition Model with LD-block Model

To incorporate epistatic interactions and LD-block, we use two indicator vectors, IT and

IB, where IT represent the type of the M SNP markers, and IB denotes the block partition of

the M SNPs. In DAM, SNPs of type T̃ are independent to each other, if they belong to the

same block, they become dependent of each other in the joint model of Bayesian partition

model and LD-block model. To illustrate our model, supposing there are only two types, T̃1

and T̃2, of SNPs in a block, we can obtain the joint probability of this block as

P (D(Bi)) = P (D
(T̃1)
(Bi)
|D(T̃2)

(Bi)
)P (D

(T̃2)
(Bi)

) (5.5)
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Thus, SNPs of type T̃0 and T̃1 are no longer mutually independent to each other as assumed

in DAM, but are related to each other because of the LD-block structure. To include all the

types in T̃ , we introduce a chain rule to put conditional independence on the SNPs of T̃ based

on the order of types. We revise formula 5.5 to take all the types of T̃ into consideration:

P (D(Bi)) =

|T̃ |−1∏
k=1

P

(
D

(T̃k)
(Bi)
|D

(T̃
k?|T̃ |)

(Bi)

)P (D
(T̃|T̃ |)

(Bi)
) (5.6)

where T̃k?|T̃ | denotes a set of types with subscripts in
[
k + 1, |T̃ |

]
.

SNPs of types T are assumed to be dependently associated with the disease(s), then we

assume SNPs of types T̃ to be conditional on the genotypes or genotype combinations of the

SNPs of types T̃ when they are all in the same block. Similar to the chain rule of SNPs of

T̃ , we also assume a conditional order for SNPs of T if there are multiple SNPs of types T

within the block. We further revise formula 5.6 as

P (D(Bi)) =

|T̃ |−1∏
k=1

P

(
D

(T̃k)
(Bi)
|D

(T̃
k?|T̃ |

⋃
T )

(Bi)

)P

(
D

(T̃|T̃ |)

(Bi)
|D(T )

(Bi)

)

×

|T |−1∏
k=1

P

(
D

(Tk)
(Bi)
|D

(Tk?|T |)

(Bi)

)P

(
D

(T |T |)

(Bi)

)
(5.7)

where P
(
D

(Tk)
(Bi)
|D(Tk′ )

(Bi)

)
and P

(
D

(Tk′′ )
(Bi)

)
are specified in formula 5.5.

Note that when there are multiple SNPs of type T k which are not belonging to the

same block, the conditional probability only considers those SNPs within the block, so D
(Tk)
(Bi)

indicates the genotypes of SNPs within the ith block and having the type T k. Also, for

simplicity, we omit the partitions of observations based on the types of SNPs in the above

formulas. More details about the partitions introduced by T can be find in Section 4.2.1.

To complete the type assignments and block structures determined by IT and IB in

formula 5.7, we express the joint probability of the whole data as
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P
(
D|IT , IB

)
=

|T |∏
k=1

P
(
D(Tk)|IT

)
×
|B|∏
i=1

P
(
D(Bi)|IT , IB

)
(5.8)

We set the prior distribution of the block variable IB as the product of independent

Bernoulli probabilities P (IB) = p|B|(1 − p)M−|B|. We further assume a priori that there are

50,000 blocks in the human genome, and thus we set p = min(0.5, 50000R/(3 × 109M)).

Here, R denotes the length of the region spanned by the M SNP markers, and 3× 109 is the

length of the human genome. Finally, the Bayesian variable partition model with LD-model

is write as

P
(
D, IT , IB

)
= P

(
D|IT , IB

)
P
(
IT
)
P
(
IB
)

(5.9)

where the conditional distribution, P
(
D|IT , IB

)
P
(
IT
)

is showed in formula 5.8.

5.2.5 MCMC Updates and Follow-up Tests

The parameters of interest in our model are the block partition IB and the assignments

of types of SNPs IT . We develop an MH algorithm to update IB, and, simultaneously, we

develop a mix of a Gibbs sampler and an MH algorithm to update IT .

We propose the three MH updates: (1) randomly select a block and split it into two

new blocks at a random position, (2) randomly select two adjacent blocks to merge into a

new block, and (3) randomly select two adjacent blocks and shift their common boundary

by random positions. The update is accepted based on the MH ratio, which is a Gamma

function.

To update the type assignments, we use the same MCMC sampling scheme in Sec-

tion 4.2.3. In each iteration, a Gibbs sampler is used to update the types of SNPs inside

each block first, and then the MCMC sampling scheme is used to update the whole SNP set.

We set a minimum threshold on the posterior probabilities of IT ) and feed those SNPs larger
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than the threshold to the stepwise interaction evaluation process introduced in Section 4.4.

