
GridSolve: The Evolution of A Network

Enabled Solver

Asim YarKhan, Jack Dongarra, and Keith Seymour

Innovative Computing Laboratory,
Department of Computer Science,

University of Tennessee, Knoxville, TN, USA
{yarkhan,dongarra,seymour}@cs.utk.edu

Abstract. GridSolve is a stubless RPC-based client-agent-server sys-
tem for remotely accessing hardware and software resources. GridSolve
emphasizes ease-of-use for the user and includes resource monitoring,
scheduling and service-level fault-tolerance. In addition to providing
Fortran and C clients, GridSolve enables SCEs (such as Matlab) to be
used as clients, so domain scientists can use Grid resources from within
their preferred environments. GridSolve is a more highly evolved ver-
sion of the earlier NetSolve project, and it is based on the emerging
GridRPC standard. This paper will discuss the changes and improve-
ments involved in the evolution from NetSolve to GridSolve.

1 Introduction: The Grid and Network Enabled Solvers

The adoption of Grid infrastructures as a major platform for supercomputing
holds great promise for accelerating scientific discovery. However, the use of
Grid infrastructures has, for the most part, been restricted to the largest and
most resource intensive projects. For Grid computing to become a true success
story, it must become an infrastructure that can be easily used by the general

community of scientist and engineers. Within this community of practitioners,
the use of scientific computing environments (SCEs) such as Matlab or Math-
ematica is pervasive. These domain specialists are accustomed to the flexible
computing environment provided by an SCE, which gives them with the tools
and libraries that they need to be productive and enables them to go from
computation to visualization in an natural fashion.

Network enabled solvers can be used to extend the power of SCEs so that
they reach beyond the users desk, and into the network of resources available on
the Grid. End users are not required to install and maintain local software and
libraries, and can simply use the libraries that have been installed at a remote
location. Since the libraries and remote services can be maintained by experts,
they can be highly tuned and provide the optimized execution on the remote
platform.

The purpose of GridSolve is to create the middleware necessary to provide
a seamless bridge between the simple, standard programming interfaces and



2 Asim YarKhan, Jack Dongarra, and Keith Seymour

desktop systems that dominate the work of computational scientists and the
rich supply of services supported by the emerging Grid architecture, so that
the users of the former can easily access and reap the benefits (shared process-
ing, storage, software, data resources, etc.) of using the latter. The vision of the
broad community of scientists, engineers, research professionals and students,
working with the powerful and flexible tool set provided by their familiar scien-
tific computing environments, and yet able to easily draw on the vast, shared
resources of the Grid for unique or exceptional resource needs, or to collaborate
intensively with colleagues in other organizations and locations, is the vision
that GridSolve is designed to realize.

2 Foundations of GridSolve: GridRPC and NetSolve

GridSolve is based on the RPC paradigm for distributed computing, but it
is an entire environment which provides stubless clients, resource discovery,
load balancing, fault tolerance, asynchronous calls, disconnected operation and
security. A primary goal for GridSolve is ease-of-use, providing transparent
access to resources. GridSolve employs two primary enabling technologies, the
NetSolve solver [2] and the GridRPC API [11].

2.1 GridRPC: An API for Grid Remote Procedure Calls

The GridRPC API represents ongoing work to standardize and implement a
portable and simple remote procedure call (RPC) mechanism for Grid comput-
ing. This standardization effort is being pursued through the Grid Remote Pro-
cedure Call Working Group within the Open Grid Forum (formerly Global Grid
Forum). GridRPC provides a common setting within which users can develop
RPC programs, so that these programs are source code compatible. GridSolve
has recently passed a GridRPC compliance test, along with two other GridRPC
implementations, Ninf-G [12] and DIET [4].

2.2 NetSolve: A Precursor to GridSolve

NetSolve is a client-agent-server system which provides remote access to hard-
ware and software resources through a variety of client interfaces. A NetSolve
system consists of three entities, as illustrated in Figure 1.

– The Client, which needs to execute some remote procedure call. NetSolve
client interfaces have been implemented in Matlab, Mathematica, Octave, C,
Fortran and Java. Client-side stubs are not required to access remote services,
the client-side service bindings are looked up from the server as needed.

