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Abstract

Packet switches are at the heart of modern communication networks. Initially de-
ployed for local- and wide-area computer networking, they are now being used in differ-
ent contexts, such as interconnection networks for High-Performance Computing (HPC),
Storage Area Networks (SANs) and Systems-on-Chip (SoC) communication. Each appli-
cation domain, however, has peculiar requirements in termsof bandwidth, latency, scal-
ability and delivery guarantee. These requirements must becarefully taken into account
and have a major impact on the design of the switch.

In this thesis we present two novel switching architectures, aimed at shared-memory
supercomputing and storage networking respectively. We describe the general architec-
ture of the two systems and discuss how specific requirementsand current technology
trends have impacted the design. More important, we presentsome architectural inno-
vations that address important issues concerning performance and scalability of input-
queued switches.

In particular, we propose techniques that enable the construction of distributed (multi-
chip) schedulers for large crossbars, develop a scheme for integrated scheduling of unicast
and multicast traffic and study flow-control mechanisms thatallow switches to achieve
lossless behavior while providing fine-grained control of active flows. Simulation is used
to understand the impact of the proposed solutions and evaluate system performance.
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Chapter 1

Introduction

1.1 Background

The history of packet-switched networks dates back to the ’60s, when deployment of
the ARPANET, ancestor of the Internet, was initiated. In the’90s the Internet became
a global and ubiquitous networking infrastructure, used for business, entertainment and
scientific purposes. Since then, the bandwidth demand of theInternet community has
been steadily increasing at exponential rates. To satisfy it, researchers and engineers have
studied extensively the design of high-performance switching fabrics, that are at the heart
of Internet routers. Today’s commercial Internet routers offer aggregate bandwidths on
the order of terabits per second and employ sophisticated algorithms for packet buffering,
processing and scheduling.

The success of this technology has led researchers to investigate its usage in other
domains, where the communication subsystem has become a primary performance bot-
tleneck. Packet switching is being used to build interconnection networks for High-
Performance Computing (HPC) systems, where a large number of computing nodes and
memory banks must be interconnected. It is replacing the traditional bus-based inter-
connection between servers and storage devices, giving birth to Storage Area Networks
(SANs). More recently, it is also being used for Systems-on-Chip (SoC) interconnects.

While the benefits of using packet switching in these domainshave long been recog-
nized, it is important to remember that each of them has its specific set of requirements,
significantly different from those typical of computer networks. Table 1.1 summarizes the
requirements for packet switches used in computer networksas well as in the two other
domains we are considering. The most significant differences are in terms of latency,
aggregate bandwidth and delivery guarantee.

Moreover, current technology trends are playing a significant role in the design of
packet switches. Issues such as power consumption, chip I/Obandwidth limitations and
packaging constraints are becoming primary concerns for designers.

1



1 – Introduction

IP Routers Fibre Channel HPC Interconnects
SAN Switches

Throughput Very Important Very Important Moderately Important
Latency Not Important Moderately Important Very Important
Delivery Can Tolerate Losses not Losses not
Guarantee Small Losses Acceptable Acceptable
Line Rate/ < 10 Gb/s < 10 Gb/s ≥ 40 Gb/s
Port Count ∼ 100 ports ∼ 100 ports ∼ 1000 ports

Table 1.1. Requirements of domain-specific interconnection networks.

Domain−specific

Requirements

Trends

Technology

Architectural

Innovations

Switching Architectures

ATM Switches

IP Routers and

Research on

Figure 1.1. Contributions and context of the thesis.

1.2 Contributions

In this thesis we present two novel switching architectures, aimed at HPC interconnects
and Storage Area Networks respectively. We discuss how the specific requirements of
the respective domains and current technology trends have influenced the design. More
importantly, we present some of the architectural innovations that allow them to satisfy
the demanding needs of their operating environments. The contributions and the context
of this work are illustrated in Figure 1.1.

Work described in Part I was performed in the context of OSMOSIS, a research project
developed at the IBM Zurich Research Lab, in collaboration with Corning, Inc. The
project aims at building a demonstrator interconnect for HPC systems, whose building
block is a switch featuring an all-optical data-path and electronic control-path. The system
is designed to provide state-of-the-art performance and scalability.

2



1 – Introduction

In Part II we discuss the architecture of a director-class Fibre Channel switch designed
for today’s data-center. The architecture presents a number of important features, such as
an asynchronous design and the presence of a central arbiterthat allow the switch to
achieve lossless behavior and isolate congesting flows.

Although the solutions we present have been developed to specifically address the
challenges posed by the design of these two architectures, we believe that they are valu-
able in a more general context, as they address important issues concerning the perfor-
mance and scalability of packet switches.

1.3 Outline of the Thesis

The thesis is organized as follows:

Chapter 2 introduces basic concepts and the terminology used in the rest of the
thesis. It provides an overview of switching architecturesand a brief survey of
scheduling algorithms.

Chapter 3 contains an overview of supercomputing systems and interconnection
networks. It explains how several factors, such as node architecture and partitioning
of the memory space influence the requirements of the communication subsystem
and describes the two most important classes of interconnection networks.

Chapter 4 describes the OSMOSIS project, explains the rationale for ahybrid opto-
electronic architecture and illustrates the switch data- and control-path.

Chapter 5 is devoted to the first specific problem we have considered: how to build
schedulers for large crossbars using multiple chips and overcoming the delay and
I/O bandwidth limitations caused by distribution.

Chapter 6 addresses the problem of scheduling unicast and multicast traffic con-
currently over a single fabric, achieving high overall performance and providing
fairness guarantees.

Chapter 7 summarizes work described in Part I and the results we have obtained.

Chapter 8 opens Part II of the thesis, describing the evolution of the server-storage
interface and illustrating how Storage Area Networks improve the organization of
storage resources.

Chapter 9 introduces the switching architecture for SANs, focusing in particular
on the mechanisms used to achieve loss-free operation and isolate congesting flows.

3



1 – Introduction

Chapter 10 contains a simulation-based study of system performance under uni-
cast traffic, analyzing the effects of system parameters (buffer sizes, fabric and link
speed-up) and traffic characteristics (uniformity, packetsize distribution).

Chapter 11studies performance under multicast traffic.

Chapter 12draws conclusions from the results of Part II and concludes the thesis.

A table of acronyms used in the thesis can be found at the end ofthe document.

4



Chapter 2

Packet Switching Basics

In this chapter we introduce the basic concepts and the terminology used in the rest of
the thesis. We first present the general architecture of a packet switch and discuss the
main distinguishing feature: buffer placement. After an overview of output-queued (OQ),
input-queued (IQ) and combined input-output-queued (CIOQ) switches, we focus on the
problem of scheduling unicast and multicast traffic in IQ switches. We provide a survey
of the most popular scheduling algorithms and discuss theircharacteristics in terms of
performance and complexity.

Packet switching is a broad field, which has been studied extensively for decades. A
comprehensive treatment of the topic can be found in [1], [2]and [3].

2.1 Definitions

A packet switchis a network device that receives packets oninput portsand forwards
them on the appropriateoutput ports.

The arrival of packets at the switch inputs can be modeled with a discrete-time stochas-
tic process. At every timeslot at most one fixed-size data unit, calledcell can arrive on
each input. Variable-size packets can be considered as “bursts” of cells received at the
same input in subsequent timeslots and directed to the same output.

We denote withλij the average arrival rate on inputi of cells directed to outputj, nor-
malized to the input/output link speed. Theoffered load from inputi is the (normalized)
rate at which cells enter the switch on inputi and is represented by the term

∑N

j=1
λij,

whereN is the number of input/output ports. Conversely, theoffered load to outputj is
the (normalized) rate at which cells destined to outputj enter the switch and is equal to
the sum

∑N

i=1
λij .

Traffic is admissibleif no input/output links are overloaded, i.e. if the arrivalrate at
the inputs and the offered load to the outputs are less than orequal to the capacity of the

5



2 – Packet Switching Basics

input/output links. Formally, the admissibility conditions can be stated as:

N∑

j=1

λij ≤ 1 ∀i = 1, . . . ,N

N∑

i=1

λij ≤ 1 ∀j = 1, . . . ,N

In these conditions it is theoretically possible for the switch to forward to the outputs all
the cells it receives on the inputs in finite time.

Traffic isuniformif a cell entering the switch can be directed to any output with equal
probability:

λij = 1/N ∀ i,j

It is independent and identically distributed (i.i.d.), also calledBernoulli, if the probability
that a cell arrives at an input in a certain timeslot:

• is identical to and independent from the probability that a cell arrives at the same
input in a different timeslot AND

• is independent from the probability that a cell arrives at another input.

The performance of a packet switch is mainly measured in terms of throughputand la-
tency. Throughput is the (normalized) rate at which the device forwards packets to the
outputs, latency is the time taken by a packet to traverse theswitch. A switch achieves
100% throughput if it is able to sustain an offered load to alloutputs equal to 1, under the
hypothesis that traffic is admissible.

2.2 General Architecture of a Packet Switch

Figure 2.1 shows the architecture of a packet switch withN input/output ports. Packets
are received on an input port and enter aningress adapter, where they are stored (if neces-
sary) and processed. Processing may include look-up of the destination port, recalculation
of header fields (TTL, CRC, etc.) and filtering. Packets are then transmitted through the
switching fabricand reach theegress adapters, where they are stored (if necessary) and
prepared for transmission on the output links. If the switching fabric operates only on
fixed-size data units, variable-size packets have to be segmented on the ingress adapter
and reassembled on the egress adapter. Usually an ingress adapter is coupled to an egress
adapter and they physically reside on a single board calledlinecard that can host multiple
bi-directional ports.

A switch is synchronousif the linecards and the fabric are coordinated by mean of
global clock signal and all ingress adapters start cell transmission at the same time. If the

6
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Switching Fabric

Ingress Adapter

Ingress Adapter

Ingress Adapter

Egress Adapter

Egress Adapter

Egress Adapter

Fabric Arbiter

Input 2

O1O3

O7

O1O1

O2O2

ON ONO7O2

Output 1

Output 2

Output N

Input 1

Input N

Data Link

Control Link

OX Packet (destined to output X)

Figure 2.1. General architecture of a packet switch.

switch isasynchronous, on the contrary, the linecards and the fabric work on independent
clock domains and transmission from different ingress adapters is not coordinated. In gen-
eral synchronous switches internally operate on fixed-sizecells, whereas asynchronous
switches may natively support variable-size packets. Synchronous architectures are more
popular because synchronicity simplifies many aspects of the design and implementa-
tion of the device. However, asynchronous switches have advantages as well, so they
are being actively researched [4–6]. In the rest of this chapter we will implicitly refer to
synchronous, cell-based switches.

2.3 Switching Fabric

2.3.1 Fabric properties

The switching fabric sets up connections between ingress and egress adapters. It isnon-
blocking if a connection between an idle input and an idle output can always be set-up,
regardless of which other connections have already been established. This is a very de-
sirable property, because it helps the switch in forwardingmultiple packets concurrently,
thus increasing throughput and reducing latency.

The fabric may run at a higher data rate than the linecards; inthis case the ratio
between the data rate of the fabric ports and that of the switch ports is calledspeed-up.
For example, in a synchronous switch with speed-up two, at every time slot ingress/egress

7
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Output 1 Output 2 Output 3

Crosspoint

Output 0

Input 0

Input 1

Input 2

Input 3

Figure 2.2. A4 × 4 crossbar.

adapters can transmit/receive two cells to/from the fabric. When speed-up is used, the
egress adapters can receive cells from the fabric at a higherrate than they can transmit
on the output links, so they need buffers to temporarily store cells in excess. The term
speed-up generally refers to the case in which both input andoutput fabric ports run faster
than the switch ports; however, it is possible to have outputspeed-up only, i.e. to have
only fabric output ports run at a higher data rate. Speed-up on the fabric inputs only is
possible but has no practical use.

2.3.2 Crossbar

The crossbar is a very simple fabric that directly connectsn inputs tom outputs, without
intermediate stages. From a conceptual point of view, it is composed byn + m lines, one
for each input and one for each output, andn × m crosspoints, arranged as depicted in
Figure 2.2. Inputi is connected to outputj if crosspoint(i,j) is closed.

Every output can be connected to only one input at a time, i.e.at most one crosspoint
can be closed on a column. However, one input can be connectedto multiple outputs at
the same time by closing the corresponding crosspoints on the input row. In this case the
signal at the input port is replicated to all the outputs for which the crosspoint is closed.
The fabric has intrinsic support formulticast(one-to-many) communication. The crossbar
is obviously non-blocking: an idle input (output) has all crosspoints its row (column)
open, thus it is enough to close the crosspoint at the intersection to connect them.

The simplicity of the crossbar and its non-blocking property make it a very popular
choice for packet switches. The main drawback is its intrinsic quadratic complexity, due
to the presence ofn × m crosspoints. Crossbars implemented on a single chip may also
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be limited by the amount of I/O signals that must be mapped to chip pins. However,
it is possible to build a large multi-chip crossbar by properly interconnecting smaller
single-chip ones [7]. The complexity in terms of gates remains quadratic.

2.4 Buffering Strategies

Due to traffic independence, the switch may receive in the same time slot multiple cells
directed to the same output. In this case there is aconflictbetween inputs caused byout-
put contention. It is not possible to forward one of the contending cells anddiscard all the
other, because the drop rate would be unacceptable for any practical application. There-
fore, the switch is endowed with internal buffers to store cells that cannot be transmitted
immediately on the output link. The buffering strategy, mainly if the cells are buffered
before being transferred through the switching fabric or after, is a major architectural trait
and strongly influences performance, scalability and cost of a switch [8].

2.4.1 Output-queued (OQ)

In OQ switches all cells arriving at the fabric inputs are immediately transferred through
the switching fabric and stored at the outputs. At every timeslot up toN cells directed
to the same output can arrive, so the fabric must operate withspeed-upS = N and the
memory bandwidth at each egress adapter must be equal toN times the line rate of the
switch ports1 (Figure 2.3).

N

N

N

1

1

1

1

1

1

Switching Fabric

Input 1

Input N

Output 1

Output N

Input 2 Output 2

Figure 2.3. An Output-queued switch.

If multiple cells are buffered at an egress adapter, it is necessary to decide in which or-
der they will be transmitted on the output link. This choice allows the switch to prioritize

1For simplicity we only consider memorywrite bandwidth.
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different flows but does not have an impact on throughput. TheOQ switch offers ideal
performance, i.e. it achieves 100% throughput under any traffic pattern.

The problem with OQ switches is scalability: fabric speed-up and, above all, egress
adapters memory bandwidth, grow linearly withN . As the bandwidth offered by com-
mercial memories is on the same order of link rates, the OQ architecture is a suitable
choice only for systems with a small number of ports or low link rates.

2.4.2 Input-queued (IQ)

In IQ switches the fabric transfers to the egress adapters only cells that can be transmitted
immediately on the output links. Those that are blocked because of output contention are
buffered on the ingress adapters (Figure 2.4).

1

1

1

1

1

Switching Fabric

1

Output 1

Output N

Output 2

1

1

1

Input 1

Input N

Input 2

Fabric Arbiter

Figure 2.4. Input-queued switch.

This strategy has the following crucial consequences:

• buffers are not needed on the egress adapters, because at every timeslot the cell
received from the switching fabric can be transmitted immediately on the output
link2;

• the switching fabric does not need speed-up, because it mustbe able to deliver at
most one cell per timeslot to each egress adapter;

• the memory bandwidth of the buffers on the ingress adapters is equal to the switch
ports line rate, irrespective ofN , because at most one cell per timeslot arrives at
each input;

2We neglect flow-control issues and assume that a cell can always be transmitted on an idle output link.
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• a scheduler is required to decide which among multiple cellscontending for the
same output will be transferred; the fabric must be configured accordingly.

In the simplest case, arriving cells are stored in FIFO queues and each ingress adapter
can only transmit the cell that is at the head of its queue. This constraint leads to a
phenomenon called “Head-of-the-line (HOL) Blocking”: a cell that is at the head of its
input queue and cannot be transferred because of output contention blocks all the other
cells in the same queue. Blocked cells may be destined to outputs for which no other input
is contending, so the opportunity to transfer a cell is lost.HOL-blocking can severely
degrade performance: for large values ofN it limits switch throughput to about 58%
under uniform i.i.d. traffic [8].

This level of performance is not acceptable, so in the past there have been many at-
tempts to overcome the problem, in general by relaxing the FIFO constraint and allowing
the scheduler to consider multiple cells from the same queue. In recent years increased
CMOS densities have made feasible a new queueing architecture, called Virtual Output
Queueing, that completely eliminates HOL blocking and allows IQ switches to achieve
high performance.

2.4.3 IQ switches with Virtual Output Queueing (VOQ)

Virtual Output Queues (VOQs) are sets of independent FIFO queues, each of which is
associated to a specific output [9]. In an IQ switch it is possible to avoid HOL-blocking
by deploying a set ofN VOQs on each ingress adapter (Figure 2.5). With VOQs, cells

1 1

11

Switching Fabric

1

1

Input N Output N

Output 1Input 1

Q1
Q2

QN

Q1

QN

Q2

VOQ Set 1

VOQ Set N

...

...

Fabric Arbiter

Figure 2.5. Input-queued switch with Virtual Output Queues.

destined to different outputs can be served in any order and do not interfere with each

11
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Matching ProblemVOQ Status A Maximal Matching

Figure 2.6. A Bipartite Graph Matching (BGM) problem.

other; cells destined to the same output, on the contrary, are served with a FIFO policy to
preserve the ordering of packets belonging to the same flow.

At every timeslot the scheduler must decide which cells to transfer through the switch-
ing fabric, subject to the constraints that at most one cell can depart from an ingress
adapter and at most one cell can be delivered to an egress adapter. The problem is equiv-
alent to calculating a matching on a bipartite graph, as illustrated in Figure 2.6. Nodes
on the left and right side represent fabric inputs and outputs respectively; dashed lines
(edges) represent non-empty VOQs, i.e. cells that can be chosen for transfer. Amatching
is a set of edges such that each input is connected to at most one output and each output
to at most one input.

A matching ismaximum sizeif it contains the highest number of edges among all
valid matchings; it ismaximalif it is not possible to add new edges without removing
previously inserted ones. For instance, the matching shownin Figure 2.6 is maximal
but not maximum: no edges can be added, but it is easy to verifythat there exists valid
matchings with four edges. Edges can be assigned weights, such as the number of cells
enqueued in the corresponding VOQ, or the time the cell at thehead-of-the-line has been
waiting for service. If weights are defined, theMaximum Weight Matching (MWM)is the
one that maximizes the sum of the weights associated to the edges it contains.

IQ switches with VOQs can achieve 100% throughput under any i.i.d. traffic pattern,
but only if very sophisticated scheduling algorithms are employed [10]. These algorithms
are in general difficult to implement in fast hardware and toocomplex to be executed
in a single timeslot. However, as we will discuss in Section 2.5, a number of heuristic
matching algorithms that achieve satisfactory performance with reasonable complexity
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have been devised. Therefore input-queueing with VOQs is today the preferred architec-
ture for the construction of large, high-performance packet switches. From this point on,
when discussing IQ switches we will implicitly assume that VOQs are present.

2.4.4 Combined Input-Output-Queued (CIOQ) Switches

OQ and IQ switches represent two diametrically opposing points in the trade-off between
speed-up and scheduling complexity. The former employ maximum speed-up but re-
quire no scheduling, the latter run without speed-up but need complex schedulers. CIOQ
switches (with VOQs) represent an intermediate point: theybuffer packets both at the
inputs and at the outputs, employ moderate speed-upS (1 ≤ S ≤ N) and use simpler
schedulers.

Early simulation studies of CIOQ switches showed that, under a variety of switch
sizes and traffic patterns, a small speed-up (between two andfive) leads to performance
levels close to those offered by OQ switches. These hints leda number of researchers to
analytically investigate the maximum performance achievable by CIOQ switches. Among
the many results that were published, these are particularly significant:

• With a speed-upS = 2 and proper scheduling algorithms, a CIOQ switch can
exactlyemulatean OQ switch, for any switch size and under any traffic pattern[11,
12]. “Emulating” means producing exactly the same cell departure process at the
outputs given the same cell arrival process at the inputs.

• A CIOQ switch employing any maximal matching algorithm witha speed-up of
two achieves 100% throughput under any traffic pattern, under the restriction that
no input or output is oversubscribed and that the arrival process satisfies the strong
law of large numbers [13].

These results prove that with moderate speed-up the performance of an IQ switch can
be dramatically improved and that it can even reach the performance of an OQ switch
if proper scheduling is used. A small fractional speed-up (S < 2) is also typically used
to compensate for various forms of overhead, such as additional headers that must be
internally prepended to cells and padding imposed by segmentation [14].

2.5 Scheduling Unicast Traffic in IQ Switches

2.5.1 Optimal Scheduling Algorithm

The optimal scheduling algorithms for an IQ switch, i.e. theone that maximizes through-
put, is the Maximum Weight Matching (MWM), when queue lengths are used as weights [15].
McKeown et al. noted that, with this choice of the weights, specific traffic patterns can
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lead to permanent starvation of some queues [10]. However, they also proved that 100%
throughput is still achieved for any i.i.d. traffic pattern if the ages of HOL cells are used
as weights; in this case starvation cannot happen. The most efficient known algorithm
for calculating the MWM of a bipartite graph converges inO(N3 log N) time [16]. De-
spite polynomial complexity, this algorithm is not practical for high-performance packet
switches, because it is difficult to implement in fast hardware and cannot be executed in
the short duration of a timeslot. For this reason, a number ofheuristic algorithms have
been developed.

2.5.2 Parallel Iterative Matching Algorithms

Parallel iterative matching algorithms are the most popular class of heuristic matching al-
gorithms. All inputs in parallel try to match themselves to one output by using a request-
grant protocol. VOQ selection at the inputs and contention resolution at the outputs are
performed byarbiters (also calledselectors) using round-robin or random criteria. The
process is iterated multiple times, until a maximal matching is obtained or the maxi-
mum number of iterations is reached. On average these algorithms converge inlog2 N
iterations, but in the worst case they can takeN .

PIM

PIM [17] (Parallel Iterative Matching) is one of the first parallel iterative matching algo-
rithms that have been proposed. In every timeslot the following threephasesare executed
and possibly repeated multiple times:

1. Request:every unmatched input sends a request to every unmatched output for
which it has a queued cell.

2. Grant: every output that has been requested by at least one inputrandomlyselects
one to grant.

3. Accept:if an input receives more than one grant, it selectsrandomlyone to accept.

The main disadvantage of PIM is that it does not perform well,as it achieves only
63% throughput with a single iteration under uniform i.i.d.traffic. Moreover, it employs
random selection, which is difficult and expensive to perform at high speed and can cause
unfairness under specific traffic patterns [18].

RRM

RRM (Round-Robin Matching) [18] addresses some of the drawbacks of PIM by replac-
ing random selection with round-robin. The selection logicat each input and output is
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composed by a round-robin selector and a pointer. Pointers at the outputs are named
grant pointers, whereas those at the inputsaccept pointers.

Every iteration of RRM entails the following three phases:

1. Request:every unmatched input sends a request to every output for which it has a
queued cell.

2. Grant: every output that has been requested by at least one input selects one to
grant in round-robin order, starting from the position indicated by the grant pointer.
The pointer is advanced (moduloN) to one input beyond the one just granted.

3. Accept: if an input receives more than one grant it selects one to accept in round-
robin order, starting from the position indicated by the accept pointer. The pointer
is advanced (moduloN) to one output beyond the one just accepted.

The performance of RRM is very close to that of PIM, so still quite poor.

i-SLIP

i-SLIP [19] is a improvement of RRM that, with an apparently minor modification,
achieves much higher performance. The three phases are modified as follows:

1. Request:same as RRM.

2. Grant: every output that has been requested by at least one input selects one to
grant in round-robin order, starting from the position indicated by the pointer. The
pointer is advanced (moduloN) to one input beyond the one just grantedif and only
if the released grant is accepted in the accept phase.