5.3 Experiment Results

To show the performance of BAM with consideration of LD effects, we first introduce

the simulation using HapMap data [82]. Following that we show the null simulation to test

type I errors of BAM. With the simulated data in which we embed four types of disease-

specific associations, we compared BAM to DAM and SAM. We also applied BAM to two

real WTCCC data sets, RA and T1D, in which BAM produced accurate block partitions

that match well to the visual blocks displayed by Haploview [83].

5.3.1 Experimental Design

Data simulation To evaluate the effectiveness of BAM, we perform extensive

simulation experiments using four disease models with two-locus associations on three groups.

The genotypes of unassociated SNP are generated by the same procedure used in previous

studies [45] with Minor Allele Frequencies (MAFs) sampled from [0.05, 0.5]. The odds tables

for four models are identical to the first four models in Section 3.3.1. In a setting of an

epistatic interaction, we use the MAF ranged in {0.1, 0.2, 0.4}, we generate 100 replicas per

setting per epistatic interaction. Therefore, by given an MAF, a main and a secondary

model, we can have four associations labelled as Ep 5 to 8. Note that there are only three

epistatic interactions in Model 5, because the combinations of Model 5 with other models

do not have a mathematical solution when MAF = 0.1. Each simulated replica contained

M = 1000 SNPs. The sizes of three groups are set to (800, 800, 800) or (1600, 1600, 1600),

where we consider the first two groups as the case groups and the third one as the control

group. There are totally 92 settings.

To mimic real genetic data in human populations, we select an arbitrary region in

Chromosome 22. Given a disease model setting, we first sample the genotype for the disease

SNPs, and then randomly sample 2400 or 4800 individuals from a pool of controls generate

by HAPGEN [84] using CBH sample with odds ratio = 1. We keep the positions of these
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SNPs in Chromosome 22. For these data, we also applied a quality control procedure that

we remove those SNPs with MAF < 0.05 or p-values from Hardy-Weinberg Equilibrium

(HWE) tests less than 0.001.

Statistical power In the evaluation of performances on simulated data, 100

datasets are generated for each setting. We define the measurement of discrimination power

as the fraction of 100 datasets on which the ground-truth associations are identified as

compact and significant by the methods.

5.3.2 Null Simulation to Test Type I Errors

To display type I errors of our method, we conduct the null simulation experiments.

We simulate 1000 replica datasets without disease association embedded. The false positive

rate of BAM is showed in Figure 5.1, in which we can see that we obtained much less false

positive rate under all different group sizes and numbers of SNPs by setting the significance

level to 0.1. It shows that the Bonferroni correction is conservative to adjust the p-value.

Under most of the situations, BAM did not report any significant interactions. By looking

at the output candidate SNP lists of MCMC sampling, we found that there is no significant

SNP with the posterior probability larger than the posterior probability threshold, 0.5.

5.3.3 Simulation Experiment from Four Epistasis Models with LD

To verify the effectiveness of BAM, we use the simulation strategy introduced in Sec-

tion 5.3.1, where the block structure due to LD is from a real human genome. Although the

detailed boundary information is unavailable, the block structure widely exists across the en-

tire human genome. We took the SNPs from Chromosome 22 to generate the simulated data

for this section. The performance comparison between BAM, DAM, and SAM is illustrated

in Figure 5.2. We use the same concept of overall quality to evaluate the overall performance

of these three methods on the simulated datasets. The overall qualities for BAM, SAM, and

DAM are 0.564, 0.283, and 0.119 for the group size of 2400 individuals, and 0.742, 0.663,

and 0.321 for the group sizes of 4800 individuals, respectively. The improvement shows that
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Figure 5.1 False positive rates of BAM under null models. The plots in (A) and (B) show
the false positive rates of BAM for different ds when sample sizes and the numbers of SNPs
vary.

by incorporating the LD-Model into DAM, BAM is greatly improving the discrimination

power of those false interaction SNPs caused by LD effects. Here, we also found that SAM

performed better than DAM when block structures existed. We examined the candidate

SNP lists generated by SAM and DAM and found that DAM cannot pick up correctly the

disease-associated SNPs in the block. In the contrast, SAM uses the clustering algorithm

to group the SNPs when they show limited dissimilarities between data groups, which cause

causal SNPs and their nearby SNPs placed into different clusters. With the ranking of SNPs,

the disease-associated SNPs gain higher ranking scores than their adjacent SNPs, which give

those causal SNP factors changes to go to the stepwise interaction evaluation.

5.3.4 Experiments on The WTCCC Data

We also applied BAM to two real GWAS data, RA and T1D, especially in the region

of Chromosome 6. The block structures due to LD effects have many different definitions.

