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Abstract

Packet switches are at the heart of modern communicatiomonies. Initially de-
ployed for local- and wide-area computer networking, theyreow being used in differ-
ent contexts, such as interconnection networks for HigfieReance Computing (HPC),
Storage Area Networks (SANs) and Systems-on-Chip (SoCymamcation. Each appli-
cation domain, however, has peculiar requirements in tefmbsndwidth, latency, scal-
ability and delivery guarantee. These requirements mustabefully taken into account
and have a major impact on the design of the switch.

In this thesis we present two novel switching architectuagwed at shared-memory
supercomputing and storage networking respectively. Vgerdee the general architec-
ture of the two systems and discuss how specific requirenartscurrent technology
trends have impacted the design. More important, we presmne architectural inno-
vations that address important issues concerning perfaoenand scalability of input-
queued switches.

In particular, we propose techniques that enable the asri&in of distributed (multi-
chip) schedulers for large crossbars, develop a schematégrated scheduling of unicast
and multicast traffic and study flow-control mechanisms #ilatw switches to achieve
lossless behavior while providing fine-grained control atfe flows. Simulation is used
to understand the impact of the proposed solutions and &eaflystem performance.
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Chapter 1

Introduction

1.1 Background

The history of packet-switched networks dates back to tfs,’&vhen deployment of
the ARPANET, ancestor of the Internet, was initiated. In’'8@s the Internet became
a global and ubiquitous networking infrastructure, usedbigsiness, entertainment and
scientific purposes. Since then, the bandwidth demand ofntieenet community has
been steadily increasing at exponential rates. To satisfggearchers and engineers have
studied extensively the design of high-performance switgfabrics, that are at the heart
of Internet routers. Today’s commercial Internet routefsrcaggregate bandwidths on
the order of terabits per second and employ sophisticaggditims for packet buffering,
processing and scheduling.

The success of this technology has led researchers to ig@esits usage in other
domains, where the communication subsystem has becomenarprperformance bot-
tleneck. Packet switching is being used to build intercatine networks for High-
Performance Computing (HPC) systems, where a large nunfileengputing nodes and
memory banks must be interconnected. It is replacing thditimaal bus-based inter-
connection between servers and storage devices, givitigtbiiStorage Area Networks
(SANSs). More recently, it is also being used for Systems=tip (SoC) interconnects.

While the benefits of using packet switching in these domlaawe long been recog-
nized, it is important to remember that each of them has esifip set of requirements,
significantly different from those typical of computer netks. Table 1.1 summarizes the
requirements for packet switches used in computer netwasksell as in the two other
domains we are considering. The most significant differeraze in terms of latency,
aggregate bandwidth and delivery guarantee.

Moreover, current technology trends are playing a signiticale in the design of
packet switches. Issues such as power consumption, chipa@width limitations and
packaging constraints are becoming primary concerns fgigders.

1



1 — Introduction

IP Routers Fibre Channel HPC Interconnects
SAN Switches

Throughput | Very Important Very Important Moderately Important
Latency Not Important | Moderately Important Very Important
Delivery Can Tolerate Losses not Losses not
Guarantee Small Losses Acceptable Acceptable
Line Rate/ < 10 Gb/s < 10 Gb/s > 40 Gb/s

Port Count ~ 100 ports ~ 100 ports ~ 1000 ports

Table 1.1. Requirements of domain-specific interconneatietworks.

Research on
IP Routers and
ATM Switches

Domain-specific

Requirements

Technology
Trends

Switching Architectures

Architectural
Innovations

Figure 1.1. Contributions and context of the thesis.

1.2 Contributions

In this thesis we present two novel switching architectuag®ed at HPC interconnects
and Storage Area Networks respectively. We discuss howpheifec requirements of
the respective domains and current technology trends Indivemnced the design. More
importantly, we present some of the architectural innavetithat allow them to satisfy
the demanding needs of their operating environments. Thiibations and the context

of this work are illustrated in Figure 1.1.

Work described in Part | was performed in the context of OSNB)& research project
developed at the IBM Zurich Research Lab, in collaboratiaoth Worning, Inc. The
project aims at building a demonstrator interconnect foCHiystems, whose building
block is a switch featuring an all-optical data-path andtetmic control-path. The system

is designed to provide state-of-the-art performance aalhbtity.

2



1 — Introduction

In Part Il we discuss the architecture of a director-clabsd=Channel switch designed
for today’s data-center. The architecture presents a nuailiportant features, such as
an asynchronous design and the presence of a central atmateallow the switch to
achieve lossless behavior and isolate congesting flows.

Although the solutions we present have been developed tifgadly address the
challenges posed by the design of these two architectueebglieve that they are valu-
able in a more general context, as they address importargsssoncerning the perfor-
mance and scalability of packet switches.

1.3 Outline of the Thesis

The thesis is organized as follows:

Chapter 2 introduces basic concepts and the terminology used in tteofehe
thesis. It provides an overview of switching architectuaesl a brief survey of
scheduling algorithms.

Chapter 3 contains an overview of supercomputing systems and inteextion
networks. It explains how several factors, such as nodetaottire and partitioning
of the memory space influence the requirements of the conuation subsystem
and describes the two most important classes of intercoioneretworks.

Chapter 4 describes the OSMOSIS project, explains the rationale igbaid opto-
electronic architecture and illustrates the switch data- @ntrol-path.

Chapter 5 is devoted to the first specific problem we have considered:tbduild
schedulers for large crossbars using multiple chips andcow@ng the delay and
I/0 bandwidth limitations caused by distribution.

Chapter 6 addresses the problem of scheduling unicast and multist tcon-
currently over a single fabric, achieving high overall pemiance and providing
fairness guarantees.

Chapter 7 summarizes work described in Part | and the results we haeneiol.
Chapter 8 opens Part Il of the thesis, describing the evolution of #rgex-storage
interface and illustrating how Storage Area Networks invgrthe organization of

storage resources.

Chapter 9 introduces the switching architecture for SANs, focusimgparticular
on the mechanisms used to achieve loss-free operation@ateisongesting flows.

3



1 — Introduction

Chapter 10 contains a simulation-based study of system performanderumi-
cast traffic, analyzing the effects of system parameterfégibsizes, fabric and link
speed-up) and traffic characteristics (uniformity, packet distribution).

Chapter 11 studies performance under multicast traffic.
Chapter 12 draws conclusions from the results of Part Il and conclubdegtiesis.

A table of acronyms used in the thesis can be found at the etinek afocument.



Chapter 2

Packet Switching Basics

In this chapter we introduce the basic concepts and the nefogy used in the rest of
the thesis. We first present the general architecture of kepasvitch and discuss the
main distinguishing feature: buffer placement. After aemiew of output-queued (OQ),
input-queued (IQ) and combined input-output-queued (OQl&@tches, we focus on the
problem of scheduling unicast and multicast traffic in IQtstves. We provide a survey
of the most popular scheduling algorithms and discuss tfaracteristics in terms of
performance and complexity.

Packet switching is a broad field, which has been studiedhsixtely for decades. A
comprehensive treatment of the topic can be found in [1]aff] [3].

2.1 Definitions

A packet switchis a network device that receives packetsimgout portsand forwards
them on the appropriateutput ports

The arrival of packets at the switch inputs can be modelduawtiscrete-time stochas-
tic process. At every timeslot at most one fixed-size daté galledcell can arrive on
each input. Variable-size packets can be considered ast®iwf cells received at the
same input in subsequent timeslots and directed to the satpato

We denote with\;; the average arrival rate on inputf cells directed to output, nor-
malized to the input/output link speed. Tb#ered load from input is the (normalized)
rate at which cells enter the switch on inpudnd is represented by the te@j.vz1 Nijs
whereN is the number of input/output ports. Conversely, tiflered load to outpuj is
the (normalized) rate at which cells destined to outpanter the switch and is equal to
the sumy_ ", ;.

Traffic is admissiblef no input/output links are overloaded, i.e. if the arrivate at
the inputs and the offered load to the outputs are less thaqual to the capacity of the

5



2 — Packet Switching Basics

input/output links. Formally, the admissibility conditie can be stated as:

N
A <1 Vi=1,....N
7=1
N
A<l Vji=1,....N
i=1

In these conditions it is theoretically possible for thetswito forward to the outputs all
the cells it receives on the inputs in finite time.
Traffic is uniformif a cell entering the switch can be directed to any outputhwgual
probability:
\ij = 1/N Yi,j

Itisindependent and identically distributed (i.i.cB)so calledBernoulli, if the probability
that a cell arrives at an input in a certain timeslot:

e is identical to and independent from the probability thatehl arrives at the same
input in a different timeslot AND

¢ is independent from the probability that a cell arrives aithar input.

The performance of a packet switch is mainly measured ingerithroughputandla-
tency Throughput is the (normalized) rate at which the devicevéods packets to the
outputs, latency is the time taken by a packet to traversewliteh. A switch achieves
100% throughputif it is able to sustain an offered load t@atputs equal to 1, under the
hypothesis that traffic is admissible.

2.2 General Architecture of a Packet Switch

Figure 2.1 shows the architecture of a packet switch witinput/output ports. Packets
are received on an input port and enteiragress adaptemwhere they are stored (if neces-
sary) and processed. Processing may include look-up o&ttéenation port, recalculation
of header fields (TTL, CRC, etc.) and filtering. Packets aem tihansmitted through the
switching fabricand reach thegress adaptersvhere they are stored (if necessary) and
prepared for transmission on the output links. If the svirtglfabric operates only on
fixed-size data units, variable-size packets have to be sea on the ingress adapter
and reassembled on the egress adapter. Usually an ingegsteid coupled to an egress
adapter and they physically reside on a single board chtiedardthat can host multiple
bi-directional ports.

A switch is synchronousf the linecards and the fabric are coordinated by mean of
global clock signal and all ingress adapters start celktraasion at the same time. If the

6



2 — Packet Switching Basics

e N
» Ingress Adapte - » Egress Adapter -
Input 1 Il Output 1
or I Adapt E Adapt 02] 02 -
Input 2 = Ingress Adap e(’_‘ — » Egress Adapter Output 2
. P °
° ‘ °
e ' L)
|
= Ingress Adaptef ———=  Switching Fabric = Egress Adapter -
Input N - Output N
A
> . ‘ .
Fabric Arbiter
N /
Data Link Packet (destined to output X)

********** Control Link

Figure 2.1. General architecture of a packet switch.

switch isasynchronouson the contrary, the linecards and the fabric work on inddpat
clock domains and transmission from different ingress tetaps not coordinated. In gen-
eral synchronous switches internally operate on fixed-s&tks, whereas asynchronous
switches may natively support variable-size packets. Bymous architectures are more
popular because synchronicity simplifies many aspects efdd#sign and implementa-
tion of the device. However, asynchronous switches havaradges as well, so they
are being actively researched [4-6]. In the rest of this trape will implicitly refer to
synchronous, cell-based switches.

2.3 Switching Fabric

2.3.1 Fabric properties

The switching fabric sets up connections between ingredegress adapters. It mon-
blockingif a connection between an idle input and an idle output cauays be set-up,
regardless of which other connections have already beablested. This is a very de-
sirable property, because it helps the switch in forwardimtiple packets concurrently,
thus increasing throughput and reducing latency.

The fabric may run at a higher data rate than the linecardshishcase the ratio
between the data rate of the fabric ports and that of the bBwaitets is calledspeed-up
For example, in a synchronous switch with speed-up two,etydime slot ingress/egress

7



2 — Packet Switching Basics

Input O
i L.l L Lo LA
Crosspoint]

Input 1 L/C% L/(% L/C% L/%

Input 2 L/(% L/ok L/(% L/(%

Input 3 L/C% L/(% L/C% L/%

Output O Output 1 Output 2 Output 3

Figure 2.2. A4 x 4 crossbar.

adapters can transmit/receive two cells to/from the fabwthen speed-up is used, the
egress adapters can receive cells from the fabric at a hrgkethan they can transmit
on the output links, so they need buffers to temporarilyestmlls in excess. The term
speed-up generally refers to the case in which both inpubatylt fabric ports run faster
than the switch ports; however, it is possible to have ouspeed-up only, i.e. to have
only fabric output ports run at a higher data rate. Speedrufhe fabric inputs only is
possible but has no practical use.

2.3.2 Crossbar

The crossbar is a very simple fabric that directly connedtgputs tom outputs, without
intermediate stages. From a conceptual point of view, ibiegosed by + m lines, one
for each input and one for each output, anck m crosspointsarranged as depicted in
Figure 2.2. Input is connected to outpytif crosspoint(i,5) is closed

Every output can be connected to only one input at a timeat.most one crosspoint
can be closed on a column. However, one input can be conntctadltiple outputs at
the same time by closing the corresponding crosspointsemgut row. In this case the
signal at the input port is replicated to all the outputs fdviak the crosspoint is closed.
The fabric has intrinsic support fanulticast(one-to-many) communication. The crossbar
is obviously non-blocking: an idle input (output) has albsspoints its row (column)
open, thus it is enough to close the crosspoint at the inteoseto connect them.

The simplicity of the crossbar and its non-blocking propeniake it a very popular
choice for packet switches. The main drawback is its inicigsiadratic complexity, due
to the presence of x m crosspoints. Crossbars implemented on a single chip may als

8



2 — Packet Switching Basics

be limited by the amount of 1/0O signals that must be mappedtp pins. However,
it is possible to build a large multi-chip crossbar by prdyénterconnecting smaller
single-chip ones [7]. The complexity in terms of gates remaguadratic.

2.4 Buffering Strategies

Due to traffic independence, the switch may receive in theesame slot multiple cells
directed to the same output. In this case theredsrdlictbetween inputs caused bwt-
put contentionlt is not possible to forward one of the contending cells disdard all the
other, because the drop rate would be unacceptable for anyiqgal application. There-
fore, the switch is endowed with internal buffers to storiésatat cannot be transmitted
immediately on the output link. The buffering strategy, ngiif the cells are buffered
before being transferred through the switching fabric terafs a major architectural trait
and strongly influences performance, scalability and cbatswitch [8].

2.4.1 Output-queued (OQ)

In OQ switches all cells arriving at the fabric inputs are ietdiately transferred through
the switching fabric and stored at the outputs. At every silmieup to/N cells directed
to the same output can arrive, so the fabric must operatespited-upS = N and the
memory bandwidth at each egress adapter must be equalitoes the line rate of the
switch ports (Figure 2.3).

| = Output1
1

‘ N
Input 2 % i{> % Output 2
‘ N .
N

1
[ ]

Input N% Switching Fabric

— Output N

Figure 2.3. An Output-queued switch.

If multiple cells are buffered at an egress adapter, it i€asary to decide in which or-
der they will be transmitted on the output link. This choitlewas the switch to prioritize

For simplicity we only consider memowyrite bandwidth.

9



2 — Packet Switching Basics

different flows but does not have an impact on throughput. @Reswitch offers ideal
performance, i.e. it achieves 100% throughput under affyctyzattern.

The problem with OQ switches is scalability: fabric spe@damd, above all, egress
adapters memory bandwidth, grow linearly with As the bandwidth offered by com-
mercial memories is on the same order of link rates, the OQiteature is a suitable
choice only for systems with a small number of ports or low liates.

2.4.2 Input-queued (IQ)

In 1Q switches the fabric transfers to the egress adaptdyscetis that can be transmitted
immediately on the output links. Those that are blocked bgeaf output contention are
buffered on the ingress adapters (Figure 2.4).

Input 1 %» > %—» Output 1
1 1 1
Input 2% > % Output 2
1 - :
° 1 i 1 °
o i a .
. | i | .
Input N% - >  Switching Fabric ﬁL—> Output N
: 1 .
P 1 D ‘ 1

Figure 2.4. Input-queued switch.

This strategy has the following crucial consequences:

e buffers are not needed on the egress adapters, becauseaatieeslot the cell
received from the switching fabric can be transmitted imiaiedly on the output
link?;

¢ the switching fabric does not need speed-up, because itleusble to deliver at
most one cell per timeslot to each egress adapter;

¢ the memory bandwidth of the buffers on the ingress adapterqual to the switch
ports line rate, irrespective df, because at most one cell per timeslot arrives at
each input;

2We neglect flow-control issues and assume that a cell caryalb@transmitted on an idle output link.

10



2 — Packet Switching Basics

e a scheduler is required to decide which among multiple aalstending for the
same output will be transferred; the fabric must be configiaordingly.

In the simplest case, arriving cells are stored in FIFO gseua each ingress adapter
can only transmit the cell that is at the head of its queue.s Tbinstraint leads to a
phenomenon called “Head-of-the-line (HOL) Blocking”™: dldhat is at the head of its
input queue and cannot be transferred because of outpwgrtart blocks all the other
cells in the same queue. Blocked cells may be destined taitsuiqgr which no other input
is contending, so the opportunity to transfer a cell is 1d4OL-blocking can severely
degrade performance: for large values/ofit limits switch throughput to about 58%
under uniform i.i.d. traffic [8].

This level of performance is not acceptable, so in the pasethave been many at-
tempts to overcome the problem, in general by relaxing tR®©FRtonstraint and allowing
the scheduler to consider multiple cells from the same quéuescent years increased
CMOS densities have made feasible a new queueing architgectailed Virtual Output
Queueing, that completely eliminates HOL blocking andvaddQ switches to achieve
high performance.

2.4.3 1Q switches with Virtual Output Queueing (VOQ)

Virtual Output Queues (VOQs) are sets of independent FIF€uegs, each of which is
associated to a specific output [9]. In an 1Q switch it is poiesio avoid HOL-blocking
by deploying a set ofV VOQs on each ingress adapter (Figure 2.5). With VOQs, cells

Inputl#?ﬁ ,,,,, 7 % Output 1

LooNTTr] it 1
. voQsSetl | :

B | 1
| 4& A /|
: | Switching Fabric 3 OutputN
‘1 ONTTT]: 1 1
. VOQSetN: | ‘ i

Input N

Figure 2.5. Input-queued switch with Virtual Output Queues

destined to different outputs can be served in any order andlod interfere with each

11
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Figure 2.6. A Bipartite Graph Matching (BGM) problem.

other; cells destined to the same output, on the contragysemved with a FIFO policy to
preserve the ordering of packets belonging to the same flow.

At every timeslot the scheduler must decide which cellsangfer through the switch-
ing fabric, subject to the constraints that at most one aall depart from an ingress
adapter and at most one cell can be delivered to an egresteadEpe problem is equiv-
alent to calculating a matching on a bipartite graph, astitated in Figure 2.6. Nodes
on the left and right side represent fabric inputs and ostpespectively; dashed lines
(edges) represent non-empty VOQs, i.e. cells that can bsecHor transfer. Anatching
is a set of edges such that each input is connected to at mestutput and each output
to at most one input.

A matching ismaximum sizéf it contains the highest number of edges among all
valid matchings; it ismaximalif it is not possible to add new edges without removing
previously inserted ones. For instance, the matching showfgure 2.6 is maximal
but not maximum: no edges can be added, but it is easy to whiatythere exists valid
matchings with four edges. Edges can be assigned weiglus,asuthe number of cells
enqueued in the corresponding VOQ, or the time the cell ahé¢lael-of-the-line has been
waiting for service. If weights are defined, thlximum Weight Matching (MWMS the
one that maximizes the sum of the weights associated to tiesaticontains.

IQ switches with VOQs can achieve 100% throughput under aualy traffic pattern,
but only if very sophisticated scheduling algorithms argkayed [10]. These algorithms
are in general difficult to implement in fast hardware and ¢omplex to be executed
in a single timeslot. However, as we will discuss in Sectid®, 2 number of heuristic
matching algorithms that achieve satisfactory perforreanith reasonable complexity

12
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have been devised. Therefore input-queueing with VOQgdiaytthe preferred architec-
ture for the construction of large, high-performance paskeétches. From this point on,
when discussing 1Q switches we will implicitly assume th&Q@'s are present.

2.4.4 Combined Input-Output-Queued (CIOQ) Switches

OQ and 1Q switches represent two diametrically opposingtgan the trade-off between
speed-up and scheduling complexity. The former employ mawi speed-up but re-
qguire no scheduling, the latter run without speed-up butireeenplex schedulers. CIOQ
switches (with VOQs) represent an intermediate point: theffer packets both at the
inputs and at the outputs, employ moderate speef-(p < S < N) and use simpler
schedulers.

Early simulation studies of CIOQ switches showed that, uradeariety of switch
sizes and traffic patterns, a small speed-up (between twdhag)deads to performance
levels close to those offered by OQ switches. These hinta leaimber of researchers to
analytically investigate the maximum performance acthérhy CIOQ switches. Among
the many results that were published, these are partigidayhificant:

e With a speed-upgs = 2 and proper scheduling algorithms, a CIOQ switch can
exactlyemulatean OQ switch, for any switch size and under any traffic paftetn
12]. “Emulating” means producing exactly the same cell diepa process at the
outputs given the same cell arrival process at the inputs.

e A CIOQ switch employing any maximal matching algorithm wahspeed-up of
two achieves 100% throughput under any traffic pattern, utigerestriction that
no input or output is oversubscribed and that the arrivat@se satisfies the strong
law of large numbers [13].

These results prove that with moderate speed-up the peafaenof an IQ switch can
be dramatically improved and that it can even reach the padoce of an OQ switch

if proper scheduling is used. A small fractional speed-bip<( 2) is also typically used

to compensate for various forms of overhead, such as additlmeaders that must be
internally prepended to cells and padding imposed by setatien [14].

2.5 Scheduling Unicast Traffic in IQ Switches

2.5.1 Optimal Scheduling Algorithm

The optimal scheduling algorithms for an 1Q switch, i.e. ¢ime that maximizes through-
put, is the Maximum Weight Matching (MWM), when queue lergyine used as weights [15].
McKeown et al. noted that, with this choice of the weightgafic traffic patterns can
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lead to permanent starvation of some queues [10]. Howeéwey,dlso proved that 100%
throughput is still achieved for any i.i.d. traffic pattefriie ages of HOL cells are used
as weights; in this case starvation cannot happen. The rffasét known algorithm
for calculating the MWM of a bipartite graph converges N3 log N) time [16]. De-
spite polynomial complexity, this algorithm is not praeti¢or high-performance packet
switches, because it is difficult to implement in fast hardmand cannot be executed in
the short duration of a timeslot. For this reason, a numbdreafistic algorithms have
been developed.