3. Accept:same as RRM.

Moreover, the grant and accept pointers are updated only in the first iteration; a detail that
is crucial to prevent starvation of any VOQ under any traffic pattern.

i-SLIP performs extremely well: under uniform i.i.d. trafficit achieves 100% through-
put with a single iteration, because it guaranteesdesynchronizationof the grant pointers.
When the switch is loaded at 100% and traffic is uniform i.i.d,all VOQs are backlogged.
Assume that the grant pointers at multiple outputs point to the same input, i.e. they
aresynchronized. The input receives multiple grants, accepts one and moves the accept
pointer. Thanks to the modification of the grant phase, only one of the grant pointers (the
one corresponding to the grant that has been accepted) is moved and leaves the group. For
the same reason, at most one new grant pointer can join the group. It is possible to prove
that, after a transient period, all grant pointers point to different inputs, regardless of their
initial position. Amaximummatching is produced at every timeslot and 100% throughput
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is achieved. Desynchronization is preserved as long as all VOQs are non-empty, because
all the released grants are accepted and so all the grant pointers move “in lockstep”.

Another important feature ofi-SLIP is that it is fair and starvation free, i.e. it does
not favor some flows over others and guarantees that a cell at the head of a VOQ will be
served within finite time.

DRRM

DRRM [20] (Dual Round-Robin Matching) is a further variant of i-SLIP that achieves
similar performance with one less phase and less information exchange between the input
and the outputs.

The two phases performed in each iteration are:

1. Request:every unmatched input selectsoneunmatched output to request in round-
robin order, starting from the position indicated by arequest pointer. In the first
iteration, the pointer is updated to one position beyond theinput just requested
(moduloN) if and only if a grant is received in thegrant phase.

2. Grant: each output that has been requested by at least one input selects one to grant
in round-robin order, starting from the position indicatedby a grant pointer. In
the first iteration the pointer is updated to one position past the input just granted
(moduloN).

A grant phase is not required because each input requests only one output, so it can receive
at most one grant, which is automatically accepted.

DRRM achieves 100% throughput under uniform i.i.d. traffic because in this situation
request pointers (moved only if a grant is received) desynchronize.

Figure 2.7 shows the operation of the DRRM algorithm for a4× 4 switch. At the end
of the first iteration all pointers (except R4 and G1) are moved forward by one position.
As the matching is maximal, it is not necessary to perform additional iterations.

FIRM

FIRM [21] is an improvement ofi-SLIP that achieves lower average latency by favoring
FCFS order of arriving cells. It does so by introducing a minor modification in the pointer
update rule of the grant phase ofi-SLIP: in the first iteration, if a grant is not accepted, the
grant pointer is moved to the granted input. The authors also show that this modification
reduces the maximum waiting time for any request from(N − 1)2 + N2 to N2.

A similar modification has been proposed for DRRM in [22].
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Figure 2.7. The behavior of the DRRM algorithm in a sample scenario.

Weighted Algorithms

As an attempt to approximate the behavior of MWM and improve performance under
non-uniform traffic, heuristic iterative weighted algorithms have been developed. Among
these arei-OCF (Oldest Cell First),i-LQF (Longest Queue First) andi-LPF (Longest Port
First), proposed by Mekkittikul and McKeown [23].

2.5.3 Sequential Matching Algorithms

Sequential scheduling algorithms produce a maximal matching by letting each input add
an edge at a time to an initially empty matching.

RPA [24] (Reservation with Pre-emption and Acknowledgement) and RRGS [25]
(Round Robin Greedy Scheduler) are examples of sequential matching algorithms. An
input receives a partial matching, adds an edge by selectinga free output and passes it
on to the next input. Inputs considered first are favored, because they find most outputs
still available. To avoid unfairness, the order in which inputs are considered is rotated at
every timeslot. These algorithms always produce a maximal matching, are fair and can be
pipelined to improve the matching rate. However, they require strong interaction among
the inputs and introduce latency at low load when pipelined.

The Wavefront Arbiter [26] (WFA) is another popular sequential arbiter. The status
of all theN2 VOQs of the system is represented in aN × N request matrixR: Ri,j = 1
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if input i has a cell destined to outputj, 0 otherwise. Sets of VOQs that are positioned
on a diagonal of the matrix are conflict-free, because they correspond to cells enqueued
at different inputs and destined to different outputs. Hence it is possible to produce a
matching by sequentially “sweeping” all the diagonals of the request matrix, excluding
input and outputs that have already been matched. WFA is fast, simple and offers good
performance; however, it suffers from some minor fairness and implementation issues [7].

2.6 Scheduling Multicast Traffic in IQ Switches

Traffic generated by a single source and directed to multipledestinations is calledmulti-
cast. One-to-many communication is important for many applications (see Section 6.1)
so switches must be able to efficiently replicate packets to multiple output ports.

In an IQ switch replication can be achieved simply by transmitting cells through the
switching fabric multiple times, one for every egress adapter that must be reached. How-
ever, the crossbar has intrinsic multicasting capabilities and can replicate a cell to multiple
outputs in a single timeslot. A scheduler that takes advantage of this feature can reduce
the latency experienced by cells and the load on the fabric input ports, which are occupied
for only one timeslot.

In this section we briefly introduce the problem of scheduling multicast traffic and
present some of the most popular scheduling algorithms.

2.6.1 Definitions

The set of outputs a multicast cell is destined to is called the fanout setand its cardinality
the fanout3. For clarity, we distinguish between theinput cell that is transmitted to the
switching fabric and theoutput cellsthat are generated by the replication process.

A scheduling discipline is termedfanout splittingif it allows partial service of an
input cell, i.e. if the associated set of output cells can be transferred to the outputs over
multiple timeslots.No fanout splittingdisciplines, on the contrary, require all the output
cells associated to an input cell to be delivered at the outputs in the same timeslot. Fanout
splitting offers a clear advantage because it allows the fabric to deliver in every timeslot
as many cells as possible to the outputs, at the price of a small increase of implementation
complexity.

The residueis the set of all output cells that lose contention for outputports in a
timeslot and have to be transmitted in subsequent timeslots.

3The term “fanout” is often used to refer also to the set itself.
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2.6.2 Queueing

A multicast cell can be destined to any subset of theN outputs, so the number of possible
fanout sets is2N−1. Even for moderate values ofN it is not practically feasible to provide
a dedicated queue to cells with the same fanout set, therefore HOL-blocking cannot be
completely eliminated. Indeed, most architectures store cell arriving on an ingress adapter
in a single queue and serve them in FIFO order.

To alleviate HOL-blocking, in [27] the authors propose a windowing scheme that
allows the scheduler to access any cell in the firstL positions of the queue. This scheme
offers throughput improvements, but requires random-access queues, which are complex
to implement. Moreover, it is clearly not effective under bursty traffic.

In [28] and [29] the benefits that can be gained by using a smallnumber of FIFO
queues at each ingress adapter are investigated. When multiple queues are present, it
is necessary to define a queueing policy. Static queueing policies always enqueue cells
with a given fanout in the same queue, whereas dynamic policies may enqueue them in
different ones, depending on status parameters such as queue occupancy. Static policies
lose effectiveness when few flows are active, because most ofthe available queues may
remain empty, whereas dynamic policies lead to out-of-order delivery.

In [30] maximum switch performance is analyzed, under the hypothesis that a queue
is provided for every possible fanout set. The results of this work have great theoretical
interest, because they show that an IQ switch is not able to achieve 100% throughput
under arbitrary traffic patterns, even if it employs this ideal queueing architecture and the
optimal scheduling discipline.

2.6.3 Scheduling

The problem of scheduling multicast traffic in an input-queued switch has been addressed
by a number of theoretical studies. In [31] and [32] the performance of various scheduling
disciplines (such as random or oldest-cell-first) is analyzed under different assumptions.
Work in [33] studies the optimal scheduling policy, obtaining it for switches of limited
size (up to three inputs) and deriving some of its propertiesin the general case.

In [34] the authors take a more practical approach: they specifically target the design
of efficient and implementable scheduling algorithms when FIFO queueing is used and
fanout splitting allowed. They provide important insight on the problem and propose
various solutions with different degrees of performance and complexity. An important
observation is that at any timeslot, given a set of requests,all non-idlingpolicies (those
that serve as many outputs as possible) transmits cells to the same outputs and leave the
same residue. What differentiates one policy from the otheris residue distribution, i.e. the
criteria with which the set of output cells that have lost contention is partitioned among the
inputs. Aconcentratingpolicy assigns the residue to as few inputs as possible. Policies
exhibiting this property serve in each timeslot as many HOL cells as possible, helping new
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cells to advance to the head of the queue. As new cells may be destined to idle outputs,
throughput is increased. Actually a proof is given that for a2×N switch a concentrating
policy is optimal, but it cannot be extended to switches of arbitrary size.

The first proposed algorithm, called “Concentrate” implements a purely concentrating
policy. However, the authors note that the algorithm suffers from fairness issues, as it can
permanently starve queues, so they proceed with the design of TATRA, a concentrating
algorithm with fairness guarantees. As TATRA is difficult toimplement in hardware, they
further propose the Weight Based Algorithm (WBA). WBA is a heuristic algorithm that
approximates concentrating behavior by favoring cells with small fanout and guarantees
fairness by giving priority to older cells. The algorithm works as follows:

1. At the beginning of every cell time each input calculates the weightof the cell at
the head of its queue, based on the age of the cell (the older, the heavier) and the
fanout (the larger, the lighter).

2. Each input submits a weighted request to all the outputs that it wishes to access.

3. Each output independently grants the input with the highest weight; ties are broken
randomly.

In the specific implementation shown in the paper, the weightis calculated adW =
αA − φF , whereA is the age (expressed in number of timeslots),F is the fanout and
α andφ are multiplication factors that allow tuning of the scheduler for performance or
fairness. Largeα implies that older cells are strongly favored, improving fairness, while
largeφ penalizes cells with large fanout, exalting the concentrating property and thus
improving performance. Calculations show that a cell has towait at the head of the queue
for no longer than(N(φ/α + 1) − 1) timeslots. WBA can be easily implemented in
hardware, as reported in the paper.
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Chapter 3

Supercomputers and Interconnection
Networks

In this chapter we present a brief overview of High-Performance Computing (HPC) sys-
tems, also calledsupercomputers. We first describe the main architectural traits of a
supercomputer, including the organization of the computing nodes, the partitioning of
the memory space and the programming model. We then focus on the interconnection
network(sometimes simply called “the interconnect”), discuss itsrole in the system and
analyze the main requirements. Finally, we introduce two fundamental classes of in-
terconnection networks, highlight their most important features and show some sample
topologies.

3.1 Supercomputing Systems

A supercomputeris “a computing system (hardware, system software and applications
software) that provides close to the best currently achievable sustained performance on
demanding computational problems” [35]. In the past the growth in demand for com-
puting power has mainly been driven by scientific (weather forecasting, computational
biology, plasma physics, etc.) and defense applications (cryptanalysis, stockpile steward-
ship, etc.). Nowadays business applications (automotive and aircraft design, geological
analysis, modeling of financial markets, etc.) are also playing a role.

For almost two decades microprocessors have experienced a tremendous growth in
performance, mainly due to technological improvements. Now the growth rate is slow-
ing down, because of complicated issues such as power dissipation and difficulties in
managing design complexity. Computer designers have traditionally tried to push the per-
formance of computing systems by building parallel machines, in which multiple com-
puting nodes work concurrently on portions of the same problem. In the near future we
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can expect parallelism to become the major source of performance improvement for all
computing systems.

A large number of parallel computer architectures have beenproposed over the years,
varying considerably in terms of applications, programming model and intended system
size. While it is difficult to provide a single, comprehensive taxonomy for this large and
diverse set of architectures, some useful dichotomies for positioning and comparison of
different systems have been established.

3.1.1 Shared-Memory vs. Message-Passing

In a shared-memory system all available memory can be accessed by all processors by
means of a global address space. Processors exchange data and synchronize by access-
ing shared memory locations. Load/Store instructions issued by a processor are implic-
itly converted to Read/Write messages that the interconnection network delivers to the
appropriate memory bank.

In a message-passing system, on the contrary, each processor has its own private mem-
ory space. Programmers explicitly exchange data and synchronization information among
processors by invoking message passing primitives.

In general shared-memory systems are easier to program (at the operating system,
compiler and application level) but more difficult to designthan message-passing sys-
tems. On the other hand, the hardware simplicity of message-passing systems, especially
the lack of complex cache-coherency issues, makes them muchmore scalable. For this
reason, the majority ofMassively Parallel Processing(MPP) systems, having thousands
or even hundreds of thousands of processors, are message-passing machines.

3.1.2 UMA vs. NUMA

In a shared-memory machine memory can be logically placed ina single centralized lo-
cation or distributed over the computing nodes, co-locatedwith the processors. In the first
case memory access time isuniform, i.e. it does not depend on which processor accesses
which memory location. In the other, it isnon-uniform, because a processor experiences
lower access time when accessing a memory location in its local bank rather than in a
remote one. Machines providing uniform or non-uniform memory access are classified as
UMA and NUMA, respectively.

Typical UMA systems are SMP (Symmetric Multiprocessor) machines, in which a
small number of processors (few tens at most) and a single bank of memory are connected
by means of a simple interconnection (usually a shared bus),as shown in Figure 3.1.
Examples of NUMA systems are DSM (Distributed Shared-Memory) machines, which
comprise hundreds of computing nodes (composed by a processor and a memory bank)
interconnected through a high-speed network (Figure 3.2).
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3.1.3 Custom vs. Off-the-shelf

Various platforms use different blends of custom and commercial, off-the shelf (COTS)
components. COTS components are designed for a broad range of applications and are
produced in large quantities. They benefit from economies ofscale and offer very good
cost/performance ratios. On the other hand, their design isnot optimized for supercom-
puting and they might perform poorly on some specific applications.

Microprocessors

The cost of designing and manufacturing a new processor has grown steadily over the
years and nowadays only few companies can afford it. For thisreason, most super-
computers today use commodity processors produced for the large-volume server and
workstation markets.

Interconnects

The interconnection network, on the contrary, is more difficult to build with commodity
components. The gap between the requirements of a local areanetwork and those of a
supercomputer interconnect is quite large. Although the bandwidth offered by Ethernet
has increased by several orders of magnitude during its lifetime, its application domain is
still limited by its inability to achieve low latency and guarantee lossless behavior.

New standard-based technologies, Infiniband [36] in particular, are trying to fill the
gap and provide a unified network infrastructure for local area networking and parallel
computing. Infiniband has a number of features specifically aimed at reducing network
latency. It employs an improved node/network interface that allows the network adapter to
connect directly to the memory controller of the node, bypassing the I/O bus. Moreover,
it supports advanced communication paradigms, such as RDMA, that allow a node to
move data directly in and out the memory space of another node. A carefully designed
flow-control mechanism enables loss-free operation and allows prioritization of latency-
sensitive messages. Altogether this characteristics makeInfiniband a potential alternative
to custom interconnection networks.

Clusters

Many of the largest supercomputers available today arecluster, i.e. collections of stan-
dard servers and workstations, loosely connected through standard LAN interconnects
such as Gigabit Ethernet. As clusters are entirely composedby commodity components,
they offer excellent cost/performance ratios. The use of standard interconnects promotes
scalability, while the fact that each node has its own processor, memory and operating
system provides significant advantages in terms of reliability and fault-tolerance [37].
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Figure 3.3. Time evolution of the architecture of the 500 most powerful supercomputers
in the world (fromhttp://www.top500.org).

Clusters performance is mainly limited by the latency introduced by the network,
which makes them unfit for applications that require strong interaction among computing
nodes. On the other hand, popular applications such as web servers and databases are
particularly amenable to run on clusters, because they are characterized by a large number
of independent threads that work in parallel, so they are notpenalized by network latency.
For example, in [38], the authors describe the Google cluster, built with standard PCs and
comprising more than 6000 processors (as of December 2000).

Figure 3.3 shows the distribution of the 500 most powerful supercomputers in the
world, based on their architecture. The current list is clearly dominated by clusters and
constellations (clusters of SMP systems) that together account for 80% of the total. The
remaining 20% is represented by custom MPP systems.

3.2 Interconnection Networks

The interconnection network is a critical component of a supercomputer, because it has a
direct impact on performance and scalability. The variety of node architectures, program-
ming models and application requirements has generated a proliferation of interconnec-
tion network designs, ranging from single shared busses used in SMP systems to complex,
meshed fabrics with thousands of ports for MPP systems.

The key requirements of a supercomputer interconnect are:

• Low latency Latency is the time required for a packet to traverse the network.
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It is the most important performance metric of an HPC interconnect, especially
when considering shared-memory machines. In such systems communication is
triggered by memory access instructions and the latency introduced by the network
directly contributes to memory access time. Specialized processors use latency-
hiding techniques, such as fetching data from memory in advance [39], fetch-
ing more than necessary and allowing multiple outstanding memory references.
Despite the availability of these techniques, network latency remains the primary
performance bottleneck for a number of applications [35].

• High Throughput Throughput is a measure of therate at which the network can
deliver data to the nodes. High throughput corresponds to high utilization of link
bandwidth and is particularly important when the nodes haveto exchange bulk sets
of data. Latency-hiding techniques mentioned above tend totransfer large blocks
of data, thus increasing throughput requirements.

• Scalability The network must be able to interconnect a large number of comput-
ing nodes. Moreover, as the number of nodes grows, the aggregate bandwidth of
the network should increase proportionally and latency should remain low. Net-
work scalability is essential to guarantee that the computing capacity of the system
reaches the intended levels and improves as new nodes are added.

• Reliability and Fault Tolerance A supercomputer uses a large number of com-
ponents and, as a consequence, the failure rate can be high. The network should
be able to continue operation in presence of a limited numberof faults. In partic-
ular, it should be able to exploit meshed connectivity and re-route messages over
alternative paths in case of link or node failure.

Interconnection networks can be characterized in terms oftopology, routingandflow-
control. Topology describes the interconnection pattern among nodes, routing determines
paths between pairs of non-adjacent nodes and flow-control defines mechanisms to reg-
ulate message transmission among nodes and prevent networkoverloading. Selecting
the topology is usually the first step in designing the network, because routing and flow-
control are heavily dependent on its characteristics. The choice of the topology is mainly
driven by the constraints imposed by the available packaging technology [7].

In the remaining part of this section we briefly describe two important classes of inter-
connection networks and show some popular topologies. A comprehensive classification
can be found in [40].

3.2.1 Direct networks

The distinguishing property of direct networks is that eachnode is directly connected to a
small set of other nodes by means of bi-directional, point-to-point links. Communication
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between non-neighboring devices entails transmission through intermediate hops. Each
node has an integratedrouter that handles communications, transmitting and receiving
messages or relaying them to other nodes.

Popular topologies for direct networks aren-dimensional meshes, tori and hypercubes
(Figure 3.4). The tree (Figure 3.5) is another important topology, because it efficiently
supports one-to-many and many-to-one communication patterns, typical of synchroniza-
tion andcollectiveoperations that require coordination of many computing nodes [40].

Direct networks scale very well in terms of bandwidth, so they have been used exten-
sively in MPP systems. However, as the number of nodes increase, so does the distance
between pairs, thus latency degrades.

Very large systems can use multiple networks optimized for specific tasks. For ex-
ample, the IBM Blue Gene/L, capable of scaling up to 65535 computing nodes, uses
a 3D-torus as a general-purpose interconnect and two specialized tree-like networks for
synchronization and collectives [41,42].

3.2.2 Indirect networks and MINs

Indirect networks interconnect computing nodes through intermediate nodes calledswitches
(Chapter 2). Switches receive messages on input ports and forward them to the appropri-
ate output ports, towards the final destination.

The complexity of a switch typically grows quadratically with the number of ports,
so its scalability is limited to few hundred ports at most (Section 2.3). As a single switch
cannot satisfy the requirements of large supercomputers, we must turn toMultistage In-
terconnection Networks (MINs). MINs enable the construction of fabrics interconnecting
thousands of nodes by employing several switches arranged in multiplestages. The num-
ber of stages and the interconnection pattern between the switches define the topology of
the network.

MINs were originally studied for circuit-switched networks and later employed in
packet-switched networks. Among the most popular topologies are Clos [43,44], Butter-
flies [45] and Fat-trees [46] networks.

A MIN is unidirectionalif data can flow on network links in a single directional,bi-
directional if it can flow simultaneously in both directions. For computer interconnects,
bi-directional MINs are usually preferred, because they offer shorter paths between nodes
(messages traverse only as many stages as necessary) and better redundancy. Figures 3.6
and 3.7 show a bi-directional Butterfly and a Fat-Tree network (circles represent nodes
and boxes represent switches).

MINs have very good scalability properties because the aggregate bandwidth grows
as new switches are added to the network and latency remains low thanks to small number
of stages. However, cost also increases rapidly, because more and more switch ports are
used to connect to other switches rather than computing nodes.
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(a) (b)

(c)

Figure 3.4. Direct network topologies: (a) 2D-mesh, (b) 2D-Torus, (c) Hypercube

Figure 3.5. A 15-nodes binary tree topology
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Figure 3.6. An 8-nodes bi-directional butterfly network

Figure 3.7. An 8-nodes fat-tree network
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Chapter 4

The OSMOSIS Project

In this chapter we present the OSMOSIS project, aimed at developing a prototype of a
switch for shared-memory supercomputers. We start with a digression on the role of elec-
tronics and optics in packet switching, to explain the rationale behind the choice of an
electro-optical architecture and compare it briefly with other optical switching architec-
tures. We then provide an overview of the system, discussingthe set of requirements and
the design of the the data- and control-path.

4.1 Electronics and optics in packet switching

4.1.1 Electronic switching

The performance of electronic packet switches has grown tremendously in the last fifteen
years, driven by the exponentially-increasing bandwidth requirements of Internet traffic.
Electronic switching is now a mature technology that has been employed in a number
of other domains, including HPC systems. However, the toughlatency and scalability
requirements of HPC interconnects are pushing it to the limit and are exposing its weakest
points.

The major problem that plagues electronic switching today is power consumption. As
the line rates increase, it becomes more and more difficult todrive copper cables over
acceptable distances. It is currently estimated that as much as 50% of the power con-
sumed by a switch is actually spent on the cables [14]. The problem can be addressed by
using optical fibers for transmission on the links and electronic components for buffering,
switching and processing. This solution, however, is only partially satisfactory, because
the O/E/O conversions required at the ingress and egress side of the switch consume
power, increase the cost of the devices and introduce latency. It would be highly desirable
to switch packets in the optical domain, avoiding conversion and reduce latency to the
time-of-flight of signals in the fibers.
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4.1.2 Optical devices

Optical devices have a number of unique features that distinguish them from electronic
ones and make them extremely attractive. First, a single fiber link, thanks to DWDM
techniques, can offer bandwidths on the order of terabits per second, several orders of
magnitude larger than what is provided by electrical links.Second, optical links can
span very long distances using limited power, so they are particularly fit for large and
distributed computing systems, whose diameters can be in the order of tens or hundreds
of meters. Last, and probably foremost, many optical devices are data-rate transparent,
meaning that they have extremely large operational bandwidths and can operate on signals
(split, combine, amplify, etc.) at constant power, regardless of the frequency at which
they are modulated. In the electronic domain, on the contrary, devices can only operate
in specific frequency ranges and power consumption is proportional to frequency. Thanks
to these features, an all-optical data-path can scale in bandwidth by orders of magnitude,
without increasing the physical size or the power consumption of the network elements.