– The Server executes services on behalf of the clients. The server hardware
can range in complexity from a uniprocessor to a MPP system and the func-
tions executed by the server can be arbitrarily complex. Server administrators



GridSolve: The Evolution of A Network Enabled Solver 3

Fig. 1. NetSolve client-agent-server architecture. The agent monitors the servers on
the Grid and records available service and server status in a database. The agent
can also record network status using NWS (Network Weather Service). The agent
schedules the client request to be executed on an appropriate server. The GridSolve
system uses the same architectural model.

can write service definitions and add their own services without affecting the
rest of the NetSolve system. Since there are no client side stubs, any client
can become immediately aware of any services that are added.

– The Agent is the focal point of the NetSolve system. It maintains a list of all
available servers and services, and performs resource selection and scheduling
for client requests as well as ensuring load balancing of the servers.

The system is designed to be easy to use from the perspective of an
end-user. The user executes code containing a call to NetSolve similar to
netsl(’myfunction’,parameters, ..). The rest of the remote execution hap-
pens transparently from the point of view of the client. The GridSolve client
library contacts the agent which finds servers that can satisfy the request, and
ranks these servers. The client receives the list of server and submits the request
to highest ranked server. If the request fails for some reason (e.g. network prob-
lems, server down), the client can automatically resubmit to the next server
in the list, providing service level fault tolerance. The server executes the re-
quested service and returns the output to the client. In this way, the end user
can access Grid resources without having to be aware of all the details involved



4 Asim YarKhan, Jack Dongarra, and Keith Seymour

in finding, allocating and monitoring the resources and managing the software
and libraries.

In addition to providing the middleware necessary to perform the brokered
remote procedure call, NetSolve provides mechanisms to interface with other
existing Grid services. NetSolve can use server-proxies to communicate with
several back-end resource and execution managers, such as batch queue man-
agers, the Condor [9] high throughput computing system, and MPI runtime
systems. A server-proxy is specific to a back-end system, and accepts requests
from the client using the same protocols as a standard NetSolve server. The
primary benefit is that the client-to-server communication protocol is identical
so the client does not need to be aware of every possible back-end service. The
actual resources that execute a service may be a serial machine or a parallel
machine, with the same service being implemented using different algorithms
on different servers.

NetSolve has several specialized execution mechanisms which support com-
mon computing models. There is a task-farming API within NetSolve that sup-
ports parameter-sweep or master-worker style applications. A task sequencing
API enables workflow type applications where the input data or intermediate
outputs are to be retained at the remote server, and to be used in further
computation.

NetSolve is distributed with service wrappers for many numerical libraries,
such as LAPACK, ScaLAPACK, SuperLU, ARPACK and PETSc. If these li-
braries are available at the servers, they can be enabled within NetSolve. Some
numerical libraries (e.g., BLAS, LAPACK, SuperLU) are even included in the
NetSolve distribution, enabling a NetSolve server to provide useful services im-
mediately upon installation.

2.3 Shortcomings of NetSolve

Network design, hardware architectures, and software methodologies have changed
substantially since the beginning of the NetSolve project in 1996 [5]. More and
more sites are using NATs (Network Address Translators) as a method of ex-
tending IP usage within a private subnet and as a security tool. NetSolve was
designed before the widespread use of NATs, and it includes a server initiated
call-back to the client as part of the communication protocol. This cannot take
place if the client is behind a NAT, requiring a complete rewrite of the Net-
Solve system. Additionally, NetSolve keeps track of components by IP addresses,
which are not globally unique in the presence of private subnets managed by
NATs.

NetSolve also uses a wide range of ports for its communications. In this
current era of increased network security and omnipresent firewalls, this re-
quirement was awkward to meet. Many sites with strong firewall policies are
not setup to unblock and allow network traffic on a wide range of ports.

From the beginning, NetSolve was designed to make it possible for users
to add additional services to their servers, to allow them to turn their custom



GridSolve: The Evolution of A Network Enabled Solver 5

applications into services that can be executed on powerful remote platform
and can be accessed easily from desktop clients. However, experience has shown
that this process was too complicated for many users, since adding services to
NetSolve requires preparing a fairly idiosyncratic service description file, which
uses mnemonic fields to describe data types and structure.

When a service is added to NetSolve, a measure of the computational com-
plexity of the service needs to be provided to make it possible for the NetSolve
agent to estimate the execution time of that service on various servers and thus
rank the servers. This computational complexity was described using a mini-
mal model, which makes it difficult to implement more complex and accurate
scheduling algorithms.