2.5.2 Parallel Iterative Matching Algorithms

Parallel iterative matching algorithms are the most papeliss of heuristic matching al-
gorithms. All inputs in parallel try to match themselves tee®utput by using a request-
grant protocol. VOQ selection at the inputs and contentesolution at the outputs are
performed byarbiters (also calledselector} using round-robin or random criteria. The
process is iterated multiple times, until a maximal matghis obtained or the maxi-
mum number of iterations is reached. On average these gwiconverge iog, N
iterations, but in the worst case they can take

PIM

PIM [17] (Parallel Iterative Matching) is one of the first pHel iterative matching algo-
rithms that have been proposed. In every timeslot the foliguhreephasesare executed
and possibly repeated multiple times:

1. Request:every unmatched input sends a request to every unmatchpdtdot
which it has a queued cell.

2. Grant: every output that has been requested by at least oneliapdbomlyselects
one to grant.

3. Accept:if an input receives more than one grant, it seleatslomlyone to accept.

The main disadvantage of PIM is that it does not perform waljt achieves only
63% throughput with a single iteration under uniform i.itchffic. Moreover, it employs
random selection, which is difficult and expensive to perfat high speed and can cause
unfairness under specific traffic patterns [18].

RRM

RRM (Round-Robin Matching) [18] addresses some of the daaks of PIM by replac-
ing random selection with round-robin. The selection logiecach input and output is

14
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composed by a round-robin selector and a pointer. Pointettseaoutputs are named
grant pointers whereas those at the inpatscept pointers
Every iteration of RRM entails the following three phases:

1. Requestevery unmatched input sends a request to every output farrwhhas a
gueued cell.

2. Grant: every output that has been requested by at least one inmgtsene to
grant in round-robin order, starting from the position cated by the grant pointer.
The pointer is advanced (moduld) to one input beyond the one just granted.

3. Accept:if an input receives more than one grant it selects one toph@ceound-
robin order, starting from the position indicated by theegtgointer. The pointer
is advanced (modul®/) to one output beyond the one just accepted.

The performance of RRM is very close to that of PIM, so stilitgyoor.

1-SLIP

i-SLIP [19] is a improvement of RRM that, with an apparentlynori modification,
achieves much higher performance. The three phases aréiedas follows:

1. Requestsame as RRM.

2. Grant: every output that has been requested by at least one inmgtsene to
grant in round-robin order, starting from the position cated by the pointer. The
pointer is advanced (modulg) to one input beyond the one just granikeahd only
if the released grant is accepted in the accept phase

3. Accept:same as RRM.

Moreover, the grant and accept pointers are updated onheifirst iteration; a detail that
is crucial to prevent starvation of any VOQ under any trafattern.

i-SLIP performs extremely well: under uniformi.i.d. traffi@achieves 100% through-
put with a single iteration, because it guarantéesynchronizationf the grant pointers.
When the switch is loaded at 100% and traffic is uniform ialllyOQs are backlogged.
Assume that the grant pointers at multiple outputs pointh® $ame input, i.e. they
aresynchronized The input receives multiple grants, accepts one and mdweadcept
pointer. Thanks to the modification of the grant phase, onlyaf the grant pointers (the
one corresponding to the grant that has been accepted) sdhamd leaves the group. For
the same reason, at most one new grant pointer can join thip.gitas possible to prove
that, after a transient period, all grant pointers pointiftecent inputs, regardless of their
initial position. Amaximunmatching is produced at every timeslot and 100% throughput
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is achieved. Desynchronization is preserved as long as@@4/are non-empty, because
all the released grants are accepted and so all the grartepmove “in lockstep”.

Another important feature ofSLIP is that it is fair and starvation free, i.e. it does
not favor some flows over others and guarantees that a cék digad of a VOQ will be
served within finite time.

DRRM

DRRM [20] (Dual Round-Robin Matching) is a further variarftieSLIP that achieves
similar performance with one less phase and less informatichange between the input
and the outputs.

The two phases performed in each iteration are:

1. Requestevery unmatched input sele@iseunmatched output to request in round-
robin order, starting from the position indicated byeguest pointer In the first
iteration, the pointer is updated to one position beyonditipait just requested
(moduloN) if and only if a grant is received in thgrant phase.

2. Grant: each output that has been requested by at least one inpetissahe to grant
in round-robin order, starting from the position indicated a grant pointer. In
the first iteration the pointer is updated to one positiort gas input just granted
(moduloN).

A grant phase is not required because each input requegtsrmmbutput, so it can receive
at most one grant, which is automatically accepted.

DRRM achieves 100% throughput under uniform i.i.d. trafcéuse in this situation
request pointers (moved only if a grant is received) desyoribe.

Figure 2.7 shows the operation of the DRRM algorithm fdra4 switch. At the end
of the first iteration all pointers (except R4 and G1) are naoiggward by one position.
As the matching is maximal, it is not necessary to performtamdhl iterations.

FIRM

FIRM [21] is an improvement of-SLIP that achieves lower average latency by favoring
FCFS order of arriving cells. It does so by introducing a mmadification in the pointer
update rule of the grant phase:eéBLIP:in the first iteration, if a grant is not accepted, the
grant pointer is moved to the granted inplihe authors also show that this modification
reduces the maximum waiting time for any request figvn— 1)* + N2 to N2

A similar modification has been proposed for DRRM in [22].
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Figure 2.7. The behavior of the DRRM algorithm in a samplenacde.

Weighted Algorithms

As an attempt to approximate the behavior of MWM and improggggmance under
non-uniform traffic, heuristic iterative weighted algbrits have been developed. Among
these aré-OCF (Oldest Cell First);-LQF (Longest Queue First) aneLPF (Longest Port
First), proposed by Mekkittikul and McKeown [23].

2.5.3 Sequential Matching Algorithms

Sequential scheduling algorithms produce a maximal magchy letting each input add
an edge at a time to an initially empty matching.

RPA [24] (Reservation with Pre-emption and Acknowledgethand RRGS [25]
(Round Robin Greedy Scheduler) are examples of sequengitdhing algorithms. An
input receives a partial matching, adds an edge by seleatiinge output and passes it
on to the next input. Inputs considered first are favoredabse they find most outputs
still available. To avoid unfairness, the order in whichutgare considered is rotated at
every timeslot. These algorithms always produce a maxinaathing, are fair and can be
pipelined to improve the matching rate. However, they regjsirong interaction among
the inputs and introduce latency at low load when pipelined.

The Wavefront Arbiter [26] (WFA) is another popular sequanarbiter. The status
of all the N? VOQs of the system is represented itVax N request matrix?: R; ; = 1
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if input 7 has a cell destined to outpyit 0 otherwise. Sets of VOQs that are positioned
on a diagonal of the matrix are conflict-free, because thesespond to cells enqueued
at different inputs and destined to different outputs. Hertds possible to produce a
matching by sequentially “sweeping” all the diagonals @& tequest matrix, excluding
input and outputs that have already been matched. WFA isdamsple and offers good
performance; however, it suffers from some minor fairnegsienplementation issues [7].

2.6 Scheduling Multicast Traffic in 1Q Switches

Traffic generated by a single source and directed to multipitinations is callechulti-
cast One-to-many communication is important for many appia# (see Section 6.1)
so switches must be able to efficiently replicate packetsuliphe output ports.

In an 1Q switch replication can be achieved simply by trangng cells through the
switching fabric multiple times, one for every egress adafitat must be reached. How-
ever, the crossbar has intrinsic multicasting capalslgied can replicate a cell to multiple
outputs in a single timeslot. A scheduler that takes adgentd this feature can reduce
the latency experienced by cells and the load on the falpigtiports, which are occupied
for only one timesilot.

In this section we briefly introduce the problem of schedylmulticast traffic and
present some of the most popular scheduling algorithms.

2.6.1 Definitions

The set of outputs a multicast cell is destined to is calleddahout setand its cardinality
the fanout®. For clarity, we distinguish between tigput cellthat is transmitted to the
switching fabric and theutput cellsthat are generated by the replication process.

A scheduling discipline is termethnout splittingif it allows partial service of an
input cell, i.e. if the associated set of output cells canrbegferred to the outputs over
multiple timeslots.No fanout splittingdisciplines, on the contrary, require all the output
cells associated to an input cell to be delivered at the asiipuhe same timeslot. Fanout
splitting offers a clear advantage because it allows thedab deliver in every timeslot
as many cells as possible to the outputs, at the price of d sraadase of implementation
complexity.

The residueis the set of all output cells that lose contention for outpokts in a
timeslot and have to be transmitted in subsequent timeslots

3The term “fanout” is often used to refer also to the set itself
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2.6.2 Queueing

A multicast cell can be destined to any subset of¥heutputs, so the number of possible
fanout sets ig2” —1. Even for moderate values &f it is not practically feasible to provide
a dedicated queue to cells with the same fanout set, theréf@l-blocking cannot be
completely eliminated. Indeed, most architectures stelteariving on an ingress adapter
in a single queue and serve them in FIFO order.

To alleviate HOL-blocking, in [27] the authors propose a a@awing scheme that
allows the scheduler to access any cell in the firgtositions of the queue. This scheme
offers throughput improvements, but requires random<ssgeeues, which are complex
to implement. Moreover, it is clearly not effective underdiy traffic.

In [28] and [29] the benefits that can be gained by using a smatiber of FIFO
queues at each ingress adapter are investigated. Wherplawtieues are present, it
is necessary to define a queueing policy. Static queueirigig®lalways enqueue cells
with a given fanout in the same queue, whereas dynamic pslitiay enqueue them in
different ones, depending on status parameters such as queupancy. Static policies
lose effectiveness when few flows are active, because mdbedvailable queues may
remain empty, whereas dynamic policies lead to out-of+oteédévery.

In [30] maximum switch performance is analyzed, under thaotlyesis that a queue
is provided for every possible fanout set. The results of Work have great theoretical
interest, because they show that an IQ switch is not able he@ae 100% throughput
under arbitrary traffic patterns, even if it employs thisabgueueing architecture and the
optimal scheduling discipline.

2.6.3 Scheduling

The problem of scheduling multicast traffic in an input-geeswitch has been addressed
by a number of theoretical studies. In [31] and [32] the panfance of various scheduling
disciplines (such as random or oldest-cell-first) is anadyander different assumptions.
Work in [33] studies the optimal scheduling policy, obtaigiit for switches of limited
size (up to three inputs) and deriving some of its propeiti¢se general case.

In [34] the authors take a more practical approach: theyipaity target the design
of efficient and implementable scheduling algorithms wh&fCFqueueing is used and
fanout splitting allowed. They provide important insight the problem and propose
various solutions with different degrees of performanceé eomplexity. An important
observation is that at any timeslot, given a set of requeditapn-idling policies (those
that serve as many outputs as possible) transmits celletsatime outputs and leave the
same residue. What differentiates one policy from the adhesidue distribution, i.e. the
criteria with which the set of output cells that have losttemion is partitioned among the
inputs. Aconcentratingpolicy assigns the residue to as few inputs as possibleciesli
exhibiting this property serve in each timeslot as many Hélls@as possible, helping new

19



2 — Packet Switching Basics

cells to advance to the head of the queue. As new cells maydimee to idle outputs,
throughput is increased. Actually a proof is given that f@ra N switch a concentrating
policy is optimal, but it cannot be extended to switches ofteary size.

The first proposed algorithm, called “Concentrate” implatse purely concentrating
policy. However, the authors note that the algorithm ssffeym fairness issues, as it can
permanently starve queues, so they proceed with the deBiGRT&RA, a concentrating
algorithm with fairness guarantees. As TATRA is difficulingplement in hardware, they
further propose the Weight Based Algorithm (WBA). WBA is auhistic algorithm that
approximates concentrating behavior by favoring cellfiwsinall fanout and guarantees
fairness by giving priority to older cells. The algorithm ke as follows:

1. At the beginning of every cell time each input calculateswieightof the cell at
the head of its queue, based on the age of the cell (the oldehdavier) and the
fanout (the larger, the lighter).

2. Each input submits a weighted request to all the outpatsttivishes to access.

3. Each output independently grants the input with the tsghveight; ties are broken
randomly.

In the specific implementation shown in the paper, the weigltalculated adlV =
aA — ¢F, whereA is the age (expressed in number of timeslof$)s the fanout and
« and¢ are multiplication factors that allow tuning of the schestuor performance or
fairness. Larger implies that older cells are strongly favored, improvingrfass, while
large ¢ penalizes cells with large fanout, exalting the concemgaproperty and thus
improving performance. Calculations show that a cell hagaib at the head of the queue
for no longer than(N(¢/a + 1) — 1) timeslots. WBA can be easily implemented in
hardware, as reported in the paper.
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Chapter 3

Supercomputers and Interconnection
Networks

In this chapter we present a brief overview of High-PerfanmeaComputing (HPC) sys-
tems, also calledupercomputers We first describe the main architectural traits of a
supercomputer, including the organization of the compgutindes, the partitioning of
the memory space and the programming model. We then focusednterconnection
network(sometimes simply called “the interconnect”), discussate in the system and
analyze the main requirements. Finally, we introduce twadamental classes of in-
terconnection networks, highlight their most importardtéees and show some sample
topologies.

3.1 Supercomputing Systems

A supercomputeis “a computing system (hardware, system software and egipns
software) that provides close to the best currently achievaustained performance on
demanding computational problems” [35]. In the past themjinan demand for com-
puting power has mainly been driven by scientific (weatheedasting, computational
biology, plasma physics, etc.) and defense applicatiaypi@nalysis, stockpile steward-
ship, etc.). Nowadays business applications (automotideagrcraft design, geological
analysis, modeling of financial markets, etc.) are alsoiptag role.

For almost two decades microprocessors have experienaethartdous growth in
performance, mainly due to technological improvementsw lktte growth rate is slow-
ing down, because of complicated issues such as power digsipand difficulties in
managing design complexity. Computer designers haveiwadily tried to push the per-
formance of computing systems by building parallel macsijme which multiple com-
puting nodes work concurrently on portions of the same moblin the near future we
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can expect parallelism to become the major source of pedncaimprovement for all
computing systems.

A large number of parallel computer architectures have Ipeeposed over the years,
varying considerably in terms of applications, prograngmmodel and intended system
size. While it is difficult to provide a single, compreherestaxonomy for this large and
diverse set of architectures, some useful dichotomiesdsitipning and comparison of
different systems have been established.

3.1.1 Shared-Memory vs. Message-Passing

In a shared-memory system all available memory can be astdgsall processors by
means of a global address space. Processors exchange di@gahronize by access-
ing shared memory locations. Load/Store instructionseidday a processor are implic-
itly converted to Read/Write messages that the intercdroreaetwork delivers to the
appropriate memory bank.

In a message-passing system, on the contrary, each probassts own private mem-
ory space. Programmers explicitly exchange data and sgn@ation information among
processors by invoking message passing primitives.

In general shared-memory systems are easier to prograrhgaiperating system,
compiler and application level) but more difficult to desig@@an message-passing sys-
tems. On the other hand, the hardware simplicity of mespagsing systems, especially
the lack of complex cache-coherency issues, makes them maah scalable. For this
reason, the majority dflassively Parallel ProcessingIPP) systems, having thousands
or even hundreds of thousands of processors, are messsgjagpanachines.

3.1.2 UMA vs. NUMA

In a shared-memory machine memory can be logically placedsimgle centralized lo-
cation or distributed over the computing nodes, co-locaiti¢lthe processors. In the first
case memory access timeusiform i.e. it does not depend on which processor accesses
which memory location. In the other, it in-uniform because a processor experiences
lower access time when accessing a memory location in itd lank rather than in a
remote one. Machines providing uniform or non-uniform meyraccess are classified as
UMA and NUMA, respectively.

Typical UMA systems are SMP (Symmetric Multiprocessor) maes, in which a
small number of processors (few tens at most) and a singledfanemory are connected
by means of a simple interconnection (usually a shared lassyhown in Figure 3.1.
Examples of NUMA systems are DSM (Distributed Shared-Megmarachines, which
comprise hundreds of computing nodes (composed by a parcasd a memory bank)
interconnected through a high-speed network (Figure 3.2).
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3.1.3 Custom vs. Off-the-shelf

Various platforms use different blends of custom and consrakroff-the shelf (COTS)
components. COTS components are designed for a broad raagelaations and are
produced in large quantities. They benefit from economiescafe and offer very good
cost/performance ratios. On the other hand, their designti®ptimized for supercom-
puting and they might perform poorly on some specific appbos.

Microprocessors

The cost of designing and manufacturing a new processor foaggsteadily over the
years and nowadays only few companies can afford it. Forr#gason, most super-
computers today use commodity processors produced foratge-olume server and
workstation markets.

Interconnects

The interconnection network, on the contrary, is more diffitco build with commodity
components. The gap between the requirements of a locahatemrk and those of a
supercomputer interconnect is quite large. Although thedbadth offered by Ethernet
has increased by several orders of magnitude during iteiés its application domain is
still limited by its inability to achieve low latency and gaatee lossless behavior.

New standard-based technologies, Infiniband [36] in paldic are trying to fill the
gap and provide a unified network infrastructure for locaaanetworking and parallel
computing. Infiniband has a number of features specificafhed at reducing network
latency. It employs an improved node/network interfacéaliaws the network adapter to
connect directly to the memory controller of the node, bgpasthe 1/0 bus. Moreover,
it supports advanced communication paradigms, such as ROMg allow a node to
move data directly in and out the memory space of another.nddwmrefully designed
flow-control mechanism enables loss-free operation amavalprioritization of latency-
sensitive messages. Altogether this characteristics imdikéband a potential alternative
to custom interconnection networks.

Clusters

Many of the largest supercomputers available todaychrster, i.e. collections of stan-
dard servers and workstations, loosely connected throtagidard LAN interconnects
such as Gigabit Ethernet. As clusters are entirely compbgedmmodity components,
they offer excellent cost/performance ratios. The useasfddrd interconnects promotes
scalability, while the fact that each node has its own pre@esnemory and operating
system provides significant advantages in terms of reitglaihd fault-tolerance [37].
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Figure 3.3. Time evolution of the architecture of the 500 thpasverful supercomputers
in the world (fromht t p: / / ww. t op500. or g).

Clusters performance is mainly limited by the latency idtroed by the network,
which makes them unfit for applications that require strarigraction among computing
nodes. On the other hand, popular applications such as webrseand databases are
particularly amenable to run on clusters, because theyramacterized by a large number
of independent threads that work in parallel, so they argpanalized by network latency.
For example, in [38], the authors describe the Google alustét with standard PCs and
comprising more than 6000 processors (as of December 2000).

Figure 3.3 shows the distribution of the 500 most powerfydesatomputers in the
world, based on their architecture. The current list is tyedominated by clusters and
constellations (clusters of SMP systems) that togetheswattdfor 80% of the total. The
remaining 20% is represented by custom MPP systems.

3.2 Interconnection Networks

The interconnection network is a critical component of aesapmputer, because it has a
directimpact on performance and scalability. The varidétyaule architectures, program-
ming models and application requirements has generatedlifepation of interconnec-
tion network designs, ranging from single shared busseabsinsaMP systems to complex,
meshed fabrics with thousands of ports for MPP systems.

The key requirements of a supercomputer interconnect are:

e Low latency Latency is the time required for a packet to traverse the owtw
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It is the most important performance metric of an HPC interext, especially
when considering shared-memory machines. In such systemmaunication is
triggered by memory access instructions and the latenoydoted by the network
directly contributes to memory access time. Specializextgssors use latency-
hiding techniques, such as fetching data from memory in rovd39], fetch-
ing more than necessary and allowing multiple outstandirgnory references.
Despite the availability of these techniques, networkrieyeremains the primary
performance bottleneck for a number of applications [35].

High Throughput Throughput is a measure of thate at which the network can
deliver data to the nodes. High throughput correspondsgb tiilization of link
bandwidth and is particularly important when the nodes hawxchange bulk sets
of data. Latency-hiding techniques mentioned above terichtwsfer large blocks
of data, thus increasing throughput requirements.

Scalability The network must be able to interconnect a large number opabm
ing nodes. Moreover, as the number of nodes grows, the aafgrégndwidth of

the network should increase proportionally and latencyukhoemain low. Net-

work scalability is essential to guarantee that the commgutapacity of the system
reaches the intended levels and improves as new nodes a&#.add

Reliability and Fault Tolerance A supercomputer uses a large number of com-
ponents and, as a consequence, the failure rate can be highnetwork should
be able to continue operation in presence of a limited nurab&ults. In partic-
ular, it should be able to exploit meshed connectivity andorge messages over
alternative paths in case of link or node failure.

Interconnection networks can be characterized in terngpafiogy routing andflow-

control. Topology describes the interconnection pattern amongsoduting determines
paths between pairs of non-adjacent nodes and flow-corgfmles mechanisms to reg-
ulate message transmission among nodes and prevent netwerlkading. Selecting

the topology is usually the first step in designing the nekwbecause routing and flow-
control are heavily dependent on its characteristics. Tiogce of the topology is mainly

driven by the constraints imposed by the available packgigichnology [7].

In the remaining part of this section we briefly describe tmportant classes of inter-

connection networks and show some popular topologies. Acehensive classification
can be found in [40].

3.2.1 Direct networks

The distinguishing property of direct networks is that eactle is directly connected to a
small set of other nodes by means of bi-directional, panpaint links. Communication
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between non-neighboring devices entails transmissiayutir intermediate hops. Each
node has an integrateduter that handles communications, transmitting and receiving
messages or relaying them to other nodes.

Popular topologies for direct networks ar@limensional meshes, tori and hypercubes
(Figure 3.4). The tree (Figure 3.5) is another importanbtogy, because it efficiently
supports one-to-many and many-to-one communicationrpatteypical of synchroniza-
tion andcollectiveoperations that require coordination of many computingasddO].

Direct networks scale very well in terms of bandwidth, so/thave been used exten-
sively in MPP systems. However, as the number of nodes isere® does the distance
between pairs, thus latency degrades.

Very large systems can use multiple networks optimized fpecsic tasks. For ex-
ample, the IBM Blue Gene/L, capable of scaling up to 65535 mainmg nodes, uses
a 3D-torus as a general-purpose interconnect and two $igedidree-like networks for
synchronization and collectives [41,42].

3.2.2 Indirect networks and MINs

Indirect networks interconnect computing nodes througgrimediate nodes callesivitches
(Chapter 2). Switches receive messages on input ports awerit them to the appropri-
ate output ports, towards the final destination.

The complexity of a switch typically grows quadraticallytivthe number of ports,
so its scalability is limited to few hundred ports at mostdii® 2.3). As a single switch
cannot satisfy the requirements of large supercomputersnust turn tdMultistage In-
terconnection Networks (MINsMINs enable the construction of fabrics interconnecting
thousands of nodes by employing several switches arrangedliiplestages The num-
ber of stages and the interconnection pattern between titehew define the topology of
the network.

MINs were originally studied for circuit-switched netwarland later employed in
packet-switched networks. Among the most popular topelogre Clos [43, 44], Butter-
flies [45] and Fat-trees [46] networks.