The development of optical switches has mainly been limitedby factors such as de-
vice cost, integrability and noise levels. Moreover, the lack of optical buffers and logic
elements are two fundamental issues that haven’t been addressed satisfactorily yet. How-
ever, it is a common opinion that economic and technologicalissues can be solved in
short timeframes. If optical devices get market acceptance, their cost will decrease and
the manufacturing process will improve, leading to higher quality and integration levels.
As Moore’s Law, that governs density as well as cost of electronic components, is slowing
down, projections show that optical switches could be economically competitive by the
end of the decade [47].

4.1.3 Optical switching architectures

Over the years many optical switching architectures have been proposed [48]. Many of
them, however, are conceived for circuit-switching networks, so they exploit physical
phenomena that enable switching times in the order of milliseconds.

For packet-switching networks, the switching time must be smaller than the duration
of a minimum-size packet. Given the line-rates and packet sizes we are targeting, this
translates to few nanoseconds. Optical Burst Switching (OBS) techniques mitigate this
challenging requirements by fitting multiple packets in large containers and switching
them together at once. These techniques are not suitable forsupercomputing applica-
tions because packets must wait for a container to be full before being switched, so they
experience additional latency.

Semiconductor Optical Amplifiers (SOAs) are the most promising technology for op-
tical packet switching. They can be viewed as ON/OFF opticalswitching elements, with
very low switching times (on the order of few nanoseconds), high extinction ratios and
low noise. They are compact, consume low power and can be integrated into arrays [49].
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SOAs can be used to build switching nodes ranging from simple2 × 2 switches to large
crossbars using broadcast-and-select networks [50].

Even with appropriate technology, the question remains on how to build a packet
switch without large buffers and bit-level processing capabilities. A possible approach is
to use electronics for buffering and control at the borders of the fabric, confining optics to
the data-path. The basic philosophy behind such hybrid opto-electronic architectures is to
use optics for what optics does best and electronics for whatelectronics does best [51].

An alternative, pursued by the Data Vortex project [52], is to eliminate the need for
buffers altogether by using deflection routing and a very simple node structure that en-
ables distributed control with minimal processing capabilities. The Data Vortex aims at
fully exploiting the benefits of optical technologies and being a true all-optical switch. It
has a number of desirable features that make it very attractive for supercomputing applica-
tions, first and foremost scalability. However, it also has some non-negligible drawbacks,
mainly low throughput per port, out-of-order delivery and hard-to-predict latency.

4.2 The OSMOSIS System

4.2.1 Goals and requirements

OSMOSIS (Optical Shared-MemOry Supercomputer Interconnect System) is a research
project jointly developed by IBM and Corning that aims at building an HPC switch with
an all-optical data path and an optimized electronic control path [53].

The goals of the project are twofold: on one side, it aims at solving the technical
challenges involved in building a demonstrator system thatmeets a set of ambitious re-
quirements, on the other it aims at accelerating the cost reduction of all-optical switches,
achieving denser integration levels of optical componentsand finding a high volume
market for them, in addition to the low volume HPC market.

The specific requirements for the demonstrator are:

Port count 64 (single stage) – 2048 (multistage)
Line rate 40 Gb/s (scalable to 160 Gb/s)
Total (application to application) latency< 1µs
Effective user bandwidth > 75% of raw transmission bandwidth
Bit Error Rate (BER) < 10−21

Packet delivery Reliable and in-order

In addition, efficient support for mutlicast and broadcast is a basic requirement, as they
are particularly important for HPC applications [54]. All electronic control logic must be
implemented using only FPGAs and commercial components, togain flexibility and keep
the cost of the demonstrator acceptable.
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Figure 4.1. OSMOSIS system architecture.

4.2.2 System Overview

From an architectural point of view, OSMOSIS is a synchronous CIOQ switch (Chap-
ter 2). This implies that the switch operates on fixed-size cells and the optical core,
functionally equivalent to a crossbar, is reconfigured on a cell-by-cell basis. The cell
size derived from the requirements set is 256 B [55]. In general shorter cells would be
desirable, as they would offer lower latency and improve efficiency. However, this cell
size is acceptable and well-suited for shared-memory supercomputing, as synchronization
messages and cache-coherency transactions usually comprise a 100-300 B payload.

Figure 4.1 shows the high-level architecture of OSMOSIS in single-stage configura-
tion. The system is composed by a set ofadaptersinterconnected by anoptical core
controlled by a centralizedscheduler.

Adapters have two separated but physically co-located parts, namedingressandegress
adapter, that handle cells entering and exiting the switch respectively. They perform in-
terfacing functions between the computing nodes and the interconnect, including E/O and
O/E conversions, cells buffering and processing. Every ingress adapter comprises a full
set ofN VOQs, in which it stores cells based on their destination anda corresponding set
of N reliable delivery queues (RDQs). Egress adapter host anegress queuewhere they
buffer received cells before delivering them to the computing node or transmitting them
to the next stage. Every adapter has a dedicated optical control link to the centralized
scheduler, which carries the control channel protocols.

The scheduler is located on a separate card close to the optical switching core. At
the beginning of every timeslot it receives requests to transmit from the ingress adapters,
resolves conflicts and grants selected adapters, authorizing them to transmit.
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4.2.3 Data path

Every adapter is assigned a specific wavelengthλi, chosen among eight possible wave-
lengths. The 64 adapters are logically divided in eight groups, in such a way that all the
adapters in the same group use a different wavelength.

The switching function is implemented with aBroadcast & Selectarchitecture that
combines eight-way space- and eight-way wavelength-division multiplexing to imple-
ment a 64-port fabric. The first stage of the optical core consists of eightbroadcast units
that receive the signals transmitted by a group of adapters (consisting of eight signals on
eight different wavelengths), multiplex them on a single fiber, amplify the resulting WDM
signal using an erbium-doped fiber amplifier (EDFA) and then split it to 128 waveguides1.
The selectstage comprises 128 planes, two per output port, each connected to all the
eight broadcast units of the first stage. A group of eight SOAsperforms fiber selection
by blocking signals coming from all the broadcast units except one. Regardless of the se-
lected fiber, the WDM signal is passed through a combiner to guide it to a common fiber
and then de-multiplexed to separate the eight wavelengths on different fibers. A second
group of SOAs is used to select a single wavelength and block the others. The signal is
again guided to a common fiber by means of a combiner and finallyreaches the egress
adapter. Each egress adapter is connected to two select units, so it can independently re-
ceive two signals at the same time. Multicast and broadcast transmission can be achieved
simply by having multiple planes select the same fiber/colorpair.

The optical core employs a combination of Planar Lightwave Circuits (PLCs) and
discrete components. Transmission from the ingress adapters must be synchronized in
such a way that cells arrive at the optical crossbar at the same time, when SOAs have just
been configured, and walk equal-length paths. This is achieved by using a global clock
signal distributed to all the adapters and components whoselength is matched to a fraction
of the optical packet length.

Although all ports work at the same nominal bit-rate, egressadapters receive bit-
streams generated by different serializers, with independent phases. Thus receivers must
operate in burst-mode and, to keep cell overhead low, they must be able to recover bit-
phase in a very short time. Moreover, channels use differentwavelengths, so receivers
must have wide-dynamic-range transimpedance.

4.2.4 Control path

The physical implementation and packaging constraints of OSMOSIS, and of large switches
in general [14], lead to a distribution of switch components(adapters, optical core, sched-
uler) over multiple racks, interconnected by long cables. The latency introduced by these
cables, together with the delay due to (de-)serialization and other contributions, add up

1128-way splitting (rather than 64-way) is required to alloweach egress adapter to receive up to two
cells per timeslot. The details about the usage of the secondreceiver can be found in [54]
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to several cell times and must be carefully taken into account in the design of the control
path.

Further details about the architecture of the OSMOSIS scheduler and the design of the
control plane can be found in [54].

Control Channel Protocol

As the scheduler is connected to the adapters through long cables, control messages have
to be pipelined. The scheduler has delayed knowledge of the status of the VOQs at the
ingress adapters, an issue that can seriously degrade performance. The problem is ad-
dressed by maintaining VOQ status information at the scheduler, updating it using an
incrementalprotocol [56] and ensuring its consistency using acensusmechanism [57].

The scheduler maintainsN2 counters, each representing the occupancy of a VOQ.
When a new cell arrives at an adapter, the scheduler is notified by a control message and
increments the corresponding counter. When the scheduler issues a grant, it decrements
the counter, as the cell will be dequeued as soon as the grant arrives at the adapter.

The census mechanism is a distributed consistency protocolcapable of detecting and
correcting discrepancies between the information maintained at the scheduler and the
known status of the VOQs on the adapters. It is triggered at regular intervals to ensure
proper recovery from control channel transmission errors.

Scheduler

The scheduler must solve a bipartite-graph matching problem at every timeslot (Sec-
tion 2.4.3). As the optimal scheduling algorithms is not implementable in fast hardware,
the scheduler uses a heuristic iterative algorithm based onDRRM (Section 2.5.2 and [20]).
Iterative algorithms are implemented using2N programmable priority encoders, that per-
form 1-out-of-N selection [28]; asN increases, so does their space and time complexity.
Moreover, they need to performlog

2
N iterations to produce a good matching and achieve

high delay-throughput performance.
Given thatN is large and that only FPGAs are at disposal, implementing the schedul-

ing algorithm and performing the desired number of iterations entails a number of chal-
lenges. First, the scheduler must be distributed over multiple chips, as it doesn’t fit on a
single one. Distribution requires the usage of specific techniques to deal with delays and
bandwidth limitations of in chip-to-chip communication. These techniques are part of
the contributions of this work and are discussed in detail inChapter 5 and [58]. Second,
it is not possible to perform the desired number of iterations in the short duration of a
timeslot. To overcome the problem, the scheduler employs a pipelining scheme, called
FLPPR (Fast Low-latency Parallel Pipelined aRbitration) [59]. The most important fea-
ture of FLPPR, that distinguishes it from previously proposed pipelining schemes [60,61]
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is that new requests are allowed to enter at any stage of the pipeline, reducing the mini-
mum latency to a single timeslot. FLPPR also achieves betterperformance at high load
under non-uniform and bursty traffic.

The scheduler also implements a novel scheme to achieve fairand efficient integrated
scheduling of unicast and multicast traffic. The scheme is described in Chapter 6 and [62].

Reliable Delivery

The optical data path is engineered to achieve a raw bit-error rate of10−10. A custom
forward error-correcting code (FEC) is employed to reduce it to 10−17. Cells that cannot
be corrected by the FEC must be retransmitted, hence each adapter has a set of reliable-
delivery queues (RDQs) where packets are stored until the egress adapter acknowledges
reception. ACKs are transmitted on the control channel and aGo-Back-N retransmission
policy is used. This policy is simple to implement and is consistent with the bursty na-
ture of optical link errors. As the error rate provided by theFEC is already fairly low,
retransmission is rarely required and the inefficiencies ofGo-Back-N are not an issue.

Flow Control

To prevent overflow of the egress buffers, the system employ an on-off flow control loop
between egress adapters and the scheduler, which is embedded in the upstream control
channel messages. If a specific egress buffer is close to saturation, the scheduler no longer
considers any request for the corresponding output. When occupancy decreases below a
pre-determined threshold, the permission is reinstated.

4.2.5 Multistage scalability

One of the main objectives of the OSMOSIS project is to provide a system that can scale
to thousands of nodes. In single-stage configuration this isnot practically feasible due
to the quadratic complexity of the scheduler and the opticalcore. A viable solution is
to scale the number of ports is to use a multistage network. Based on the considerations
exposed in Section 3.2.2, the Fat-Tree topology has been selected. Using 9664 × 64
switches the fabric scales to 2048 ports with full bi-sectional bandwidth (Figure 4.2).

Having an end-to-end all-optical data path, without intermediate electronic buffers,
would be very attractive, because it would reduce cost, power consumption and latency.
However, it would require a centralized scheduler capable of configuring all the switches
in the network simultaneously. The complexity of such scheduler would be unbearable
given the timing constraints. Moreover, the delay introduced by the control channel would
become much larger. As the adapter must send a request and wait for a grant before
transmitting a cell, much of the latency advantage would be defeated [51].
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Figure 4.2. Multistage Fat-Tree configuration with 2048 ports and full bi-sectional band-
width. All links are bi-directional. A single- and a multi-hop paths are shown.
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Chapter 5

Distributed Implementation of
Crossbar Schedulers

Despite extremely high-density CMOS technologies, as the number of portsN grows, the
complexity of crossbar schedulers based on parallel iterative algorithms such asi-SLIP
and DRRM quickly exceeds single-chip implementation limits. The implementation is
limited by power density, gate count, pin count, I/O bandwidth and wiring, due to the
high degree of connectivity between the input and output selectors [14]. In this chapter
we present a set of techniques that enable distributed (multi-chip) implementations of
iterative matching algorithms, enabling the constructionof schedulers for large switches,
while achieving a level of performance that is close to that of a monolithic (single-chip)
implementation.

The practical motivation for this effort is the design and implementation of the OS-
MOSIS arbiter, as described in Chapter 4. Sizing experiments show that the scheduler
logic must be distributed over multiple devices, which introduces a number of new chal-
lenges. Most importantly, the physical distances among chips introduces latencies that
exceed the timing requirements and the separation of logical units prevents shared access
to status information.

We consider four levels of distribution, from monolithic tofully distributed, and
present a number of techniques to mitigate the effects of specific distribution levels. The
performance results obtained via simulation show that, using these methods, a distributed
scheduler can achieve performance close to that of a monolithic one, even with large
internal latencies.

5.1 Iterative Matching Algorithms

Iterative matching algorithms such asi-SLIP [19], FIRM [21], and DRRM [22] are widely
used owing to the key advantages they offer:
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1. High performance: More precisely, they guarantee 100% throughput under uniform
uncorrelated traffic with a single iteration. Additional iterations significantly reduce
the mean latency.

2. Fairness: They ensure that under any traffic pattern any nonempty VOQ receives
service within finite time.

3. Practicality: Although, a total of2N selectors (one per input and one per output) is
required, these selectors operate independently and in parallel. Thus, high matching
rates can be achieved. Moreover, the selectors are feasibleto implement in fast
hardware [28].

5.1.1 Two- vs. three-phase algorithms

Iterative matching algorithms can be classified into two- and three-phase algorithms ac-
cording to the number of steps per iteration. In three-phasealgorithms, there arerequest,
grant, andacceptsteps in every iteration. In the request phase, every input sends a request
to everyoutput it has at least one cell for. In the grant phase, every output independently
selects one request to grant. As these decisions are independent, multiple outputs may
grant the same input. Therefore, in the third phase, every input selects one grant to ac-
cept. Two-phase algorithms, on the other hand, comprise only a request and a grant phase.
In the request phase, every input sends a request tooneoutput for which it has at least
one cell. In the grant phase, every output independently selects a request to grant. Be-
cause every input can receive one grant at maximum, there is no need for an accept phase,
i.e., every grant is automatically accepted.i-SLIP and FIRM are three-phase algorithms,
whereas DRRM is a two-phase one.

Input and output selection is based on a prioritized round-robin mechanism, i.e., the
input (output) selector chooses the first eligible output (input) starting from the position
indicated by apointer. The pointer update policy is a crucial characteristic of each algo-
rithm and must be chosen carefully to guarantee performanceand fairness. The update
policies employed by these algorithms share a common trait:once a connection (corre-
sponding to a VOQ) becomes highest priority, it will be givenprecedence over the other
competing ones until it is established. Ini-SLIP this is achieved by having an output grant
the same input (in the first iteration) until the grant is accepted. In DRRM, on the con-
trary, an input will keep requesting the same output (in the first iteration) until it receives
a grant. This feature guarantees fairness and leads topointer desynchronization[18], i.e.,
it assures that under heavy traffic (when all the VOQs are nonempty) each output grants a
different input (i-SLIP) or each input requests a different output (DRRM). When this hap-
pens, there are no conflicts and a maximum-size matching is produced in every timeslot,
leading to 100% throughput.
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device utilization performance #iterations
N

slices % #nets fmax tmin Ia It

(MHz) (ns)
iSLIP (in- and output selectors)
4 266 0.60 2,075 203.9 4.90 10.4 2
8 1,071 2.43 8,008 119.1 8.39 6.1 3
16 4,544 10.3 33,770 79.9 12.51 4.1 4
32 15,046 34.1 114,987 57.9 17.27 3.0 5
48 34,652 78.6 264,174 42.4 23.58 2.2 5.6
52 41,437 93.8 316,856 44.1 22.66 2.3 5.7
64 does not fit FPGA device – – – 6

Table 5.1. Sizing in Xilinx Virtex-II-Pro (speed grade -6),from [55].

5.1.2 Sizing experiments

This study is motivated by the implementation of the 64×64 crossbar scheduler for OS-
MOSIS. One of the challenges in this project is to implement ascheduler of this com-
plexity in FPGA technology, which is used mainly for reasonsof cost and flexibility.

Our sizing results, shown in Table 5.1 (also previously reported in [55]), demonstrate
that a monolithic implementation does not fit in the targetedFPGA device, which is the
biggest and fastest FPGA available from Xilinx at the time ofimplementation, namely,
the “xc2vp100-6ff1704,” a Virtex-II-Pro series FPGA providing 8 M system gates (100
K logic cells)1 and 1040 users I/Os. The table lists the device utilization in the number of
slices, percentage and number of nets, the scheduler performance in terms of maximum
clock frequencyfmax and minimum clock periodtmin, and the number of achievable iter-
ationsIa vs. the targetIt = log2(N). The numbers refer to the unconstrained placement
and routing of the request-grant-accept phases ofi-SLIP, based on the implementation
described in [28], considering only the core of the algorithm, without the I/O interfaces
required to convey the external requests and grants to/fromthe scheduler device.

As the largest scheduler feasible in a single Virtex-II-Proxc2vp100 is somewhere in
the range of 52×52, we cannot use a monolithic matching algorithm for our centralized
crossbar scheduler. Clearly, these hold for three- as well as two-phase algorithms, as the
latter are not inherently less complex in terms of silicon area.

Additional experiments show that it is possible to placetheN output selectorsof a
64 × 64 DRRM scheduler, together with the I/O logic and the status and configuration
registers on a single chip. This result is important becauseit will be used for the design
of our specific scheduler.

1Virtex logic cell = (1) 4-input LUT + (1) flip-flop + carry logic. Virtex slice = 2 logic cells.
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Figure 5.1. Schematic representation of the four levels of distribution. The bold lines
represent the device (chip) boundaries. IS = input selector, OS = output selector.

5.2 Distribution Challenges

The sizing results above call for a distributed implementation, which entails partitioning
the selectors over multiple physical devices. In a monolithic implementation, the selec-
tors are tightly coupled and decisions taken at the inputs are known to the outputs (and
vice versa) within the same timeslot. In a distributed implementation, this is no longer
true. The delays caused by wires, (de-)serialization and pin-sharing can add up to several
timeslots. This means that critical information needed to update pointers or issue new
requests is not available in a timely fashion. As mentioned previously, pointer update is
crucial for iterative algorithms, because it is the key to performance and fairness, so care
must be taken not to disrupt it.

For ease of reference, we introduce and discuss four levels of distribution (DL0 through
DL3), as illustrated in Figure 5.1:

DL0 Monolithic implementation: All input and output selectors are implemented in a
single device. The implicit assumption is that the result ofevery iteration is known
globally before the next iteration is executed.

DL1 Separate the input from the output selectors, creating two groups ofN selectors
each, enabling distribution over two devices.

DL2 Additionally separate the input selectors from each other, enabling distribution over
N + 1 devices.

DL3 Additionally separate the output selectors from each other. This level represents
full distribution and enables distribution over2N devices.
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5.2.1 Monolithic DRRM implementation

In order to clarify the issues that arise when selectors are distributed and explain our solu-
tions, we refer to an implementation of the DRRM algorithm. We consider the “enhanced”
version of DRRM [22], which achieves lower mean latency via amodified pointer update
rule similar to that used in FIRM. The techniques that we present are applicable to other
two- and three-phase, pointer-based algorithms as well.

DRRM computes a matching in every timeslot in a sequence of iterations. The follow-
ing steps are performed in every iteration (initially all inputs and outputs are unmatched):

• Step 1: Request. Each unmatched input sends a request to an unmatched output
corresponding to the first nonempty VOQ in round-robin order, starting from the
current position of the request pointer. In the first iteration the pointer is updated
to point to the output just selected. The pointer is further updated to one position
beyond the output selected (moduloN) if and only if the request is granted in step
2 of the first iteration.

• Step 2: Grant. If an output receives one or more requests, it chooses the one that
appears next in a fixed round-robin order starting from the current position of the
grant pointer. The output notifies each requesting input whether or not its request
was granted. The pointer is updated to one position beyond the input granted in the
first iteration, moduloN . If there are no requests, the pointer remains where it is.

To facilitate the discussions that follows, Listing 5.1 shows a piece of C++ code that
implements the DRRM matching algorithm in a monolithic fashion. N represents the
number of ports andI the number of iterations. The arraysimatch[] andomatch[]
store the port number that each input and output are matched to, respectively. They are
initialized to the value−1 (i.e., unmatched) at the start of every timeslot.reqPtr[]
andgrtPtr[] are the round-robin request and grant pointers, respectively. The two-
dimensionalrequests[][] array stores the number of requests for every VOQ. For
the time being we shall assume thatI = 1. The input selection (request) is performed is
lines 5–18, whereas the output selection (grant) takes place in lines 20–36. Lines 12–13
implement the enhanced request pointer update policy.

Listing 5.1. C++ implementation of the DRRM matching algorithm.
1 void DRRM: : s c he du l e ( ) {
2 i n t i , x , inp , outp , inpReq [N ] ;
3 f o r ( i = 0 ; i < I ; i ++) {
4 / / r e q u e s t
5 f o r ( i np = 0 ; inp < N; inp ++) {
6 inpReq [ inp ] = −1;
7 i f ( imatch [ inp ] == −1) {
8 f o r ( x = 0 ; x < N; x++) {
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9 outp = ( r e q P t r [ i np ]+ x ) % N;
10 i f ( omatch [ outp ] ==−1 && r e q u e s t s [ i np ] [ outp ] > 0) {
11 inpReq [ inp ] = outp ;
12 i f ( i == 0) / / Enhanced DRRM
13 r e q P t r [ i np ] = outp ;
14 break ;
15 }
16 }
17 }
18 }
19 / / g r an t
20 f o r ( outp = 0 ; outp < N; outp ++) {
21 i f ( omatch [ outp ] == −1) {
22 f o r ( x = 0 ; x < N; x++) {
23 inp = ( g r t P t r [ outp ]+ x ) % N;
24 i f ( imatch [ inp ] == −1 && inpReq [ inp ] == outp ) {
25 imatch [ inp ] = outp ;
26 omatch [ outp ] = inp ;
27 i f ( i == 0) {
28 r e q P t r [ i np ] = ( outp +1) % N;
29 g r t P t r [ outp ] = ( inp +1) % N;
30 }
31 break ;
32 }
33 }
34 }
35 }
36 }
37 }

5.2.2 Separating Input Selectors from Output Selectors

Physically separating the input and output selectors (i.e.moving from DL0 to DL1)
introduces a non-negligible round-trip time (RTT) betweenthem, as illustrated in Fig-
ure 5.2. Assuming that this RTT is larger than the timeslot duration, there are two major
implications, which we explain with the help of Listing 5.1.

The request decision of a given inputi depends on the position of the request pointer
reqPtr[i] and is stored temporarily ininpReq[i] (line 11). The requests made are
then considered in the grant loop (line 24). In a distributedimplementation, things are
different. First, the request information is delayed by RTT/22. Moreover, as the request
pointers are physically located at the input side, the pointer update (line 28) cannot be
performed immediately after the grant; this update occurs after RTT/2, i.e., when the

2For ease of discussion we assume that the RTT is symmetric, i.e. the up- and down-stream latencies
are equal.
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Figure 5.2. Round-trip time between input and output selectors.

grant arrives at the input selector. This has a further important consequence: unlike in
a monolithic implementation, the requests to be issued in the next timeslot are based on
pointer positions that are not updated according to the mostrecent grants. This breaks the
round-robin desynchronization mechanism, leading to throughput limitations well below
100%.