3 GridSolve: A Network Enabled Solver

The GridSolve project is an evolution of NetSolve, architected to overcome the
shortcomings of NetSolve and to provide a platform for additional development
and experimentation. The system architecture of GridSolve is the same as that
of NetSolve shown in Figure 1, where a client-agent-server system interact to
provide transparent Grid based services to an end-user.

The overall goal of the GridSolve project is to address three general prob-
lems: ease of use, interoperability, and extensibility. Improving ease of use refers
to improving the process by which libraries and services are added into a Grid-
Solve server. Interoperability encompasses several facets, including better han-
dling of different network topologies, and better interaction with other Grid
computing projects. Extensibility in this context means easy extension to new
parallel libraries and architectures, support for large datasets, and better re-
source scheduling to take advantage of growing set of servers and services.

3.1 Ease of use

IDL improvements One of the original design goals was to eliminate the need for
client-side stubs for each procedure in a remote procedure call (RPC) environ-
ment. However, this design decision tends to push the complexity to the servers.
Integrating new software into NetSolve required writing a complex server side
interface definition (Problem Description File), which specifies the parameters,
data types, and calling sequence. Despite several attempts to create a user-
friendly tool to generate the Problem Description Files, it can still be a difficult
and error-prone process.

Therefore, we have implemented a simple technique for adding additional
services to a running GridSolve server. The interface definition format itself
has been greatly simplified and the services are compiled as external executa-
bles with interfaces to the server described in a standard format. The server
re-examines its own configuration and installed services periodically or when



6 Asim YarKhan, Jack Dongarra, and Keith Seymour

it receives the appropriate signal. In this way it becomes aware of any ad-
ditional services that are installed without re-compilation or restarting. The
server reports the new service to the agent, and thereafter it can be used by
any GridSolve client.

3.2 Interoperability

Handling NATs A Network Address Translator [8] presents the same external
IP address for all machines within a private subnet, reducing the overall need
for unique IP addresses. NATs are often used by end-users as a way of pro-
viding multiple machines with network access without requiring that they all
be assigned unique global IP addresses. They are also sometimes used a se-
curity measure since it is difficult to make inbound connectivity to a machine
behind a NAT. However, this causes problems for services such as GridSolve
such as: IP addresses may not be unique, IP address-to-host bindings may not
be stable, and hosts behind the NAT may not be contactable from outside. To
address these issues we have developed a new communications framework for
GridSolve. To avoid problems related to potential duplication of IP addresses,
the GridSolve components are identified by a globally unique identifier specified
by the user or generated randomly. To allow inbound connectivity to GridSolve
servers behind a NAT, a GridSolve proxy executable is distributed with the
software. If enabled, a GridSolve server will use the proxy to channel all com-
munications, keeping a connection to the proxy open at all times. This makes
the server usable by clients that would not have been able to connect to the
server otherwise.

Firewall concerns To handle firewalls in a more adaptive manner, GridSolve now
restricts itself to specific ports for communication. The ports can be specified
in the execution environment, allowing communication over any port, including
the default HTTP port if necessary, since this port are almost always setup to
allow traffic through a firewall.

GridRPC API The GridRPC API was made the core API for GridSolve, en-
abling compatibility with other Grid programming efforts such as Ninf-G or
DIET. Additional capabilities such as the Matlab API are built on top of the
GridRPC API. The older NetSolve API is also build on top of the GridRPC API
to allow backward compatibility for users that did development using NetSolve.

3.3 Extensibility

Supporting backend resource managers In the older NetSolve system, backend
resource and execution managers such as Condor and OpenPBS were supported
by creating a specialized server for that environment and compiling it into the
server. Though effective, this method was cumbersome and required knowledge
of the internals of the code. In GridSolve, supporting different backends has



GridSolve: The Evolution of A Network Enabled Solver 7

been made easier by defining a interface that requires three scripts for ser-
vice initiation, probing and cancellation. These scripts are specified within the
service description, easily allowing any library routine to be run either on a
backend or directly on a GridSolve server.

Disconnected Operation Since some of the backend resource managers (e.g.,
batch queues) may take a substantial time to execute an application, GridSolve
has been extended to support disconnected operations. After a GridSolve service
request has been submitted asynchronously, the user can request a serialized
representation of the service request. This can be saved, and then used to return
to the service at a later time.