A MIN is unidirectionalif data can flow on network links in a single directionki;
directionalif it can flow simultaneously in both directions. For computgerconnects,
bi-directional MINs are usually preferred, because thégrathorter paths between nodes
(messages traverse only as many stages as necessary)t@nddaeindancy. Figures 3.6
and 3.7 show a bi-directional Butterfly and a Fat-Tree nekwoircles represent nodes
and boxes represent switches).

MINs have very good scalability properties because theeggde bandwidth grows
as new switches are added to the network and latency renoairtbdnks to small number
of stages. However, cost also increases rapidly, becauseand more switch ports are
used to connect to other switches rather than computingsnode
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Figure 3.4. Direct network topologies: (a) 2D-mesh, (b) BRus, (c) Hypercube

Figure 3.5. A 15-nodes binary tree topology
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Chapter 4
The OSMOSIS Project

In this chapter we present the OSMOSIS project, aimed atloleveg a prototype of a

switch for shared-memory supercomputers. We start witlgaedsion on the role of elec-
tronics and optics in packet switching, to explain the raie behind the choice of an
electro-optical architecture and compare it briefly withestoptical switching architec-
tures. We then provide an overview of the system, discushimget of requirements and
the design of the the data- and control-path.

4.1 Electronics and optics in packet switching

4.1.1 Electronic switching

The performance of electronic packet switches has grownanelously in the last fifteen
years, driven by the exponentially-increasing bandwidtiuirements of Internet traffic.
Electronic switching is now a mature technology that hashbeaployed in a number
of other domains, including HPC systems. However, the tdatgncy and scalability
requirements of HPC interconnects are pushing it to the Amd are exposing its weakest
points.

The major problem that plagues electronic switching todgyower consumption. As
the line rates increase, it becomes more and more difficudtrite copper cables over
acceptable distances. It is currently estimated that ashraa50% of the power con-
sumed by a switch is actually spent on the cables [14]. Thelgnocan be addressed by
using optical fibers for transmission on the links and eteatr components for buffering,
switching and processing. This solution, however, is omstiplly satisfactory, because
the O/E/O conversions required at the ingress and egresso$ithe switch consume
power, increase the cost of the devices and introduce katéreould be highly desirable
to switch packets in the optical domain, avoiding conversaaad reduce latency to the
time-of-flight of signals in the fibers.
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4.1.2 Optical devices

Optical devices have a number of unique features that digitsh them from electronic
ones and make them extremely attractive. First, a single fibke, thanks to DWDM
techniques, can offer bandwidths on the order of terabitsspeond, several orders of
magnitude larger than what is provided by electrical link&econd, optical links can
span very long distances using limited power, so they argcpéarly fit for large and
distributed computing systems, whose diameters can beeiorter of tens or hundreds
of meters. Last, and probably foremost, many optical devare data-rate transparent,
meaning that they have extremely large operational bartie/&hd can operate on signals
(split, combine, amplify, etc.) at constant power, regesdlof the frequency at which
they are modulated. In the electronic domain, on the contdavices can only operate
in specific frequency ranges and power consumption is ptigpad to frequency. Thanks
to these features, an all-optical data-path can scale idviadth by orders of magnitude,
without increasing the physical size or the power consuonpaf the network elements.

The development of optical switches has mainly been limitedactors such as de-
vice cost, integrability and noise levels. Moreover, theklaf optical buffers and logic
elements are two fundamental issues that haven't beenssddtsatisfactorily yet. How-
ever, it is a common opinion that economic and technologgsales can be solved in
short timeframes. If optical devices get market acceptatiear cost will decrease and
the manufacturing process will improve, leading to highealdy and integration levels.
As Moore’s Law, that governs density as well as cost of ebestrcomponents, is slowing
down, projections show that optical switches could be epooally competitive by the
end of the decade [47].

4.1.3 Optical switching architectures

Over the years many optical switching architectures haes Ipgoposed [48]. Many of
them, however, are conceived for circuit-switching netkgorso they exploit physical
phenomena that enable switching times in the order of radbsids.

For packet-switching networks, the switching time must ip@léer than the duration
of a minimum-size packet. Given the line-rates and paclaetssive are targeting, this
translates to few nanoseconds. Optical Burst SwitchinggD®chniques mitigate this
challenging requirements by fitting multiple packets ingkaicontainers and switching
them together at once. These techniques are not suitabRup@mrcomputing applica-
tions because packets must wait for a container to be futirbdfeing switched, so they
experience additional latency.

Semiconductor Optical Amplifiers (SOAS) are the most pramgisechnology for op-
tical packet switching. They can be viewed as ON/OFF op#ealching elements, with
very low switching times (on the order of few nanosecondg)h lextinction ratios and
low noise. They are compact, consume low power and can bgratezl into arrays [49].
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SOAs can be used to build switching nodes ranging from siple2 switches to large
crossbars using broadcast-and-select networks [50].

Even with appropriate technology, the question remains @m to build a packet
switch without large buffers and bit-level processing dalizes. A possible approach is
to use electronics for buffering and control at the bordéth@fabric, confining optics to
the data-path. The basic philosophy behind such hybrid-elgtctronic architectures is to
use optics for what optics does best and electronics for elleatronics does best [51].

An alternative, pursued by the Data Vortex project [52],0€liminate the need for
buffers altogether by using deflection routing and a verypsgmode structure that en-
ables distributed control with minimal processing capabd. The Data Vortex aims at
fully exploiting the benefits of optical technologies andngea true all-optical switch. It
has a number of desirable features that make it very attesfcti supercomputing applica-
tions, first and foremost scalability. However, it also hasie non-negligible drawbacks,
mainly low throughput per port, out-of-order delivery aratdi-to-predict latency.

4.2 The OSMOSIS System

4.2.1 Goals and requirements

OSMOSIS (Optical Shared-MemOry Supercomputer Intercon8gstem) is a research
project jointly developed by IBM and Corning that aims atltuig an HPC switch with
an all-optical data path and an optimized electronic coipath [53].

The goals of the project are twofold: on one side, it aims &tisg the technical
challenges involved in building a demonstrator system tinetts a set of ambitious re-
guirements, on the other it aims at accelerating the cosictemh of all-optical switches,
achieving denser integration levels of optical componeamd finding a high volume
market for them, in addition to the low volume HPC market.

The specific requirements for the demonstrator are:

Port count 64 (single stage) — 2048 (multistage
Line rate 40 Gb/s (scalable to 160 Gb/s)

Total (application to application) latengy< 1us

Effective user bandwidth > 75% of raw transmission bandwidth
Bit Error Rate (BER) <1072

Packet delivery Reliable and in-order

In addition, efficient support for mutlicast and broadcast ibasic requirement, as they
are particularly important for HPC applications [54]. Aleetronic control logic must be
implemented using only FPGAs and commercial componentgitoflexibility and keep
the cost of the demonstrator acceptable.
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Figure 4.1. OSMOSIS system architecture.

4.2.2 System Overview

From an architectural point of view, OSMOSIS is a synchrean@G®OQ switch (Chap-

ter 2). This implies that the switch operates on fixed-sidés @nd the optical core,

functionally equivalent to a crossbar, is reconfigured orelitly-cell basis. The cell

size derived from the requirements set is 256 B [55]. In gargorter cells would be
desirable, as they would offer lower latency and improveciegfficy. However, this cell

size is acceptable and well-suited for shared-memory sopgyuting, as synchronization
messages and cache-coherency transactions usually semadrD0-300 B payload.

Figure 4.1 shows the high-level architecture of OSMOSISngls-stage configura-
tion. The system is composed by a setaofaptersinterconnected by anoptical core
controlled by a centralizesccheduler

Adapters have two separated but physically co-located paatmedngressandegress
adapter, that handle cells entering and exiting the swispectively. They perform in-
terfacing functions between the computing nodes and tleedohnect, including E/O and
O/E conversions, cells buffering and processing. Everyasg adapter comprises a full
set of N VOQs, in which it stores cells based on their destinationandrresponding set
of N reliable delivery queues (RDQs). Egress adapter hosgagss queuwhere they
buffer received cells before delivering them to the compmtiode or transmitting them
to the next stage. Every adapter has a dedicated opticalotdink to the centralized
scheduler, which carries the control channel protocols.

The scheduler is located on a separate card close to theabgiwitching core. At
the beginning of every timeslot it receives requests tostrahfrom the ingress adapters,
resolves conflicts and grants selected adapters, authgtizém to transmit.
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4.2.3 Data path

Every adapter is assigned a specific wavelengttthosen among eight possible wave-
lengths. The 64 adapters are logically divided in eight gepun such a way that all the
adapters in the same group use a different wavelength.

The switching function is implemented withBroadcast & Selecarchitecture that
combines eight-way space- and eight-way wavelengthidiviswultiplexing to imple-
ment a 64-port fabric. The first stage of the optical core s ®f eightbroadcast units
that receive the signals transmitted by a group of adapterss(sting of eight signals on
eight different wavelengths), multiplex them on a singlefjlamplify the resulting WDM
signal using an erbium-doped fiber amplifier (EDFA) and thait i to 128 waveguide's
The selectstage comprises 128 planes, two per output port, each cmther all the
eight broadcast units of the first stage. A group of eight SP&dgorms fiber selection
by blocking signals coming from all the broadcast units exome. Regardless of the se-
lected fiber, the WDM signal is passed through a combiner iegitito a common fiber
and then de-multiplexed to separate the eight wavelengtluifterent fibers. A second
group of SOAs is used to select a single wavelength and bleelothers. The signal is
again guided to a common fiber by means of a combiner and firedighes the egress
adapter. Each egress adapter is connected to two selestsmit can independently re-
ceive two signals at the same time. Multicast and broadcassinission can be achieved
simply by having multiple planes select the same fiber/cpéor.

The optical core employs a combination of Planar Lightwaueuits (PLCs) and
discrete components. Transmission from the ingress adgaptest be synchronized in
such a way that cells arrive at the optical crossbar at the seme, when SOAs have just
been configured, and walk equal-length paths. This is aediby using a global clock
signal distributed to all the adapters and components wleaggh is matched to a fraction
of the optical packet length.

Although all ports work at the same nominal bit-rate, egredapters receive bit-
streams generated by different serializers, with indepetghases. Thus receivers must
operate in burst-mode and, to keep cell overhead low, thest fmeiable to recover bit-
phase in a very short time. Moreover, channels use diffesavelengths, so receivers
must have wide-dynamic-range transimpedance.

4.2.4 Control path

The physical implementation and packaging constraintsSNIOSIS, and of large switches
in general [14], lead to a distribution of switch compondatiapters, optical core, sched-
uler) over multiple racks, interconnected by long cabldse TRtency introduced by these
cables, together with the delay due to (de-)serializatiwh @her contributions, add up

1128-way splitting (rather than 64-way) is required to alleach egress adapter to receive up to two
cells per timeslot. The details about the usage of the semaiver can be found in [54]
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to several cell times and must be carefully taken into actmutihe design of the control
path.

Further details about the architecture of the OSMOSIS adkednd the design of the
control plane can be found in [54].

Control Channel Protocol

As the scheduler is connected to the adapters through Idilgs;aontrol messages have
to be pipelined. The scheduler has delayed knowledge oftétessof the VOQs at the
ingress adapters, an issue that can seriously degrademarfoe. The problem is ad-
dressed by maintaining VOQ status information at the sdeedupdating it using an
incrementalprotocol [56] and ensuring its consistency usingeasusnechanism [57].

The scheduler maintain¥? counters, each representing the occupancy of a VOQ.
When a new cell arrives at an adapter, the scheduler is mbhifiea control message and
increments the corresponding counter. When the schediglees a grant, it decrements
the counter, as the cell will be dequeued as soon as the grastsaat the adapter.

The census mechanism is a distributed consistency protapalble of detecting and
correcting discrepancies between the information maiethiat the scheduler and the
known status of the VOQs on the adapters. It is triggeredatlae intervals to ensure
proper recovery from control channel transmission errors.

Scheduler

The scheduler must solve a bipartite-graph matching pnokde every timeslot (Sec-
tion 2.4.3). As the optimal scheduling algorithms is not lempentable in fast hardware,
the scheduler uses a heuristic iterative algorithm bas&RRM (Section 2.5.2 and [20]).
Iterative algorithms are implemented usityy programmable priority encoders, that per-
form 1-out-of4V selection [28]; asV increases, so does their space and time complexity.
Moreover, they need to perforing, NV iterations to produce a good matching and achieve
high delay-throughput performance.

Given that\V is large and that only FPGAs are at disposal, implementiagthedul-
ing algorithm and performing the desired number of iteraientails a number of chal-
lenges. First, the scheduler must be distributed over plalthips, as it doesn't fit on a
single one. Distribution requires the usage of specificrigples to deal with delays and
bandwidth limitations of in chip-to-chip communication.hdse techniques are part of
the contributions of this work and are discussed in detalapter 5 and [58]. Second,
it is not possible to perform the desired number of iteraionthe short duration of a
timeslot. To overcome the problem, the scheduler employipeliping scheme, called
FLPPR (Fast Low-latency Parallel Pipelined aRbitratid@9][ The most important fea-
ture of FLPPR, that distinguishes it from previously pragapipelining schemes [60,61]
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is that new requests are allowed to enter at any stage of pedine, reducing the mini-
mum latency to a single timeslot. FLPPR also achieves bp&dormance at high load
under non-uniform and bursty traffic.

The scheduler also implements a novel scheme to achievarfdiefficient integrated
scheduling of unicast and multicast traffic. The schemesseed in Chapter 6 and [62].

Reliable Delivery

The optical data path is engineered to achieve a raw bit-eate of 1071, A custom
forward error-correcting code (FEC) is employed to redtite 10~'7. Cells that cannot
be corrected by the FEC must be retransmitted, hence eapkeadias a set of reliable-
delivery queues (RDQs) where packets are stored until tresegdapter acknowledges
reception. ACKs are transmitted on the control channel a@d-8ack-N retransmission
policy is used. This policy is simple to implement and is agstent with the bursty na-
ture of optical link errors. As the error rate provided by #€C is already fairly low,
retransmission is rarely required and the inefficiencieS@fBack-N are not an issue.

Flow Control

To prevent overflow of the egress buffers, the system empiayneaoff flow control loop
between egress adapters and the scheduler, which is entbiedthee upstream control
channel messages. If a specific egress buffer is close t@taty the scheduler no longer
considers any request for the corresponding output. Whempancy decreases below a
pre-determined threshold, the permission is reinstated.

4.2.5 Multistage scalability

One of the main objectives of the OSMOSIS project is to preddystem that can scale
to thousands of nodes. In single-stage configuration thi®igractically feasible due
to the quadratic complexity of the scheduler and the optica¢. A viable solution is
to scale the number of ports is to use a multistage networke@an the considerations
exposed in Section 3.2.2, the Fat-Tree topology has beewctsdl Using 9&4 x 64
switches the fabric scales to 2048 ports with full bi-sewidoandwidth (Figure 4.2).

Having an end-to-end all-optical data path, without intednate electronic buffers,
would be very attractive, because it would reduce cost, paaresumption and latency.
However, it would require a centralized scheduler capabt®ofiguring all the switches
in the network simultaneously. The complexity of such sciedwould be unbearable
given the timing constraints. Moreover, the delay intraetliby the control channel would
become much larger. As the adapter must send a request ahébwaigrant before
transmitting a cell, much of the latency advantage woulddfeated [51].
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Figure 4.2. Multistage Fat-Tree configuration with 2048gpand full bi-sectional band-
width. All links are bi-directional. A single- and a multbp paths are shown.
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Chapter 5

Distributed Implementation of
Crossbar Schedulers

Despite extremely high-density CMOS technologies, as timber of portsV grows, the
complexity of crossbar schedulers based on parallel eralgorithms such asSLIP
and DRRM quickly exceeds single-chip implementation IsniThe implementation is
limited by power density, gate count, pin count, I/O bandtvidnd wiring, due to the
high degree of connectivity between the input and outpwgcteis [14]. In this chapter
we present a set of techniques that enable distributed ifohift) implementations of
iterative matching algorithms, enabling the constructbaechedulers for large switches,
while achieving a level of performance that is close to tia monolithic (single-chip)
implementation.

The practical motivation for this effort is the design andglementation of the OS-
MOSIS arbiter, as described in Chapter 4. Sizing experimshbw that the scheduler
logic must be distributed over multiple devices, whichaadtnces a number of new chal-
lenges. Most importantly, the physical distances amongschitroduces latencies that
exceed the timing requirements and the separation of |Ibgiits prevents shared access
to status information.

We consider four levels of distribution, from monolithic folly distributed, and
present a number of techniques to mitigate the effects afifspeistribution levels. The
performance results obtained via simulation show thahg#iese methods, a distributed
scheduler can achieve performance close to that of a mbiwbhe, even with large
internal latencies.

5.1 Iterative Matching Algorithms

Iterative matching algorithms such@SLIP [19], FIRM [21], and DRRM [22] are widely
used owing to the key advantages they offer:
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1. High performance: More precisely, they guarantee 100®%utihput under uniform
uncorrelated traffic with a single iteration. Additionariations significantly reduce
the mean latency.

2. Fairness: They ensure that under any traffic pattern angmpty VOQ receives
service within finite time.

3. Practicality: Although, a total afV selectors (one per input and one per output) is
required, these selectors operate independently andafiglail hus, high matching
rates can be achieved. Moreover, the selectors are fedsileplement in fast
hardware [28].

5.1.1 Two- vs. three-phase algorithms

Iterative matching algorithms can be classified into twad giree-phase algorithms ac-
cording to the number of steps per iteration. In three-plaggarithms, there areequest
grant, andacceptsteps in every iteration. In the request phase, every ilgndsa request
to everyoutput it has at least one cell for. In the grant phase, evetyut independently
selects one request to grant. As these decisions are indiepemultiple outputs may
grant the same input. Therefore, in the third phase, evgmytiselects one grant to ac-
cept. Two-phase algorithms, on the other hand, comprisesordquest and a grant phase.
In the request phase, every input sends a requesteéoutput for which it has at least
one cell. In the grant phase, every output independentcteh request to grant. Be-
cause every input can receive one grant at maximum, thecerised for an accept phase,
l.e., every grant is automatically accepté¢SLIP and FIRM are three-phase algorithms,
whereas DRRM is a two-phase one.

Input and output selection is based on a prioritized rowldrr mechanism, i.e., the
input (output) selector chooses the first eligible outpuapit) starting from the position
indicated by gointer. The pointer update policy is a crucial characteristic athealgo-
rithm and must be chosen carefully to guarantee performanddairness. The update
policies employed by these algorithms share a common waite a connection (corre-
sponding to a VOQ) becomes highest priority, it will be giygecedence over the other
competing ones until it is established.;HSLIP this is achieved by having an output grant
the same input (in the first iteration) until the grant is gted. In DRRM, on the con-
trary, an input will keep requesting the same output (in tret fieration) until it receives
a grant. This feature guarantees fairness and legaisimber desynchronizatiofi8], i.e.,
it assures that under heavy traffic (when all the VOQs arem@ityd each output grants a
different input ¢-SLIP) or each input requests a different output (DRRM). Wities hap-
pens, there are no conflicts and a maximum-size matchingduped in every timeslot,
leading to 100% throughput.
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N device utilization performance | #iterations
slices % #nets | fiax timin 1, 1,
(MHz)  (ns)

ISLIP (in- and output selectors)
4| 266 0.60 2,075| 2039 490|104 2
8 | 1,071 243 8,008| 119.1 8.39| 6.1 3
16| 4544 10.3 33,770 79.9 1251 4.1 4
32|15,046 34.1 114,987 579 17.27| 3.0 5
48 | 34,652 78.6 264,174 424 2358 2.2 5.6
52| 41,437 93.8 316,856 44.1 22.66/ 2.3 5.7
64 | does not fit FPGA device — — - 6

Table 5.1. Sizing in Xilinx Virtex-11-Pro (speed grade -&pm [55].

5.1.2 Sizing experiments

This study is motivated by the implementation of thex®4 crossbar scheduler for OS-
MOSIS. One of the challenges in this project is to implemestl@eduler of this com-
plexity in FPGA technology, which is used mainly for reasafiscost and flexibility.

Our sizing results, shown in Table 5.1 (also previously reggbin [55]), demonstrate
that a monolithic implementation does not fit in the targgt®&A device, which is the
biggest and fastest FPGA available from Xilinx at the timenoplementation, namely,
the “xc2vpl00-6ff1704,” a Virtex-11-Pro series FPGA prding 8 M system gates (100
K logic cells} and 1040 users I/Os. The table lists the device utilizatidh& number of
slices, percentage and number of nets, the scheduler perfice in terms of maximum
clock frequencyf,,., and minimum clock period,;,,, and the number of achievable iter-
ations], vs. the targef; = log,(/N). The numbers refer to the unconstrained placement
and routing of the request-grant-accept phasesSifIP, based on the implementation
described in [28], considering only the core of the alganthvithout the I/O interfaces
required to convey the external requests and grants totfneracheduler device.

As the largest scheduler feasible in a single Virtex-II-Re@vp100 is somewhere in
the range of 5252, we cannot use a monolithic matching algorithm for ourtieized
crossbar scheduler. Clearly, these hold for three- as \wdlWa-phase algorithms, as the
latter are not inherently less complex in terms of silicozear

Additional experiments show that it is possible to plélce N output selector®f a
64 x 64 DRRM scheduler, together with the 1/O logic and the statu$ @nfiguration
registers on a single chip. This result is important becéusél be used for the design
of our specific scheduler.

virtex logic cell = (1) 4-input LUT + (1) flip-flop + carry logicVirtex slice = 2 logic cells.
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IS1 0s1 IS1 0s1 IS1 0s1
1S2 0s2 1S2 0s2 1S2 0s2
1S3 0s3 1S3 0s3 1S3 0s3
1S4 §034 1S4 0s4 1S4 0s4

DLO DL1 DL2 DL3

Figure 5.1. Schematic representation of the four levelsigifidution. The bold lines
represent the device (chip) boundaries. 1S = input sele@8r= output selector.

5.2 Distribution Challenges

The sizing results above call for a distributed implemeatatwhich entails partitioning
the selectors over multiple physical devices. In a monialittnplementation, the selec-
tors are tightly coupled and decisions taken at the inpugskaown to the outputs (and
vice versa) within the same timeslot. In a distributed impatation, this is no longer
true. The delays caused by wires, (de-)serialization angparing can add up to several
timeslots. This means that critical information needed idate pointers or issue new
requests is not available in a timely fashion. As mentionewipusly, pointer update is
crucial for iterative algorithms, because it is the key td@enance and fairness, so care
must be taken not to disrupt it.

For ease of reference, we introduce and discuss four lef/@istabution (DLO through
DL3), as illustrated in Figure 5.1:

DLO Monolithic implementation: All input and output selecs are implemented in a
single device. The implicit assumption is that the resultwary iteration is known
globally before the next iteration is executed.