Another consequence of the delayed availability of grant information is that the re-
quest selector is not able to accurately know for how many of the cells waiting in a
given VOQ grants are already underway. This affects its request decisions: clearly, is-
suing requests for VOQs which are soon going to be empty is a waste of resources. Sec-
tion 5.3.1 introduces pointer update policies to address the desynchronization issue, while
Section 5.3.2 deals with delayed grants.

5.2.3 Achieving further distribution levels

The issues just identified appear when moving from DL0 to DL1.When moving further,
from DL1 to DL2, distribution of input schedulers prevent them from sharing information.
This is not a problem, because by design they work independently and base their decision
on local information only. Hence, the techniques presentedin Sections 5.3 and 5.4, can
be applied to achieve DL2 as well.

DL3 prevents output schedulers from sharing status information. This does not in-
hibit use of techniques presented Section 5.3 but impedes multiple iterations, as better
explained in Section 5.4.
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5.3 Distributed Implementation

Our objective is to enable physical separation of the input and output selectors with an
arbitrary RTT latency between them, while preserving performance and fairness.

For the moment we assume that during each timeslot only one iteration is performed.
Performing multiple iterations poses additional challenges and will be discussed in Sec-
tion 5.4.

5.3.1 Pointer Update Approaches

The key to achieving performance and fairness in a distributed implementation is to con-
serve the pointer desynchronization property. We have developed two techniques to do
so: themulti-pointerapproach, based on the duplication of status information, and the
pointer-cursorapproach, based on heuristic pointer updating.

Multiple Pointers

In the first approach, each input and output selector maintains a distinct pointer for every
timeslot of the input-output round-trip. These pointers are labeledRi(t) andGj(t) for the
request and grant pointers, respectively, witht being the temporal index. Bypointer set
we denote the set of all pointersRi(t) andGj(t) corresponding to a specific indext, so
there are a total of RTT pointer sets.

The traditional pointer update rules are used: request pointers are only updated at the
time a grant arrives (which happens one RTT after issuing thecorresponding request),
whereas grant pointers are updated immediately after issuing a grant, because issued
grants are automatically accepted.

In a given timeslott each inputi issues requests using pointerRi(t mod RTT). When
a request issued using a pointer with temporal indext is granted, the corresponding grant
pointerGj(t) with the same indext is updated.

At timeslott0 + RTT− 1 the grant decision for requests submitted at timeslott0 will
arrive, so the pointersRi(0) can be updated and used again in timeslott0 + RTT. The
output selectors use a different pointer at every timeslot in the same way.

This pointer update policy implies that all pointer sets evolve independently and that
each request pointer is never reused before being updated according to the result of its
previous request. Therefore, it preserves the important features of the matching algorithm
regardless of the value of RTT. In particular, pointers belonging to each set will eventually
desynchronize, resulting in 100% throughput. Fairness is preserved as well, as each input
will request the same output at least once every RTT time slots, until it is granted.

This scheme requires RTT pointer status registers (eachlog
2
N bits wide) per selector.

However, the combinatorial selection logic does not have tobe duplicated. Instead, every
selector employs a multiplexer to select one of the registers depending on the temporal
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index. Also needed is a counter (modulo RTT) indicating the current pointer set to be
used.

Pointer-Cursor Approach

The fact that the number of registers required at each input and output selector is propor-
tional to RTT constitutes a drawback of the multi-pointer approach. Here we describe an
alternative solution that offers slightly lower performance but employs onlytwo registers
per selector, regardless of RTT. We refer to the first set of registers simply aspointers
and the second set ascursors; they are used in different timeslots and updated in different
ways. Each input maintains a counterK, which is incremented modulo RTT at the end of
every timeslot.

Each input uses the following policy to determine which output to request: IfK = 0,
the input selector makes its selection using the pointer. Otherwise, it uses the cursor and
advances it to one position beyond the output selected modulo N withoutwaiting for the
result. If, at the end of a timeslot, the input receives a grant that was produced using a
(grant) pointer, the input selector updates its (request) pointer to one position beyond the
granted output moduloN andcopies the value of the pointer to the cursor.

Every output selector operates as follows: If it receives requests that were produced
using (request) pointers, it issues a grant using its (grant) pointer, else it issues a grant
using the cursor. In either case, pointer or cursor are updated to one beyond the input
granted moduloN .

To know whether the requests (grants) received were produced using pointers or cur-
sors, a bit can be added to the protocol or, alternatively, a counter can be used at each
output (input), as it is known that first of each group of RTT requests (grants) are issued
using pointers, the remaining using cursors. All selectorsmust be synchronized to use the
pointers in the same timeslot.

The idea behind this solution is that we can have a “slow”, butrigorous matching al-
gorithm (using pointers), overlapped with a simple round-robin algorithm (using cursors).
Every request-grant cycle of the slow matching algorithm takes RTT timeslots. However,
the pointers are strictly updated according to the algorithm rules, hence they will eventu-
ally desynchronize and guarantee fairness. Once desynchronization of pointers has been
achieved, the copy operation propagates it to cursors. As a matter of fact, the cursors start
from the positions of the pointers (which are desynchronized, hence point to different
outputs) and afterwards, being all moved by one position at every timeslot, will remain
desynchronized. If not all the VOQs are nonempty, the round-robin policy that is used to
update cursors is not optimal, as it might lead cursors to synchronize again. However, as
soon as a request-grant cycle using pointers is completed, the situation will be corrected
by aligning cursors to pointers, and desynchronization is regained.

Although this solution guarantees 100% throughput when theswitch is uniformly
loaded at 100%, performance at intermediate loads decreases as RTT increases, because
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cursors are updated less frequently and “sub-optimal” cursor positioning (caused by empty
VOQs) take longer to be corrected. If RTT is particularly large, it is possible to increase
the number of pointers and align cursors more frequently. For instance, if two pointers are
used instead of one, cursors can be aligned every RTT/2 timeslots. In the extreme case,
there are RTT sets of pointers, which falls back to the multi-pointer solution.

5.3.2 Pending Request Counters

The VOQ status registers reside close to the input selectors. requests[i][j] is in-
cremented whenever a new cell arrives for VOQ(i,j) and decremented whenever a grant
for VOQ(i,j) is issued. The RTT introduced by the distribution implies that when an
input selector submits a request, it has to wait RTT time slots before knowing whether
it was granted or not. In the meanwhile, this cell is considered as unscheduled, so the
input selector can submit further requests. If the number ofsubmitted requests exceeds
the number of enqueued cells, it may happen that a slot is reserved for a VOQ that is
currently empty. In general, this is undesirable because grants that arrive for an empty
VOQ are wasted, while another cell may have used this timeslot.3

To avoid the problem of issuing too many requests for a given VOQ, we introduce
pending request counters(PRC, labeledPij) per VOQ plus a request history per input
selector. The request counterPij is incremented when inputi issues a request for output
j. The request historyHi(t) for input selectori is an array with RTT entries, where entry
Hi(t) indicates the output that was requestedt timeslots ago. In every timeslot, input
selectori decrementsPij for which j = Hi(RTT− 1). As a result,Pij keeps track of the
number of requests per VOQ for which the results are still pending.

The input selectors use these counters to filter their requests. Any VOQ for which the
pending request counterPij exceeds or equals the current VOQ occupancy is not eligible
to issue a new request. This prevents grants from being wasted and therefore improves
performance.

This enhancement, while not strictly necessary for either of the solutions we propose,
is beneficial in the presence of large RTT and light loads or when traffic is heavily unbal-
anced and different VOQs have significantly varying occupancy. Section 5.5 demonstrates
the performance improvement obtained by the PRCs.

3On the other hand, there is a possibility that, although the VOQ was empty at the time the output
selector issued the grant, a new arrival occurs in the meanwhile. In that case, this arrival will benefit from a
reduced scheduling latency, as it receives a grant in less than one RTT.
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5.4 Performing Multiple Iterations

In a monolithic implementation, performing multiple iterations per timeslot significantly
improves performance by allowing more edges to be added in case multiple inputs re-
quested the same output (or multiple outputs granted the same input in the case ofi-SLIP).
In our distributed implementation the effectiveness of subsequent iterations is lower, as
explained below.

In Listing 5.1, the matched ports are indicated by theimatch[] andomatch[]
arrays. These are updated in lines 25–26 when a new edge is added. In the next iteration,
these updated values are taken into account in lines 7 and 10 to produce requests for that
iteration. In our distributed implementation, these updates occur at the output side, so
the input side does not learn of them for another RTT/2 timeslots. The input selectors,
which have to chooseat the beginning of the timeslotwhich output to request in each
iteration, do not know which outputs will be matched at the end of each iteration and
should therefore be disregarded. As a result, we can havewasted requests.

Note that in all iterations except the first one, outputs mustdisregard requests from
inputs that have already been matched. This assumes that theoutput selectors have shared
access to this information, which is true as long as they are implemented in a single device
(up to DL2), but is not the case when they are also separated (DL3).

We address the issue of wasted requests by adding a separate pointerflywheel[inp]
to every input selector. In the first iteration, a selection is made using the round-robin
pointerreqPtr[inp]. Theflywheel[inp] is updated to one beyond the output
just requested, moduloN . In subsequent iterations, the input selector is operated us-
ing theflywheel[inp] rather than thereqPtr[inp]. After every selection, the
flywheel[inp] is updated to one beyond the output just requested, moduloN . This
way, we make sure that the input selector requests as many different outputs as possi-
ble across the iterations, although there is no guarantee that the outputs requested are still
available. Each input selector also keeps track of which outputs it has already requested in
the current timeslot and avoids requesting the same output more than once, as this would
be useless.

PRC-based request filtering, as described above, ensures that the number of wasted
grants is minimized. On the other hand, overly conservativefiltering can be detrimental:
once the filtering condition is met, a new request can only be submitted when the the
result for the first in-flight one is received. This can introduce gaps in the request pipeline
and therefore cause unnecessary delays. Furthermore, requests for subsequent iterations
are increasingly less likely to be successful. As a result, our findings show that it is
counterproductive to include requests beyond the first iteration in the PRCs and request
history. Therefore, the PRC and request history operation (update and filter) apply only
to requests in thefirst iteration. This choice, besides improving performance, simplifies
the implementation of the input selectors.

Listing 5.2 shows a C++ implementation of the input selectorfor the multi-pointer
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approach. This procedure is executed once every timeslot and generates one request for
every iteration.reqPtr[] is the request pointer andreqFlywheel is the request fly-
wheel pointer. The pointer is updated according to the enhanced DRRM rule, but only in
the first iteration. The flywheel is always updated to one beyond the output just requested.
Therequested[] flags keep track of which outputs have already been requestedin the
current timeslot.ptr_set_id is the pointer set ID corresponding to the temporal index,
which is incremented by one (modulo RTT) in every time slot.requests[] keeps track
of the number of requests per output, whereaspending_requests[] represents the
pending request counter. When a request is made in the first iteration, the correspond-
ing pending_requests[outp] counter is incremented, and a corresponding entry
is made in therequest_history[ptr_set_id] array.

Listing 5.2. C++ implementation of the input selector for the multi-pointer approach.
1 i n t j , i t e r , outp , t ;
2 boo l r e q u e s t e d [N] ={ f a l s e} ;
3 f o r ( i t e r = 0 ; i t e r < I ; i t e r ++) {
4 f o r ( t = 0 ; t < N; t ++) {
5 i f ( i t e r == 0) / / round−r ob i n p o i n t e r
6 outp = ( r e q P t r [ p t r s e t i d ] + t ) % N;
7 e l s e / / f l y w h e e l
8 outp = ( reqF lywhee l + t ) % N;
9 i f ( r e q u e s t s [ outp ]> 0) {

10 i f ( r e q u e s t e d [ outp ] )
11 con t inue ;
12 i f ( i t e r == 0 && p e n d i n g r e q u e s t s [ outp ]>= r e q u e s t s [ outp ] )
13 con t inue ;
14 req . outp = outp ;
15 req . i t e r = i t e r ;
16 req . p t r s e t i d = p t r s e t i d ;
17 reqF lywhee l = ( outp +1) % N;
18 i f ( i t e r == 0) / / EDRRM
19 r e q P t r [ p t r s e t i d ] = outp ;
20 r e q u e s t e d [ outp ] = t r u e ;
21 i f ( i t e r == 0) {
22 p e n d i n g r e q u e s t s [ outp ]++ ;
23 r e q u e s t h i s t o r y [ p t r s e t i d ] . outp = outp ;
24 }
25 break ;
26 } / / i f
27 } / / f o r t
28 } / / f o r i t e r
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5.5 Simulation Results

We built a software model of the proposed architecture with the OMNeT++ [63] simula-
tion environment and the Akaroa2 [64] parallel simulation tool. We simulated this model
to obtain its performance characteristic, focusing specifically, on mean throughput (mea-
sured at the egress across all ports) and mean packet latency(measured from source to
sink).

In our experiments, we study a switch withN = 16 ports using the distributed
EDRRM architecture according to DL2. We vary RTT and measurethe performance
of the multi-pointer as well as the pointer-cursor approach. We also vary the number of
iterations per timeslot. Section 5.5.1 presents results based on uniform i.i.d. Bernoulli
arrivals, whereas Section 5.5.2 presents results based on bursty and nonuniform arrivals.

5.5.1 Uniform Bernoulli Traffic

Figure 5.3 shows the results for the multi-pointer approachand Figure 5.4 shows those
for the pointer-cursor approach. Both figures comprises subfigures for RTT = 2, 4, 10,
and 20 timeslots. Each subfigure shows curves forI = 1, 2, 4, 8, and 16 iterations per
time slot. Note that the minimum latency at very light load equals RTT. For reference,
results using a monolithic DRRM implementation are also included, adjusted to take into
account the constant latency component of the distributed implementation. These results
lead to the following observations:

• The achievable maximum throughput exceeds 98% in all simulations, i.e., both with
the the multi-pointer approach and the pointer-cursor approach, and for all values
of RTT andI.

• The mean latency decreases significantly as the number of iterations increases.
WhenI = N = 16, the performance of the distributed implementation is almost
identical to that of the monolithic implementation with four iterations. Using as
many iterations as there are ports overcomes the issue of wasted requests, as there
is an opportunity to request every output in every time slot.However, it does not
overcome the issue of uncertainty due to pending requests.

• When RTT is large, there is a load region in which the mean latency decreases as
the load increases. This effect is caused by excess grants that, instead of going to
waste on an empty VOQ, find a new arrival in their VOQ; these cells experience a
latency smaller than RTT.

• The multi-pointer approach achieves lower latency than thepointer-cursor approach,
especially at high utilization. The latency difference increases with RTT. This be-
havior is expected: The MP approach achieves faster pointerdesynchronization
because pointer updates occur in every timeslot, as opposedto once per RTT.
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(c) RTT = 10
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(d) RTT = 20

Figure 5.3. Delay vs. throughput curves for the multi-pointer approach with varying
RTT.

Figure 5.5c shows the results for the multi-pointer approach with I = 1 and 4, and
demonstrates the impact of RTT. Here, the mean latency is normalized with respect to
RTT. These curves clearly show that, in a limited load range,the mean latency drops
below RTT timeslots when RTT is large andI = 4.

Figure 5.6 compares the performance of the multi-pointer approachwith (Figure 5.6b)
andwithout (Figure 5.6a) pending request counters withN = 16 and RTT= 4. These
graphs clearly show that use of PRCs achieves drastically lower latency throughout the
load range. Considering the caseI = 1, the main difference is in the load range from
10% to 70%; beyond 70% there is no noticeable latency difference. The reason is that,
with heavy loads, the rate of wasted grants will be low, as most VOQs will be backlogged;
therefore, the negative effect of excess requests is not noticed. At low to medium loads,
on the other hand, many of the excess requests will result in wasted grants; every wasted
grant potentially is a wasted opportunity to transmit another cell, which therefore incurs
a longer latency. As a result, the mean latency increases. With I = 16, performance is
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(c) RTT = 10
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Figure 5.4. Delay vs. throughput curves for the pointer-cursor approach with varying
RTT.
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Figure 5.5. Comparative figures.

close to ideal when using PRCs.
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Figure 5.6. Delay vs. throughput curves for the multi-pointer approach with RTT= 4,
comparing performance with and without pending request counters.

5.5.2 Bursty and Nonuniform Traffic

To study the performance under nonuniform traffic, we adopt adestination distribution
characterized by a non-uniformity parameterw [65], wherew = 0 corresponds to uniform
traffic andw = 1 to fully unbalanced, contention-free traffic:λij = λ

(
w + 1−w

N

)
if

i = j, λ1−w
N

otherwise. Here,λij represents the traffic intensity from inputi to outputj,
0 ≤ i,j < N ; λ is the aggregate offered load, andw the non-uniformity factor. Note that
no input or output is oversubscribed and that traffic is admissible as long asλ ≤ 1. We
vary the value ofw from 0 to 1 and measure the throughput achieved at an offered load of
100%.

Figures 5.7(a,b) show the results forN = 16, RTT = 4, and Bernoulli arrivals for
I ranging from 1 to 16. Also included for reference is a curve for monolithic DRRM
with I = 4. All curves exhibit the behavior of dipping to significantlyless than 100%
throughput asw moves away from the extremes. However, increasingI increases the
throughput. The multi-pointer approach is able to reduce the gap with the reference to
below four percentage points whenI ≥ 8. Overall, we again observe that the multi-
pointer approach performance better than the pointer-cursor approach, with a difference
in throughput that is generally less than five percentage points.

We also evaluate the performance using bursty traffic with geometrically distributed
burst sizes with average burst size of 10 cells. Figure 5.8 shows the results. Here, we
first observe that the maximum throughput again exceeds 98% in all cases. Moreover,
the latency differences with the reference curves are even smaller than with Bernoulli
traffic and the difference between the multi-pointer and pointer-cursor approaches is also
significantly smaller. Hence, the proposed distributed implementation is able to closely
approximate a monolithic implementation in terms of performance for correlated as well
as uncorrelated arrivals.
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Figure 5.7. Throughput vs. non-uniformity curves for both approaches withN = 16 and
RTT = 4.
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Chapter 6

Fair Integrated Scheduling of Unicast
and Multicast Traffic in Input-Queued
Switches

In this chapter we present a scheme to concurrently scheduleunicast and multicast traffic
in an input-queued switch. It aims at providing high performance under any mix of the two
traffic types as well as avoiding starvation of any connection. The key idea is to schedule
the two traffic types independently and in parallel and then arbitrate among them for
access to the switching fabric. Unicast and multicast matching are combined in a single
integrated one. The edges that are excluded from the integrated matching are guaranteed
to receive service at a later time, thus preventing starvation. We use simulation to evaluate
the performance of a system employing the proposed scheme and show that, despite its
simplicity, it achieves the intended goals. We also design an enhanced remainder-service
policy to achieve better integration and further improve performance.

This work was performed in the context of the OSMOSIS project(Chapter 4), but is
generally applicable to input-queued crossbar-based synchronous switches.

6.1 Motivation

In environments where packet switches are used (TCP/IP networks, Storage Area Net-
works, supercomputer interconnects) the vast majority of traffic consists of unicast (point-
to-point) connections. However, in all these contexts, support for multicast (point-to-
multipoint) traffic is essential. On the Internet, multicast enables applications such as
audio- and video-conferencing, multimedia content distribution (radio, TV) and remote
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collaboration; in SANs, it is required to replicate data among multiple sites or to dis-
tribute content to multiple servers; in supercomputing architectures it is essential to im-
plement cache coherency protocols and support collective operations [40]. Ideally, a net-
work switch should be able to achieve high performance underany mix of the two traffic
types.

Multicast packets can be treated as unicast simply by sending a separate copy of the
packet to each of the intended destinations; conversely, unicast packets can be considered
as multicast packets with only one destination and treated without any differentiation.
These trivial solutions allow the switch to handle both types of traffic concurrently but are
far from optimal and generally lead to poor performance.

Another issue to address when both unicast and multicast arepresent is fairness. A
traffic type must not be allowed to monopolize switch resources; however, it is also im-
portant to guarantee thatall connections of a given traffic type receive service. When both
conditions are met, we say that the switch scheduler isfair.

In this work we propose a novel method for integrated scheduling of unicast and
multicast traffic. It leads to high utilization of switch resources under any traffic mix,
guarantees fairness, and exhibits a number of other desirable properties.

Although the problem of supporting unicast and multicast concurrently is clearly im-
portant, not much attention has been devoted to it in the past. The problem has been
thoroughly studied from a theoretical point of view in [66] and its hardness has been
assessed. These authors also propose an integration schemethat consists of scheduling
multicast first and using the remaining resources for unicast. This scheme, which we call
“sequential” predictably leads to high performance because it uses the switch resources
very efficiently. The multicast scheduler has all the resources at its disposal and can
produce its best matching. The unicast scheduler, on the contrary, is constrained by the
remaining resources but, thanks to the VOQs, it can fully exploit them and increase the
size of the total matching. The main disadvantage of this scheme is that it easily leads to
starvation of unicast traffic. A single input loading the switch with broadcast traffic would
suffice to prevent unicast from getting any service at all. In[67] the authors propose a re-
finement of the sequential scheme, in which at some timeslotsthe unicast scheduler runs
first while in other the multicast scheduler is given priority. The choice of which scheduler
runs first in a given interval, however, is based on a parameter that depends on the traffic
patterns, in particular on the ratio of multicast to unicasttraffic, and that must be deter-
mined a-priori to guarantee high performance. Smiljanić showed that a practical approach
to achieve integrated scheduling is to treat multicast traffic as unicast, but distributing the
burden of cell replication over multiple ports [68]. The main problem with this scheme
is that it potentially introduces very high latency, so it isnot suitable for our applications.
The problem was also considered in [69], but the proposed solution is mainly targeted to
shared-memory switches.

57



6 – Fair Integrated Scheduling of Unicast and Multicast Traffic in Input-Queued Switches

VOQ

VOQ

MC−Q

N−1

0

VOQ

VOQ

MC−Q

N−1

0

Req. Grants

MC Sched.UC Sched.

Integrated Scheduler

Crossbar
config

Input (N−1)

Input 0

Crossbar

Output 0

Output (N−1)

Figure 6.1. Reference architecture

6.2 Fair Integrated Scheduling

Our integration scheme is conceived for a synchronous, IQ, crossbar-based,N×N switch
(Figure 6.1). The scheme is independent from the queueing structure adopted for unicast
or multicast traffic, but for concreteness we refer to the most common situation in which
each switch input maintainsN VOQs for unicast and a single FIFO queue for multicast.

6.2.1 Reference architecture

At every timeslot, contentions among the cells of a single traffic type are resolved sepa-
rately by specialized schedulers. The unicast scheduler receives requests from the inputs
for non-empty VOQs and produces a one-to-one matching between the inputs and the
outputs. The multicast scheduler examines the fanout of thecells that are at the HOL of
the multicast queues and produces a one-to-many matching. Fanout splitting is allowed:
during a timeslot a multicast cell can receive partial service, being transmitted only to a
subset of its destinations.

As the two schedulers run in parallel and independently, thematchings they produce in
general are overlapping, meaning that they have conflictingedges. To obtain a consistent
configuration for the crossbar, the two matchings must be combined into a single one. An
integration blockdecides which unicast and multicast edges will be part of theintegrated
matching. The set of edges that are excluded from the integrated matching is called the
remainder.

The request filteris a block capable of reserving a subset of the switch inputs and
outputs by dropping the corresponding unicast and multicast requests. Reservations at
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Figure 6.2. The FILM integration scheme

any timeslot may be made on the basis of information providedby a number of sources,
including current requests and the integration block.