Scheduling enhancements GridSolve will retain the familiar agent-based schedul-
ing of resources [13], but in some cases the client has additional knowledge about
the appropriate set of resources. Therefore we are implementing an infrastruc-
ture that allows resource filtering to be optionally performed by the client. In
the older NetSolve system, the only user-provided filter that affects the selection
of resources is the problem name. Given the problem name, the agent filters the
available servers to select the those that can solve that problem, and then ranks
the servers. In the newer GridSolve system, the user can provide additional con-
straints on the filtering process, for example, a minimum memory requirement
or the availability of a database. Also, the client will have access to the com-
plete list of resources and their characteristics so that the user can implement
comprehensive scheduling algorithms in addition to enhanced filtering. To en-
able this functionality, a GridSolve server should provide as much information
as possible to the agent as free-form resource attributes. The agent then uses
the resource attributes to match the filtering request of the client.

Distributed Storage Infrastructure GridSolve supports a Distributed Storage
Infrastructure (DSI) API, allowing it to deal with large data in a efficient man-
ner. Using DSI, a client can deploy large data items, such as a vector or matrix,
into high speed network storage. Then, when calling a service, a handle to the
data can be transparently provided instead of the data item itself. This allows
the service to access the data quickly, and the service can reuse the data from
the network storage rather than fetching it from the client on each use. This
style of deployment could also allow the user to handle data that is too large
to fit into the memory of their local computer. Currently, DSI is implemented
on top of the Internet Backplane Protocol (IBP) [3] which provides middleware
for managing and using remote storage.

4 Related Work

Several Network Enabled Servers (NES) provide mechanisms for transparent ac-
cess to remote resources and software. Ninf-G [12] is a reference implementation
of the GridRPC API [11] built on top of the Globus Toolkit. Ninf-G provides



8 Asim YarKhan, Jack Dongarra, and Keith Seymour

an interface definition language that allows services to be easily added, and
client binding are available in C and Java. Security, scheduling and resource
management are left up to Globus.

The DIET (Distributed Interactive Engineering Toolbox) project [4] is a
client-agent-server RPC architecture which uses the GridRPC API as its pri-
mary interface. A CORBA Naming Service handles the resource registration
and lookup, and a hierarchy of agents handles the scheduling of services on the
resources. An API is provided for generating service profiles and adding new
services, and a C client API exists.

NEOS [7] is a network-enabled problem-solving environment designed as a
generic application service provider (ASP). Any application that can be changed
to read its inputs from files, and write its output to a single file can be integrated
into NEOS. The NEOS Server acts as an intermediary for all communication.
The client data files go to the NEOS server, which sends the data to the solver
resources, collects the results and then returns the results to the client. Clients
can use email, web, sockets based tools and CORBA interfaces.

Other projects are related to various aspects of GridSolve. For example,
task farming style computation is provided by the Apples Parameter Sweep
Template (APST) project [6], the Condor Master Worker (MW) project [10],
and the Nimrod-G project [1]. Request sequencing is handled by projects like
Condor DAGman [9].

However, GridSolve provides a complete solution for easy access to remote
resources and software. It differs from the other NES implementations by in-
cluding a tight, simple integration with client PSEs such as Matlab. Interface
descriptions for a variety of standard mathematical libraries are distributed with
GridSolve, and it is easy for additional services to be added. The ability to use
server-proxies to make it possible to leverage additional resource management
and scheduling environments also adds to GridSolve’s strengths.

5 Ongoing Work and Conclusion

GridSolve is still in an early release phase, as it has not yet implemented all
the functionality of its predecessor NetSolve. Some of the ongoing work in the
GridSolve project is described below.

– Currently the Matlab client bindings are available, and there is some work
done on generating client bindings for IDL (Interactive Data Language). Ad-
ditional languages such as Mathematica, Octave and Java still need to be
added.

– A small set of library bindings is currently distributed with GridSolve (i.e., a
subset of LAPACK and SuperLU). A more complete set of libraries bindings
(LAPACK, ScaLAPACK, SuperLU, ARPACK and PETSc) will be added.

– There is a Kerberos based security mechanism in the current GridSolve dis-
tribution. We are investigating other possibilities to enable better integration
with additional security infrastructures.



GridSolve: The Evolution of A Network Enabled Solver 9

– Ongoing research is investigating ways to use the history of service executions
to build an execution model for the services. These models are then used in
a more accurate scheduling of the services on servers.