DL1 Separate the input from the output selectors, creatimgroups of N selectors
each, enabling distribution over two devices.

DL2 Additionally separate the input selectors from eaclegténabling distribution over
N + 1 devices.

DL3 Additionally separate the output selectors from eadtent This level represents
full distribution and enables distribution oveN devices.
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5.2.1 Monolithic DRRM implementation

In order to clarify the issues that arise when selectorsiataltlited and explain our solu-
tions, we refer to an implementation of the DRRM algorithne ¥@nsider the “enhanced”
version of DRRM [22], which achieves lower mean latency via@ified pointer update
rule similar to that used in FIRM. The techniques that we gmésre applicable to other
two- and three-phase, pointer-based algorithms as well.

DRRM computes a matching in every timeslot in a sequencedtibns. The follow-
ing steps are performed in every iteration (initially ajputs and outputs are unmatched):

e Step 1: Request. Each unmatched input sends a request taratcined output
corresponding to the first nonempty VOQ in round-robin ordéarting from the
current position of the request pointer. In the first itematihe pointer is updated
to point to the output just selected. The pointer is furthgdated to one position
beyond the output selected (modwi if and only if the request is granted in step
2 of the first iteration.

e Step 2: Grant. If an output receives one or more requesthpitses the one that
appears next in a fixed round-robin order starting from threetut position of the
grant pointer. The output notifies each requesting inputtiadreor not its request
was granted. The pointer is updated to one position beyanohgut granted in the
first iteration, modulaV. If there are no requests, the pointer remains where it is.

To facilitate the discussions that follows, Listing 5.1 sisca piece of C++ code that
implements the DRRM matching algorithm in a monolithic fash N represents the
number of ports and the number of iterations. The arraysat ch[ ] andomat ch|[ ]
store the port number that each input and output are matcheddpectively. They are
initialized to the value-1 (i.e., unmatched) at the start of every timesloeqPt r [ ]
andgrt Ptr[] are the round-robin request and grant pointers, respéctifée two-
dimensionak equest s[ ][] array stores the number of requests for every VOQ. For
the time being we shall assume thiat 1. The input selection (request) is performed is
lines 5-18, whereas the output selection (grant) takegpralines 20-36. Lines 12—-13
implement the enhanced request pointer update policy.

Listing 5.1. C++ implementation of the DRRM matching aldimn.
void DRRM:: schedule (){
int i, x, inp, outp, inpReq[N];
for (i = 0; i < I; i++) {
/]l request
for (inp = 0; inp < N; inp++) {
inpReq[inp] = -1;
if (imatch[inp] == -1) {
for (x = 0; x < N; x++) {
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outp = (reqPtr[inp]+x) % N;

if (omatch[outp] ==-1 & requests[inp][outp]> 0) {
inpReq[inp] = outp;
if (i == 0) // Enhanced DRRM
reqPtr[inp] = outp;
break;
}
}
}
¥
/1 grant
for (outp = 0; outp< N; outp++) {
if (omatch[outp] ==-1) {
for (x = 0; x < N; x++) {
inp = (grtPtroutp]+x) % N;
if (imatch[inp] == -1 & inpReq[inp] == outp) {
imatch[inp] = outp;
omatch[outp] = inp;
if (i == 0) {
reqPtr[inp] = (outp+1) % N;
grtPtr[outp] = (inp+1) % N;
}
break;
¥
}
}
¥

}
}

5.2.2 Separating Input Selectors from Output Selectors

Physically separating the input and output selectors (m@ving from DLO to DL1)
introduces a non-negligible round-trip time (RTT) betwdbkam, as illustrated in Fig-
ure 5.2. Assuming that this RTT is larger than the timeslottan, there are two major
implications, which we explain with the help of Listing 5.1.

The request decision of a given inpudepends on the position of the request pointer
regPtr[i] andis stored temporarily innpReq[ i ] (line 11). The requests made are
then considered in the grant loop (line 24). In a distributaglementation, things are
different. First, the request information is delayed by RPT Moreover, as the request
pointers are physically located at the input side, the poiopdate (line 28) cannot be
performed immediately after the grant; this update occitex &TT/2, i.e., when the

2For ease of discussion we assume that the RTT is symmetricthie up- and down-stream latencies
are equal.

44



5 — Distributed Implementation of Crossbar Schedulers
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Figure 5.2. Round-trip time between input and output setsct

grant arrives at the input selector. This has a further ingmrconsequence: unlike in
a monolithic implementation, the requests to be issuedamtxt timeslot are based on
pointer positions that are not updated according to the negsnt grants. This breaks the
round-robin desynchronization mechanism, leading toutinput limitations well below
100%.

Another consequence of the delayed availability of grafdrmation is that the re-
quest selector is not able to accurately know for how manyhefdells waiting in a
given VOQ grants are already underway. This affects itsestjdecisions: clearly, is-
suing requests for VOQs which are soon going to be empty isstewsd resources. Sec-
tion 5.3.1 introduces pointer update policies to addressléfsynchronization issue, while
Section 5.3.2 deals with delayed grants.

5.2.3 Achieving further distribution levels

The issues just identified appear when moving from DLO to DiVhen moving further,
from DL1 to DL2, distribution of input schedulers prevergih from sharing information.
This is not a problem, because by design they work indepetycamd base their decision
on local information only. Hence, the techniques presemte®ections 5.3 and 5.4, can
be applied to achieve DL2 as well.

DL3 prevents output schedulers from sharing status infioma This does not in-
hibit use of techniques presented Section 5.3 but impedéspiauterations, as better
explained in Section 5.4.
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5.3 Distributed Implementation

Our objective is to enable physical separation of the input @utput selectors with an
arbitrary RTT latency between them, while preserving penénce and fairness.

For the moment we assume that during each timeslot only eregiibn is performed.
Performing multiple iterations poses additional challesignd will be discussed in Sec-
tion 5.4.

5.3.1 Pointer Update Approaches

The key to achieving performance and fairness in a diseibuhplementation is to con-
serve the pointer desynchronization property. We haveldpgd two techniques to do
so: themulti-pointerapproach, based on the duplication of status informatiod,the
pointer-cursorapproach, based on heuristic pointer updating.

Multiple Pointers

In the first approach, each input and output selector maisiadistinct pointer for every
timeslot of the input-output round-trip. These pointewslabeledR;(¢) andG(t) for the
request and grant pointers, respectively, witieing the temporal index. Byointer set
we denote the set of all pointefg (¢) andG,(t) corresponding to a specific indéxso
there are a total of RTT pointer sets.

The traditional pointer update rules are used: requestgmsiare only updated at the
time a grant arrives (which happens one RTT after issuingctineesponding request),
whereas grant pointers are updated immediately afterngsaiigrant, because issued
grants are automatically accepted.

In a given timeslot each input issues requests using poinfeft mod RTT). When
a request issued using a pointer with temporal indexgranted, the corresponding grant
pointerG,(t) with the same indexis updated.

At timeslott, + RTT — 1 the grant decision for requests submitted at timeslatill
arrive, so the pointer®;(0) can be updated and used again in timegjot RTT. The
output selectors use a different pointer at every timesltié same way.

This pointer update policy implies that all pointer setslegandependently and that
each request pointer is never reused before being updateddaty to the result of its
previous request. Therefore, it preserves the importamtfes of the matching algorithm
regardless of the value of RTT. In particular, pointers bglog to each set will eventually
desynchronize, resulting in 100% throughput. Fairnessasgrved as well, as each input
will request the same output at least once every RTT time dlwitil it is granted.

This scheme requires RTT pointer status registers (eaghV bits wide) per selector.
However, the combinatorial selection logic does not haveetduplicated. Instead, every
selector employs a multiplexer to select one of the registepending on the temporal
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index. Also needed is a counter (modulo RTT) indicating therent pointer set to be
used.

Pointer-Cursor Approach

The fact that the number of registers required at each inplibatput selector is propor-
tional to RTT constitutes a drawback of the multi-pointepiegach. Here we describe an
alternative solution that offers slightly lower perfornecarbut employs onlywo registers
per selector, regardless of RTT. We refer to the first set gicters simply agpointers
and the second set agrsors they are used in different timeslots and updated in differe
ways. Each input maintains a counfér which is incremented modulo RTT at the end of
every timeslot.

Each input uses the following policy to determine which atitpp request: 1K = 0,
the input selector makes its selection using the pointdre@tise, it uses the cursor and
advances it to one position beyond the output selected rmadwithoutwaiting for the
result. If, at the end of a timeslot, the input receives a gtlaat was produced using a
(grant) pointer, the input selector updates its (requestjter to one position beyond the
granted output modul®/ andcopies the value of the pointer to the cursor.

Every output selector operates as follows: If it receivepiests that were produced
using (request) pointers, it issues a grant using its (y@ointer, else it issues a grant
using the cursor. In either case, pointer or cursor are epdat one beyond the input
granted modulaV.

To know whether the requests (grants) received were praldusieag pointers or cur-
sors, a bit can be added to the protocol or, alternativelyyuater can be used at each
output (input), as it is known that first of each group of RTguests (grants) are issued
using pointers, the remaining using cursors. All seleataust be synchronized to use the
pointers in the same timeslot.

The idea behind this solution is that we can have a “slow” rlggrous matching al-
gorithm (using pointers), overlapped with a simple rouadn algorithm (using cursors).
Every request-grant cycle of the slow matching algorithkesaRTT timeslots. However,
the pointers are strictly updated according to the algorithles, hence they will eventu-
ally desynchronize and guarantee fairness. Once desymgzhtion of pointers has been
achieved, the copy operation propagates it to cursors. Aatgenof fact, the cursors start
from the positions of the pointers (which are desynchrahizence point to different
outputs) and afterwards, being all moved by one positiorvatyetimeslot, will remain
desynchronized. If not all the VOQs are nonempty, the rowmiA policy that is used to
update cursors is not optimal, as it might lead cursors talsygmize again. However, as
soon as a request-grant cycle using pointers is compldtedituation will be corrected
by aligning cursors to pointers, and desynchronizatiorgsined.

Although this solution guarantees 100% throughput whensthigch is uniformly
loaded at 100%, performance at intermediate loads deceasd@TT increases, because
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cursors are updated less frequently and “sub-optimal’tyrgsitioning (caused by empty
VOQs) take longer to be corrected. If RTT is particularhgkyrit is possible to increase
the number of pointers and align cursors more frequentlyirfstance, if two pointers are
used instead of one, cursors can be aligned every RTT/2lbtsesn the extreme case,
there are RTT sets of pointers, which falls back to the npdiiater solution.

5.3.2 Pending Request Counters

The VOQ status registers reside close to the input select@guests[i ][] isin-
cremented whenever a new cell arrives for V@) and decremented whenever a grant
for VOQ(7,5) is issued. The RTT introduced by the distribution implieattivhen an
input selector submits a request, it has to wait RTT timessb&fore knowing whether
it was granted or not. In the meanwhile, this cell is congdesis unscheduled, so the
input selector can submit further requests. If the numbesubinitted requests exceeds
the number of enqueued cells, it may happen that a slot isvebdor a VOQ that is
currently empty. In general, this is undesirable becauaatgrthat arrive for an empty
VOQ are wasted, while another cell may have used this tirhéslo

To avoid the problem of issuing too many requests for a giveQYywe introduce
pending request counte(®RC, labeled?;;) per VOQ plus a request history per input
selector. The request countgy; is incremented when inputissues a request for output
j. The request history/;(¢) for input selectot is an array with RTT entries, where entry
H;(t) indicates the output that was requestdimeslots ago. In every timeslot, input
selectori decrements’;; for which j = H,;(RTT — 1). As a result,P;; keeps track of the
number of requests per VOQ for which the results are stiltpen

The input selectors use these counters to filter their reguasy VOQ for which the
pending request countét; exceeds or equals the current VOQ occupancy is not eligible
to issue a new request. This prevents grants from being dvastg therefore improves
performance.

This enhancement, while not strictly necessary for eitfigh@ solutions we propose,
is beneficial in the presence of large RTT and light loads cemiinaffic is heavily unbal-
anced and different VOQs have significantly varying occagaBection 5.5 demonstrates
the performance improvement obtained by the PRCs.

30n the other hand, there is a possibility that, although t@QWvas empty at the time the output
selector issued the grant, a new arrival occurs in the meawh that case, this arrival will benefit from a
reduced scheduling latency, as it receives a grant in lessdhe RTT.
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5.4 Performing Multiple Iterations

In a monolithic implementation, performing multiple itéoms per timeslot significantly
improves performance by allowing more edges to be addedse caultiple inputs re-
guested the same output (or multiple outputs granted the ggmt in the case afSLIP).

In our distributed implementation the effectiveness ofsaguent iterations is lower, as
explained below.

In Listing 5.1, the matched ports are indicated by itmat ch[ ] andomat ch|[ ]
arrays. These are updated in lines 25-26 when a new edgedd.dddhe next iteration,
these updated values are taken into account in lines 7 ama d@duce requests for that
iteration. In our distributed implementation, these updaticcur at the output side, so
the input side does not learn of them for another RTT/2 tiotssIThe input selectors,
which have to choosat the beginning of the timeslethich output to request in each
iteration, do not know which outputs will be matched at thé e each iteration and
should therefore be disregarded. As a result, we canWwagéed requests

Note that in all iterations except the first one, outputs ndistegard requests from
inputs that have already been matched. This assumes thaiting selectors have shared
access to this information, which is true as long as theyraptamented in a single device
(up to DL2), but is not the case when they are also separate8) (D

We address the issue of wasted requests by adding a sepairdézfpl ywheel [ i np]
to every input selector. In the first iteration, a selectisrmade using the round-robin
pointerreqPtr[i np]. Thefl ywheel [i np] is updated to one beyond the output
just requested, modul®&/’. In subsequent iterations, the input selector is operased u
ing thef | ywheel [ i np] rather than the eqPtr[i np] . After every selection, the
fl ywheel [ i np] is updated to one beyond the output just requested, maduldhis
way, we make sure that the input selector requests as maieyedhf outputs as possi-
ble across the iterations, although there is no guaranééitd outputs requested are still
available. Each input selector also keeps track of whichustit has already requested in
the current timeslot and avoids requesting the same outpré than once, as this would
be useless.

PRC-based request filtering, as described above, ensatthéhnumber of wasted
grants is minimized. On the other hand, overly conservdilitexing can be detrimental:
once the filtering condition is met, a new request can onlyuimrstted when the the
result for the first in-flight one is received. This can intnod gaps in the request pipeline
and therefore cause unnecessary delays. Furthermorestsdar subsequent iterations
are increasingly less likely to be successful. As a result, fimdings show that it is
counterproductive to include requests beyond the firsttiiem in the PRCs and request
history. Therefore, the PRC and request history operatipdgte and filter) apply only
to requests in thérst iteration. This choice, besides improving performanceypdifies
the implementation of the input selectors.

Listing 5.2 shows a C++ implementation of the input seleéborthe multi-pointer
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approach. This procedure is executed once every timesiog@nerates one request for
every iterationr egPt r [ ] is the request pointer anceqFl ywheel is the request fly-
wheel pointer. The pointer is updated according to the ectdhDRRM rule, but only in
the first iteration. The flywheel is always updated to one beijtbe output just requested.
Ther equest ed[ ] flags keep track of which outputs have already been requizstied
currenttimeslotpt r _set _i disthe pointer set ID corresponding to the temporal index,
which is incremented by one (modulo RTT) in every time st@quest s[ ] keeps track

of the number of requests per output, wherpaadi ng_r equest s[ ] represents the
pending request counter. When a request is made in the &ratidn, the correspond-
ing pendi ng_r equest s[ out p] counter is incremented, and a corresponding entry
is made in the equest _hi story[ ptr_set id] array.

Listing 5.2. C++ implementation of the input selector foe thulti-pointer approach.
int j, iter, outp, t;
bool requested [N] ={false};
for (iter = 0; iter < I; iter++) {
for (t = 0; t < N; t++) {
if (iter == 0) // round—robin pointer
outp = (reqPtr[ptrset.id] + t) % N;
else /I flywheel
outp = (reqFlywheel + t) % N;
if (requests[outp]> 0) {
if (requested[outp])

continue;

if (iter == 0 & pendingrequests[outp]>= requests[outp])
continue;

req.outp = outp;

req.iter = iter;

req.ptrset.id = ptr_set.id;

reqFlywheel = (outp+1) % N;

if (iter == 0) // EDRRM
regPtr[ptrset.id] = outp;

requested [outp] = true;

if (iter == 0) {
pendingrequests|[outp]++;
requesthistory[ptr.set.id].outp = outp;

}

break;

yoIoif
} /1 for t
+ /1 for iter
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5.5 Simulation Results

We built a software model of the proposed architecture with®@MNeT++ [63] simula-
tion environment and the Akaroa2 [64] parallel simulatioalt We simulated this model
to obtain its performance characteristic, focusing spaadlfi, on mean throughput (mea-
sured at the egress across all ports) and mean packet Igteeegured from source to
sink).

In our experiments, we study a switch with = 16 ports using the distributed
EDRRM architecture according to DL2. We vary RTT and measheeperformance
of the multi-pointer as well as the pointer-cursor approadle also vary the number of
iterations per timeslot. Section 5.5.1 presents resukgda@n uniform i.i.d. Bernoulli
arrivals, whereas Section 5.5.2 presents results basedrsty land nonuniform arrivals.

5.5.1 Uniform Bernoulli Traffic

Figure 5.3 shows the results for the multi-pointer approaoett Figure 5.4 shows those
for the pointer-cursor approach. Both figures comprisesiguies for RTT = 2, 4, 10,
and 20 timeslots. Each subfigure shows curved/ferl, 2, 4, 8, and 16 iterations per
time slot. Note that the minimum latency at very light loadialg RTT. For reference,
results using a monolithic DRRM implementation are alsduded, adjusted to take into
account the constant latency component of the distributgdementation. These results
lead to the following observations:

e The achievable maximum throughput exceeds 98% in all sitiouls, i.e., both with
the the multi-pointer approach and the pointer-cursor @ggr, and for all values
of RTT and/.

e The mean latency decreases significantly as the number ratittes increases.
Whenl = N = 16, the performance of the distributed implementation is &imo
identical to that of the monolithic implementation with foiterations. Using as
many iterations as there are ports overcomes the issue téadvaejuests, as there
IS an opportunity to request every output in every time skbbwever, it does not
overcome the issue of uncertainty due to pending requests.

e When RTT is large, there is a load region in which the meamtatelecreases as
the load increases. This effect is caused by excess gratidrtbtead of going to
waste on an empty VOQ, find a new arrival in their VOQ); thesés@{perience a
latency smaller than RTT.

e The multi-pointer approach achieves lower latency thaptheter-cursor approach,
especially at high utilization. The latency differencergases with RTT. This be-
havior is expected: The MP approach achieves faster pod@synchronization
because pointer updates occur in every timeslot, as opposette per RTT.
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Figure 5.3. Delay vs. throughput curves for the multi-peindpproach with varying
RTT.

Figure 5.5¢ shows the results for the multi-pointer appnoath 7 = 1 and 4, and
demonstrates the impact of RTT. Here, the mean latency malaed with respect to
RTT. These curves clearly show that, in a limited load rarige,mean latency drops
below RTT timeslots when RTT is large afd= 4.

Figure 5.6 compares the performance of the multi-pointpr@gchwith (Figure 5.6b)
andwithout (Figure 5.6a) pending request counters with= 16 and RTT= 4. These
graphs clearly show that use of PRCs achieves drasticallgritatency throughout the
load range. Considering the case= 1, the main difference is in the load range from
10% to 70%; beyond 70% there is no noticeable latency diffeze The reason is that,
with heavy loads, the rate of wasted grants will be low, asti@)s will be backlogged;
therefore, the negative effect of excess requests is nateabtAt low to medium loads,
on the other hand, many of the excess requests will resulasted grants; every wasted
grant potentially is a wasted opportunity to transmit aeottell, which therefore incurs
a longer latency. As a result, the mean latency increaseth M4 16, performance is
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Figure 5.4. Delay vs. throughput curves for the pointesourapproach with varying

RTT.

2048

mult-pointer, 1= 1 —5— mult-pointer, 1= 1 ~C—
mult-pointer, 1=4 — multi-pointer, 1=4
26 Pl 123 % * 1024 T e 123 % o
Bointer-cursor 124 - Boiner-cursor, 124 -
pointer-cursor, | = 16 K- ) pointer-cursor. | = 16 - ;2 ¥
128 onolithic DRRM, | =4 — ¢ 512 onolithic DRRM, | =4 -~ >k 32
%
/ ¥ _ / S
64 * T 2 16
TR 3 f N E
32 Fa?) S s # % e
{ £ 7
S - g ©
2 £ o B8 o o
16 & x 5 e * o &%
o o B o Zf
3 g o W A
e W Eé g 2 S ] S 2 < X
; % o L y B
B2 w® =
. : . O b ake | ppe-gee (&
SRR s FxEEd
p o 0s
o o1 02 03 04 05 06 07 08 03 1 0 o1 02 03 o4 05 05 07 08 o3 1 o o1 02 03 04 05 06 07 08 03 1
Throughput Throughput Throughput

(a) Delay vs. throughput compaik) Delay vs. throughput compafe) Normalized delay vs. through-
ison of both approaches, RTE ison of both approaches, RTE put curves for the multi-pointer

4

20 approach with varying RTT.

Figure 5.5. Comparative figures.

close to ideal when using PRCs.
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Figure 5.6. Delay vs. throughput curves for the multi-peirdpproach with RTE 4,
comparing performance with and without pending requeshiaus.

5.5.2 Bursty and Nonuniform Traffic

To study the performance under nonuniform traffic, we adogestination distribution
characterized by a non-uniformity parametdi65], wherew = 0 corresponds to uniform
traffic andw = 1 to fully unbalanced, contention-free traffict;; = A (w + 132 if
=7, Al‘Tw otherwise. Here);; represents the traffic intensity from inputo outputy,
0 <i,j < N; \is the aggregate offered load, amdhe non-uniformity factor. Note that
no input or output is oversubscribed and that traffic is adibis as long as. < 1. We
vary the value ofv from 0 to 1 and measure the throughput achieved at an offeeetidf
100%.