Employing two different schedulers that run in parallel provides important advantages.
The designer is free to choose the algorithms that better fit his or her needs. The system
can easily be partitioned over multiple chips. The minimum timeslot duration is deter-
mined by the scheduling time of the slowest scheduler, whereas, if the schedulers ran in
sequence, it would be limited by the sum of the two.1 Moreover, it avoids the additional
latency naturally introduced by sequential schemes.

A block diagram of this scheme, called “FILM” (FILter & Merge), is shown in Fig-
ure 6.2.

6.2.2 Achieving fairness

In the FILM scheme each connection goes through two points ofcontention: first it com-
petes with the other connections belonging to the same traffic type, then with those of the
other traffic type. To achieve fairness we must make sure thatevery connection regularly
has a chance to win both contentions.

A scheduling algorithm is starvation-free if it guaranteesthat no queue is allowed to
remain unserved indefinitely. As this is a fundamental property, many algorithms ex-
hibit it. Unicast algorithms such asi-SLIP [19] and DRRM [20] prevent starvation by
using pointers that keep track of which VOQs have been servedmost recently. Multi-
cast algorithms, on the other hand, often take into account the age of a cell or the order
in which cells at different inputs have advanced to the HOL oftheir queues (e.g. WBA
and TATRA [34], respectively). We require both schedulers to employ starvation-free
algorithms to be sure that all connections eventually get past the first contention point.

1We assume that the delay contributed by the additional blocks is much lower than the scheduling times.
As we will see in Section6.5 devoted to implementation complexity, this assumption is likely to hold.
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Connections that have been selected by their schedulers still remain unserved if the
integration block excludes them from the integrated matching. The scheduler is unaware
of the fact that granted service has in fact been withdrawn, so fairness is no longer guaran-
teed. A solution to this problem is to make sure that all edgesthat are part of the remainder
actually receive service, albeit in a later timeslot.

6.2.3 Integration policy

The performance of multicast scheduling algorithms variesconsiderably, as demonstrated
in [34]. This is due to the fact that the single FIFO queuing architecture causes HOL
blocking, therefore the algorithms must carefully choose which inputs to serve in order
to mitigate its effects. For example, it is shown that “concentrating the residue” at ev-
ery timeslot (which roughly means providing full service toas many inputs as possible)
greatly helps in draining the queues fast. Hence, special care should be taken when ma-
nipulating multicast matchings to avoid compromising the effectiveness of the choices
made by the scheduler.

Unicast scheduling, on the contrary, is less sensitive to withdrawal of resources be-
cause the VOQs provide the scheduler with a wide choice of connections to serve. More-
over it is important to note that if unicast and multicast contend for an input, only one
edge is lost if multicast wins, whereas multiple edges mightbe removed if it loses.

Following these considerations, we opt for an integration policy that gives strict prior-
ity to multicast over unicast. Hence, the algorithm implemented in the integration block
can be formulated as follows:

1. Start with an empty matching,

2. add all multicast edges,

3. add all non-conflicting unicast edges.

As a consequence, the remainder always contains only unicast edges.

6.2.4 Remainder-service policy

As noted above, if a remainder is produced in a timeslot, it isimportant to ensure that
all the edges it contains are eventually served. This can be done according to different
policies, the simplest one being to serve all of them in the next timeslot. As these edges
are part of a matching, they do not conflict with each other. Inaddition, the resources they
claim are known and can be reserved to avoid further contention.

At every timeslot, new unicast and multicast requests are issued. The request filter
drops all those that involve inputs and outputs needed to serve the remainder produced
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in the preceding timeslot and submits the others to the corresponding scheduler. Accord-
ingly, the integration block issues grants for the edges in the remainder and for those in
the current matching. A new remainder is produced and fed back to the request filter for
the next timeslot.

An important property of the scheme is that, as a consequenceof filtering unicast
requests, the remainders produced in two consecutive timeslots are disjoint, i.e., have
no inputs or outputs in common. This is crucial for fairness because it assures that all
switch resources eventually become available for scheduling. Reserving resources for the
remainder does not persistently preclude access to any input or output.

We expect this combination of integration and remainder-service policy to achieve
good link utilization. The resources allocated to the remainder are fully utilized and those
remaining can be assigned either to unicast or multicast. The integration block preserves
the matching produced by the multicast scheduler, but triesto enlarge it by adding unicast
edges.

6.3 Simulation Results

We have studied the performance of a system employing the FILM scheme by simula-
tion. In particular, we observed the total throughput as well as the individual throughputs
of unicast and multicast traffic as the fraction of multicasttraffic (MCF) grows from0
(unicast only) to1 (multicast only). Ideally, the throughput achieved by eachtraffic type
should be equal to the corresponding share of the output loadand the total should be
100%.

The simulated system is an8×8 switch with infinite buffers at the inputs. The unicast
scheduler usesi-SLIP with three iterations and the multicast scheduler uses WBA. Sim-
ulations run for 1 million cell times and results are collected after a quarter of the total
simulation time has elapsed.

Cells are generated according to an i.i.d. Bernoulli process, i.e. every input port
receives a cell with probabilityρ, equal to the input load. Each cell has a probabilityP
of being a multicast cell. The fanout of multicast cells is uniformly distributed between 2
and 8. Traffic is uniform, i.e. all outputs have the same probability of being the destination
of a unicast cell or of belonging to the fanout of a multicast cell. Note that, under these
conditions and with this choice of scheduling algorithms, when the switch is loaded only
with multicast traffic, the maximum throughput it can achieve is approximately0.93 [34],
whereas it is1.0 when only unicast is present.

The total load on the switch isρ(PF + (1 − P )) whereF is the average fanout. In
our case,F = 5 andP andρ are varied to obtain the desired multicast load on the switch
while keeping the total load equal to 1.
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Figure 6.3. Performance of the FILM integration scheme

Figure 6.3 shows the throughput achieved by FILM with the integration and remainder-
service policies described in the preceding section. The performance of the sequential
scheme, which is close to ideal, is also shown for reference.

The total throughput achieved by our scheme is always higherthan 0.9. Unicast
throughput shows very little degradation (on the order of a few percent) when it is the
predominant traffic type, whereas it achieves ideal performance when multicast is pre-
dominant. However, multicast throughput progressively decreases with respect to output
load as MCF grows from0.4 to 1.0. The worst case is MCF= 0.7, when multicast
throughput is0.6 instead of0.7. This also corresponds to the point at which the overall
throughput is at its minimum (0.9).

Figure 6.4 shows the delay experienced by unicast and multicast cells as a function of
the throughput when MCF= 0.5, i.e., when each traffic type is responsible for half of the
output load. The unicast curve is bounded for any value of thetotal throughput, whereas
the multicast curve saturates when it approaches1.0.

6.4 Enhanced Remainder-Service Policy

Although the scheme presented above provides overall good performance and is quite
simple, it has a drawback: it penalizes multicast traffic most, especially when it is pre-
dominant.

Multicast performance is limited because at every timeslot, some switch resources are
used to discharge the remainder. Although it is essential toeventually serve all edges
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Figure 6.4. Delay vs. throughput curves for the FILM integration scheme

that are not selected in the merge, it is not necessary to do soimmediately. Thanks to
the disjoint remainder property, it is possible toaccumulatethe remainders produced
in consecutive timeslots and serve the individual edges when the conditions are most
favorable. The remainder-service policy identifies which edges should be served at every
timeslot and filters the corresponding multicast requests.Unicast requests, in contrast, are
always filtered using all the accumulated edges to obtain disjoint remainders.

A good policy should be able to serve the edges in the remainder rapidly and at the
same time cause as little disruption as possible to the flow ofmulticast cells. We propose
anenhancedpolicy that serves a remainder edge if it uses

1. an input not requested by multicast OR

2. an output not requested by multicast OR

3. an input that discharged a multicast cell in the precedingtimeslot.

The first two rules obviously aim at improving integration: if it is possible to use a re-
source that would otherwise remain idle, it is desirable to do so. In this case the cost
of serving a remainder edge is to make one output (first rule) or one input (second rule)
unavailable to multicast.

The third rule instead stems from the general observations on multicast scheduling
found in [34]. The scheduler tends to favor cells that contend with few others. Cells that
have just advanced to the HOL still have their full, usually large, fanout and cause many
conflicts. They are unlikely to receive much consideration,so postponing their scheduling
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Figure 6.5. Performance of FILM with enhanced remainder-service policy

should not significantly affect the quality of the matching.This rule is particularly impor-
tant because it enables fairness: the multicast scheduler guarantees that the HOL cell at
any input will be served in finite time; consequently, the inputs becomes available to serve
remainder edges. Many algorithms (such as TATRA, WBA and mRRM [70]) ensure that
at least one multicast cell is fully discharged at every timeslot.

Figure 6.5 shows the performance of FILM when the enhanced policy is used, un-
der the same conditions as in Section 6.3. The benefits on multicast traffic are evident:
throughput is increased when(0.4 < MCF < 0.9) and closely tracks the output load up
to MCF = 0.7. Unicast, on the other hand, shows a moderate decrease in thesame range.
In the worst case (MCF= 0.7), the difference with respect to the output load is slightly
lower than0.06. Overall throughput is noticeably increased when multicast predominates,
whereas it shows little degradation when both traffic types are equally active.

Figure 6.6 shows the delay vs. throughput curve for this situation. Multicast experi-
ences very low delay, seeming to be almost insensitive to thepresence of unicast. Unicast
delay instead saturates when the total throughput is approximately0.95.

6.5 Implementation Complexity

In this section we discuss some implementation aspects of the FILM scheme in order to
get an idea of its complexity.

64



6 – Fair Integrated Scheduling of Unicast and Multicast Traffic in Input-Queued Switches

 1

 10

 100

 1000

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

D
el

ay

Throughput

Average
Unicast

Multicast

Figure 6.6. Delay vs. throughput curves of the enhanced FILMintegration scheme

6.5.1 Integration policy

As the integration policy always prioritizes multicast over unicast, its implementation is
quite straightforward. From the output of the multicast scheduler, it is immediately known
which inputs and which outputs are used by the multicast matching. This information
(2N bits) in turn determines whether an edge in the unicast matching is to be interpreted
as part of the integrated matching or of the remainder. In theformer case, grants are
released immediately, in the latter the information is buffered for subsequent timeslots.
The remainder can be stored usingN registers, each(log2 N + 1) bits wide.

6.5.2 Base remainder-service policy

The request filter needs to know which inputs and outputs are used by the remainder edges
in order to drop the corresponding requests. This information is available at the integration
block and can be carried to the request filter with a channel2N bits wide. Filtering a
request for an input-output pair simply translates to ANDing it with the negated values of
the corresponding signals.

6.5.3 Enhanced remainder-service policy

When the enhanced policy is used, the request filter needs more information and performs
more complex operations. It needs to know exactly which edges are in the remainder, not
only which inputs and outputs are taken. This means thatN(log

2
N + 1) bits must be
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transferred from the integration block. The information about which inputs discharged
a multicast cell in the preceding timeslot consists ofN bits and can be maintained by
the queues managers. Finally, the information about which inputs and which outputs are
being requested by multicast (2N bits) is readily available as it can be derived from the
requests themselves.

Unicast requests are filtered using all edges in the remainder as in the previous case,
whereas multicast requests are filtered depending on which remainder edges are served.
This information is produced at the request filter block by ORing the signals correspond-
ing to the three conditions that grant service to an edge. Theintegration block also needs
to know which edges are served, as it has to issue the appropriate grants. As the remainder
edges are part of a matching, onlyN bits need to be transferred from the request filter to
the integration block.

As a final remark, we wish to highlight that all the operationsdescribed above can be
performed in parallel and implemented using combinationallogic only.
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Chapter 7

Conclusions – Part I

In the first part of this thesis we have discussed the design ofpacket switches for super-
computer interconnection networks.

We have started with an overview of supercomputing systems,illustrating how vari-
ous factors such as the node architecture, the partitioningof the memory space and the
programming model influence the requirements of the interconnection network. We have
explained why optical switching has the potential to be the best technology to satisfy the
demanding requirements of supercomputers and which factors limit its deployment.

We have then introduced OSMOSIS, a research project jointlydeveloped by IBM and
Corning that aims at building a demonstrator interconnect for HPC applications. The
building block of the interconnect is a hybrid switch with anall-optical data-path and an
electronic control-path. The switch is designed to meet an ambitious set of requirements
that include very low latency, high throughput, high port count, high line rate, scalability
to thousands of ports and efficient support of multicast traffic. The design of the control-
path is further complicated by the need to use only FPGAs.

In the context of the OSMOSIS project we have the developed techniques that enable
the construction of multi-chip crossbar schedulers, whichconstitute the first contribution
of this part of the thesis. These techniques overcome the area, pin-count and power density
constraints of single-chip schedulers and thus allow scheduling of much larger crossbars
than previously possible. The distribution techniques we have proposed can be applied
to various parallel iterative matching algorithms, such asDRRM and SLIP, and preserve
their throughput and fairness properties. The first, namedmulti-pointer, is based on du-
plication of status information and the performance it provides is almost insensitive to the
RTT between chips. The second one is calledpointer-cursor, is based on heuristic update
of status information and has constant complexity; performance, however, degrades as
the RTT grows. Simulation results show that high performance levels are maintained un-
der uniform i.i.d. traffic, even when the scheduler is distributed over2N chips separated
by distances equivalent to several time slots. Moreover, with proper distribution level

67



7 – Conclusions – Part I

and number of iteration, satisfactory performance is achieved also under non-uniform and
bursty traffic.

We then devoted our attention to the problem of scheduling concurrently unicast
and multicast traffic in an input-queued switch. We have developed a novel integration
scheme, named FILM, capable of scheduling the two traffic types fairly and efficiently,
without a-priori knowledge of traffic characteristics. Thescheme first schedules the two
traffic types separately and then arbitrates among the results for access to the switching
fabric. A integration block combines the matchings produced by the two schedulers, pro-
ducing an integrated matching and a remainder. The remainder contains edges that cannot
be served in the current time slot, but are guaranteed to receive service in a subsequent
one. The first remainder service policy we have proposed is extremely simple and per-
forms well, but tends to penalize multicast. The second one is more sophisticated and is
able to minimize the interference with the flow of multicast cells. It leads to a very high
overall performance and an almost ideal treatment of multicast traffic, at the cost of some
additional complexity.

Although the work described in this part of the thesis has been performed to specifi-
cally address the challenges posed by the design of the OSMOSIS scheduler, we believe
that it is valuable in all the contexts in which high-performance packet switches are used.
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Chapter 8

Introduction to Storage Area Networks

Nowadays servers are at the center of the enterprise information system. They run mission-
critical applications, such as enterprise resource planning (ERP), supply chain manage-
ment and customer relationship management (CRM). With the advent of the Internet and
e-business, servers are used to do on-line transaction processing (OLTP) and provide ser-
vices to millions of users. They must be able to access data inthe storage subsystem
quickly and reliably. Failure to do so directly translates to significant costs and loss of
revenue.

In this chapter we describe the evolution of the I/O interface between servers and
storage devices, pointing out the limits of directly-attached storage and how storage net-
working overcomes them. We then introduce Fibre Channel as the preferred network
technology to implement a SAN and outline its most importantcharacteristics.

8.1 Limits of directly-attached storage

Computing nodes have been traditionally connected to theirstorage resources (disks,
tapes, CD libraries, etc.) by means of a fixed, dedicated channel, such as the SCSI parallel
bus.

In recent years this paradigm, called “Directly-attached Storage” (DAS) has become
inadequate. As servers grow in number and request additional capacity, several different
problems arise. The most important are:

• Scalability: the number of devices that can be attached to a disk controller is limited
to few tens. Even with multiple controllers in the same server, the total available
capacity might be insufficient.

• Performance: as the physical media is shared, adding devices results in more
arbitration overhead and less bandwidth being available toeach of them.
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• Distance limitations: parallel buses are limited in length to few tens of meters by
electrical issues, such as skew. Skew is a phenomenon typical of parallel transmis-
sion. Electrical pulses transmitted on different line of the parallel bus do not reach
the target device at exactly the same time. If the delay between the first and the
last arriving pulse is comparable to the time slot occupied by the pulse itself, the
receiver cannot correctly decode the transmitted bit string.

• Availability: devices attached to the bus cannot be added or removed without
putting the whole string off-line. This causes downtime every time the storage
subsystem needs to be reconfigured.

• Data protection: each server must be equipped with proper devices (for example,
tape drives) to backup its data. With hundreds or even thousands of servers, this
is costly and quickly becomes an administrative burden, as each server must be
backed up separately. If backup operations are performed through the LAN, the
performance of the corporate network might be severely impacted for long time
frames.

• Efficiency: disk space not used by a server cannot be relocated to anotherone. The
administrators may need to buy and install additional storage devices even if free
space exists on those already available.

A close look to the problems listed above suggests that many of them are intrinsic to
the DAS model and cannot be solved simply with technologicalenhancements.

8.2 Storage Area Networks

Storage Area Networks (SANs) have emerged as the key solution to address the perfor-
mance, scalability, reliability and maintainability issues posed by DAS. The SAN is a
dedicated network infrastructure that provides meshed, any-to-any connectivity between
servers and storage devices.

The introduction of networking concepts and technologies as a replacement of a sin-
gle, direct connection, redefines the relationship betweenservers and storage devices and
enables the design of new information systems, as depicted in Figure 8.1. Storage re-
sources are now a separated and well-delimited component ofthe system and servers
become the front-end towards the users.

This novel organization of storage resources enables the implementation of new paradigms,
providing several benefits [71]:

• Storage consolidation:as servers are no-longer directly connected to disks, all the
disks can be physically relocated in one or more disk arrays.Disk arrays are devices
able to host tens or hundreds of disks. By using the management interface of the
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Figure 8.1. An information system employing a SAN

disk array, the storage administrator can allocate to each server a proper fraction of
the total capacity. Additional space can be provided without disruption by adding
disks to the array and reconfiguring it. Storage consolidation can take place even
across multiple disk arrays.

• Remote replication and disaster recovery:data can be protected from disk faults
by using a technique called “mirroring”. A pool of physical disks of equal capacity
is combined in a single, virtual disk of the same capacity. Data written to the virtual
disk is physically stored on all the disks in the pool. If any of the disks in the
pool fail, data is immediately available on the others and the server can continue
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its operations without disruption. As a SAN can connect devices located tens of
Kilometers away, data can be replicated on remote sites, providing protection even
in case of disasters, such as natural calamities or terrorist attacks.

• Server clustering: a cluster is a set of servers working concurrently on the same
set of data. Clustering provides higher performance (as theservers work in parallel)
and higher reliability (if one of the server fails, it simplygoes out of the cluster).
Although complex issues exist at the operating system and application level (inter-
process communication, concurrent data access, etc.) a SANeffectively promotes
clustering because it allows easy sharing of common data.

• LAN-free, server-free backup: data stored in multiple disk arrays can be backed
up directly to large, shared tape drives, without traversing the LAN and without
involving the servers. All operations are scheduled and managed from a single,
central location.

• Storage resources management:the ability to have a consistent and unified view
of all the storage devices greatly simplifies monitoring andallocation of resources,
as well as provisioning and planning.

In general, the deployment of a SAN enablesvirtualization, i.e. the capability to provide
to computing nodes a logical view of available storage resources that is independent of
the physical location and the specific characteristics of the devices.

8.3 Networking Technologies for SANs

SANs are networks in all respects and present all the features typical of networking
technologies. The most important characteristics inherited from the networking world
are:

• serial transport, to ship data over long distances at high rates

• data packetization, to achieve high link efficiency and fairsharing of network re-
sources

• addressing schemes that support very large device population

• routing capabilities, to provide multiple, redundant paths between source and des-
tination devices

• a layered architecture, to support the transport of different protocols at the upper
layers and the usage of different interfaces at the lower ones.
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SANs can be built using different networking technologies,however, it it is important
to remember that servers, operating systems and applications still expect from the storage
interface a “channel-like” behavior, i.e. high-speed, low-latency, error-free communi-
cations. Networking technologies used to implement SANs must therefore be carefully
chosen and deployed in order to satisfy these strict requirements.

Today the preferred networking technology for SANs is FibreChannel, although dif-
ferent solutions such as iSCSI (based on TCP/IP and Ethernet[72]) or Infiniband [36]
have been proposed.

8.3.1 Fibre Channel

Fibre Channel is a multi-purpose, standard-based networking technology, specifically de-
signed for computing environments. Its design is based on the assumption that the trans-
port media (copper cable or optical fiber) is reliable, henceerror recovery mechanisms are
reduced to a minimum and are mostly left to upper layer protocols. Data are fragmented
and encapsulated in network protocols with minimum overhead, in order to achieve high
efficiency. Intermediate nodes guarantee that frames will not be discarded, duplicated
or delivered out-of-order under any circumstances. A simple, credit-based mechanism
is used for flow and congestion control. These characteristics of the data-path make a
full hardware-based implementation feasible. Incoming frames can be processed by end
nodes at very high speed and do not incur the latency induced by large reassembly and
reordering buffers.

8.3.2 Credit-based flow control

Flow control mechanisms are used to regulate the rate at which a transmitter sends frames,
in order to achieve efficient bandwidth utilization withoutoverwhelming the receiver.
These mechanism represent one of the most important characteristics of a networking
technology and have a very strong influence on the design of network devices.

In Fibre Channel networks flow control mechanisms are based on the concept of
credit. A credit represents the ability of a receiver to accommodate one frame. The
receiver grants to the transmitter an initial number of credits, typically proportional to the
size of its buffers. The transmitter is authorized to send one frame for each credit it has
received; after that it has to stop until it receives more. Assoon as the receiver has finished
processing an incoming frame (for instance, it has passed itto upper layers) it can free the
resources that were used by that frame and grant a new credit.

Fibre Channel provides two levels of flow control: “buffer-to-buffer” and “end-to-
end”. Buffer-to-buffer flow control takes place between pairs of adjacent ports, such as a
link between a node and a switch or between two switches. It operates on all the packets
traversing the link, without the capability to discriminate among multiple flows. End-to-
end flow control, on the contrary, operates only between end-nodes and is performed per
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Figure 8.2. Flow control levels

flow, i.e. if a node is receiving multiple flows, it controls each of them them separately.
The two levels are illustrated in Figure 8.2.

Credit-based flow control mechanisms guarantee that a device accepts incoming frames
only if it has the resources to service them. Switches can usesuch mechanisms to regulate
incoming traffic, but once they have accepted a frame, they are not allowed to drop it.
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Chapter 9

The Switching Architecture

In this chapter we present the architecture of a CIOQ switch specifically designed for
Fibre Channel SANs. The main differentiation points with respect to traditional LAN
switches and Internet routers are the asynchronous design,the addition of a centralized
arbiter and the employment of a number of buffer management techniques that guarantee
loss-free operation. We first present the base architecture, considering unicast traffic only,
and then discuss extensions to support multicast.

9.1 System Overview

The logical architecture of the system is depicted in Figure9.1. It is composed by a
set ofNLC linecards interconnected by a crossbar-based switching fabric. Each linecard
hostsPLC input/output ports and has two links to the switching fabric, nameduplink
and downlink. Packets enter the linecard through input ports and are multiplexed on
the uplink. They traverse the fabric and are transmitted to the proper output linecard
on the downlink. After demultiplexing, they finally reach the destination output port.
The bandwidth of the uplink and the downlink is equal to the sum of the bandwidths of
the input/output ports hosted on a linecard, so they are not oversubscribed and do not
constitute a bottleneck.

The system is fully asynchronous, i.e. the linecards and theswitching fabric run on
independent clock domains. This feature provides several benefits in terms of simplicity,
cost and scalability [4]. First, it prevents the necessity to maintain and distribute a global
clock signal, a task that can be problematic, especially if modules are distributed among
multiple racks. Second, it enables native support for variable-length packets, eliminating
the need for segmentation and reassembly buffers. Finally,it allows simplified arbitration
of the switching fabric, without employing complex scheduling algorithms. These advan-
tages, however, come at a price: buffers are needed at the fabric inputs and outputs, and
moderate speed-up is required to achieve good performance.
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Figure 9.1. Logical architecture of the switch, showing twolinecards
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To achieve lossless operation, all buffers are endowed witha backpressuremecha-
nism, that allows them to block transmission from previous stages when they are close to
saturation. The signal is activated when occupancy grows above a certain threshold and
is deactivated when it decreases below another threshold.