– Since the GridSolve agent currently maintains information about all resources
in the entire system, it may be a scalability bottleneck as the number of re-
sources increases. We are investigating the use of multiple cooperating agents
to allow the GridSolve system to be scalable.

The GridSolve project has been designed to fit the needs of the general
community of scientists and engineers, to provide an easy to use interface to
Grid hardware and software resources. A GridSolve user is relieved of many
of the details that make using Grid resources awkward: finding the appropri-
ate resources, ensuring that the needed libraries are installed, submitting the
application to the resources, monitoring the execution of the application and
transferring results back to their SCE for further viewing and analysis.

The current version GridSolve incorporates major enhancements that are
based on real world experience and user feedback. These enhancements include
tolerance for NATs, accelerated performance, disconnected operation, improved
service setup and deployment, resource filtering and improved scheduling.

References

1. David Abramson, Rajkumar Buyya, and Jonathan Giddy. A computational econ-
omy for Grid Computing and its implementation in the Nimrod-G resource broker.
Future Generation Computer Systems, 18(8):1061–1074, October 2002.

2. D. Arnold, S. Agrawal, S. Blackford, J. Dongarra, M. Miller, K. Seymour, K. Sagi,
Z. Shi, and S. Vadhiyar. Users’ Guide to NetSolve V1.4.1. Innovative Computing
Laboratory. Technical Report ICL-UT-02-05, University of Tennessee, Knoxville,
TN, June 2002.

3. A. Bassi, M. Beck, T. Moore, J. Plank, M. Swany, R. Wolski, and G. Fagg. The
Internet Backplane Protocol: A Study in Resource Sharing. In Future Generation
Computing Systems, volume 19, pages 551–561.

4. E. Caron, F. Desprez, F. Lombard, J.-M. Nicod, L. Philippe, M. Quinson, and
F. Suter. A scalable approach to network enabled servers (research note). Lecture
Notes in Computer Science, 2400, 2002.

5. Henri Casanova and Jack Dongarra. NetSolve: A Network-Enabled Server for
Solving Computational Science Problems. The International Journal of Supercom-
puter Applications and High Performance Computing, 11(3):212–223, Fall 1997.

6. Henri Casanova, Graziano Obertelli, Berman Berman, and Rich Wolski. The
AppLeS Parameter Sweep Template: User-Level Middleware for the Grid. In
Proceedings of Supercomputing’2000 (CD-ROM), Dallas, TX, Nov 2000. IEEE
and ACM SIGARCH.

7. E. Dolan, R. Fourer, J. J. Moré, and Munson Munson. The NEOS server for
optimization: Version 4 and beyond. Technical Report ANL/MCS-P947-0202,
Mathematics and Computer Science Division, Argonne National Laboratory, Ar-
gonne, IL, February 2002.



10 Asim YarKhan, Jack Dongarra, and Keith Seymour

8. K. Egevang and P. Francis. The IP Network Address Translator (NAT). RFC
1631, May 1994.

9. James Frey, Todd Tannenbaum, Ian Foster, Miron Livny, and Steve Tuecke.
Condor-G: A computation management agent for multi-institutional grids. Clus-
ter Computing, 5:237–246, 2002.

10. Jeff Linderoth, Sanjeev Kulkarni, Jean-Pierre Goux, and Michael Yoder. An En-
abling Framework for Master-Worker Applications on the Computational Grid.
In Proceedings of the Ninth IEEE Symposium on High Performance Distributed
Computing (HPDC9), pages 43–50, Pittsburgh, PA, August 2000.

11. K. Seymour, N. Hakada, S. Matsuoka, J. Dongarra, C. Lee, and H. Casanova.
Overview of GridRPC: A Remote Procedure Call API for Grid Computing. In
M. Parashar, editor, GRID 2002, pages 274–278, 2002.

12. Y. Tanaka, H. Nakada, S. Sekiguchi, Suzumura Suzumura, and S. Matsuoka. Ninf-
G: A reference implementation of RPC-based programming middleware for Grid
computing. Journal of Grid Computing, 1(1):41–51, 2003.

13. Asim YarKhan, Keith Seymour, Kiran Sagi, Zhiao Shi, and Jack Dongarra. Recent
Developments in Gridsolve. International Journal of High Performance Comput-
ing Applications (IJHPCA), 20(1):131–141, 2006.