Figures 5.7(a,b) show the results fdr = 16, RTT = 4, and Bernoulli arrivals for
I ranging from 1 to 16. Also included for reference is a curverfonolithic DRRM
with I = 4. All curves exhibit the behavior of dipping to significantBss than 100%
throughput asy moves away from the extremes. However, increadingcreases the
throughput. The multi-pointer approach is able to redueeghp with the reference to
below four percentage points whén> 8. Overall, we again observe that the multi-
pointer approach performance better than the pointelecaysproach, with a difference
in throughput that is generally less than five percentagetpoi

We also evaluate the performance using bursty traffic wittmggrically distributed
burst sizes with average burst size of 10 cells. Figure 58vstthe results. Here, we
first observe that the maximum throughput again exceeds 9884 cases. Moreover,
the latency differences with the reference curves are emailer than with Bernoulli
traffic and the difference between the multi-pointer andhfmtcursor approaches is also
significantly smaller. Hence, the proposed distributedi@mgntation is able to closely
approximate a monolithic implementation in terms of perfance for correlated as well
as uncorrelated arrivals.
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Chapter 6

Fair Integrated Scheduling of Unicast
and Multicast Traffic in Input-Queued
Switches

In this chapter we present a scheme to concurrently schedidast and multicast traffic
in an input-queued switch. It aims at providing high perfarmoe under any mix of the two
traffic types as well as avoiding starvation of any connectithe key idea is to schedule
the two traffic types independently and in parallel and theitrate among them for
access to the switching fabric. Unicast and multicast magcare combined in a single
integrated one. The edges that are excluded from the ineebnaatching are guaranteed
to receive service at a later time, thus preventing staymatiVe use simulation to evaluate
the performance of a system employing the proposed schedhshanwv that, despite its
simplicity, it achieves the intended goals. We also desigarehanced remainder-service
policy to achieve better integration and further improve@anance.

This work was performed in the context of the OSMOSIS prof€ttapter 4), but is
generally applicable to input-queued crossbar-basedsgnous switches.

6.1 Motivation

In environments where packet switches are used (TCP/IPonkeswStorage Area Net-
works, supercomputer interconnects) the vast majorityadfit consists of unicast (point-
to-point) connections. However, in all these contexts,psupfor multicast (point-to-
multipoint) traffic is essential. On the Internet, multicasables applications such as
audio- and video-conferencing, multimedia content distibn (radio, TV) and remote
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collaboration; in SANSs, it is required to replicate data aganultiple sites or to dis-
tribute content to multiple servers; in supercomputindhadectures it is essential to im-
plement cache coherency protocols and support collectigeadions [40]. Ideally, a net-
work switch should be able to achieve high performance uadgmix of the two traffic
types.

Multicast packets can be treated as unicast simply by sgralseparate copy of the
packet to each of the intended destinations; converseiyasitpackets can be considered
as multicast packets with only one destination and treatitllowt any differentiation.
These trivial solutions allow the switch to handle both typétraffic concurrently but are
far from optimal and generally lead to poor performance.

Another issue to address when both unicast and multicagiragent is fairness. A
traffic type must not be allowed to monopolize switch resesytiowever, it is also im-
portant to guarantee thall connections of a given traffic type receive service. Wheh bot
conditions are met, we say that the switch scheduliis

In this work we propose a novel method for integrated scheduwf unicast and
multicast traffic. It leads to high utilization of switch msces under any traffic mix,
guarantees fairness, and exhibits a number of other déspaiperties.

Although the problem of supporting unicast and multicastocorently is clearly im-
portant, not much attention has been devoted to it in the pBisé problem has been
thoroughly studied from a theoretical point of view in [66jdaits hardness has been
assessed. These authors also propose an integration stieneensists of scheduling
multicast first and using the remaining resources for uniddss scheme, which we call
“sequential” predictably leads to high performance beeatisses the switch resources
very efficiently. The multicast scheduler has all the resesrat its disposal and can
produce its best matching. The unicast scheduler, on thigargnis constrained by the
remaining resources but, thanks to the VOQs, it can fullj@kthem and increase the
size of the total matching. The main disadvantage of thissehis that it easily leads to
starvation of unicast traffic. A single input loading the ®hiwith broadcast traffic would
suffice to prevent unicast from getting any service at al[6lf] the authors propose a re-
finement of the sequential scheme, in which at some timesletanicast scheduler runs
first while in other the multicast scheduler is given priprithe choice of which scheduler
runs first in a given interval, however, is based on a parantiest depends on the traffic
patterns, in particular on the ratio of multicast to unidazffic, and that must be deter-
mined a-priori to guarantee high performance. Smiljahiged that a practical approach
to achieve integrated scheduling is to treat multicastitras unicast, but distributing the
burden of cell replication over multiple ports [68]. The maroblem with this scheme
is that it potentially introduces very high latency, so ih suitable for our applications.
The problem was also considered in [69], but the proposadisalis mainly targeted to
shared-memory switches.
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Figure 6.1. Reference architecture

6.2 Fair Integrated Scheduling

Our integration scheme is conceived for a synchronous,r§3sbar-basedy x N switch
(Figure 6.1). The scheme is independent from the queueingtste adopted for unicast
or multicast traffic, but for concreteness we refer to thetmmosimon situation in which
each switch input maintain§ VOQs for unicast and a single FIFO queue for multicast.

6.2.1 Reference architecture

At every timeslot, contentions among the cells of a sin@éitr type are resolved sepa-
rately by specialized schedulers. The unicast scheduteives requests from the inputs
for non-empty VOQs and produces a one-to-one matching leetvilee inputs and the
outputs. The multicast scheduler examines the fanout ofe¢hie that are at the HOL of
the multicast queues and produces a one-to-many matchampuiE splitting is allowed:
during a timeslot a multicast cell can receive partial serybeing transmitted only to a
subset of its destinations.

As the two schedulers run in parallel and independentlyptathings they produce in
general are overlapping, meaning that they have confligdyes. To obtain a consistent
configuration for the crossbar, the two matchings must bebooead into a single one. An
integration blockdecides which unicast and multicast edges will be part ofrttegyrated
matching. The set of edges that are excluded from the intyraatching is called the
remainder

The request filteris a block capable of reserving a subset of the switch inpuods a
outputs by dropping the corresponding unicast and muttieapiests. Reservations at
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Figure 6.2. The FILM integration scheme

any timeslot may be made on the basis of information provided number of sources,
including current requests and the integration block.

Employing two different schedulers that run in parallehpdes important advantages.
The designer is free to choose the algorithms that betteisfivthher needs. The system
can easily be partitioned over multiple chips. The minimumeslot duration is deter-
mined by the scheduling time of the slowest scheduler, vasliéthe schedulers ran in
sequence, it would be limited by the sum of the tivbloreover, it avoids the additional
latency naturally introduced by sequential schemes.

A block diagram of this scheme, called “FILM” (FILter & Meryjes shown in Fig-
ure 6.2.

6.2.2 Achieving fairness

In the FILM scheme each connection goes through two pointsatention: first it com-
petes with the other connections belonging to the samecttgfie, then with those of the
other traffic type. To achieve fairness we must make surestrety connection regularly
has a chance to win both contentions.

A scheduling algorithm is starvation-free if it guarantéest no queue is allowed to
remain unserved indefinitely. As this is a fundamental priypenany algorithms ex-
hibit it. Unicast algorithms such asSLIP [19] and DRRM [20] prevent starvation by
using pointers that keep track of which VOQs have been samvest recently. Multi-
cast algorithms, on the other hand, often take into accawnage of a cell or the order
in which cells at different inputs have advanced to the HOltheir queues (e.g. WBA
and TATRA [34], respectively). We require both scheduleremploy starvation-free
algorithms to be sure that all connections eventually gst e first contention point.

lwe assume that the delay contributed by the additional sl@ckuch lower than the scheduling times.
As we will see in Section6.5 devoted to implementation caniy, this assumption is likely to hold.
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Connections that have been selected by their schedul#nestain unserved if the
integration block excludes them from the integrated maighirhe scheduler is unaware
of the fact that granted service has in fact been withdrawfisness is no longer guaran-
teed. A solution to this problem is to make sure that all edigatsare part of the remainder
actually receive service, albeit in a later timeslot.

6.2.3 Integration policy

The performance of multicast scheduling algorithms varassiderably, as demonstrated
in [34]. This is due to the fact that the single FIFO queuinghé@ecture causes HOL

blocking, therefore the algorithms must carefully choosgcl inputs to serve in order

to mitigate its effects. For example, it is shown that “cartcating the residue” at ev-

ery timeslot (which roughly means providing full servicea® many inputs as possible)
greatly helps in draining the queues fast. Hence, spedialstaould be taken when ma-
nipulating multicast matchings to avoid compromising tffeciveness of the choices

made by the scheduler.

Unicast scheduling, on the contrary, is less sensitive thdsawal of resources be-
cause the VOQs provide the scheduler with a wide choice aiedions to serve. More-
over it is important to note that if unicast and multicasttemrd for an input, only one
edge is lost if multicast wins, whereas multiple edges mioghtemoved if it loses.

Following these considerations, we opt for an integratiolicy that gives strict prior-
ity to multicast over unicast. Hence, the algorithm implatee in the integration block
can be formulated as follows:

1. Start with an empty matching,
2. add all multicast edges,
3. add all non-conflicting unicast edges.

As a consequence, the remainder always contains only widgss.

6.2.4 Remainder-service policy

As noted above, if a remainder is produced in a timeslot, iinigortant to ensure that
all the edges it contains are eventually served. This camnobe dccording to different
policies, the simplest one being to serve all of them in the timeslot. As these edges
are part of a matching, they do not conflict with each otheaddition, the resources they
claim are known and can be reserved to avoid further comtenti

At every timeslot, new unicast and multicast requests aged. The request filter
drops all those that involve inputs and outputs needed tedbe remainder produced
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in the preceding timeslot and submits the others to the spomding scheduler. Accord-
ingly, the integration block issues grants for the edgefiénremainder and for those in
the current matching. A new remainder is produced and fel twathe request filter for
the next timeslot.

An important property of the scheme is that, as a consequehfikering unicast
requests, the remainders produced in two consecutive lbisegre disjoint, i.e., have
no inputs or outputs in common. This is crucial for fairnessduse it assures that all
switch resources eventually become available for schegluReserving resources for the
remainder does not persistently preclude access to anyonputput.

We expect this combination of integration and remaindevise policy to achieve
good link utilization. The resources allocated to the rexdar are fully utilized and those
remaining can be assigned either to unicast or multicast.ifitegration block preserves
the matching produced by the multicast scheduler, buttmieslarge it by adding unicast
edges.

6.3 Simulation Results

We have studied the performance of a system employing thRitheme by simula-
tion. In particular, we observed the total throughput ad a&the individual throughputs
of unicast and multicast traffic as the fraction of multicaaftfic (MCF) grows from0
(unicast only) tol (multicast only). Ideally, the throughput achieved by etelffic type
should be equal to the corresponding share of the outputdoddthe total should be
100%.

The simulated system is &nx 8 switch with infinite buffers at the inputs. The unicast
scheduler usesSLIP with three iterations and the multicast schedules W8A. Sim-
ulations run for 1 million cell times and results are colezttfter a quarter of the total
simulation time has elapsed.

Cells are generated according to an i.i.d. Bernoulli preces. every input port
receives a cell with probability, equal to the input load. Each cell has a probabikty
of being a multicast cell. The fanout of multicast cells isfarmly distributed between 2
and 8. Traffic is uniform, i.e. all outputs have the same plodlig of being the destination
of a unicast cell or of belonging to the fanout of a multicast.cNote that, under these
conditions and with this choice of scheduling algorithmbew the switch is loaded only
with multicast traffic, the maximum throughput it can acl@éy approximately.93 [34],
whereas it is.0 when only unicast is present.

The total load on the switch is( PF + (1 — P)) whereF is the average fanout. In
our case}’ = 5 and P andp are varied to obtain the desired multicast load on the switch
while keeping the total load equal to 1.
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Figure 6.3. Performance of the FILM integration scheme

Figure 6.3 shows the throughput achieved by FILM with thegnation and remainder-
service policies described in the preceding section. Thpeance of the sequential
scheme, which is close to ideal, is also shown for reference.

The total throughput achieved by our scheme is always higien0.9. Unicast
throughput shows very little degradation (on the order ofw percent) when it is the
predominant traffic type, whereas it achieves ideal perémee when multicast is pre-
dominant. However, multicast throughput progressivelgreases with respect to output
load as MCF grows front).4 to 1.0. The worst case is MCE 0.7, when multicast
throughput i9).6 instead of0.7. This also corresponds to the point at which the overall
throughput is at its minimunn(9).

Figure 6.4 shows the delay experienced by unicast and rastteells as a function of
the throughput when MCE 0.5, i.e., when each traffic type is responsible for half of the
output load. The unicast curve is bounded for any value ofdted throughput, whereas
the multicast curve saturates when it approadhés

6.4 Enhanced Remainder-Service Policy

Although the scheme presented above provides overall geddrmance and is quite
simple, it has a drawback: it penalizes multicast traffic thespecially when it is pre-
dominant.

Multicast performance is limited because at every timeslwie switch resources are
used to discharge the remainder. Although it is essentiavemtually serve all edges
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Figure 6.4. Delay vs. throughput curves for the FILM intdigna scheme

that are not selected in the merge, it is not necessary to dorsediately. Thanks to
the disjoint remainder property, it is possible documulatethe remainders produced
in consecutive timeslots and serve the individual edgesnvthe conditions are most
favorable. The remainder-service policy identifies whidyes should be served at every
timeslot and filters the corresponding multicast requédtscast requests, in contrast, are
always filtered using all the accumulated edges to obtajoidigemainders.

A good policy should be able to serve the edges in the remanagedly and at the
same time cause as little disruption as possible to the flawuficast cells. We propose
anenhancedolicy that serves a remainder edge if it uses

1. aninput not requested by multicast OR
2. an output not requested by multicast OR
3. an input that discharged a multicast cell in the precetimgslot.

The first two rules obviously aim at improving integratiofitiis possible to use a re-
source that would otherwise remain idle, it is desirabledosd. In this case the cost
of serving a remainder edge is to make one output (first rulene input (second rule)
unavailable to multicast.

The third rule instead stems from the general observationsolticast scheduling
found in [34]. The scheduler tends to favor cells that codteith few others. Cells that
have just advanced to the HOL still have their full, usuadlsge, fanout and cause many
conflicts. They are unlikely to receive much consideratsmpostponing their scheduling
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Figure 6.5. Performance of FILM with enhanced remaindevise policy

should not significantly affect the quality of the matchiidis rule is particularly impor-
tant because it enables fairness: the multicast schedudeagtees that the HOL cell at
any input will be served in finite time; consequently, theutgbecomes available to serve
remainder edges. Many algorithms (such as TATRA, WBA and MRR]) ensure that
at least one multicast cell is fully discharged at every sloe

Figure 6.5 shows the performance of FILM when the enhancddypis used, un-
der the same conditions as in Section 6.3. The benefits oncamtltraffic are evident:
throughput is increased wheéf.4 < MCF < 0.9) and closely tracks the output load up
to MCF = 0.7. Unicast, on the other hand, shows a moderate decreasesartieerange.

In the worst case (MCE= 0.7), the difference with respect to the output load is slightly
lower than0.06. Overall throughput is noticeably increased when multipessdominates,
whereas it shows little degradation when both traffic typesegually active.

Figure 6.6 shows the delay vs. throughput curve for thisasibm. Multicast experi-
ences very low delay, seeming to be almost insensitive tprégence of unicast. Unicast
delay instead saturates when the total throughput is appetgly0.95.

6.5 Implementation Complexity

In this section we discuss some implementation aspectsedfilbM scheme in order to
get an idea of its complexity.
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Figure 6.6. Delay vs. throughput curves of the enhanced Fhibgration scheme

6.5.1 Integration policy

As the integration policy always prioritizes multicast oumicast, its implementation is
quite straightforward. From the output of the multicastestililer, it is immediately known
which inputs and which outputs are used by the multicast nragc This information
(2N bits) in turn determines whether an edge in the unicast nragah to be interpreted
as part of the integrated matching or of the remainder. Infohmer case, grants are
released immediately, in the latter the information is étdtl for subsequent timeslots.
The remainder can be stored usiNgegisters, eachiog, N + 1) bits wide.

6.5.2 Base remainder-service policy

The request filter needs to know which inputs and outputssed by the remainder edges
in order to drop the corresponding requests. This inforomas available at the integration
block and can be carried to the request filter with a chafnebits wide. Filtering a
request for an input-output pair simply translates to ANpitrwith the negated values of
the corresponding signals.

6.5.3 Enhanced remainder-service policy

When the enhanced policy is used, the request filter needsinmformation and performs
more complex operations. It needs to know exactly which s@ge in the remainder, not
only which inputs and outputs are taken. This means Mdbg, NV + 1) bits must be
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transferred from the integration block. The informatiorabwhich inputs discharged
a multicast cell in the preceding timeslot consists\dobits and can be maintained by
the queues managers. Finally, the information about wiphts and which outputs are
being requested by multicast/{ bits) is readily available as it can be derived from the
requests themselves.

Unicast requests are filtered using all edges in the remaasla the previous case,
whereas multicast requests are filtered depending on whitlinder edges are served.
This information is produced at the request filter block byi@Rhe signals correspond-
ing to the three conditions that grant service to an edge.ifitegration block also needs
to know which edges are served, as it has to issue the apagt®pgrants. As the remainder
edges are part of a matching, orlybits need to be transferred from the request filter to
the integration block.

As a final remark, we wish to highlight that all the operatidiescribed above can be
performed in parallel and implemented using combinatitogit only.

66



Chapter 7

Conclusions — Part |

In the first part of this thesis we have discussed the desigracket switches for super-
computer interconnection networks.

We have started with an overview of supercomputing systéhastrating how vari-
ous factors such as the node architecture, the partitioofinige memory space and the
programming model influence the requirements of the intareotion network. We have
explained why optical switching has the potential to be tastlbechnology to satisfy the
demanding requirements of supercomputers and which falitoit its deployment.

We have then introduced OSMOSIS, a research project jailetieloped by IBM and
Corning that aims at building a demonstrator interconnectfPC applications. The
building block of the interconnect is a hybrid switch with allkoptical data-path and an
electronic control-path. The switch is designed to meetmahitous set of requirements
that include very low latency, high throughput, high portiog high line rate, scalability
to thousands of ports and efficient support of multicasfitralhe design of the control-
path is further complicated by the need to use only FPGAs.

In the context of the OSMOSIS project we have the developgthigues that enable
the construction of multi-chip crossbar schedulers, wisimhstitute the first contribution
of this part of the thesis. These techniques overcome tlae pirecount and power density
constraints of single-chip schedulers and thus allow sdlivegiof much larger crossbars
than previously possible. The distribution techniques aeehproposed can be applied
to various parallel iterative matching algorithms, suclib&RM and SLIP, and preserve
their throughput and fairness properties. The first, namatii-pointer, is based on du-
plication of status information and the performance it jiles is almost insensitive to the
RTT between chips. The second one is caflethter-cursor is based on heuristic update
of status information and has constant complexity; pertorce, however, degrades as
the RTT grows. Simulation results show that high perfornediegels are maintained un-
der uniform i.i.d. traffic, even when the scheduler is dmited oveR2 N chips separated
by distances equivalent to several time slots. Moreoveth wioper distribution level
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and number of iteration, satisfactory performance is agi@lso under non-uniform and
bursty traffic.

We then devoted our attention to the problem of schedulingceoently unicast
and multicast traffic in an input-queued switch. We have higexl a novel integration
scheme, named FILM, capable of scheduling the two traffiegyfairly and efficiently,
without a-priori knowledge of traffic characteristics. Tégheme first schedules the two
traffic types separately and then arbitrates among thetsefsulaccess to the switching
fabric. A integration block combines the matchings prodiiog the two schedulers, pro-
ducing an integrated matching and a remainder. The renatodéains edges that cannot
be served in the current time slot, but are guaranteed taveeservice in a subsequent
one. The first remainder service policy we have proposedtremely simple and per-
forms well, but tends to penalize multicast. The second smedre sophisticated and is
able to minimize the interference with the flow of multicasti€. It leads to a very high
overall performance and an almost ideal treatment of nadtitraffic, at the cost of some
additional complexity.

Although the work described in this part of the thesis has\hEeformed to specifi-
cally address the challenges posed by the design of the O$81€x8Beduler, we believe
that it is valuable in all the contexts in which high-perf@mnce packet switches are used.
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Chapter 8

Introduction to Storage Area Networks

Nowadays servers are at the center of the enterprise infamsystem. They run mission-
critical applications, such as enterprise resource ptan(tRP), supply chain manage-
ment and customer relationship management (CRM). Withdkera of the Internet and
e-business, servers are used to do on-line transactiorgsiog (OLTP) and provide ser-
vices to millions of users. They must be able to access datiaeirstorage subsystem
quickly and reliably. Failure to do so directly translatesstgnificant costs and loss of
revenue.

In this chapter we describe the evolution of the 1/O intexfdetween servers and
storage devices, pointing out the limits of directly-attad storage and how storage net-
working overcomes them. We then introduce Fibre Channehagteferred network
technology to implement a SAN and outline its most importdraracteristics.

8.1 Limits of directly-attached storage

Computing nodes have been traditionally connected to steirage resources (disks,
tapes, CD libraries, etc.) by means of a fixed, dedicatedredlasuch as the SCSI parallel
bus.

In recent years this paradigm, called “Directly-attachéat&je” (DAS) has become
inadequate. As servers grow in number and request additapacity, several different
problems arise. The most important are:

e Scalability: the number of devices that can be attached to a disk conti®limited
to few tens. Even with multiple controllers in the same sertree total available
capacity might be insufficient.

e Performance: as the physical media is shared, adding devices results i@ mo
arbitration overhead and less bandwidth being availabéabh of them.
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¢ Distance limitations: parallel buses are limited in length to few tens of meters by
electrical issues, such as skew. Skew is a phenomenon typigarallel transmis-
sion. Electrical pulses transmitted on different line af garallel bus do not reach
the target device at exactly the same time. If the delay batwke first and the
last arriving pulse is comparable to the time slot occupigdhe pulse itself, the
receiver cannot correctly decode the transmitted bitgtrin

e Availability: devices attached to the bus cannot be added or removed Wwithou
putting the whole string off-line. This causes downtimergvieme the storage
subsystem needs to be reconfigured.

e Data protection: each server must be equipped with proper devices (for exampl
tape drives) to backup its data. With hundreds or even thwissaf servers, this
is costly and quickly becomes an administrative burden,aaf server must be
backed up separately. If backup operations are performedigh the LAN, the
performance of the corporate network might be severely atgaafor long time
frames.

e Efficiency: disk space not used by a server cannot be relocated to amotherhe
administrators may need to buy and install additional gferdevices even if free
space exists on those already available.

A close look to the problems listed above suggests that mathem are intrinsic to
the DAS model and cannot be solved simply with technologicilancements.