This form of flow-control is sufficient to prevent buffer overflow, but is too coarse, as
it does not discriminate among multiple flows traversing theswitch. Therefore the system
employs an additional centralized mechanism that guarantees fairness among multiple
flows and enhances performance.

9.2 Data Path

9.2.1 Linecards

The Packet-Store Module (PSM) is a large buffer that stores packets entering on input
ports1. Memory is divided in slots of equal size, dimensioned to contain a maximum-size
packet2; if a smaller packet is stored, the remaining part of the slotis unusable. Memory
segmentation reduces usage efficiency but simplifies the implementation of buffer man-
agement schemes. Total capacity is statically partitionedamong input ports. If the space
assigned to a specific port is completely used, the port uses buffer-to-buffer flow control
(Section 8.3.2) to inhibit transmission from the connectednode. Buffer space is logically
organized to provide a separate set of VOQs to each input port. Ports select independently
and in parallel packets to be transferred to the In-module using a round-robin policy.

The In-module is a fast and small random-access memory, thatacts as a high-speed
interface towards the switching fabric. It contains a smallnumber of fixed-size slots,
organized as a single set of VOQs. Access to the In-module memory is regulated by
a buffer management mechanism that prevents input ports from monopolizing available
space. Moreover, if a VOQ in the In-module grows beyond a specific size, no more
packets from the corresponding destination are accepted from the PSM VOQs. When all
In-module slots are occupied, a backpressure signal blocksany packet transfer from the
PSM.

The Out-module receives from the switching fabric the aggregate flow of packets di-
rected to the linecard and demultiplexes it based on the destination port. Memory is
segmented in fixed-size slots and structured as a set ofPLC queues, one for each output
port on the linecard. Queues cannot overflow because space ispre-allocated using the
credit-based flow-control mechanism described in Section 9.3.1. The logical layout of a
linecard, highlighting queueing stages, is shown in Figure9.2.

1In a practical implementation, PSM functionalities would be spread among multiple chips, each serving
a subset of the input ports.

2MTU is 2 KB for Fibre Channel devices.
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Figure 9.2. Logical layout of a linecard

9.2.2 Switching fabric

The switching fabric is based on aNLC×NLC crossbar. As the fabric runs asynchronously
with respect to the linecards, buffers are required at the input and outputfabric ports. The
size of these buffers is determined by the Round-Trip Time (RTT) between the linecards
and the fabric. In principle, if the RTT is negligible, a single MTU-sized buffer suffices.
In practice it is necessary to have more, to take into accountstore-and-forward delay
and other sources of overhead that contribute to the RTT. Moreover, it is desirable to
support multi-rack configurations, in which the RTT is largedue to propagation delay.
The actual size of these buffers is chosen to be on the order offew tens of MTUs per port,
depending on the constraints imposed by chip technology. Packets are stored contiguously
in memory (i.e. there is no segmentation) to maximize efficiency. Buffer overflow is
prevented using a backpressure signal that blocks transmission from the linecard when
space is exhausted.

As the available amount of memory is small and the clock frequency high, it is not
possible to implement VOQs at the fabric input ports. Each input buffer is organized as a
single FIFO queue, hence the fabric suffers from HOL-blocking. This phenomenon can
severely impact throughput [8] but its effects can be partially mitigated by providing a
moderate speed-upK.

Buffers at the fabric output ports receive packets atK times the rate of fabric input
ports, so they must be able to store at leastK MTUs. In order to sustain temporary
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overload conditions, their size is chosen to beK times the size of the input buffers.
At the head of multiple fabric input queues there might be packets directed to the

same linecard. Each crossbar output can receive packets from only one crossbar input at
a time, hence arbitration is necessary to resolve the contention. This task is performed by
simplefabric arbiters, one for each crossbar output, that select a crossbar input among
the contending ones in a round-robin fashion. Fabric arbiters work independently and in
parallel and do not need to perform multiple iterations. Note that this is much simpler
than solving a bipartite-graph matching problem.

If persistent overload conditions cause a fabric output queue to fill up, the correspond-
ing fabric arbiter does not allow any new transmission untilqueue occupancy goes below
a given threshold. This forms of backpressure prevents packet losses inside the fabric.

9.3 Control Path

In a Fibre Channel network, nodes make explicit use of buffer-to-buffer flow-control to
regulate incoming traffic (Section 8.3.2). A switch output port can be blocked by an ad-
jacent node that, due to congestion, is not able to accommodate new packets and stops
releasing credits. In this situation the switch stores packets in its internal buffers. If con-
gestion persists, buffers eventually fill up and the switch blocks incoming flows directed
to the congested node. It is important to make sure that blocked flows do not interfere
with others that are traversing the switch.

Interference is potentially caused by the sharing of switchresources among multiple
ports. In particular, the switching fabric handles aggregates of flows that come from or
are directed to the same linecard and has no notion of input and output ports. It cannot
selectively block flows directed to a specific output port without blocking at the same time
those directed to other ports on the same linecard.

9.3.1 Internal flow-control

To isolate congested flows, the switch uses a mechanism that operates at the (input port,
output port) granularity level. This mechanism, named “internal flow-control” is managed
by the central arbiter, that acts as a “bridge”, effectivelyextending across the switching
fabric the buffer-to-buffer-flow control performed at the input and output ports.

Internal flow-control operates in the following phases, as depicted in Figure 9.3:

1. The Out-module sends acredit to the central arbiter to signal a free, MTU-sized
slot in a port queue.

2. The In-module sends to the central arbiter arequestto transmit to the switching
fabric a packet destined to a specific output port.
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Figure 9.3. Credit-based flow control loop managed by the central arbiter

3. When the central arbiter finds an output port for which a credit is available and an
ungranted request exists, it sends agrant to the requesting In-module.

4. The In-module transmits the packet, which crosses the switching fabric and arrives
to the destination linecard, where it is stored in the Out-module.

5. When the packets is finally transmitted on the output link,the Out-module frees the
buffer and returns the credit to the arbiter.

Thanks to this mechanism, a packet enters the switching fabric only if there is space
to store it in the destination output port’s queue. Queues cannot overflow, therefore no
backpressure is required from the Out-module to the switching fabric. If an output port is
blocked, the queue fills up, the arbiter runs out of credits and In-modules do not receive
grants to transmit to that port. Buffer space inside cannot be monopolized by packets
waiting to be transferred to the blocked port, because the buffer management technique
described in section 9.2.1 limits the number of packets directed to a specific destination
that can be present in the In-module at the same time.

The term “credit” has been used to refer to control messages used both by buffer-
to-buffer and internal flow-control. While the two mechanisms are clearly distinct, the
semantic of the term is the same in both contexts. A credit represents the capability of
the receiver (whether it is a network node or a switch output port queue) to store a frame
of maximum size or less, so the terminology we have introduced is consistent. From this
point on, however, our discussion will focus on the internaloperations of the switch, so
we will always implicitly refer to internal flow-control andits control messages.
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9.3.2 The central arbiter

The central arbiter explicitly authorizes the transmission of every packet, so it must
operate at very high rate and provide fair treatment to inputports.

The internal structure of the central arbiter is depicted inFigure 9.4. For each out-
put port there is a credit counter and a request queue. The counter is incremented every
time a credit for the output port is received. Requests for the output port are are stored,
in FIFO order, in the request queue. The arbiter continuously scans, in round-robin or-
der, the credit vector and the requests queues, looking for output ports that have both an
available credit and an ungranted request. When a match is found, the credit counter is
decremented, the request dequeued and the grant sent to the requesting In-module.

The maximum number of requests pending for an output port corresponds to the max-
imum number of packets directed to that output port that can be present in the In-modules
at the same time. This number is limited by the buffer management policy employed at
each In-module. The request queues are dimensioned to be able to host the maximum
number of pending requests, so their occupancy doesn’t haveto be controlled.

9.4 Extension to Support Multicast Traffic

The architecture we have presented can be suitably extendedto support multicast traffic.
This part of the design is not finalized yet, so at some point wewill consider multiple
solutions, whereas at others we will neglect some issues, specifically those related to the
partitioning of system resources (internal and external links, buffers, etc.) between unicast
and multicast.

The delivery of a multicast packet entails two phases:

1. the packet must be replicated to all the linecards that host one or more destination
ports,
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2. on each linecard, the packet must be replicated to all the intended output ports.

To minimize the load on the uplink, a single copy of each multicast packet is transmitted
from the linecard to the switching fabric, and replication to multiple linecards is per-
formed in the switching fabric. Conversely, to reduce the load on the downlink, a single
copy of the packet is sent to each intended linecard, and replication to multiple output
ports is performed independently on each linecard.

9.4.1 Linecards

Linecard buffers can simply be augmented with dedicated space for multicast packets.
The PSM provides to each input port a separate portion of memory, organized as a FIFO
queue. This choice naturally leads to HOL blocking, but is dictated by the fact that it is
not practically feasible to sort incoming packets based on their fanout set [30]. When an
input port fully occupies its share of the PSM memory, transmission from the adjacent
device is inhibited using buffer-to-buffer flow-control.

The In-module collects packets from the PSM queues in round-robin order and stores
them in a single FIFO queue. Each input port has a limit on the amount of In-module
memory that it can occupy. When this limit is reached, the In-module stops servicing the
input port’s PSM queue, until occupancy decreases below a certain level. This mechanism
guarantees that individual inputs cannot monopolize the In-module memory. Both the
PSM and the In-module memory is segmented to simplify buffermanagement.

The Out-module stores multicast packets received from the switching fabric in a buffer
organized as a single FIFO queue. When a packet reaches the head of the Out-module
queue, it is replicated to all the output ports it is destinedto and dequeued. The replication
process is instantaneous and does not delay packet transmission on output links. If internal
flow-control is used, memory must be segmented, because it isnot possible to know in
advance the size of a packet that will be received, so an MTU-sized slot must be set aside.
On the contrary, if memory is not pre-allocated, packets canbe stored contiguously, to
make more efficient usage of available space. In this case backpressure towards the fabric
output queues is necessary to avoid overflow.

9.4.2 Switching fabric

Multicast packets entering the switching fabric are storedin fabric input queues, together
with unicast packets or in a separated space. When a packet reaches the head of its
queue, it must be replicated to multiple linecards. The crossbar is equipped with internal
multicasting capability, meaning that it can replicate a packet to multiple outputs at the
same time with no extra cost. By using this feature it is possible to reduce packet delays
and fabric input queues occupancy; however, doing so requires multiple outputs to be free
at the same time. Waiting to gain access to all the intended outputs before transmitting
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a packet can be counterproductive, because it forces outputs that have already granted
access to stay idle while the others become free.

To exploit the benefits of crossbar replication without compromising efficient usage
of output ports, fabric inputs transmit packets in multiplephases:

1. the input requests all the outputs included in the fanout set of the packet at the head
of the fabric queue, and starts a timerTo;

2. it sends “in a single shot” the packet to all the outputs that have immediately granted
access;

3. afterwards, the input individually sends to each remaining output a copy of the
packet as soon as it grants access;

4. when the timerTo expires, the packet is dequeued and dropped, even if not all the
intended destinations have been reached.

This final drop decision can be optionally skipped for packets that need more reliable
delivery (To set to∞).

9.4.3 Central arbiter

In section 9.3 we have illustrated the benefits achieved by controlling individually unicast
flows. The same result is more difficult to obtain for multicast, because the number of
possible flows traversing the switch grows exponentially (rather than quadratically) with
N . This implies that no switch resource can be assigned per-flow. In particular, both on
the ingress and egress side of linecards packets are stored in a single FIFO queue, regard-
less of their fanout. As a consequence, internal flow-control cannot provide differentiated
treatment to multicast flows.

How to effectively isolate congesting multicast flows, using a reasonable number of
queues and an implementable arbiter, remains an open issue.
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Chapter 10

Performance Under Unicast Traffic

In this chapter we study by means of simulation the performance of the switch presented
in Chapter 9. To obtain and discuss our simulation results werefer to a specific imple-
mentation, with a realistic choice of system parameters. Werefer to a256 × 256 system
offering 512 Gbps of aggregate bandwidth [6].

The goal is to understand the effects of the flow control and backpressure mecha-
nisms under different traffic patterns. We are particularlyinterested in observing system
performance as the number of available credits per output port varies.

10.1 Simulation model

The simulator we have developed models all the system components described in Chap-
ter 9, together with flow-control, backpressure and buffer management techniques. It
explicitly takes into account the transmission times of packets on output links and trans-
mission times of control messages (credits, requests and grants) on control links. Trans-
mission times are only due to store-and-forward delays, as propagation delays are not
considered.

In our experiments we assume that output ports absorb trafficat line-rate, i.e. they do
not receive blocking signal from downstream devices (end-nodes or other switches).

The simulator samples system evolution at regular intervals, called “timeslots”. The
duration of a timeslotTs is equal to the length of the shortest event; all events are assumed
to take an integer number of timeslots.

10.2 Simulation settings

Table 10.1 summaries the settings adopted in the simulation.
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Parameter Symbol Value

Input - Output ports
Input-Output ports per linecard PLC 16
Linecards in the system NLC 16
Total number Input-Output ports N 256

Link speeds for data and signaling
Input - Output ports (data path) VP 2 Gbps
Linecard↔ crossbar (data path) VX 32 Gbps
Linecard↔ central arbiter (control path) — 2 Gbps

Packet size
Minimum packet dimension — 64 bytes
Maximum packet dimension MTU 2048 bytes

In-module & Out-module
Total PSM buffer size — 4000MTU
In-module shared buffer size — 100MTU
Number of credits per output X variable

Switching Fabric
Internal speed-up K 2
Input fabric buffer size — 20 KBytes
Output fabric buffer size — 40 KBytes

Table 10.1. Summary of the main architecture parameters

10.3 Traffic model

Open-loop source models, such as Bernoulli or on-off/bursty, traditionally used to analyze
the performance of lossy packet-switching systems, are notsuitable for our study. A
Fibre Channel source receives control information from thenetwork through buffer-to-
buffer flow-control (Section 8.3.2). When the source is blocked by flow control, it stops
transmitting on the link and starts accumulating packets inthe output link queue. When
it is allowed to restart transmission, it has a burst of packets waiting to be sent. However,
if a source injects traffic at line-rate and packets are uncorrelated, the transmitter queue
can be neglected. In this situation the source transmits packets back-to-back anyway, so
accumulated packets would not make any difference.

Traffic matrix Λ̃ = [λ̃ij ] represents the rate at which sourcei generatespackets di-
rected to outputj, whereasΛ = [λij] represents the rate at which packets actually enter
the switch; obviouslyλij ≤ λ̃ij∀i,j. As we assumed that sources transmit at line-rate,
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∑
j λ̃ij = 1 and admissibility conditions further require that

∑
i λ̃ij ≤ 1.

In stationary conditionsλij also represents the rate at which traffic from inputi to
outputj exits the switch, so we can define throughput for portj as

∑
i λij.

We consider three distributions of the packet size:

• minimum size (64 bytes) only,

• maximum size (2048 bytes) only,

• uniform between 64 and 2048 bytes, with 64 bytes increment

10.4 Diagonal traffic

In this scenario each input port only transmits to itself:λ̃ij = 1 if i = j, 0 otherwise. This
traffic pattern allows us to observe system behavior when there is no contention in the
switching fabric and system dynamics are dominated by the flow control mechanisms.

As depicted in Figure 9.3, internal flow control effectivelyrepresent a closed-loop
control systems. The control loop delay (i.e. the time that elapses between the moment
the arbiter consumes a credit and the moment the Out-module returns it) is non-negligible
and includes store-and-forward delay of control messages,the transmission time of a
packet on an output link as well as additional delays introduced by system components.

A minimum number of credits is required to compensate for thecontrol loop delay
and achieve line-rate. Consider for example the case in which a single flow is traversing
the switch. If only 1 credit were available, an output port, after finishing the transmission
of that packet, would have to stay idle waiting for the next one to be transferred from the
In-module to the Out-module.

Let TLOOP be the control loop delay andTPK the transmission time of a minimum-
size packet on an output link: then in a period of time equal toTLOOP the switching fabric
must be able to transfer at least⌈TLOOP/TPK⌉ packets.TLOOP is the sum of three terms:

• the time required to send a credit from the Out-module to arbiter and a grant from
the arbiter to the In-module (TCR);

• the time required to transmit a packet through the switchingfabric, from the In-
module to the Out-module (TSW );

• the transmission time of a packet on an output link (TPK).

Note that the first term is constant, whereas the other two depend on the packet size.
We assumeTCR is equal to 64 ns, broken down as:

• 16 ns of processing time in the Out-module,
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Figure 10.1. Throughput under diagonal traffic as a functionof number of credits per
output port

• 16 ns of transmission time to the arbiter,

• 16 ns of processing time in the arbiter (this term is constantbecause no other input
is contending for the same output) and

• 16 ns of transmission time to the In-module.

TSW in turn is the sum of three terms, that account for packet transmission on the uplink,
through the switching fabric and on the downlink. Overall, considering crossbar speed-
up K, TSW = (2 + 1/K)LPK/VX . The transmission time on an output link is simply
TPKT = LPK/VP .

Having evaluated control loop delay, we can calculate the minimum number of credits
needed to achieve 100% throughput. Moreover, we can calculate the maximum through-
put forX = 1 and fixed-size packets, because in these conditions1/TLOOP represents the
arrival rate of packets at the Out-module:

TLOOP = TPK + TCR + TSW (10.1)

λ =
TPK

TLOOP

=
TPK

TPK + TCR + TSW

(10.2)

Figure 10.1 shows average throughput for different values of X and different packet-
size distributions.
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Q2Q1

Credits

Packets

Figure 10.2. Simplified queueing model to study performanceunder variable-size pack-
ets.

10.4.1 Small packets

This scenario is the most critical because small packets lead to small transmission times,
whereas control path overhead is constant.

With 64 bytes packets,TPK = 256 ns ,TSW = 40 ns andTLOOP = 360 ns . From
the above formula we expect throughput withX = 1 to be equal to 71% and to reach
100% withX = 2. Figure 10.1 confirms the results.

10.4.2 Large packets

In this scenarioTPK = 8192 ns ,TSW = 1280 ns andTLOOP = 9536 ns . ForX = 1
throughput is 85.9% and forX = 2 it is 100%.

10.4.3 Variable-size packets

Referring again to Figure 10.1, we observe that with variable-size packets 5 credits are
required to achieve 100% throughput.

This throughput reduction is due to the fact that variable-sized packets may introduce
a mismatch between the rate at which packets arrive at the In-module and the rate at which
credits are released at the Out-module, forcing some packets to wait at the In-module.

Consider the simplified model of the flow-control mechanism shown in Figure 10.2.
QueueQ2 models the Out-module transmitting on the output link, while queueQ1 models
the In-module transmitting to the switching fabric. Assumethat only two classes of pack-
ets are present: large, of sizeL and small, of sizeαL, α < 1. Q2 serves packets at rate
R2 bits/s, so it is capable of servicingR2/L large packets/s orR2/(αL) small packets/s.
Whenever it has finished servicing a packet, it releases a credit to queueQ1. Q1 serves
packets at rateR1 ≫ R2 bit/s, however, it can start packet service only if it has a credit
in its buffer. Therefore, the rate at which it can servepacketsis equal to the rate at which
it receives credits. We ignore control-path latencies, so credits released at queueQ2 are
immediately available to queueQ1.

If we look at instantaneous packet service rates atQ1 andQ2, four cases are possible:
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1. Small packets at the heads of bothQ1 andQ2: Q2 services packets and releases
credits at rateR2/(αL). The rate is sufficient forQ1 to serve enqueued packets, so
no backlog accumulates and maximum throughput is achieved.

2. Large packets at the heads of bothQ1 andQ2: this case is similar to the previous
one, the only difference being the credit release rate equalto R2/L. Maximum
throughput is achieved again.

3. Large packets at the head ofQ1 and small packets at the head ofQ2: Q2 releases
credits at rateR2/(αL), which is larger than the rate needed byQ1 to service
incoming packets, so maximum throughput is achieved.

4. Small packets at the head ofQ1 and large packets at the head ofQ2: in this case
Q2 releases credits at rateR2/L, which is smaller than the rate needed byQ1 to
service incoming packets. Basically, large packets with a long transmission time on
an output link are holding credits needed by small packets atthe In-module. The
rate at which new packets are enqueued atQ1 is R2/L(1/α − 1).

The situation described in case number 4 leads to throughputreduction, unless the
credit buffer is large enough to accumulate the excess credits issued in case number 3 and
provide compensation. This is again in accordance with the results shown in Figure 10.1.

The conclusion that we can draw using this simple model is that under any monomodal
distribution of packet size, to achieve maximum throughputis only necessary to compen-
sate for the control-loop delay, whereas under variable size packets, more credits are
needed to compensate for temporary mismatch between the rates at which packets enter
and exit the switch.

10.5 Uniform traffic

In this scenario packets entering the input ports are destined to all output ports with equal
probability (̃λij = 1/N ∀ i,j), so there is significant contention for system resources.

The main contention points are in the In-module, where packets must wait for a credit
in order to access the switching fabric, and at the crossbar inputs, where packets from a
linecard compete with packets from other linecards to reacha crossbar output port.

If a packet is blocked in the In-module because it lacks the credit needed to proceed,
we say that it is experiencingstarvation; if, instead, it is blocked because the In-module
is receiving backpressure from the congested fabric input queue, we say that the packet is
experiencing backpressure.

Both circumstances can degrade final throughput, so our aim is to understand under
what conditions they occur. We start with a qualitative discussion of the impact ofX and
then we proceed with a more systematic analysis of simulation results.
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Figure 10.3. Throughput under uniform traffic and differentpacket size distribution

10.5.1 The effects of internal flow-control

Understanding the effects of internal flow-control under a generic traffic pattern and
choosing the optimal valueX is quite complex, because many implications must be taken
into account.

As discussed in the previous section,X must be large enough to to cover for the
control-delay loop, which becomes larger when there is contention in the switching fabric.
Moreover, the largerX, the longer the switch can sustain temporary overload of specific
output ports, without blocking packets at the In-module dueto starvation.

However if X is small, it is less likely that fabric input queues saturate, leading to
backpressure. In general backpressure is more harmful thanstarvation because it affects
all active flows entering on a linecard, whether they are congested or not. Besides, a
smallX helps in reducing HOL-blocking, because it shapes traffic entering the switching
fabric. In the switching fabric there can be up toX packets directed to a specific output
port, therefore there can be up toPLCX packets directed to a specific linecard. The lower
this number, the lower the probability that two packets destined to the same linecard arrive
at the head of different fabric input queues and collide.

Figure 10.3 shows system throughput for different values ofX under uniform traffic,
with fixed- and variable-size packets. The first thing to noteis that for all packet-size dis-
tributions the number of credits required to achieve maximal performance is in the order
of 10’s, so significantly higher than under diagonal traffic.This is due to the contention
in the switching fabric, that increases the control-loop delay.
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Cre- Thru- Pkt. block prob. Av. fabric FIFOs occ. (Bytes)
dits put St. Bp. Inputs Outputs

5 0.941 0.059 0 90.88 (0.44%) 283.52 (0.69%)
10 0.960 0.040 0 96.00 (0.47%) 460.8 (1.1%)
15 0.970 0.030 0 98.56 (0.48%) 646.4 (1.6%)
20 0.976 0.024 0 100.48 (0.49%) 972.8 (2.4%)
30 0.984 0.016 0 103.04 (0.50%) 1273.6 (3.1%)
50 0.990 0.010 0 104.96 (0.51%) 2227.2 (5.4%)

Table 10.2. Stationary results under uniform traffic and 64 bytes packets

10.5.2 Small packets

Table 10.2 reports additional details, namely average fabric queue occupancy and aver-
age packet blocking probability, due to starvation (“St.”)or backpressure (“Bp.”). If an
In-module is receiving backpressure from the fabric input queue, this is accounted as
backpressure, regardless of the actual availability of credits. Starvation only represent the
case in which the packet is blocked by lack of credits and backpressure is not active.