Therefore, to give an intuitive idea of the performance of the block structure yielded by

BAM, we randomly select four regions with lengths about 200kb and use HapMap to draw

the corresponding Haploviews of these areas. Figure 5.3 shows the recovered block structures
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by BAM. We set the number of iterations to 300 times with extra 300 times in the burn-in

process. Comparing to the visual blocks displayed by Haploview, BAM produced accurate

block partitions for these four regions.

5.4 Conclusion

In this chapter, we proposed a block-based Bayesian method for LD-block inference and

detection of high-order epistatic interaction on multiple diseases. Extensive experimental

results on simulated datasets indicate that BAM can identify most embedded disease associ-

ations even with block structures mimicked from real human genomes. By comparing to the

methods, SAM and DAM introduced in Chapter 4, BAM substantially improve the statistic

power of DAM by incorporating the LD model to Bayesian variable partition model. The

results from experiments in Chromosome 6 show that BAM is capable to recover the block

structures accurately.
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Figure 5.2 Performance comparison between BAM, SAM, and DAM after the same stepwise
interaction evaluation test on the dataset with 4 simulated disease associations. The X-axis
is the MAF value.
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Figure 5.3 Four block structures recovered by BAM in Chromosome 6. The X-axis in the
bottom half figure is the physical locations of the SNPs, and the Y-axis is the posterior
probabilities of SNPs. The top half figure is the Haploview of the corresponding areas
spanned by the SNPs.
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PART 6

DISCUSSION AND FUTURE WORK

The enormous amount of SNPs genotyped in genome-wide association studies poses a

significant computational challenge in the identification of gene-gene interactions. During

the last few years, there have been fast-growing interests in developing and applying com-

putational and statistical approaches to finding gene-gene interactions. In this work, we

presented four methods to address a series of problems in genome-wide association studies

in three scenarios. We first proposed a simple and fast method, named DCHE, for detection

of genome-wide multi-locus epistatic interactions using one disease status. With the obser-

vations of diverse effects of epistasis on multiple diseases, we designed two novel methods,

named DAM and SAM, for the search of genome-wide multi-locus epistatic interactions us-

ing multiple disease cases. DAM uses a Bayesian variable partition model to capture the

disease-specific associations. SAM uses a Jenson-Shannon Divergence and K-mean clustering

to reduce the searching space of SNPs. A stepwise interaction evaluation process based on χ2

test and conditional χ2 test was applied to the candidate list of SNPs generate by both SAM

and DAM. For the last scenario, combining the LD-model and Bayesian variable partition

model, we developed a novel Bayesian inference method, named BAM, with the capability

of modelling the block structures in the human genome and identify multi-locus epistatic

interactions simultaneously. Systematic simulated data were generated to evaluate the per-

formance of all these methods. By comparing to other popular tools, our methods show

significant improvement in terms of the discrimination power. Experimental results on real

data show that our four methods can find some novel biologically meaningful associations

and block structures.

In our future work, we will concentrate on the following five research directions:

• Parallelize our Jensen-Shannon Divergence based method, SAM and make it be able
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to be deployed on some popular cloud platforms, for example, Amazon EC2, Windows

Azure.

• Add block structure detection ability to SAM. One possible way is to use clustering

algorithms find the optimal number of blocks merely consisting with adjacent SNPs.

• Parallelize our block-based Bayesian method, BAM, to make it fast for handling entire

human genome-scale data.

• Apply BAM to the GWASs with the whole human genomes, to verify its performance

and try to find some statistically and biologically significant disease associations.

• Use well-defined block structure data by other block detecting tools to verify the re-

covery accuracy of BAM.

In addition to the above future topics, current approaches merely focus on the rela-

tionship between genotypes and the phenotype traits. However, more information, like SNP

positions on the chromosomes and suspicious epigenome patterns, can be helpful to con-

struct a systematically causal relation behind the diseases. SNPs are found in coding areas

as well as in the non-coding regions of genes. In general, SNPs in coding regions, termed

as non-synonymous SNPs, may have a greater impact on the gene function than those in

non-coding regions. The non-synonymous SNPs may cause pathological consequences either

by affecting the 3D conformation of protein structure or their corresponding active domains.

Consequently, they can potentially disrupt the recruitment scaffold of the similar protein.

Besides, the epigenome consists of a record of histone modifications and DNA methylation

of an organism. The existing evidence shows that there are some correlations between SNPs

and the quantitative traits of DNA methylation. Therefore, how to integrate the region

information of SNPs and the changes on epigenome into the detection of disease-associated

epistatic interactions will be a promising and challenging direction in genome-wide associa-

tion studies.
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