8.2 Storage Area Networks

Storage Area Networks (SANs) have emerged as the key soltttiaddress the perfor-
mance, scalability, reliability and maintainability i€suposed by DAS. The SAN is a
dedicated network infrastructure that provides meshegit@any connectivity between
servers and storage devices.

The introduction of networking concepts and technologgea eeplacement of a sin-
gle, direct connection, redefines the relationship betvgeevers and storage devices and
enables the design of new information systems, as depiot&igure 8.1. Storage re-
sources are now a separated and well-delimited componethieaystem and servers
become the front-end towards the users.

This novel organization of storage resources enables thiementation of new paradigms,
providing several benefits [71]:

e Storage consolidation:as servers are no-longer directly connected to disks,all th
disks can be physically relocated in one or more disk arfaigk arrays are devices
able to host tens or hundreds of disks. By using the managenterface of the
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Figure 8.1. An information system employing a SAN

disk array, the storage administrator can allocate to eactesa proper fraction of
the total capacity. Additional space can be provided withthsruption by adding

disks to the array and reconfiguring it. Storage consobdatian take place even
across multiple disk arrays.

Remote replication and disaster recovery:data can be protected from disk faults
by using a technique called “mirroring”. A pool of physicaskis of equal capacity
is combined in a single, virtual disk of the same capacitytaDaitten to the virtual
disk is physically stored on all the disks in the pool. If arfytlee disks in the
pool fail, data is immediately available on the others argld@rver can continue
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its operations without disruption. As a SAN can connect cewvilocated tens of
Kilometers away, data can be replicated on remote sitegiging protection even
in case of disasters, such as natural calamities or teregtescks.

e Server clustering: a cluster is a set of servers working concurrently on the same
set of data. Clustering provides higher performance (aseheers work in parallel)
and higher reliability (if one of the server fails, it simpdypes out of the cluster).
Although complex issues exist at the operating system aplicagion level (inter-
process communication, concurrent data access, etc.) ac§Adtively promotes
clustering because it allows easy sharing of common data.

e LAN-free, server-free backup: data stored in multiple disk arrays can be backed
up directly to large, shared tape drives, without traveysiee LAN and without
involving the servers. All operations are scheduled andaged from a single,
central location.

e Storage resources managementhe ability to have a consistent and unified view
of all the storage devices greatly simplifies monitoring alidcation of resources,
as well as provisioning and planning.

In general, the deployment of a SAN enabl@sualization i.e. the capability to provide
to computing nodes a logical view of available storage resesithat is independent of
the physical location and the specific characteristics @bivices.

8.3 Networking Technologies for SANs

SANs are networks in all respects and present all the featiygcal of networking
technologies. The most important characteristics inberftom the networking world
are:

e serial transport, to ship data over long distances at higsra

e data packetization, to achieve high link efficiency and $haring of network re-
sources

e addressing schemes that support very large device populati

e routing capabilities, to provide multiple, redundant gatietween source and des-
tination devices

e a layered architecture, to support the transport of diffepgotocols at the upper
layers and the usage of different interfaces at the lowes.one
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SANSs can be built using different networking technologhesyever, it it is important
to remember that servers, operating systems and apptisagidl expect from the storage
interface a “channel-like” behavior, i.e. high-speed, datency, error-free communi-
cations. Networking technologies used to implement SANstrtherefore be carefully
chosen and deployed in order to satisfy these strict repants.

Today the preferred networking technology for SANs is FiBrennel, although dif-
ferent solutions such as iSCSI (based on TCP/IP and EthgfBptor Infiniband [36]
have been proposed.

8.3.1 Fibre Channel

Fibre Channel is a multi-purpose, standard-based netngtkichnology, specifically de-
signed for computing environments. Its design is based ems$lsumption that the trans-
port media (copper cable or optical fiber) is reliable, hegrcer recovery mechanisms are
reduced to a minimum and are mostly left to upper layer patdata are fragmented
and encapsulated in network protocols with minimum ovedhewrorder to achieve high
efficiency. Intermediate nodes guarantee that frames willbe discarded, duplicated
or delivered out-of-order under any circumstances. A samptedit-based mechanism
is used for flow and congestion control. These charactesisti the data-path make a
full hardware-based implementation feasible. Incomirgrfes can be processed by end
nodes at very high speed and do not incur the latency indugéartpe reassembly and
reordering buffers.

8.3.2 Credit-based flow control

Flow control mechanisms are used to regulate the rate atvatiansmitter sends frames,
in order to achieve efficient bandwidth utilization withamterwhelming the receiver.
These mechanism represent one of the most important chestics of a networking
technology and have a very strong influence on the designtafonie devices.

In Fibre Channel networks flow control mechanisms are basethe concept of
credit A credit represents the ability of a receiver to accommedate frame. The
receiver grants to the transmitter an initial number of itsgdlypically proportional to the
size of its buffers. The transmitter is authorized to senel foame for each credit it has
received; after that it has to stop until it receives moreséan as the receiver has finished
processing an incoming frame (for instance, it has passedifper layers) it can free the
resources that were used by that frame and grant a new credit.

Fibre Channel provides two levels of flow control: “buffedbuffer” and “end-to-
end”. Buffer-to-buffer flow control takes place betweenrpaif adjacent ports, such as a
link between a node and a switch or between two switches.ditatps on all the packets
traversing the link, without the capability to discrimieatmong multiple flows. End-to-
end flow control, on the contrary, operates only betweenrets and is performed per
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Figure 8.2. Flow control levels

flow, i.e. if a node is receiving multiple flows, it controlsokaof them them separately.
The two levels are illustrated in Figure 8.2.

Credit-based flow control mechanisms guarantee that aelagtepts incoming frames
only if it has the resources to service them. Switches casuse mechanisms to regulate
incoming traffic, but once they have accepted a frame, theyarallowed to drop it.
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Chapter 9

The Switching Architecture

In this chapter we present the architecture of a ClOQ swipstisically designed for
Fibre Channel SANs. The main differentiation points witpect to traditional LAN
switches and Internet routers are the asynchronous ddbigaddition of a centralized
arbiter and the employment of a number of buffer manageneehniques that guarantee
loss-free operation. We first present the base architeatansidering unicast traffic only,
and then discuss extensions to support multicast.

9.1 System Overview

The logical architecture of the system is depicted in Figude It is composed by a
set of N; linecards interconnected by a crossbar-based switchbrgcfaEach linecard
hosts P, input/output ports and has two links to the switching faprnameduplink
and downlink Packets enter the linecard through input ports and areiptaeded on
the uplink. They traverse the fabric and are transmittechéodroper output linecard
on the downlink. After demultiplexing, they finally reachetldestination output port.
The bandwidth of the uplink and the downlink is equal to thensaf the bandwidths of
the input/output ports hosted on a linecard, so they are watsabscribed and do not
constitute a bottleneck.

The system is fully asynchronous, i.e. the linecards andwitching fabric run on
independent clock domains. This feature provides severagfits in terms of simplicity,
cost and scalability [4]. First, it prevents the necesstynaintain and distribute a global
clock signal, a task that can be problematic, especiallyaflates are distributed among
multiple racks. Second, it enables native support for eidength packets, eliminating
the need for segmentation and reassembly buffers. Fintzdlyows simplified arbitration
of the switching fabric, without employing complex schedglalgorithms. These advan-
tages, however, come at a price: buffers are needed at the iiaputs and outputs, and
moderate speed-up is required to achieve good performance.
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To achieve lossless operation, all buffers are endowed aviihckpressurenecha-
nism, that allows them to block transmission from previdages when they are close to
saturation. The signal is activated when occupancy growseah certain threshold and
is deactivated when it decreases below another threshold.

This form of flow-control is sufficient to prevent buffer oflexv, but is too coarse, as
it does not discriminate among multiple flows traversingdWwéch. Therefore the system
employs an additional centralized mechanism that guagarf@rness among multiple
flows and enhances performance.

9.2 Data Path

9.2.1 Linecards

The Packet-Store Module (PSM) is a large buffer that stoeekegts entering on input
ports. Memory is divided in slots of equal size, dimensioned totaiima maximum-size
packet; if a smaller packet is stored, the remaining part of theislonusable. Memory
segmentation reduces usage efficiency but simplifies théemgmtation of buffer man-
agement schemes. Total capacity is statically partitiamadng input ports. If the space
assigned to a specific port is completely used, the port usésrtio-buffer flow control
(Section 8.3.2) to inhibit transmission from the connectede. Buffer space is logically
organized to provide a separate set of VOQs to each inputiports select independently
and in parallel packets to be transferred to the In-modulegus round-robin policy.

The In-module is a fast and small random-access memoryathatas a high-speed
interface towards the switching fabric. It contains a smalinber of fixed-size slots,
organized as a single set of VOQs. Access to the In-moduleaneis regulated by
a buffer management mechanism that prevents input ports finonopolizing available
space. Moreover, if a VOQ in the In-module grows beyond a ifipesize, no more
packets from the corresponding destination are acceptedtiie PSM VOQs. When all
In-module slots are occupied, a backpressure signal blaakpacket transfer from the
PSM.

The Out-module receives from the switching fabric the aggtre flow of packets di-
rected to the linecard and demultiplexes it based on thenddisin port. Memory is
segmented in fixed-size slots and structured as a sEt@fueues, one for each output
port on the linecard. Queues cannot overflow because spare-mlocated using the
credit-based flow-control mechanism described in SectiBril9 The logical layout of a
linecard, highlighting queueing stages, is shown in Figuge

1In a practical implementation, PSM functionalities woutddpread among multiple chips, each serving
a subset of the input ports.
2MTU is 2 KB for Fibre Channel devices.
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Figure 9.2. Logical layout of a linecard

9.2.2 Switching fabric

The switching fabric is based ong, x N ¢ crossbar. As the fabric runs asynchronously
with respect to the linecards, buffers are required at thatiand outputabric ports The
size of these buffers is determined by the Round-Trip TimET()Rbetween the linecards
and the fabric. In principle, if the RTT is negligible, a siag/TU-sized buffer suffices.
In practice it is necessary to have more, to take into accetore-and-forward delay
and other sources of overhead that contribute to the RTTeMar, it is desirable to
support multi-rack configurations, in which the RTT is ladge to propagation delay.
The actual size of these buffers is chosen to be on the ordewdens of MTUSs per port,
depending on the constraints imposed by chip technologkd®aare stored contiguously
in memory (i.e. there is no segmentation) to maximize efficye Buffer overflow is
prevented using a backpressure signal that blocks trasemifrom the linecard when
space is exhausted.

As the available amount of memory is small and the clock feaqy high, it is not
possible to implement VOQs at the fabric input ports. Eagluifbuffer is organized as a
single FIFO queue, hence the fabric suffers from HOL-blogkiThis phenomenon can
severely impact throughput [8] but its effects can be plytmitigated by providing a
moderate speed-ujg.

Buffers at the fabric output ports receive packetd<atimes the rate of fabric input
ports, so they must be able to store at leESMTUS. In order to sustain temporary
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overload conditions, their size is chosen tobd¢imes the size of the input buffers.

At the head of multiple fabric input queues there might bekpts directed to the
same linecard. Each crossbar output can receive packetsointy one crossbar input at
a time, hence arbitration is necessary to resolve the ctaite his task is performed by
simplefabric arbiters one for each crossbar output, that select a crossbar imporng
the contending ones in a round-robin fashion. Fabric arbierk independently and in
parallel and do not need to perform multiple iterations. eNibtat this is much simpler
than solving a bipartite-graph matching problem.

If persistent overload conditions cause a fabric outputgue fill up, the correspond-
ing fabric arbiter does not allow any new transmission uqugue occupancy goes below
a given threshold. This forms of backpressure preventsgtdogses inside the fabric.

9.3 Control Path

In a Fibre Channel network, nodes make explicit use of bufidsuffer flow-control to
regulate incoming traffic (Section 8.3.2). A switch outpattpcan be blocked by an ad-
jacent node that, due to congestion, is not able to accommmoaav packets and stops
releasing credits. In this situation the switch stores p&ch its internal buffers. If con-
gestion persists, buffers eventually fill up and the switldtks incoming flows directed
to the congested node. It is important to make sure that bibflows do not interfere
with others that are traversing the switch.

Interference is potentially caused by the sharing of swiedources among multiple
ports. In particular, the switching fabric handles aggtegaf flows that come from or
are directed to the same linecard and has no notion of inglibatput ports. It cannot
selectively block flows directed to a specific output portwiit blocking at the same time
those directed to other ports on the same linecard.

9.3.1 Internal flow-control

To isolate congested flows, the switch uses a mechanism pleaates at the (input port,
output port) granularity level. This mechanism, namedéinal flow-control” is managed
by the central arbiter, that acts as a “bridge”, effectivetyending across the switching
fabric the buffer-to-buffer-flow control performed at thgput and output ports.

Internal flow-control operates in the following phases, @gicted in Figure 9.3:

1. The Out-module sendsaedit to the central arbiter to signal a free, MTU-sized
slotin a port queue.

2. The In-module sends to the central arbiteequestto transmit to the switching
fabric a packet destined to a specific output port.
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Figure 9.3. Credit-based flow control loop managed by thérakarbiter

3. When the central arbiter finds an output port for which alitie available and an
ungranted request exists, it sendgrant to the requesting In-module.

4. The In-module transmits the packet, which crosses thielsing fabric and arrives
to the destination linecard, where it is stored in the Outiuie.

5. When the packets is finally transmitted on the output lih&,Out-module frees the
buffer and returns the credit to the arbiter.

Thanks to this mechanism, a packet enters the switchingcfainty if there is space

to store it in the destination output port’s queue. Queuesi@toverflow, therefore no

backpressure is required from the Out-module to the switgfabric. If an output port is

blocked, the queue fills up, the arbiter runs out of credits lanmodules do not receive
grants to transmit to that port. Buffer space inside caneotonopolized by packets
waiting to be transferred to the blocked port, because tlffefoonanagement technique
described in section 9.2.1 limits the number of packetsctieto a specific destination
that can be present in the In-module at the same time.

The term “credit” has been used to refer to control messaged hoth by buffer-
to-buffer and internal flow-control. While the two mechanssare clearly distinct, the
semantic of the term is the same in both contexts. A crediessmts the capability of
the receiver (whether it is a network node or a switch outjut gueue) to store a frame
of maximum size or less, so the terminology we have introduseonsistent. From this
point on, however, our discussion will focus on the intemyaérations of the switch, so
we will always implicitly refer to internal flow-control anits control messages.

81



9 — The Switching Architecture

Credit
CI L - T Coles

Request
Queues

Output1  Output 2 Output N

,,,,,,,,,, Scan procedure
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9.3.2 The central arbiter

The central arbiter explicitly authorizes the transmissad every packet, so it must
operate at very high rate and provide fair treatment to ipouts.

The internal structure of the central arbiter is depicte&igure 9.4. For each out-
put port there is a credit counter and a request queue. Theearog incremented every
time a credit for the output port is received. Requests ferahtput port are are stored,
in FIFO order, in the request queue. The arbiter continyosishns, in round-robin or-
der, the credit vector and the requests queues, lookinguimub ports that have both an
available credit and an ungranted request. When a matchuiglfahe credit counter is
decremented, the request dequeued and the grant sent egthesting In-module.

The maximum number of requests pending for an output porésponds to the max-
imum number of packets directed to that output port that egprbsent in the In-modules
at the same time. This number is limited by the buffer managgmolicy employed at
each In-module. The request queues are dimensioned to édcabbst the maximum
number of pending requests, so their occupancy doesn’ttbawe controlled.

9.4 Extension to Support Multicast Traffic

The architecture we have presented can be suitably exteadrgbport multicast traffic.
This part of the design is not finalized yet, so at some pointm¥leconsider multiple
solutions, whereas at others we will neglect some issuesjfggally those related to the
partitioning of system resources (internal and extern&slj buffers, etc.) between unicast
and multicast.

The delivery of a multicast packet entails two phases:

1. the packet must be replicated to all the linecards thatdmes or more destination
ports,
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2. on each linecard, the packet must be replicated to alhtieeded output ports.

To minimize the load on the uplink, a single copy of each rnocaki packet is transmitted
from the linecard to the switching fabric, and replicati@ennhultiple linecards is per-
formed in the switching fabric. Conversely, to reduce tredlon the downlink, a single
copy of the packet is sent to each intended linecard, anicatjoin to multiple output

ports is performed independently on each linecard.

9.4.1 Linecards

Linecard buffers can simply be augmented with dedicatedespar multicast packets.
The PSM provides to each input port a separate portion of mgramanized as a FIFO
queue. This choice naturally leads to HOL blocking, but itatied by the fact that it is
not practically feasible to sort incoming packets basedheir fanout set [30]. When an
input port fully occupies its share of the PSM memory, trailssion from the adjacent
device is inhibited using buffer-to-buffer flow-control.

The In-module collects packets from the PSM queues in raobd: order and stores
them in a single FIFO queue. Each input port has a limit on theumt of In-module
memory that it can occupy. When this limit is reached, thenlwdule stops servicing the
input port's PSM queue, until occupancy decreases belowtaindevel. This mechanism
guarantees that individual inputs cannot monopolize thmdaule memory. Both the
PSM and the In-module memory is segmented to simplify buffanagement.

The Out-module stores multicast packets received frommittelsing fabric in a buffer
organized as a single FIFO queue. When a packet reachesdatleohthe Out-module
gueue, itis replicated to all the output ports it is destittzegind dequeued. The replication
process is instantaneous and does not delay packet transnmos output links. If internal
flow-control is used, memory must be segmented, becausadtipossible to know in
advance the size of a packet that will be received, so an MZédsslot must be set aside.
On the contrary, if memory is not pre-allocated, packetslmastored contiguously, to
make more efficient usage of available space. In this cadebessure towards the fabric
output queues is necessary to avoid overflow.

9.4.2 Switching fabric

Multicast packets entering the switching fabric are stongfdbric input queues, together
with unicast packets or in a separated space. When a paddae® the head of its
queue, it must be replicated to multiple linecards. Thestrasis equipped with internal
multicasting capability, meaning that it can replicate akgd to multiple outputs at the

same time with no extra cost. By using this feature it is gedb reduce packet delays
and fabric input queues occupancy; however, doing so resjuultiple outputs to be free
at the same time. Waiting to gain access to all the intendgoutaibefore transmitting
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a packet can be counterproductive, because it forces cutpat have already granted
access to stay idle while the others become free.

To exploit the benefits of crossbar replication without coompising efficient usage
of output ports, fabric inputs transmit packets in multiplases:

1. the input requests all the outputs included in the faneubtthe packet at the head
of the fabric queue, and starts a tinier

2. itsends “in a single shot” the packet to all the outputshlaae immediately granted
access;

3. afterwards, the input individually sends to each renmgroutput a copy of the
packet as soon as it grants access;

4. when the timefl, expires, the packet is dequeued and dropped, even if ndteall t
intended destinations have been reached.

This final drop decision can be optionally skipped for paskéat need more reliable
delivery (I, set tooco).

9.4.3 Central arbiter

In section 9.3 we have illustrated the benefits achieved hyrating individually unicast
flows. The same result is more difficult to obtain for multicdsecause the number of
possible flows traversing the switch grows exponentiatiyhler than quadratically) with
N. This implies that no switch resource can be assigned per-flo particular, both on
the ingress and egress side of linecards packets are stoaesirigle FIFO queue, regard-
less of their fanout. As a consequence, internal flow-cooamonot provide differentiated
treatment to multicast flows.

How to effectively isolate congesting multicast flows, @sanreasonable number of
queues and an implementable arbiter, remains an open issue.
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Chapter 10

Performance Under Unicast Traffic

In this chapter we study by means of simulation the perfoceari the switch presented
in Chapter 9. To obtain and discuss our simulation resultsefer to a specific imple-
mentation, with a realistic choice of system parametersréfé to a256 x 256 system
offering 512 Gbps of aggregate bandwidth [6].

The goal is to understand the effects of the flow control arnckjpi@essure mecha-
nisms under different traffic patterns. We are particulartgrested in observing system
performance as the number of available credits per outptivades.

10.1 Simulation model

The simulator we have developed models all the system coemtsilescribed in Chap-
ter 9, together with flow-control, backpressure and buffanagement techniques. It
explicitly takes into account the transmission times ofiggés on output links and trans-
mission times of control messages (credits, requests ardgjron control links. Trans-
mission times are only due to store-and-forward delays,rapggation delays are not
considered.

In our experiments we assume that output ports absorb tedflice-rate, i.e. they do
not receive blocking signal from downstream devices (eodes or other switches).

The simulator samples system evolution at regular intenalled “timeslots”. The
duration of a timesldf’, is equal to the length of the shortest event; all events aenasd
to take an integer number of timeslots.

10.2 Simulation settings
Table 10.1 summaries the settings adopted in the simulation
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Parameter Symbol Value
Input - Output ports
Input-Output ports per linecard Pre 16
Linecards in the system Nre 16
Total number Input-Output ports N 256
Link speeds for data and signaling
Input - Output ports (data path) Vp 2 Gbps
Linecard« crossbar (data path) Vx 32 Ghps
Linecard< central arbiter (control path) — 2 Gbps
Packet size
Minimum packet dimension — 64 bytes
Maximum packet dimension MTU | 2048 bytes
In-module & Out-module
Total PSM buffer size — 4000MTU
In-module shared buffer size — 100MTU
Number of credits per output X variable
Switching Fabric
Internal speed-up K 2
Input fabric buffer size — 20 KBytes
Output fabric buffer size — 40 KBytes

Table 10.1. Summary of the main architecture parameters

10.3 Traffic model

Open-loop source models, such as Bernoulli or on-off/gutistditionally used to analyze
the performance of lossy packet-switching systems, aresuivdble for our study. A
Fibre Channel source receives control information fromrtevork through buffer-to-
buffer flow-control (Section 8.3.2). When the source is k&stby flow control, it stops
transmitting on the link and starts accumulating packetsénoutput link queue. When
it is allowed to restart transmission, it has a burst of ptechaiting to be sent. However,
if a source injects traffic at line-rate and packets are wuetated, the transmitter queue
can be neglected. In this situation the source transmitsghadack-to-back anyway, so
accumulated packets would not make any difference.

Traffic matrix A = [S\ij] represents the rate at which souicgeneratepackets di-
rected to outpug, whereas! = [);;] represents the rate at which packets actually enter
the switch; obviously\;; < A;;Vi,j. As we assumed that sources transmit at line-rate,
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5=, A = 1 and admissibility conditions further require ttje}, A;; < 1.

In stationary conditions\;; also represents the rate at which traffic from inpto
output; exits the switch, so we can define throughput for pas) _. \;;.

We consider three distributions of the packet size:

e minimum size (64 bytes) only,
e maximum size (2048 bytes) only,

¢ uniform between 64 and 2048 bytes, with 64 bytes increment

10.4 Diagonal traffic

In this scenario each input port only transmits to itséjj:: 1if i = 7,0 otherwise. This
traffic pattern allows us to observe system behavior wheretlseno contention in the
switching fabric and system dynamics are dominated by tedtmtrol mechanisms.