Thanks to the small size of the packets and the fact that fabric memory is not seg-
mented, queues occupancy remains low and backpressure towards the In-module is never
activated. Starvation is the only cause of throughput degradation, and decreases as the
number of available credits grows. However, asX grows more packets are present in the
switching fabric at the same time and control-loop delay grows as well, so the benefits
provided by additional credits are progressively reduced.

10.5.3 Large packets

With large packets, the situation is significantly different: throughput increase untilX =
10, then it starts decreasing and keeps going down asX grows. By looking at Table 10.3
we realize that this is mainly due to backpressure, which becomes the only cause of
throughput degradation forX > 10. Fabric input queues have limited size and can only
host about ten packets each. With more credits available, they quickly fill up and back-
pressure blocks packets at the In-modules. Fabric output queues occupancy grows until
X = 15, then it starts decreasing, even if fabric input queues occupancy keeps grow-
ing. This is due to the fact that asX grows the shaping effect of internal flow-control is
reduced and packets experience higher contention in the switching fabric.
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Cre- Thru- Pkt. block prob. Av. fabric FIFOs occ. (Bytes)
dits put St. Bp. Inputs Outputs

5 0.945 0.055 0 1542 (7.5%) 8058 (20%)
10 0.961 0.030 0.009 3220 (16%) 14185 (35%)
15 0.953 0 0.047 7000 (34%) 16235 (40%)
20 0.942 0 0.058 7522 (37%) 15468 (38%)
30 0.932 0 0.068 7922 (39%) 14929 (36%)
50 0.929 0 0.071 8032 (39%) 14833 (36%)

Table 10.3. Stationary results under uniform traffic and 2048 bytes packets

Cre- Thru- Pkt. block prob. Av. fabric FIFOs occ. (Bytes)
dits put St. Bp. Inputs Outputs

5 0.918 0.082 0 1210 (5.9%) 6541 (16%)
10 0.941 0.056 0.003 1794 (8.8%) 10448 (26%)
15 0.952 0.033 0.014 3373 (16%) 12824 (31%)
20 0.955 0.013 0.031 5222 (25%) 14271 (35%)
25 0.953 0.003 0.044 6326 (31%) 14585 (36%)
30 0.951 0 0.049 6700 (33%) 14455 (35%)
50 0.948 0 0.052 6948 (34%) 14238 (35%)

Table 10.4. Stationary results under uniform traffic and variable-size packets

10.5.4 Variable-size packets

Table 10.4 show that the values of system metrics in this scenario are intermediate with
respect to the two cases presented above. ForX < 15 throughput with variable sized
packets is lower than with fixed size packets (either small orlarge) because of the mis-
match between credit release rate and packet arrival rate, as explained in Section 10.4.
As X grows we see starvation gradually disappearing but backpressure showing up, with
the net result that for anyX (except very small or very large values) both are present at
the same time. The final curve is the result of the combined effects of all the phenomena
described before. Overall throughout reaches its maximum for X = 20, where it is equal
to 95.3%, and then decreases very gently for larger values.
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Figure 10.4. Throughput with increased fabric speed-up under uniform traffic and
variable-size packets

10.6 Improving system performance

System performance is satisfactory in all the scenarios tested so far, throughput being
greater than 92% under any packet size distribution forX > 5. Starting from the results
obtained previously we try to understand on which parameters it is worth acting to further
improve performance.

10.6.1 Increased internal speed-up in the switching fabric

We first try to vary crossbar speed-up to understand how much HOL-blocking penalizes
performance. Results are reported in Figure 10.4 and Table 10.5 for variable-size packets.
Note that the caseK = 16 corresponds to an output-queued switch, in which HOL-
blocking and output contention are completely eliminated.

We see thatK = 3 brings small improvement, whereasK = 16 almost no improve-
ment. We can deduce that HOL-blocking in the switching fabric has a very small impact
on system performance. The reason is that with very high speed-up and smallX system
performance is limited by starvation, whereas with largeX fabric output queues fill up
rapidly and activate backpressure towards the fabric inputports. If a fabric output port is
saturated, it cannot accept any new packet and speed-up becomes useless.

A comparison of Table 10.5 and Table 10.4 confirms that fabricoutput queues oc-
cupancy increases, whereas fabric input queues occupancy decreases. This leads to a
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Cre- Thru- Pkt. block prob. Av. fabric FIFOs occ. (Bytes)
dits put St. Bp. Inputs Outputs

5 0.919 0.081 0 111.1 (0.5%) 6746 (16%)
10 0.942 0.055 0.003 275.0 (1.3%) 10838 (26%)
20 0.959 0.013 0.028 1971 (9.6%) 15413 (38%)
25 0.960 0.001 0.039 2802 (14%) 16497 (40%)
30 0.958 0 0.042 3331 (16%) 16742 (41%)
50 0.955 0 0.045 3690 (18%) 16901 (41%)

Table 10.5. Stationary results under uniform traffic and variable-size packets, forK =

16

small reduction of backpressure but leaves blocking probability due to starvation almost
unchanged.

10.6.2 Extended memory size in the switching fabric

In this scenario a large amount of memory is placed at the fabric inputs and outputs, to
avoid backpressure. The maximum amount of packets destinedto a linecard inside the
switching fabric at any point in time isX ×PLC . In the worst case they are all maximum-
size packets and occupyX × PLC × Lmax = X × 16 × 2048 = X × 32768 bytes. We
choose this value for the fabric output ports and set the sizeof fabric input ports to one
half of it.

Cre- Thru- Pkt. block prob. Av. fabric FIFOs occ. (Bytes)
dits put St. Bp. Inputs Outputs

5 0.918 0.082 0 1211 (1.5%) 6552 (4%)
10 0.942 0.058 0 1340 (0.8%) 10726 (3.3%)
15 0.955 0.045 0 1401 (0.6%) 14342 (2.9%)
20 0.963 0.037 0 1450 (0.4%) 17772 (2.7%)
25 0.969 0.031 0 1489 (0.4%) 21294 (2.6%)
30 0.973 0.027 0 1506 (0.3%) 24255 (2.5%)
50 0.983 0.017 0 1561 (0.2%) 36866 (2.3%)

Table 10.6. Stationary results with extended memory under uniform traffic and variable-
size packets

Figure 10.5 shows the throughput achieved with the originalmemory size and with
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Figure 10.5. Throughput with original and extended memory in the fabric

the extended memory size, in the case of variable- and maximum-size packets. With ex-
tended memory, throughput grows fairly rapidly as more credits are available, and finally
approaches 100%. Table 10.6 shows that backpressure is never active, but a small (and
decreasing) amount of starvation is still experienced by packets even for very largeX.
This is due to the fact that with so much memory in the switching fabric, the control-loop
delay becomes larger and larger asX increases. The more credits are available, the slower
they are returned.

The improvement achieved in this scenario is not negligible, but its cost is too high.
Fabric memory is perhaps the most scarce resource in the system and it is not reasonable
to assume that it is readily available in large quantities. The results presented in this
scenario are only meant to be taken as a reference.

10.6.3 Link speed-up between the switching fabric and the linecards

We finally explore the effects of speed-up on the uplink and the downlink (internal fabric
speed-up is kept equal to 2). We assume a data rate of 34 Gbps, corresponding to a link
speed-up of34/32 = 1.06. The possibility to change link speed between the linecards
and the switching fabric is another benefit deriving from theasynchronicity of the design.

Figure 10.6 shows the throughput vs. number of credits curves for variable-size and
maximum-size packets, with and without speed-up. We observe that both curves with
speed-up are monotonically increasing, whereas those without have a maximum and then
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Figure 10.6. Throughput with link speed-up between the switching fabric and the
linecards

start decreasing. Moreover, the asymptotic values obtained for largeX are much better:
both with maximum-size and variable-size packets throughput grows beyond 98%.

Cre- Thru- Pkt. block prob. Av. fabric FIFOs occ. (Bytes)
dits put St. Bp. Inputs Outputs

5 0.920 0.080 0 1056 (5.1%) 4513 (11%)
10 0.944 0.056 0 1191 (5.8%) 6268 (15%)
15 0.957 0.043 0 1363 (6.7%) 7286 (18%)
20 0.965 0.034 0.001 1607 (7.8%) 7979 (19%)
25 0.971 0.027 0.002 1810 (8.8%) 8397 (21%)
30 0.975 0.023 0.002 2020 (9.9%) 8868 (22%)
50 0.984 0.014 0.002 2342 (11%) 9638 (24%)

Table 10.7. Stationary results under uniform traffic and variable-size packets, in the case
of communication links between the switching fabric and thelinecards equal to 34 Gbps

Table 10.7 reports numerical data for the variable-size packets case. Fabric output
queues occupancy is low and grows very slowly, as the queues are drained faster. Lower
fabric output queues occupancy also translates to lower fabric input queues occupancy,

97



10 – Performance Under Unicast Traffic

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

10 20 30 40 50 60 70 80 90 100

T
hr

ou
gh

pu
t

Credits for output port (X)

Uniform and linear traffic − Offered traffic 512 Gbps

Linear traffic with links at 32 Gbps
Linear traffic with links at 40 Gbps

Uniform traffic with links at 32 Gbps
Uniform traffic with links at 40 Gbps

Figure 10.7. Throughput under uniform and linear traffic, with variable packet size

because they are blocked less often and can be drained fasteras well. This, in turn, leads
to very low backpressure rate towards the In-module.

Starvation remains the only cause of throughput degradation, but its impact is mini-
mal, because higher speed links and shorter queues imply higher credit release rate.

Overall, this solution is very effective and, above all, practical.

10.7 Linear traffic

Linear traffic is an unbalanced pattern in which each port transmits at different rates to all
the other ports. It is a variation oflog-diagonaltraffic, described in [73], suitable for a
switch with a high number of ports. The traffic matrix is:

Λ̃ =
2

N(N + 1)




N N − 1 · · · 2 1
1 N · · · 3 2
...

...
. . .

...
...

N − 2 N − 3 · · · N N − 1
N − 1 N − 2 · · · 1 N




For the system under test (withPLC = 16 andNLC = 16), each linecard transmits
to itself roughly 12% of the packets (as opposed to 6% under uniform traffic) and the
remaining 88% to other linecards.
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Figure 10.7 compares the performance obtained under uniform and linear traffic, for
variable link speed-up (32 Gbps or 40 Gbps). Performance under linear traffic is slightly
better than under uniform traffic, proving the fact that the fabric does not suffer from
traffic unbalance, but actually benefits from reduced contention.

As in the uniform traffic scenario, performance is significantly improved with moder-
ate speed-up on the uplinks and downlinks.
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Chapter 11

Performance Under Multicast Traffic

Delivery requirements for multicast traffic are more variedthan for unicast and strongly
depend on the application. For example, data replication among multiple sites may require
absolute delivery guarantee, whereas other applications such as video broadcasting might
allow, and in case of congestion even encourage, packets discard. Fibre Channel standards
provide two classes of service for multicast [74]. The first is datagram-like and potentially
unreliable, because end-nodes do not explicitly acknowledge received packets and do
not perform end-to-end flow control. The other, instead, is connection-oriented, requires
end-nodes to acknowledge received packets and perform end-to-end flow control.

We study system performance under multicast traffic when twodifferent flow-control
policies are employed:

1. The system does not try to regulate incoming traffic in any way. All backpressure
mechanisms are disabled and whenever a packet cannot be stored in a buffer, it is
simply discarded.

2. The system employs backpressure between buffering stages to prevent overflows,
as described in Chapter 9. Backpressure signals are not selective and block all flows
traversing the buffer. Packets in principle could be discarded by the fabric if they
remain blocked for too long1 (Section 9.4.2).

11.1 Simulation Model

For the analysis of system performance under multicast traffic we adopt a more abstract
model of linecard buffers with respect to the description ofSection 9.4.1 . [75]. In partic-
ular, we neglect the presence of two stages of queues on the ingress side and consider a
single module that jointly represents the PSM and the In-module. This component, which

1Actually, with current system settings and under the hypothesis that output ports drain data at line-rate,
calculations show that timeoutTo cannot expire, so packets are never discarded by the fabric.
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Figure 11.1. Linecard simulation model for multicast

we still call “In-module”, consists of a single large bufferorganized as a FIFO queue, di-
vided in slots of size equal to a MTU. Total capacity is statically partitioned among input
ports; ports can enqueue new packets only if space is available in their memory share.
The Out-module is also organized as a single FIFO queue, as previously mentioned. The
linecard model implemented in the simulator is show in Figure 11.1.

The Out-module and the switching fabric are modeled according to the description of
Chapter 9.

11.2 Simulation settings

The simulated system is a16 × 16 switch with 4 linecards hosting 4 input/output ports
each. Each port runs at 10 Gbps, hence the aggregate bandwidth is 160 Gbps. Table 11.1
summarizes the values of system parameters we have used.

11.3 Traffic model

In all experiments, three packet size distributions have been considered:

• minimum size (80 bytes) only,

• maximum size (2000 bytes) only,

• uniform between 80 and 2000 bytes, with 40 bytes increment.
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Parameter Symbol Value

Input - Output ports
Input-Output ports per linecard PLC 4
Linecards in the system NLC 4
Overall number of Input-Output ports N 16

Link speeds for data and signaling
Input - Output ports (data path) — 10 Gbps
Linecard↔ crossbar (data path) — 40 Gbps

Packet size
Minimum packet dimension — 80 bytes
Maximum packet dimension MTU 2000 bytes

In-module & Out-module Buffers
In-module shared buffer size — 8000 MTUs = 16 MB
Out-module shared buffer size — 320 KB

Switching Fabric
Internal speed-up K 3
Input fabric buffer size — 10 KB
Output fabric buffer size — 20 KB
Second timeout value To 15µs

Table 11.1. Summary of the main architecture parameters

Each active source emits a packet with probabilityρin, 0 ≤ ρin ≤ 1 and with probability
1 − ρin remains idle for a period with the same distribution of the packet duration, which
can be fixed (minimum or maximum size packets only) or variable (packet size uniformly
distributed).

If the backpressure signal from the In-module is active, generation of new packets is
blocked. As soon as the backpressure signal is deactivated,the source can start generating
again. The effective average input load generated by a source is ρ̃in ≤ ρin.

Packets generated while a source is experiencing backpressure are simply discarded.
We have decided to neglect the fact that in reality these packets would accumulate at the
source (Section 8.3.2) because it would introduce a perturbation of the input load and
complicate throughput analysis, especially in overload conditions.

The average offered load to an output port isρout and it is equal to the sum of theρin

of input ports transmitting to that output times the probability of selecting that output. If
ρout > 1, traffic is not admissible and the output port is overloaded.
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Inputs −→ Outputs
(0,0) −→ [(0,0) - (1,0) - (2,0) - (3,0)]
(1,1) −→ [(0,1) - (1,1) - (2,1) - (3,1)]
(2,2) −→ [(0,2) - (1,2) - (2,2) - (3,2)]
(3,3) −→ [(0,3) - (1,3) - (2,3) - (3,3)]

Figure 11.2. Broadcast traffic scenario with one active porton each linecard

As discussed in Section 9.4, the replication of a multicast packet to multiple ports on
the same linecard is instantaneous and does not have any impact on the switching of pack-
ets between linecards. Thus, in all the traffic patterns we have selected, the destination
ports in the fanout set always reside on different linecards. If the fanout of a packet isF ,
then it must be replicated toF linecards.

11.4 Broadcast traffic scenario - One active port per linecard

We first present results obtained in two different broadcastscenarios. We call “broadcast”
any scenario in which everylinecard transmits packets to alllinecards in the system,
regardless of how many input ports are active and how many output ports they transmit
to.

In Figure 11.2 the multicast pattern under consideration isshown. Each port is iden-
tified by the pair (x,y), wherex is the linecard number andy the port number on the
linecard. On each linecard, only one input port is active andit transmits packets to four
output ports on four different linecards. Each output port receives packets from a single
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Figure 11.3. Throughput vs. offered load (broadcast scenario, one active port on each
linecard)

input port. It follows that traffic is always admissible for any input load0 ≤ ρin ≤ 1 and
thatρout = ρin.

Figure 11.3 shows average throughput as a function of the total load offered to a single
output port, when backpressure mechanisms are enabled (ON)or disabled (OFF).

Despite the high number of conflicts in the crossbar, in both cases the switch sustains
the traffic pattern and throughput closely matches the offered load. This is due to the fact
that only one port is active on each linecard: the active input port generates as a maximum
10 Gbps of data, which is equivalent to 40 Gbps at the fabric output port due to the fanout
4. Hence the fabric is always loaded at100% of its capacity.

Table 11.2 reports the numerical values of the average fabric queues occupation at
different traffic load. As expected, fabric input and outputqueue occupancy is quite low.
When backpressure is enabled, input queue occupancy is slightly higher, meaning that
output queues occasionally reach full occupancy and block input queues. Notice that the
table refers to the case of maximum size packets only, when the fabric queues can host a
small number of packets.

11.5 Broadcast scenario - Four active ports on each linecard

In this scenario all input ports are active and transmit packets to four output ports on
four different linecards. The pattern is described in the following table, using the same
numbering scheme of Figure 11.2.
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Backpressure ON Backpressure OFF

Output
Load
0.80
0.90
1.00

Through- Xbar Queue
put In’s Out’s
0.80 5.8 % 13.2 %
0.90 7.0 % 15.7 %
1.00 8.2 % 21.6 %

Through- Xbar Queue
put In’s Out’s
0.80 1.4 % 17.7 %
0.90 1.6 % 21.3 %
1.00 1.8 % 25.1 %

Table 11.2. Average occupation of fabric input-output memories (broadcast scenario,
one active port per linecard, 2000 bytes packets)

Inputs −→ Outputs
(0,0) + (1,0) + (2,0) + (3,0) −→ [(0,0) - (1,0) - (2,0) - (3,0)]
(0,1) + (1,1) + (2,1) + (3,1) −→ [(0,1) - (1,1) - (2,1) - (3,1)]
(0,2) + (1,2) + (2,2) + (3,2) −→ [(0,2) - (1,2) - (2,2) - (3,2)]
(0,3) + (1,3) + (2,3) + (3,3) −→ [(0,3) - (1,3) - (2,3) - (3,3)]

As each output port receives packets from4 input ports,ρout = 4 × ρin and traffic is
admissible ifρin ≤ 0.25. By settingρin > 0.25 we can generate non-admissible traffic
load and observe how the system behaves in overloading conditions.

Notice that from the fabric point of view this scenario is similar to the previous one:
all packets coming from a linecard are directed to all linecards and the average load on
the fabric input links is 10 Gbps forρin = 0.25. An important difference regards the
burstiness of the traffic arriving on the fabric input links.In this scenario multiple input
ports on a linecard can transmit at the same time, effectively generating up to 40 Gbps of
traffic towards the fabric, whereas in the previous scenariothe load was always strictly
limited to 10 Gbps.

Throughput vs. offered output load curves are shown in Figure 11.4. On the top of the
graphs the corresponding input load is also indicated.

When backpressure is enabled, throughput closely matches the offered load and satu-
rates to100% for ρin = 0.25. When backpressure is not used, on the contrary, the system
starts experiencing losses when the offered load grows beyond 90%. This is due to the
fact that the increased burstiness of the traffic entering the fabric can cause the fabric out-
put queues to temporarily saturate even in underload conditions. Packets that reach a full
fabric output queue are simply discarded and throughput decreases. In overload condi-
tions throughput slowly grows to100%, as packets in excess compensate for those that are
discarded. Note that the phenomenon is more evident for maximum-size packets, when
the queues can host fewer packets, but it is present also whenpacket size is variable.

This analysis is confirmed by the numerical results reportedin Tables 11.3 and 11.4,
referring to the case of maximum size packets. Table 11.3 shows that, when backpressure
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Figure 11.4. Throughput vs. offered load (broadcast scenario, four active ports on each
linecard)

Output Throughput Throughput Loss
Load In-Mod Xbar In Xbar Out Out-Mod
0.80 0.800 (100 %) 0 % 0 % 0 % 0 %
0.90 0.893 (99.2 %) 0 % 0 % 0.8 % 0 %
0.94 0.923 (98.2 %) 0 % 0 % 1.8 % 0 %
0.98 0.949 (96.8 %) 0 % 0 % 3.2 % 0 %
1.00 0.960 (96.0 %) 0 % 0 % 4.0 % 0 %

1.10 0.992 (90.2 %) 0 % 0 % 9.8 % 0 %
1.20 1.000 (83.3 %) 0 % 0 % 16.7 % 0 %

Table 11.3. Throughput loss (broadcast scenario, four active ports on each linecard,
backpressure OFF, 2000 bytes packets)

is off, packets are discarded only at fabric output queues. Table 11.4 reports average
fabric queues occupancy. Fabric output queues fill up rapidly when the offered output
load becomes larger than0.90. If backpressure is on, input queues occupancy grows as
well, whereas if it is off, this occupancy remains low.

11.6 “Residue” traffic pattern

We now consider traffic patterns that are known to be particularly critical for input-queued
switches [30]. These patterns are composed by packets that have a small fanout yet gen-
erate a high number of output contentions. It is thus possible to impose high packets
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Backpressure ON Backpressure OFF

Output
Load
0.90
0.94
0.98
1.00

1.10
1.20

Through- Xbar Queue
put In’s Out’s
0.90 5.6 % 35.2 %
0.94 9.9 % 48.4 %
0.98 29.7 % 71.3 %
1.00 93.3 % 92.2 %

1.00 94.6 % 91.4 %
1.00 94.6 % 92.2 %

Through- Xbar Queue
put In’s Out’s
0.89 3.9 % 31.1 %
0.92 4.2 % 38.2 %
0.95 4.5 % 46.5 %
0.96 4.7 % 51.7 %

0.97 4.8 % 55.3 %
1.00 5.0 % 60.2 %

Table 11.4. Average fabric queue occupancy (broadcast scenario, four active ports on
each linecard, 2000 bytes packets)

injection rate without violating the admissibility condition (thanks to the small fanout)
and, at the same time, stress the switching fabric (due to thehigh number of contentions).
As fabric speed-up may not be sufficient to accommodate all contending packets, some
of them receives partial service, i.e. aresidueis left at the fabric input queue. For this
reason, we name this kind of traffic patterns “Residue”.

11.6.1 “Residue 2” traffic pattern

0,12,30,12,3

0,21,30,21,3

Linecard 1

Linecard 0

0,12,30,12,3

0,21,30,21,3

Linecard 3

Linecard 2

Figure 11.5. “Residue” multicast traffic pattern with fanout 2, from the fabric point of
view

The first pattern we consider is summarized in the following table:
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Figure 11.6. Throughout vs. offered load (Residue pattern,fanout 2)

Inputs −→ Outputs Inputs −→ Outputs
(0,0) −→ [(0, 0) - (1, 0)] (0,2) −→ [(0, 2) - (1, 2)]
(0,1) −→ [(2, 1) - (3, 1)] (0,3) −→ [(2, 3) - (3, 3)]
(1,0) −→ [(0, 0) - (2, 0)] (1,2) −→ [(0, 2) - (2, 2)]
(1,1) −→ [(1, 1) - (3, 1)] (1,3) −→ [(1, 3) - (3, 3)]
(2,0) −→ [(0, 0) - (1, 0)] (2,2) −→ [(0, 2) - (1, 2)]
(2,1) −→ [(2, 1) - (3, 1)] (2,3) −→ [(2, 3) - (3, 3)]
(3,0) −→ [(0, 0) - (2, 0)] (3,2) −→ [(0, 2) - (2, 2)]
(3,1) −→ [(1, 1) - (3, 1)] (3,3) −→ [(1, 3) - (3, 3)]

The same pattern, seen from the fabric point of view, is depicted in Figure 11.5. Packets
coming from a linecard always contend with at least two packets from other linecards.
For instance, packets coming fromLC 0 always have one conflict with packets coming
from LC 1 andLC 3 and one conflict on average with packets coming fromLC 2.

Each linecard has four active input ports and each output port is loaded by two inputs,
so traffic is admissible ifρin ≤ 0.5.

Figure 11.6 shows throughput vs. offered load curves when backpressure mechanisms
are set ON or OFF.

When backpressure mechanisms are OFF, system performance is similar to that ob-
tained in the previous scenario, both in underload and in overload conditions. When back-
pressure mechanisms are ON, on the contrary, significant differences can be observed.
System throughput is close to ideal when the offered load is less than∼ 0.96, but at that
point it stops growing and actually starts decreasing. The trend can be better observed in
Figure 11.7 where offered load is varied up to its maximum value (ρin = 1.0, ρout = 2.0).
Throughput loss is especially evident when maximum size packets are used but, is signif-
icant also when packet size is uniformly distributed. With minimum size packets, on the
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Figure 11.7. Throughout vs. offered load (Residue pattern,fanout 2, backpressure ON)

Input Output Throughput Average Xbar Queue
Load Load service In’s Out’s
0.40 0.80 0.800 1.471 4.3 % 16.9 %
0.45 0.90 0.899 1.374 7.1 % 29.6 %
0.47 0.94 0.940 1.266 17.4 % 42.8 %
0.49 0.98 0.973 1.041 86.6 % 64.9 %
0.50 1.00 0.973 1.040 86.6 % 64.9 %

0.55 1.10 0.950 1.059 86.9 % 60.8 %
0.60 1.20 0.916 1.067 87.3 % 56.0 %

Table 11.5. Performance results with “Residue” pattern (fanout 2, backpressure ON,
2000 bytes packets)

contrary, no loss is experienced.
Table 11.5 reports fabric queues occupancy when maximum size packets are used. We

can see that input queues occupancy grows rapidly asρout approaches0.96 and saturates
to ∼ 87%. Output queues occupancy, on the contrary, reaches its maximum at0.96 and
steadily decreases afterward.

To understand this behavior, we must focus on what happens atthe In-modules. If
the average fabric input queues occupancy is high, In-modules are subject to backpres-
sure very often, and they fill up as well. When the In-module memory is almost full,
backpressure towards the sources is activated. As the In-module memory is statically
partitioned, each source enters and exits backpressure individually; in particular, sources
that recently have generated more aggressively enter backpressure earlier. When a source
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Figure 11.8. Time traces of packets entering the fabric input 0, at low load (a) and high
load (b)

experiences backpressure, the process of packets enteringthe linecard changes. Consider,
for instance,LC 0: port (0,0) and (0,2) generate only packets destined to linecards{0,1},
whereas ports (0,1) and (0,3) generate only packets destined to linecards{2,3}. If all
ports on the linecard are active, on average half of the enqueued packets are destined to
linecards{0,1} and the other half to linecards{2,3}. Besides, they are roughly alternated,
because all sources generate uncorrelated packets. On the contrary, if a{0,1} source is
blocked, more packets destined to linecards{2,3} are enqueued than packets aimed at
linecards{0,1}. It can even happen that both of{0,1} sources are backpressured at the
same time and a long burst of{2,3} packets enter the In-module. This long burst will
reach the fabric input queues as well.

Figure 11.8 shows a trace of packets entering the fabric input 0 queue at low (a) and
high (b) load over50000, hence0.4 ms. timeslots. The high load graph displays∼ 330
packets, and the bursts are approximately30 packets long. Burstiness naturally leads
to performance penalties. Conflicting bursts in the fabric input queues prevent efficient
usage of the crossbar switching capacity. Some linecard maynot receive packets for long
periods, despite the fact that many packets destined to themare present in the queue. This
is a form of head-of-the-line blocking due to the usage of a single queue for multicast
traffic.

Notice that this phenomenon is self-sustaining: a source that enters backpressure re-
mains blocked for a long time if large bursts of packets from different sources are present
ahead in the In-module queue. The hysteresis mechanism usedto activate and deactivate
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backpressure towards sources further facilitates this phenomenon: a blocked port can-
not transmit until a minimum number of packets belonging to it are removed from the
In-module queue.

When small packets are used, the In-module queue is drained much fasterin terms of
number of packets per unit of time, so sources remain blocked for shorter periods of time
and long bursts do not form.

Finally, asρin approaches1, sources tend to synchronize (because they all generate
equal size packets almost back-to-back), so they enter and exit backpressure at the same
time and burst length decreases. A corresponding throughput increase is visible in Fig-
ure 11.7 forρout ≥ 1.7. If variable size packets are used, sources do not synchronize and
no throughput improvement is observed.

11.6.2 Modified “residue” traffic pattern with fanout 2

To evaluate system performance under the Residue traffic pattern but without the induced
burstiness, we allow all sources on a linecard to generate with equal probability both
kind of packets. For example, all sources transmitting fromLC 0 generate with equal
probability packets destined to linecards{0,1} and packets destined to linecards{2,3}.
With this “modified” pattern (represented in the table below) we make sure that bursts do
not form regardless of how many sources are experiencing backpressure at any time.

Inputs −→ Outputs Inputs −→ Outputs
(0,0) −→ [(0, 0) - (1, 0)] - [(2, 0) - (3, 0)] (0,2) −→ [(0, 2) - (1, 2)] - [(2, 2) - (3, 2)]
(0,1) −→ [(0, 1) - (1, 1)] - [(2, 1) - (3, 1)] (0,3) −→ [(0, 3) - (1, 3)] - [(2, 3) - (3, 3)]
(1,0) −→ [(0, 0) - (2, 0)] - [(1, 0) - (3, 0)] (1,2) −→ [(0, 2) - (2, 2)] - [(1, 2) - (3, 2)]
(1,1) −→ [(0, 1) - (2, 1)] - [(1, 1) - (3, 1)] (1,3) −→ [(0, 3) - (2, 3)] - [(1, 3) - (3, 3)]
(2,0) −→ [(0, 0) - (1, 0)] - [(2, 0) - (3, 0)] (2,2) −→ [(0, 2) - (1, 2)] - [(2, 2) - (3, 2)]
(2,1) −→ [(0, 1) - (1, 1)] - [(2, 1) - (3, 1)] (2,3) −→ [(0, 3) - (1, 3)] - [(2, 3) - (3, 3)]
(3,0) −→ [(0, 0) - (2, 0)] - [(1, 0) - (3, 0)] (3,2) −→ [(0, 2) - (2, 2)] - [(1, 2) - (3, 2)]
(3,1) −→ [(0, 1) - (2, 1)] - [(1, 1) - (3, 1)] (3,3) −→ [(0, 3) - (2, 3)] - [(1, 3) - (3, 3)]

Throughput vs. offered load curves for this scenario are shown in Figure 11.9 and some
numerical values are reported in Table 11.6. We clearly see that throughput still reaches
its maximum value forρout ≃ 0.96, but does not decrease afterward. Correspondingly,
fabric output queues occupancy grows up to63% and remains at that level forρout > 0.96.
Switch performance is satisfactory: despite the hardness of the traffic pattern, maximum
throughput loss is5% for 2000 bytes packets and4% for variable size packets.
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Figure 11.9. Throughput vs. offered load (modified Residue pattern, fanout 2)

Input Output Throughput Average Xbar Queue
Load Load service In’s Out’s
0.40 0.80 0.800 1.478 4.4 % 19.6 %
0.45 0.90 0.902 1.318 13.1 % 37.6 %
0.47 0.94 0.941 1.113 47.5 % 55.3 %
0.49 0.98 0.953 1.010 86.1 % 63.2 %
0.50 1.00 0.953 1.003 86.2 % 63.4 %

0.55 1.10 0.952 1.009 86.2 % 63.2 %
0.60 1.20 0.953 1.007 86.1 % 63.5 %

Table 11.6. Stationary results of modified residue pattern (fanout 2) with backpressure
ON and 2 Kbytes packets

11.6.3 “Residue 3” traffic pattern

In this section we try a Residue traffic pattern with fanout 3,that further stresses the
switching fabric. The pattern is represented from the fabric point of view in Figure 11.10.

Flows have fanout3 and each packet has at least two conflicts with packets coming
from any other linecard. For instance, packets coming fromLC 0 always have two con-
flicts with packets coming fromLC 1 andLC 3, as well as two or three conflicts with
packets coming fromLC 2.

Destination output ports are arranged in such a way that, on average, each output port
is loaded by3 input ports. In particular, each input port generates two kind of packets,
aimed at thesamethree linecards. Traffic is admissible for0 ≤ ρin ≤ 0.333.

Conditions that led to the generation of long bursts of packets with the same fanout
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Figure 11.10. “Residue” multicast traffic pattern with linecard packet fanout 3 (four
input linecards active)
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Figure 11.11. Throughout vs. offered load (Residue pattern, fanout 3)

in Section 11.6.1 apply to this scenario as well. Therefore,we basically observe in Fig-
ure 11.11 the same behavior, although throughput loss in overloading region is much less
evident (96% vs. 87% in the worst case).

This is due to the larger fanout of packets in this scenario. When a packet is served
by the fabric, it feeds three output queues. Hence, at most one output queue is damaged
by bursts at any time. Curves are intermediate between thoseobtained in the “Residue 2”
and in the broadcast scenarios.

Finally, if we modify this traffic pattern to avoid bursts, aswe did in Section 11.6.2,
we see that throughput remains constant in the overloading region and is higher than98%
for any packet size distribution (Figure 11.12).
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Figure 11.12. Throughput vs. offered load (modified Residuepattern, fanout 3)

11.7 Uniform traffic pattern

In this section we analyze system performance under uniformtraffic, i.e. when the fanout
set of each packet is chosen randomly and independently overthe set of all possible
fanouts. Packets can have small or large fanout and the destination output ports do not
depend on the source port.

For each packet, we consider each possible destination individually and we include or
exclude it depending on the toss of a coin (if the resulting fanout is zero, the procedure is
repeated). GivenN possible destinations, the average packet fanout is

F = N
2N−1

2N − 1
≃

N

2

As noted in Section 11.3 the replication of a packet to multiple ports on the same linecard
does not affect system performance. Hence, we simplify the pattern by forcing each
packet to be addressed to at most one port on each linecard.

As in our configurationNLC = 4, every port on a linecard can generate a total of
2NLC −1 = 15 packets. Of these,4 have fanout1 (unicast),6 have fanout2, 4 have fanout
3 and1 has fanout4 (broadcast). This corresponds to an average fanout of32/15 and
traffic is admissible for0 ≤ ρin ≤ 15/32 = 0.48675.

Figure 11.13 (a) and (b) shows throughput vs. offered load when backpressure mech-
anisms are enabled and disabled respectively.

When backpressure mechanisms are OFF, system performance is similar to that ob-
tained in previous traffic scenarios. When backpressure is enabled, we see that the system
performance is not impacted by the variability of packet fanouts. Its behavior is similar
to that observed with the modified version of the “Residue” traffic pattern. Throughput
tracks offered load up toρout = 0.96 and then saturates to96% for 2 Kbytes packets and
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Figure 11.13. System performance under uniform traffic pattern. (a): backpressure ON.
(b): backpressure OFF.

97% for variable size packets. No losses are observed in the overloading region, as pack-
ets are uncorrelated and bursts cannot form, regardless of which sources are blocked by
backpressure.
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Chapter 12

Conclusions – Part II

We have presented a switching architecture specifically designed for Fibre Channel SANs
and we have studied its performance by means of simulation under various unicast and
multicast traffic patterns.

The system was designed for high-performance and high-scalability. A major role
in achieving these goals is played by the asynchronicity of the design that simplifies the
implementation of system modules and provides other important benefits.

The demanding requirements of storage traffic, first and foremost loss-free operation,
are satisfied with a blend of flow-control and buffer management techniques. In particular,
backpressure at every buffering stage avoids packet lossesunder any circumstances, buffer
management policies at the In-modules prevent active portsfrom monopolizing available
space and fine-grained, credit-based, internal flow-control operated by the central arbiter
identifies and isolates congesting flows.

Simulation results show that performance is very satisfactory under uniform and non-
uniform traffic patterns and for different packet-size distributions. Additional experiments
show that it can be further improved by introducing a small speed-up on the uplinks and
the downlinks.

The switching architecture can be easily extended to support multicast traffic. The
choice of performing replication in two stages, in the switching fabric and in the Out-
modules leads to efficient usage of system resources. The switching fabric operates
according to an algorithm that tries to gain the benefits of crossbar replication without
sacrificing latency.

As the number of potentially active multicast flows grows exponentially with the num-
ber of ports, it is not practically feasible to allocate system resources per-flow. In this
system multicast packets are simply enqueued in FIFO order,both on the ingress and the
egress sides of linecards. This certainly leads to HOL blocking and to unfairness, which
become especially dangerous if downstream devices are blocking output ports. Interme-
diate solutions, entailing a reasonable number of queues and an implementable arbiter are
certainly possible, but haven’t been investigated yet. We should also keep in mind that
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strictly lossless behavior for multicast traffic is required only in few particular situations
and that in general discarding packets, though undesirable, is acceptable.

Simulation results show that the system achieves satisfactory performance under var-
ious multicast traffic patterns, for various packet-size distributions and both in lossy and
loss-free operation. We have identified phenomena that can degrade throughput by in-
ducing burstiness on traffic entering the fabric, however, they can only be observed in
overloading conditions and under particularly challenging traffic patterns.

Overall we believe that the results of this study prove that this innovative architecture
is particularly fit for director-class data-center switches, thanks to its high-performance,
robustness and scalability. The phenomena we have identified and the guidelines we have
devised can be useful to further evolve this architecture orto develop new ones aimed at
the same environment.
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[25] A. Smiljanić, R. Fan, and G. Ramamurthy, “RRGS-round-robin greedy scheduling
for electronic/optical terabit switches,” inProc. IEEE GLOBECOM 1999, (Rio de
Janeiro, Brazil), pp. 584–555, Dec. 1999.

[26] Y. Tamir and H.-C. Chi, “Symmetric crossbar arbiters for VLSI communication
switches,” IEEE Trans. Parallel and Distributed Systems, vol. 4, pp. 13–27, Jan.
1993.

[27] W. T. Chen, C. F. Huang, C. Y. L., and W. Y. Hwang, “An efficient cell-scheduling al-
gorithm for multicast atm switching systems,”IEEE/ACM Trans. Networking, vol. 8,
pp. 517–525, Aug. 2000.

119



Bibliography

[28] P. Gupta and N. McKeown, “Designing and implementing a fast crossbar scheduler,”
IEEE Micro, vol. 19, pp. 20–28, Jan./Feb. 1999.

[29] A. Bianco, P. Giaccone, E. Leonardi, F. Neri, and C. Pilgione, “On the number of
input queues required to support multicast traffic in input queued switches,” inProc.
IEEE Workshop on High-Performance Switching and Routing HPSR 2003, (Torino,
Italy), pp. 49–54, June 24–27, 2003.

[30] M. Ajmone Marsan, A. Bianco, P. Giaccone, E. Leonardi, and F. Neri, “Multicast
traffic in input-queued switches: Optimal scheduling and maximum throughput,”
IEEE/ACM Trans. Networking, vol. 11, pp. 465–477, June 2003.

[31] J. Hayes, R. Breault, and M. Mehmet-Ali, “Performance analysis of a multicast
switch,” IEEE/ACM Trans. Commun., vol. 39, pp. 581–587, Apr. 1991.

[32] J. Y. Hui and T. Renner, “Queueing analysis for multicast packet switching,”IEEE
Trans. Commun., vol. 42, pp. 723–731, feb/mar/apr 1994.

[33] Z. Liu and R. Righter, “Scheduling multicast input-queued switches,”J. Scheduling,
vol. 2, pp. 99–114, 1999.

[34] B. Prabhakar, N. McKeown, and R. Ahuja, “Multicast scheduling for input-queued
switches,”IEEE J. Sel. Areas Commun., vol. 15, pp. 855–866, June 1997.

[35] “Getting up to speed: The future of supercomputing,” tech. rep., National Research
Council, 2005.

[36] G. F. Pfister, “An introduction to the InfiniBand architecture,” inHigh Performance
Mass Storage and Parallel I/O: Technologies and Applications (H. Jin, T. Cortes,
and R. Buyya, eds.), ch. 42, pp. 617–632, New York, NY: IEEE Computer Society
Press and Wiley, 2001.

[37] G. F. Pfister,In Search of Clusters. Upper Saddle River, NJ: Prentice Hall, 2 ed.,
1998.

[38] J. Hennessy and D. Patterson,Computer Architecture - A Quantitative Approach.
Morgan Kaufmann Publishers, Elsevier, third ed., May 2002.

[39] S. P. Vander Wiel and D. Lilja, “When caches aren’t enough: data prefetching
techniques,”IEEE Computer, vol. 30, pp. 23–30, July 1997.

[40] J. Duato, S. Yalamanchili, and L. Ni,Interconnection Networks - An Engineering
Approach. Morgan Kaufmann Publishers, Elsevier, revised ed., 2003.

[41] A. Gara, M. A. Blumrich, D. Chen, G. L.-T. Chiu, P. Coteus, M. E. Giampapa, R. A.
Haring, P. Heidelberger, D. Hoenicke, G. V. Kopcsay, T. A. Liebsch, M. Ohmact,
S.-B. B. D., T. Takken, and P. Vranas, “Overview of the blue gene/l system
architecture,”IBM J. Res. & Dev., vol. 49, pp. 195–212, march/may 2005.

[42] N. R. Adiga, M. A. Blumrich, D. Chen, P. Coteus, A. Gara, M. E. Giampapa,
P. Heidelberger, S. Singh, S.-B. B. D., T. Takken, M. Tsao, and P. Vranas, “Blue
gene/l torus interconnection network,”IBM J. Res. & Dev., vol. 49, pp. 265–276,
march/may 2005.

[43] C. Clos, “A study of non-blocking switching networks,”Bell System Technical
Journal, vol. 32, pp. 406–424, 1953.

120



Bibliography

[44] A. Jajszczyk, “Nonblocking, repackable, and rearrangeable clos networks: Fifty
years of the theory evolution,”IEEE Communications Magazine, vol. 41, pp. 28–33,
Oct. 2003.

[45] C. W. Wu and T. Feng, “On a class of multistage interconnection networks,”IEEE
Trans. Computers, vol. 29, pp. 694–702, Aug. 1980.

[46] C. E. Leiserson, “Fat-trees: Universal networks for hardware-efficient supercomput-
ing,” IEEE Trans. Computers, vol. 34, pp. 892–201, Oct. 1985.

[47] A. Schacham, B. A. Small, and K. Bergman, “Interconnection networks for high-
performance computing – electronics vs. optics,” internalmanuscript, Lighwave
Research Laboratory, Columbia University, Mar. 2004.

[48] G. I. Papadimitriou, C. Papazoglou, and S. A. Pomportis, “Optical switching: Switch
fabrics, techniques and architectures,”IEEE J. Lightwave Technol., vol. 21, pp. 384–
405, Feb. 2003.

[49] S. Kitamura, K. Komatsu, and M. Kitamura, “Very low power consumption semi-
conductor optical amplifier array,”IEEE Photonics Technology Letters, vol. 7,
pp. 147–148, Feb. 1995.

[50] F. Masetti, D. Chiaroni, R. Dragnea, R. Robotham, and D.Zriny, “High-speed high-
capacity packet-switching fabric: a key system for required flexibility and capacity,”
J. Opt. Netw., vol. 2, pp. 255–265, jul 2003.

[51] R. Luijten, C. Minkneberg, R. Hemenway, M. Sauer, and R.Grzybowski, “Vi-
able opto-electronic hpc interconnect fabrics,” inProc. ACM Supercomputing 2005,
(Seattle, WA, USA), Nov. 2005.

[52] Q. Yang, K. Bergman, G. D. Hughes, and F. Johnson, “Wdm packet routing for
high-capacity data networks,”IEEE J. Lightwave Technol., vol. 19, pp. 1420–1426,
Oct. 2001.

[53] R. Hemenway, R. Grzybowski, C. Minkenberg, and R. Luijten, “Optical-packet-
switched interconnect for supercomputer applications,”OSA J. Opt. Netw., vol. 3,
pp. 900–913, Dec. 2004.

[54] C. Minkenberg, F. Abel, P. Müller, R. Krishnamurty, M.Gusat, P. Dill, I. Iliadis,
R. Luijten, B. Roe Hemenway, R. Grzybowski, and E. Schiattarella, “Designing a
crossbar scheduler for hpc applications,”To appear in IEEE Micro, 2006.

[55] C. Minkenberg, F. Abel, P. Müller, R. Krishnamurthy, and M. Gusat, “Control path
implementation of a low-latency optical HPC switch,” inProc. of Hot Interconnects
13, (Stanford, CA), Aug. 17–19 2005.

[56] C. Minkenberg, “Performance of i-SLIP scheduling withlarge round-trip latency,”
in Proc. IEEE Workshop on High-Performance Switching and Routing HPSR 2003,
(Torino, Italy), pp. 49–54, June 24–27, 2003.

[57] C. Minkenberg, F. Abel, and M. Gusat, “Reliable controlprotocol for crossbar
arbitration,”IEEE Commun. Lett., vol. 9, pp. 178–180, Feb. 2005.

[58] C. Minkenberg, F. Abel, and E. Schiattarella, “Distributed crossbar schedulers,” in

121



Bibliography

To appear in Proc. IEEE Workshop on High-Performance Switching and Routing
(HPSR 2006), (Poland), 2006.

[59] C. Minkenberg, I. Iliadis, and F. Abel, “Low-latency pipelined crossbar arbitration,”
in Proc. IEEE GLOBECOM 2004, (Dallas, TX), Dec. 2004.

[60] E. Oki, R. Rojas-Cessa, and H. Chao, “A pipeline-based approach for maximal-
sized matching scheduling in input-buffered switches,”IEEE Commun. Lett., vol. 5,
pp. 263–265, June 2001.

[61] E. Oki, R. Rojas-Cessa, and H. Chao, “PMM: A pipelined maximal-sized match-
ing scheduling approach for input-buffered switches,” inProc. IEEE GLOBECOM
2001, vol. 1, (San Antonio, TX), pp. 35–39, Nov. 2001.

[62] E. Schiattarella and C. Minkenberg, “Fair integrated scheduling of unicast and mul-
ticast traffic in an input-queued switch,” inTo appead in Proc. IEEE International
Conference on Communications (ICC 2006), (Istanbul, Turkey), 2006.

[63] “Omnet++ discrete event simulation system.” http://www.omnetpp.org/.
[64] K. Pawlikowski, V. Yau, and D. McNickle, “Distributed stochastic discrete-event

simulation in parallel time streams,” inProc. Winter Simulation Conference,
pp. 723–730, 1994.

[65] R. Rojas-Cessa, E. Oki, and H. Chao, “CIXOB-k: combinedinput-crosspoint-output
buffered packet switch,” inProc. IEEE GLOBECOM 2001, vol. 4, (San Antonio,
TX), pp. 2654–2660, Nov. 2001.

[66] M. Andrews, S. Khanna, and K. Kumaran, “Integrated scheduling of unicast and
multicast traffic in an input-queued switch,” inProc. IEEE INFOCOM 1999, vol. 3,
pp. 1144–1151, Mar. 1999.

[67] M. Song and W. Zhu, “Integrated queueing and schedulingfor unicast and multicast
traffic in input-queued packet switches,” inProc. 2nd IASTED International Confer-
ence on Communication and Computer Networks, (M.I.T., Cambridge, MA), Nov.
2004.
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