As depicted in Figure 9.3, internal flow control effectivepresent a closed-loop
control systems. The control loop delay (i.e. the time thapses between the moment
the arbiter consumes a credit and the moment the Out-moeluims it) is non-negligible
and includes store-and-forward delay of control messatesiransmission time of a
packet on an output link as well as additional delays intoediby system components.

A minimum number of credits is required to compensate foratetrol loop delay
and achieve line-rate. Consider for example the case inhndngingle flow is traversing
the switch. If only 1 credit were available, an output pofterfinishing the transmission
of that packet, would have to stay idle waiting for the next tm be transferred from the
In-module to the Out-module.

Let Troop be the control loop delay anfl-x the transmission time of a minimum-
size packet on an output link: then in a period of time equdl;tey, » the switching fabric
must be able to transfer at leddt.oor/Tri | packetsIoop is the sum of three terms:

¢ the time required to send a credit from the Out-module totarlaind a grant from
the arbiter to the In-moduld{.r);

¢ the time required to transmit a packet through the switcldtgic, from the In-
module to the Out-moduldy);

¢ the transmission time of a packet on an output lifk).

Note that the first term is constant, whereas the other twernpn the packet size.
We assumé@ ¢ is equal to 64 ns, broken down as:

e 16 ns of processing time in the Out-module,
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Figure 10.1. Throughput under diagonal traffic as a functbnumber of credits per
output port

e 16 ns of transmission time to the arbiter,

e 16 ns of processing time in the arbiter (this term is condtactiuse no other input
is contending for the same output) and

e 16 ns of transmission time to the In-module.

Tsy in turn is the sum of three terms, that account for packestrassion on the uplink,
through the switching fabric and on the downlink. Overatinsidering crossbar speed-
up K, Tsw = (2+ 1/K)Lpk/Vx. The transmission time on an output link is simply
Tprr = Lpk/Vp.

Having evaluated control loop delay, we can calculate themmim number of credits
needed to achieve 100% throughput. Moreover, we can cédctiia maximum through-
put for X = 1 and fixed-size packets, because in these conditigfis, o p represents the
arrival rate of packets at the Out-module:

Troop = Tpk +Tcr + Tsw (10.1)

\— Tpx _ Tpi
Troor Tprx +Tcr+ Tsw

Figure 10.1 shows average throughput for different valdes and different packet-
size distributions.

(10.2)
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Figure 10.2. Simplified queueing model to study performamnuder variable-size pack-
ets.

10.4.1 Small packets

This scenario is the most critical because small packetstieamall transmission times,
whereas control path overhead is constant.

With 64 bytes packetspx = 256 ns,Tsy = 40 ns andT,oop = 360 ns. From
the above formula we expect throughput with= 1 to be equal to 71% and to reach
100% with X = 2. Figure 10.1 confirms the results.

10.4.2 Large packets

In this scenaridpx = 8192 ns ,Tsy = 1280 ns andloop = 9536 Ns. ForX =1
throughput is 85.9% and foX = 2 itis 100%.

10.4.3 Variable-size packets

Referring again to Figure 10.1, we observe that with vaeaite packets 5 credits are
required to achieve 100% throughput.

This throughput reduction is due to the fact that varialitee packets may introduce
a mismatch between the rate at which packets arrive at thelhdle and the rate at which
credits are released at the Out-module, forcing some patketait at the In-module.

Consider the simplified model of the flow-control mechani¢roven in Figure 10.2.
Queuda)); models the Out-module transmitting on the output link, eiglleug),; models
the In-module transmitting to the switching fabric. Assuima&t only two classes of pack-
ets are present: large, of sizeand small, of sizexL, o < 1. (), serves packets at rate
R, bits/s, so it is capable of servicing, /L large packets/s aR,/(«L) small packets/s.
Whenever it has finished servicing a packet, it releasesdit¢cequeuer);. ), serves
packets at raté&1 > R2 bit/s, however, it can start packet service only if it haseddr
in its buffer. Therefore, the rate at which it can sepaeketds equal to the rate at which
it receives credits. We ignore control-path latencies,redits released at quedg are
immediately available to queug, .

If we look at instantaneous packet service rate3aand(),, four cases are possible:
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1. Small packets at the heads of b@gh andQ,: @), services packets and releases
credits at rateR,/(«L). The rate is sufficient fo€), to serve enqueued packets, so
no backlog accumulates and maximum throughput is achieved.

2. Large packets at the heads of bathand@,: this case is similar to the previous
one, the only difference being the credit release rate egu&l, /L. Maximum
throughput is achieved again.

3. Large packets at the head@f and small packets at the head@f: @, releases
credits at rateR,/(aL), which is larger than the rate needed Qy to service
incoming packets, so maximum throughput is achieved.

4. Small packets at the head @f and large packets at the head(@f: in this case
(). releases credits at rafe,/ L, which is smaller than the rate needed ®y to
service incoming packets. Basically, large packets withng ktransmission time on
an output link are holding credits needed by small packetseatn-module. The
rate at which new packets are enqueue@ais R»/L(1/a — 1).

The situation described in case number 4 leads to througlegutction, unless the
credit buffer is large enough to accumulate the excesstsrisdued in case number 3 and
provide compensation. This is again in accordance withdkalts shown in Figure 10.1.

The conclusion that we can draw using this simple model isuthder any monomodal
distribution of packet size, to achieve maximum throughponly necessary to compen-
sate for the control-loop delay, whereas under variable peckets, more credits are
needed to compensate for temporary mismatch between #geattwvhich packets enter
and exit the switch.

10.5 Uniform traffic

In this scenario packets entering the input ports are datimall output ports with equal
probability (;\ij = 1/NV1i,j), so there is significant contention for system resources.

The main contention points are in the In-module, where paakeist wait for a credit
in order to access the switching fabric, and at the crossiputs, where packets from a
linecard compete with packets from other linecards to reactossbar output port.

If a packet is blocked in the In-module because it lacks tleditneeded to proceed,
we say that it is experiencingiarvation if, instead, it is blocked because the In-module
is receiving backpressure from the congested fabric inpatig, we say that the packet is
experiencing backpressure.

Both circumstances can degrade final throughput, so oursitmunderstand under
what conditions they occur. We start with a qualitative dgston of the impact ok and
then we proceed with a more systematic analysis of simuaésults.
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Figure 10.3. Throughput under uniform traffic and differpatket size distribution

10.5.1 The effects of internal flow-control

Understanding the effects of internal flow-control underemegic traffic pattern and
choosing the optimal valu& is quite complex, because many implications must be taken
into account.

As discussed in the previous sectiok, must be large enough to to cover for the
control-delay loop, which becomes larger when there isarttitin in the switching fabric.
Moreover, the largeX, the longer the switch can sustain temporary overload dfiipe
output ports, without blocking packets at the In-module ttustarvation.

However if X is small, it is less likely that fabric input queues saturdéading to
backpressure. In general backpressure is more harmfukthavation because it affects
all active flows entering on a linecard, whether they are estegl or not. Besides, a
small X helps in reducing HOL-blocking, because it shapes traffieramg the switching
fabric. In the switching fabric there can be upXopackets directed to a specific output
port, therefore there can be up®p-X packets directed to a specific linecard. The lower
this number, the lower the probability that two packetsidestto the same linecard arrive
at the head of different fabric input queues and collide.

Figure 10.3 shows system throughput for different value& ainder uniform traffic,
with fixed- and variable-size packets. The first thing to nsthat for all packet-size dis-
tributions the number of credits required to achieve makpeaformance is in the order
of 10’s, so significantly higher than under diagonal traffitis is due to the contention
in the switching fabric, that increases the control-loolage
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Cre- | Thru- | Pkt. block prob. Av. fabric FIFOs occ. (Bytes)
dits put St. | Bp. Inputs | Outputs

5 0.941 | 0.059 0 90.88 (0.44%)| 283.52 (0.69%
10 || 0.960 | 0.040 96.00 (0.47%)| 460.8 (1.1%)
15 || 0.970| 0.030 98.56 (0.48%)| 646.4 (1.6%)
20 || 0.976 | 0.024 100.48 (0.49%) 972.8 (2.4%)
30 || 0.984 | 0.016 103.04 (0.50%) 1273.6 (3.1%)
50 || 0.990 | 0.010 104.96 (0.51%) 2227.2 (5.4%)

(ellelielielle)

Table 10.2. Stationary results under uniform traffic and ¥4 $ packets

10.5.2 Small packets

Table 10.2 reports additional details, namely averagadajpreue occupancy and aver-
age packet blocking probability, due to starvation (“Stif) backpressure (“Bp.”). If an
In-module is receiving backpressure from the fabric inpugwe, this is accounted as
backpressure, regardless of the actual availability afitseStarvation only represent the
case in which the packet is blocked by lack of credits and jmassure is not active.

Thanks to the small size of the packets and the fact thatdfabemory is not seg-
mented, queues occupancy remains low and backpressuneltotlia In-module is never
activated. Starvation is the only cause of throughput dgran, and decreases as the
number of available credits grows. However agrows more packets are present in the
switching fabric at the same time and control-loop delaywgras well, so the benefits
provided by additional credits are progressively reduced.

10.5.3 Large packets

With large packets, the situation is significantly diffetethroughput increase unt’ =

10, then it starts decreasing and keeps going dowi asows. By looking at Table 10.3
we realize that this is mainly due to backpressure, whiclolmes the only cause of
throughput degradation foX > 10. Fabric input queues have limited size and can only
host about ten packets each. With more credits availabdg, dqhickly fill up and back-
pressure blocks packets at the In-modules. Fabric outpuegioccupancy grows until
X = 15, then it starts decreasing, even if fabric input queues aocy keeps grow-
ing. This is due to the fact that @ grows the shaping effect of internal flow-control is
reduced and packets experience higher contention in thielsng fabric.
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Cre- | Thru- | Pkt. block prob. | Av. fabric FIFOs occ. (Bytes)

dits put St. | Bp. Inputs | Outputs
5 0.945| 0.055 0 1542 (7.5%)| 8058 (20%)
10 || 0.961| 0.030| 0.009 | 3220 (16%)| 14185 (35%)
15 || 0.953| O 0.047 || 7000 (34%)| 16235 (40%)
20 || 0.942| O 0.058 | 7522 (37%)| 15468 (38%)
30 || 0.932| O 0.068 | 7922 (39%)| 14929 (36%)
50 || 0.929| O 0.071 | 8032 (39%)| 14833 (36%)

Table 10.3. Stationary results under uniform traffic and®Bytes packets

Cre- | Thru- | Pkt. block prob. || Av. fabric FIFOs occ. (Bytes)

dits put St. | Bp. Inputs | Outputs
5 0.918 | 0.082 0 1210 (5.9%)| 6541 (16%)
10 || 0.941| 0.056| 0.003 | 1794 (8.8%) 10448 (26%)
15 || 0.952| 0.033| 0.014 | 3373 (16%)| 12824 (31%)
20 || 0.955|0.013| 0.031 | 5222 (25%)| 14271 (35%)
25 || 0.953 | 0.003| 0.044 | 6326 (31%)| 14585 (36%)
30 || 0.951 0 0.049 | 6700 (33%)| 14455 (35%)
50 || 0.948 0 0.052 | 6948 (34%)| 14238 (35%)

Table 10.4. Stationary results under uniform traffic andaide-size packets

10.5.4 Variable-size packets

Table 10.4 show that the values of system metrics in thisss@@are intermediate with
respect to the two cases presented above. X6t 15 throughput with variable sized
packets is lower than with fixed size packets (either smalhige) because of the mis-
match between credit release rate and packet arrival ratex@ained in Section 10.4.
As X grows we see starvation gradually disappearing but baskpre showing up, with
the net result that for any (except very small or very large values) both are present at
the same time. The final curve is the result of the combinezteffof all the phenomena
described before. Overall throughout reaches its maxinarmXf= 20, where it is equal

to 95.3%, and then decreases very gently for larger values.
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Figure 10.4. Throughput with increased fabric speed-upeundiform traffic and
variable-size packets

10.6 Improving system performance

System performance is satisfactory in all the scenariaedeso far, throughput being
greater than 92% under any packet size distributionXfor 5. Starting from the results
obtained previously we try to understand on which paramseétés worth acting to further
improve performance.

10.6.1 Increased internal speed-up in the switching fabric

We first try to vary crossbar speed-up to understand how mu@h-blocking penalizes
performance. Results are reported in Figure 10.4 and Tab%efdr variable-size packets.
Note that the cas& = 16 corresponds to an output-queued switch, in which HOL-
blocking and output contention are completely eliminated.

We see thaf = 3 brings small improvement, whereas = 16 almost no improve-
ment. We can deduce that HOL-blocking in the switching fabas a very small impact
on system performance. The reason is that with very highdsppeand smallX system
performance is limited by starvation, whereas with la’gdabric output queues fill up
rapidly and activate backpressure towards the fabric ippus. If a fabric output port is
saturated, it cannot accept any new packet and speed-umbsatseless.

A comparison of Table 10.5 and Table 10.4 confirms that fabuiput queues oc-
cupancy increases, whereas fabric input queues occupaurgases. This leads to a
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Cre- | Thru- | Pkt. block prob. | Av. fabric FIFOs occ. (Bytes)

dits put St. | Bp. Inputs | Outputs
5 0.919| 0.081 0 111.1 (0.5%)| 6746 (16%)
10 || 0.942| 0.055| 0.003 || 275.0(1.3%) 10838 (26%)
20 || 0.959 | 0.013| 0.028 | 1971 (9.6%)| 15413 (38%)
25 || 0.960| 0.001| 0.039 | 2802 (14%)| 16497 (40%)
30 || 0958 O 0.042 | 3331 (16%)| 16742 (41%)
50 || 0955 O 0.045 | 3690 (18%)| 16901 (41%)

Table 10.5. Stationary results under uniform traffic andaide-size packets, foak =
16

small reduction of backpressure but leaves blocking pritibaliue to starvation almost

unchanged.

10.6.2 Extended memory size in the switching fabric

In this scenario a large amount of memory is placed at thedamputs and outputs, to
avoid backpressure. The maximum amount of packets destinadinecard inside the
switching fabric at any pointin time i x P;¢. In the worst case they are all maximum-
size packets and occupy X Prc X Ly = X x 16 x 2048 = X x 32768 bytes. We
choose this value for the fabric output ports and set theddiZzabric input ports to one

half of it.

Cre- || Thru- | Pkt. block prob. | Av. fabric FIFOs occ. (Bytes)
dits | put St. | Bp. Inputs | Outputs

5 0.918 | 0.082 0 1211 (1.5%)| 6552 (4%)
10 || 0.942| 0.058 0 1340 (0.8%)| 10726 (3.3%)
15 || 0.955| 0.045 0 1401 (0.6%)| 14342 (2.9%)
20 || 0.963| 0.037 0 1450 (0.4%)| 17772 (2.7%)
25 || 0.969 | 0.031 0 1489 (0.4%)| 21294 (2.6%)
30 || 0.973| 0.027 0 1506 (0.3%)| 24255 (2.5%)
50 || 0.983| 0.017 0 1561 (0.2%)| 36866 (2.3%)

Table 10.6. Stationary results with extended memory undiéorm traffic and variable-

Figure 10.5 shows the throughput achieved with the origim@mory size and with

size packets
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Figure 10.5. Throughput with original and extended memorthe fabric

the extended memory size, in the case of variable- and mamigine packets. With ex-
tended memory, throughput grows fairly rapidly as more itseate available, and finally
approaches 100%. Table 10.6 shows that backpressure isawixe, but a small (and
decreasing) amount of starvation is still experienced lgke@ even for very largel.

This is due to the fact that with so much memory in the switghiabric, the control-loop
delay becomes larger and largerasncreases. The more credits are available, the slower
they are returned.

The improvement achieved in this scenario is not negligiblg its cost is too high.
Fabric memory is perhaps the most scarce resource in thensstd it is not reasonable
to assume that it is readily available in large quantitiefie Tesults presented in this
scenario are only meant to be taken as a reference.

10.6.3 Link speed-up between the switching fabric and theriecards

We finally explore the effects of speed-up on the uplink amddibwnlink (internal fabric
speed-up is kept equal to 2). We assume a data rate of 34 Ghpssponding to a link
speed-up oB84/32 = 1.06. The possibility to change link speed between the linecards
and the switching fabric is another benefit deriving fromadkgnchronicity of the design.
Figure 10.6 shows the throughput vs. number of credits suimevariable-size and
maximume-size packets, with and without speed-up. We olestirat both curves with
speed-up are monotonically increasing, whereas thosewutitrave a maximum and then
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Figure 10.6. Throughput with link speed-up between the adwig fabric and the
linecards

start decreasing. Moreover, the asymptotic values olddmelarge X are much better:
both with maximum-size and variable-size packets througgpows beyond 98%.

Cre- | Thru- | Pkt. block prob. | Av. fabric FIFOs occ. (Bytes)
dits || put St. | Bp. Inputs | Outputs

5 0.920 | 0.080 0 1056 (5.1%)| 4513 (11%)
10 | 0.944 | 0.056 0 1191 (5.8%) 6268 (15%)
15 | 0.957| 0.043 0 1363 (6.7%)| 7286 (18%)
20 || 0.965| 0.034| 0.001 || 1607 (7.8%)| 7979 (19%)
25 || 0.971| 0.027| 0.002 | 1810 (8.8%) 8397 (21%)
30 || 0.975| 0.023| 0.002 || 2020 (9.9%)| 8868 (22%)
50 || 0.984|0.014| 0.002 | 2342 (11%)| 9638 (24%)

Table 10.7. Stationary results under uniform traffic andalde-size packets, in the case
of communication links between the switching fabric andlihecards equal to 34 Gbps

Table 10.7 reports numerical data for the variable-siz&giaccase. Fabric output
gueues occupancy is low and grows very slowly, as the queaatrained faster. Lower
fabric output queues occupancy also translates to loweicfailput queues occupancy,
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Figure 10.7. Throughput under uniform and linear traffichwiariable packet size

because they are blocked less often and can be draineddastesil. This, in turn, leads
to very low backpressure rate towards the In-module.
Starvation remains the only cause of throughput degradabiat its impact is mini-
mal, because higher speed links and shorter queues imgighogedit release rate.
Overall, this solution is very effective and, above all,qtieal.

10.7 Linear traffic

Linear traffic is an unbalanced pattern in which each ponstnaits at different rates to all
the other ports. It is a variation ddg-diagonaltraffic, described in [73], suitable for a
switch with a high number of ports. The traffic matrix is:

N N—-1 --- 2 1

1 N S 2

-2 L
(V+1) N—-2 N-3 --- N N-1
N—-—1 N—-2 --- 1 N

For the system under test (with,o = 16 and N, = 16), each linecard transmits
to itself roughly 12% of the packets (as opposed to 6% unddomm traffic) and the
remaining 88% to other linecards.
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Figure 10.7 compares the performance obtained under uméod linear traffic, for
variable link speed-up (32 Gbps or 40 Gbps). Performancerimear traffic is slightly
better than under uniform traffic, proving the fact that thbric does not suffer from
traffic unbalance, but actually benefits from reduced cdiden

As in the uniform traffic scenario, performance is signifttaimproved with moder-
ate speed-up on the uplinks and downlinks.
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Chapter 11

Performance Under Multicast Traffic

Delivery requirements for multicast traffic are more varilkedn for unicast and strongly
depend on the application. For example, data replicaticongmultiple sites may require
absolute delivery guarantee, whereas other applicaticisas video broadcasting might
allow, and in case of congestion even encourage, packerdig-ibre Channel standards
provide two classes of service for multicast [74]. The fissddatagram-like and potentially
unreliable, because end-nodes do not explicitly acknaydeeceived packets and do
not perform end-to-end flow control. The other, insteadpisnection-oriented, requires
end-nodes to acknowledge received packets and perfornoeewd flow control.

We study system performance under multicast traffic whendifferent flow-control
policies are employed:

1. The system does not try to regulate incoming traffic in aay.wAll backpressure
mechanisms are disabled and whenever a packet cannot bd sta buffer, it is
simply discarded.

2. The system employs backpressure between bufferingsstage&event overflows,
as described in Chapter 9. Backpressure signals are notigelend block all flows
traversing the buffer. Packets in principle could be didedrby the fabric if they
remain blocked for too long(Section 9.4.2).

11.1 Simulation Model

For the analysis of system performance under multicadtanae adopt a more abstract
model of linecard buffers with respect to the descriptio®ettion 9.4.1 . [75]. In partic-
ular, we neglect the presence of two stages of queues ondghesgiside and consider a
single module that jointly represents the PSM and the Inuteodl'his component, which

!Actually, with current system settings and under the hygsiththat output ports drain data at line-rate,
calculations show that timeofit, cannot expire, so packets are never discarded by the fabric.
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Figure 11.1. Linecard simulation model for multicast

we still call “In-module”, consists of a single large buff@iganized as a FIFO queue, di-
vided in slots of size equal to a MTU. Total capacity is stticpartitioned among input
ports; ports can enqueue new packets only if space is alailaltheir memory share.
The Out-module is also organized as a single FIFO queuegaspsly mentioned. The
linecard model implemented in the simulator is show in Feglit.1.

The Out-module and the switching fabric are modeled acogrtti the description of
Chapter 9.

11.2 Simulation settings
The simulated system isl&® x 16 switch with 4 linecards hosting 4 input/output ports

each. Each port runs at 10 Gbps, hence the aggregate bahdsvidt0 Gbps. Table 11.1
summarizes the values of system parameters we have used.

11.3 Traffic model

In all experiments, three packet size distributions hasenls®nsidered:
e minimum size (80 bytes) only,
e maximum size (2000 bytes) only,

¢ uniform between 80 and 2000 bytes, with 40 bytes increment.
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Parameter Symbol Value
Input - Output ports

Input-Output ports per linecard Pre 4
Linecards in the system Nico 4
Overall number of Input-Output poris N 16

Link speeds for data and signaling
Input - Output ports (data path) — 10 Gbps
Linecard« crossbar (data path) — 40 Gbps

Packet size

Minimum packet dimension — 80 bytes
Maximum packet dimension MTU 2000 bytes

In-module & Out-module Buffers
In-module shared buffer size — 8000 MTUs =16 MB
Out-module shared buffer size — 320 KB

Switching Fabric

Internal speed-up K 3
Input fabric buffer size — 10KB
Output fabric buffer size — 20 KB
Second timeout value T, 15us

Table 11.1. Summary of the main architecture parameters

Each active source emits a packet with probabpity 0 < p;, < 1 and with probability
1 — ps, remains idle for a period with the same distribution of thelqga duration, which
can be fixed (minimum or maximum size packets only) or vaegpacket size uniformly
distributed).

If the backpressure signal from the In-module is active egation of new packets is
blocked. As soon as the backpressure signal is deactitagdource can start generating
again. The effective average input load generated by a sdsipg, < p;.,.

Packets generated while a source is experiencing backpeesse simply discarded.
We have decided to neglect the fact that in reality thesegiaskould accumulate at the
source (Section 8.3.2) because it would introduce a peationp of the input load and
complicate throughput analysis, especially in overloaadtions.

The average offered load to an output portjs and it is equal to the sum of the,
of input ports transmitting to that output times the proligbof selecting that output. If
pout > 1, traffic is not admissible and the output port is overloaded.
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Figure 11.2. Broadcast traffic scenario with one active poréach linecard

As discussed in Section 9.4, the replication of a multicaskpt to multiple ports on
the same linecard is instantaneous and does not have angtiorpthe switching of pack-
ets between linecards. Thus, in all the traffic patterns we Isalected, the destination
ports in the fanout set always reside on different linecalfitie fanout of a packet i§’,
then it must be replicated tB linecards.

11.4 Broadcasttraffic scenario - One active port per linecad

We first present results obtained in two different broadsesharios. We call “broadcast”
any scenario in which everjnecard transmits packets to alinecardsin the system,
regardless of how many input ports are active and how marguogbrts they transmit
to.

In Figure 11.2 the multicast pattern under consideratiah@vn. Each port is iden-
tified by the pair ¢,y), wherex is the linecard number ang the port number on the
linecard. On each linecard, only one input port is active iamhnsmits packets to four
output ports on four different linecards. Each output pedeives packets from a single
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Figure 11.3. Throughput vs. offered load (broadcast st@nane active port on each
linecard)

input port. It follows that traffic is always admissible famainput load0 < p;, < 1 and
thatpout = Pin-

Figure 11.3 shows average throughput as a function of taéltatd offered to a single
output port, when backpressure mechanisms are enabledgiQhg§abled (OFF).

Despite the high number of conflicts in the crossbar, in baes the switch sustains
the traffic pattern and throughput closely matches the effévad. This is due to the fact
that only one port is active on each linecard: the activetipput generates as a maximum
10 Gbps of data, which is equivalent to 40 Gbps at the fabripudyort due to the fanout
4. Hence the fabric is always loadedlad% of its capacity.

Table 11.2 reports the numerical values of the averagecfafreues occupation at
different traffic load. As expected, fabric input and outqueue occupancy is quite low.
When backpressure is enabled, input queue occupancy ilgliggher, meaning that
output queues occasionally reach full occupancy and bimgktiqueues. Notice that the
table refers to the case of maximum size packets only, whefatiric queues can host a
small number of packets.

11.5 Broadcastscenario - Four active ports on each linecard

In this scenario all input ports are active and transmit pecko four output ports on
four different linecards. The pattern is described in tHe¥ang table, using the same
numbering scheme of Figure 11.2.
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Backpressure ON Backpressure OFF
Output Through- | Xbar Queue Through- | Xbar Queue
Load put In's | Out’s put In's | Out’s
0.80 0.80 58%| 13.2% 0.80 14%| 17.7 %
0.90 0.90 7.0%| 15.7% 0.90 1.6%| 21.3%
1.00 1.00 8.2%| 21.6% 1.00 1.8%| 25.1%

Table 11.2. Average occupation of fabric input-output meeso(broadcast scenario,
one active port per linecard, 2000 bytes packets)

Inputs — Outputs
(0,0) + (1,0) + (2,0) + (3,00 — [(0,0) - (1,0) - (2,0) - (3,0)]
onN+11H+21)+B1) — [0,1D)-(1,1)-(2,2)-(3,1)]
0,2)+(1,2)+(2,2) +(3,2) — [(0,2)-(1,2)-(2,2) - (3,2)]
0,3)+(1,3)+(2,3) +(3,3) — [(0,3)-(1,3) - (2,3) - (3,3)]

As each output port receives packets franmput ports,p..; = 4 X p;, and traffic is
admissible ifp;, < 0.25. By settingp;, > 0.25 we can generate non-admissible traffic
load and observe how the system behaves in overloadingtaomsli

Notice that from the fabric point of view this scenario is g8anto the previous one:
all packets coming from a linecard are directed to all limdsaand the average load on
the fabric input links is 10 Gbps fas;,, = 0.25. An important difference regards the
burstiness of the traffic arriving on the fabric input linka.this scenario multiple input
ports on a linecard can transmit at the same time, effegtiyetherating up to 40 Gbps of
traffic towards the fabric, whereas in the previous scenfwooad was always strictly
limited to 10 Gbps.

Throughput vs. offered output load curves are shown in Eiddr4. On the top of the
graphs the corresponding input load is also indicated.

When backpressure is enabled, throughput closely matbkesffered load and satu-
rates tol 00% for p;, = 0.25. When backpressure is not used, on the contrary, the system
starts experiencing losses when the offered load growsrnakey@%s. This is due to the
fact that the increased burstiness of the traffic enteriaddhric can cause the fabric out-
put queues to temporarily saturate even in underload donditPackets that reach a full
fabric output queue are simply discarded and throughputdses. In overload condi-
tions throughput slowly grows tth0%, as packets in excess compensate for those that are
discarded. Note that the phenomenon is more evident forrmantsize packets, when
the queues can host fewer packets, but it is present also pauoiet size is variable.

This analysis is confirmed by the numerical results repanelables 11.3 and 11.4,
referring to the case of maximum size packets. Table 11 ®shwmat, when backpressure
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BACKPRESSURE ON BACKPRESSURE OFF
Input Load Input Load
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Figure 11.4. Throughput vs. offered load (broadcast sagnaur active ports on each
linecard)
Output | Throughput Throughput Loss
Load In-Mod | Xbar In | Xbar Out | Out-Mod
0.80 0.800 (100 %) 0% 0% 0% 0%
0.90 | 0.893(99.2%) 0% 0% 0.8% 0%
0.94 |0.923(98.2%) 0% 0% 1.8% 0%
0.98 | 0.949(96.8%) 0% 0% 3.2% 0%
1.00 | 0.960(96.0%) 0% 0% 4.0% 0%
1.10 | 0.992(90.2%)| 0% 0% 9.8% 0%
1.20 | 1.000(83.3%)| 0% 0% 16.7 % 0%
Table 11.3. Throughput loss (broadcast scenario, fouveagqtorts on each linecard,

backpressure OFF, 2000 bytes packets)

is off, packets are discarded only at fabric output queueablel11.4 reports average
fabric queues occupancy. Fabric output queues fill up rapidien the offered output
load becomes larger than90. If backpressure is on, input queues occupancy grows as

well, whereas if it is off, this occupancy remains low.

11.6

“Residue” traffic pattern

We now consider traffic patterns that are known to be pa#rtytritical for input-queued
switches [30]. These patterns are composed by packetsdabhatahsmall fanout yet gen-
erate a high number of output contentions. It is thus possiblimpose high packets
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Backpressure ON

Backpressure OFF

Output Through- | Xbar Queue Through- | Xbar Queue
Load put In's | Out’s put In's | Out’s
0.90 0.90 56% | 35.2% 0.89 39%|31L.1%
0.94 0.94 9.9% | 48.4 % 0.92 4.2% | 38.2%
0.98 0.98 29.7%| 71.3% 0.95 45% | 46.5%
1.00 1.00 93.3%| 92.2% 0.96 4.7% | 51.7 %
1.10 1.00 94.6 %| 91.4 % 0.97 4.8% | 55.3%
1.20 1.00 94.6 %| 92.2 % 1.00 5.0% | 60.2 %

Table 11.4. Average fabric queue occupancy (broadcastsdoeffiour active ports on

injection rate without violating the admissibility conidib (thanks to the small fanout)
and, at the same time, stress the switching fabric (due thigirenumber of contentions).
As fabric speed-up may not be sufficient to accommodate alleraling packets, some
of them receives partial service, i.eresidueis left at the fabric input queue. For this

each linecard, 2000 bytes packets)

reason, we name this kind of traffic patterns “Residue”.

11.6.1 “Residue 2" traffic pattern

Figure 11.5.

[29[0a 23] 03]

Linecard 0

(1902 ]33] [0z

Linecard 1

(29 ][0a [ 23] 03]

Linecard 2

(1502 ][ 23] ez

“Residue” multicast traffic pattern with fabh@, from the fabric point of

Linecard 3

view

The first pattern we consider is summarized in the followadge:
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Figure 11.6. Throughout vs. offered load (Residue patfarmut 2)

Inputs — Outputs Inputs — Outputs
00 — [(0,0-(1,0)]| (02) — [(0,2)-(1,2)]
©01) — [21)-GB 1] 03) — [(2,3)-@3 3)]
(1,00 — [(0,00-(2,0)]| (1.2) — [(0,2)-(2 2)]
11) — [1,D)-GE 1] 13 — [(1,3)-G3)]
20 — [(0,0-(1,0)]| (22) — [0,2)-(1,2)]
21) — [(2,1)-GB 1] 23) — [(2,3)-3,3)]
B0 — [(0,0-(20)] B2 — [0,2)-(2 2)]
G1) — [(1,Y)-GB I B3 — [1,3)-@B3)]

The same pattern, seen from the fabric point of view, is dedi;n Figure 11.5. Packets
coming from a linecard always contend with at least two peck®m other linecards.
For instance, packets coming frohC' 0 always have one conflict with packets coming
from LC 1 and LC 3 and one conflict on average with packets coming frio@2.

Each linecard has four active input ports and each outpaiptwraded by two inputs,
so traffic is admissible if,, < 0.5.

Figure 11.6 shows throughput vs. offered load curves whekgrassure mechanisms
are set ON or OFF.

When backpressure mechanisms are OFF, system perfornsasiceilar to that ob-
tained in the previous scenario, both in underload and inoad conditions. When back-
pressure mechanisms are ON, on the contrary, significaietrelifces can be observed.
System throughput is close to ideal when the offered loadss than~ 0.96, but at that
point it stops growing and actually starts decreasing. Téwdtcan be better observed in
Figure 11.7 where offered load is varied up to its maximunu@#;, = 1.0, po.; = 2.0).
Throughput loss is especially evident when maximum siz&gtaare used but, is signif-
icant also when packet size is uniformly distributed. Witiniimum size packets, on the
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Figure 11.7. Throughout vs. offered load (Residue patfarmgut 2, backpressure ON)

Input | Output || Throughput | Average | Xbar Queue

Load | Load service | In's | Out’s

0.40 0.80 0.800 1.471 43% | 16.9%
0.45 0.90 0.899 1.374 7.1% | 29.6 %
0.47 0.94 0.940 1.266 || 17.4%| 42.8%
0.49 0.98 0.973 1.041 || 86.6 % | 64.9%
0.50 1.00 0.973 1.040 || 86.6 %| 64.9 %
0.55 1.10 0.950 1.059 || 86.9% | 60.8 %
0.60 1.20 0.916 1.067 || 87.3%| 56.0 %

Table 11.5. Performance results with “Residue” patterndfe 2, backpressure ON,
2000 bytes packets)

contrary, no loss is experienced.

Table 11.5 reports fabric queues occupancy when maximumpsiekets are used. We
can see that input queues occupancy grows rapidby.aspproaches.96 and saturates
to ~ 87%. Output queues occupancy, on the contrary, reaches itsmaxiat0.96 and
steadily decreases afterward.

To understand this behavior, we must focus on what happetie dh-modules. If
the average fabric input queues occupancy is high, In-nesdaite subject to backpres-
sure very often, and they fill up as well. When the In-modulemosy is almost full,
backpressure towards the sources is activated. As the th#@manemory is statically
partitioned, each source enters and exits backpressuvedinally; in particular, sources
that recently have generated more aggressively enter tessqre earlier. When a source
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Figure 11.8. Time traces of packets entering the fabrictifpat low load (a) and high
load (b)

experiences backpressure, the process of packets erttegitigecard changes. Consider,
for instance LC 0: port (0,0) and (0,2) generate only packets destined tadirds{0,1},
whereas ports (0,1) and (0,3) generate only packets ddstinknecards{2,3}. If all
ports on the linecard are active, on average half of the arefuipackets are destined to
linecards{0,1} and the other half to linecard®,3}. Besides, they are roughly alternated,
because all sources generate uncorrelated packets. Oorttrarg, if a{0,1} source is
blocked, more packets destined to linecafds3} are enqueued than packets aimed at
linecards{0,1}. It can even happen that both {fi,1} sources are backpressured at the
same time and a long burst 2.3} packets enter the In-module. This long burst will
reach the fabric input queues as well.

Figure 11.8 shows a trace of packets entering the fabrid ihpueue at low (a) and
high (b) load oveb0000, hence).4 ms. timeslots. The high load graph displays330
packets, and the bursts are approximatglypackets long. Burstiness naturally leads
to performance penalties. Conflicting bursts in the falbmmut queues prevent efficient
usage of the crossbar switching capacity. Some linecardnotreceive packets for long
periods, despite the fact that many packets destined to énemresent in the queue. This
is a form of head-of-the-line blocking due to the usage ofralsi queue for multicast
traffic.

Notice that this phenomenon is self-sustaining: a souraedhters backpressure re-
mains blocked for a long time if large bursts of packets fraoffecent sources are present
ahead in the In-module queue. The hysteresis mechanismasetivate and deactivate
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backpressure towards sources further facilitates thisigunenon: a blocked port can-
not transmit until a minimum number of packets belongingttare removed from the
In-module queue.

When small packets are used, the In-module queue is drainet fasteiin terms of
number of packets per unit of tingo sources remain blocked for shorter periods of time
and long bursts do not form.

Finally, asp;, approacheg, sources tend to synchronize (because they all generate
equal size packets almost back-to-back), so they enterxanbazkpressure at the same
time and burst length decreases. A corresponding throughgrease is visible in Fig-
ure 11.7 forp,,, > 1.7. If variable size packets are used, sources do not syncs amid
no throughput improvement is observed.

11.6.2 Modified “residue” traffic pattern with fanout 2

To evaluate system performance under the Residue traffierpdiut without the induced
burstiness, we allow all sources on a linecard to generdtie @gual probability both
kind of packets. For example, all sources transmitting fro@0 generate with equal
probability packets destined to linecarfi1} and packets destined to linecarfds3}.
With this “modified” pattern (represented in the table belowe make sure that bursts do
not form regardless of how many sources are experiencirkpbassure at any time.

Inputs — Outputs Inputs — Outputs

(0,00 — 1(0,0)-(1,0)]-[(2,00-(3,0] (02 — [(0,2)-(1,2)]-[(2 2)-(3 2)]
01 — [(6,1H-@1-[(21)-G D] 03) — [0,3)-(1,3)]-[(23)-(3 3)]

(1,00 — 1(0,0)-(2,0]-[(1,0-@3,0] (1.2) — [(0,2)-(2,2)]-[(1,2)-(3 2)]
11 — [(6,1H-21]-[1.DH-G D] 1.3) — [0,3)-(23)]-[(1,3)-(3 3)]

(2,00 — 10,0)-(1,0)]-[(2,00-3,0] (22) — [(0,2)-(1,2)]-[(2 2)-(3, 2)]
21) — [(6,1H)-@1-[2.1)-G D] 23) — [0,3)-(1,3)]-[(23)-(3 3)]

(3,00 — 10,0)-(2,0]-[(1,0-@, 0] 32 — [0,2)-(2 2)]-[(1,2)-(3 2)]
Gl — [(6,1DH-21-[1.DH-G D] B3) — [0,3-(23)]-[1, 3)-@3 3)

Throughput vs. offered load curves for this scenario areveha Figure 11.9 and some
numerical values are reported in Table 11.6. We clearly Isaethroughput still reaches
its maximum value fop,,,; ~ 0.96, but does not decrease afterward. Correspondingly,
fabric output queues occupancy grows upit and remains at that level fpg,; > 0.96.
Switch performance is satisfactory: despite the hardnegedraffic pattern, maximum
throughput loss i§% for 2000 bytes packets anl; for variable size packets.
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Figure 11.9. Throughput vs. offered load (modified Residaitepn, fanout 2)

Input | Output || Throughput | Average | Xbar Queue

Load Load service In's \ Out’s

0.40 0.80 0.800 1.478 | 44% | 19.6 %
0.45 0.90 0.902 1.318 | 13.1%| 37.6 %
0.47 0.94 0.941 1.113 || 47.5%)| 55.3%
0.49 0.98 0.953 1.010 || 86.1 %| 63.2%
0.50 1.00 0.953 1.003 || 86.2%| 63.4 %
0.55 1.10 0.952 1.009 || 86.2%| 63.2%
0.60 1.20 0.953 1.007 | 86.1%| 63.5%

Table 11.6. Stationary results of modified residue pattimo{it 2) with backpressure
ON and 2 Khytes packets

11.6.3 “Residue 3" traffic pattern

In this section we try a Residue traffic pattern with fanoutit further stresses the
switching fabric. The pattern is represented from the tapaint of view in Figure 11.10.
Flows have fanous and each packet has at least two conflicts with packets coming
from any other linecard. For instance, packets coming ffart) always have two con-
flicts with packets coming froni.C'1 and LC' 3, as well as two or three conflicts with
packets coming fromk.C 2.
Destination output ports are arranged in such a way thatyerage, each output port
is loaded by3 input ports. In particular, each input port generates twullof packets,
aimed at thesamethree linecards. Traffic is admissible oK p;, < 0.333.

Conditions that led to the generation of long bursts of peckeath the same fanout
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Figure 11.10. “Residue” multicast traffic pattern with lbaed packet fanout 3 (four
input linecards active)
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Figure 11.11. Throughout vs. offered load (Residue patfarout 3)

in Section 11.6.1 apply to this scenario as well. Therefaepasically observe in Fig-
ure 11.11 the same behavior, although throughput loss inaading region is much less
evident 06% vs. 87% in the worst case).

This is due to the larger fanout of packets in this scenaritielVa packet is served
by the fabric, it feeds three output queues. Hence, at masbatput queue is damaged
by bursts at any time. Curves are intermediate between tinseed in the “Residue 2”
and in the broadcast scenarios.

Finally, if we modify this traffic pattern to avoid bursts, &g did in Section 11.6.2,
we see that throughput remains constant in the overloadiiigm and is higher thad8%
for any packet size distribution (Figure 11.12).
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Figure 11.12. Throughput vs. offered load (modified Resjgttern, fanout 3)

11.7 Uniform traffic pattern

In this section we analyze system performance under unifiafiic, i.e. when the fanout
set of each packet is chosen randomly and independentlytbeeset of all possible
fanouts. Packets can have small or large fanout and thendéet output ports do not
depend on the source port.

For each packet, we consider each possible destinationdiudily and we include or
exclude it depending on the toss of a coin (if the resultimgptd is zero, the procedure is
repeated). GiverV possible destinations, the average packet fanout is

F=Nov=7=3
As noted in Section 11.3 the replication of a packet to mldtgmrts on the same linecard
does not affect system performance. Hence, we simplify #teep by forcing each
packet to be addressed to at most one port on each linecard.

As in our configurationV,~ = 4, every port on a linecard can generate a total of
2Nre 1 = 15 packets. Of thesd, have fanout (unicast)6 have fanoug, 4 have fanout
3 and1 has fanoutd (broadcast). This corresponds to an average fano@2 0f5 and
traffic is admissible fof < p;, < 15/32 = 0.48675.

Figure 11.13 (a) and (b) shows throughput vs. offered loagn\dackpressure mech-
anisms are enabled and disabled respectively.

When backpressure mechanisms are OFF, system perfornsasiceilar to that ob-
tained in previous traffic scenarios. When backpressunebled, we see that the system
performance is not impacted by the variability of packebiats. Its behavior is similar
to that observed with the modified version of the “Residuaffit pattern. Throughput
tracks offered load up tp,.,; = 0.96 and then saturates 6% for 2 Kbytes packets and
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Figure 11.13. System performance under uniform traffiogpatt(a): backpressure ON.

(b): backpressure OFF.

97% for variable size packets. No losses are observed in théoakng region, as pack-
ets are uncorrelated and bursts cannot form, regardleshiohwources are blocked by
backpressure.
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Chapter 12

Conclusions — Part Il

We have presented a switching architecture specificalligded for Fibre Channel SANs
and we have studied its performance by means of simulatiderwarious unicast and
multicast traffic patterns.

The system was designed for high-performance and higladsiif. A major role
in achieving these goals is played by the asynchronicithefdesign that simplifies the
implementation of system modules and provides other inapbtienefits.

The demanding requirements of storage traffic, first anchiost loss-free operation,
are satisfied with a blend of flow-control and buffer managartechniques. In particular,
backpressure at every buffering stage avoids packet lassies any circumstances, buffer
management policies at the In-modules prevent active frons monopolizing available
space and fine-grained, credit-based, internal flow-cbaperated by the central arbiter
identifies and isolates congesting flows.

Simulation results show that performance is very satisfgainder uniform and non-
uniform traffic patterns and for different packet-size disttions. Additional experiments
show that it can be further improved by introducing a smadlegpup on the uplinks and
the downlinks.

The switching architecture can be easily extended to sappolticast traffic. The
choice of performing replication in two stages, in the shimg fabric and in the Out-
modules leads to efficient usage of system resources. Thehswg fabric operates
according to an algorithm that tries to gain the benefits ofsbar replication without
sacrificing latency.

As the number of potentially active multicast flows grows@xgntially with the num-
ber of ports, it is not practically feasible to allocate gystresources per-flow. In this
system multicast packets are simply enqueued in FIFO dodémn,on the ingress and the
egress sides of linecards. This certainly leads to HOL bfarknd to unfairness, which
become especially dangerous if downstream devices ar&ibtpoutput ports. Interme-
diate solutions, entailing a reasonable number of quewtammmmplementable arbiter are
certainly possible, but haven’t been investigated yet. Weukl also keep in mind that
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strictly lossless behavior for multicast traffic is reqdirenly in few particular situations
and that in general discarding packets, though undesjraldeceptable.

Simulation results show that the system achieves satisfaperformance under var-
ious multicast traffic patterns, for various packet-sizgrehutions and both in lossy and
loss-free operation. We have identified phenomena that egrade throughput by in-
ducing burstiness on traffic entering the fabric, howeuseytcan only be observed in
overloading conditions and under particularly challeggdiaffic patterns.

Overall we believe that the results of this study prove thetinnovative architecture
is particularly fit for director-class data-center switshthanks to its high-performance,
robustness and scalability. The phenomena we have ideirdifie the guidelines we have
devised can be useful to further evolve this architectur® alevelop new ones aimed at
the same environment.
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