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Revenue-Maximizing Pricing and Capacity
Expansion in a Many-Users Regime

Tamer Bas¸ar and R. Srikant

Abstract—
In this paper, we consider a network where each user

is charged a fixed price per unit of bandwidth used, but
where there is no congestion-dependent pricing. However,
the transmission rate of each user is assumed to be a func-
tion of network congestion (like TCP), and the price per unit
bandwidth. We are interested in answering the following
question: how should the network choose the price to maxi-
mize its overall revenue? To obtain a tractable solution, we
consider a single link accessed by many users where the ca-
pacity is increased in proportion to the number of users. We
show the following result: as the number of users increases,
the optimal price-per-unit-bandwidth charged by the ser-
vice provider may increase or decrease depending upon the
bandwidth of the link. However, for all values of the link
capacity, the service provider’s revenue-per-unit-bandwidth
increases and the overall performance of each user (mea-
sured in terms of a function of its throughput, the network
congestion and the cost incurred by the user for bandwidth
usage) improves. Since the revenue per unit bandwidth in-
creases, it provides an incentive for the service provider to
increase the available bandwidth in proportion to the num-
ber of users.

Keywords—Pricing, Capacity expansion, Congestion con-
trol, Many-users limit, Quality-of-Service

I. I NTRODUCTION

Recently, there has been much interest in the design of
networks where very small queues are maintained at the
routers (for example, see [10], [7], [17], [8], [13], [9], [15],
[14]). This is accomplished through a combination of con-
gestion control by the end users and limited congestion
information feedback from the routers. A key assumption
driving the design of such networks is the following well-
known large deviations result: when the number of users
in the network is large and the capacity of the network is
large, then the probability that the arrival rate will exceed
the available capacity is small. Thus, the probability of
queue build-up is small [3]. In this paper, we examine
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the economics of providing large capacity from a service
provider’s point of view.

To make the problem tractable, we consider a single link
accessed by many users, where each user is subject to con-
gestion control and pricing. Many models have been sug-
gested for pricing in networks. A pricing scheme that can
be viewed as a natural extension of the behavior of TCP,
the widely-used congestion control protocol, is to charge
users for every congestion indication signal (for exam-
ple, an ECN mark) that they receive [7], [13]. While this
scheme leads to optimal resource allocation in a network, it
may not be very practical. It is debatable as to whether end
users would agree to a pricing scheme that dynamically
varies with the load in the network. At the other extreme
would be a pricing scheme where each user pays a fixed
access charge to use the network. Such a scheme is widely
practiced today by Internet service providers. However,
this scheme suffers from the limitation that users utiliz-
ing different amounts of network resources are all treated
equally; thus this scheme lacks any control over resource
allocation.

In this paper, we consider an intermediate scheme where
we assume that each user pays a price proportional to the
amount of bandwidth that he/she uses. In addition, we as-
sume that the network provides congestion indication sig-
nals that allow the users to adapt their transmission rates in
response to network congestion. This congestion control
action on the part of the users is assumed to be voluntary
as in the case of TCP. However, if there is a need to police
to unresponsive users, the network could impose a conges-
tion price, but we assume that this is negligible compared
to the bandwidth cost paid by the user.

Given the above pricing model, our goal is to understand
if it is profitable for a service provider to increase the net-
work capacity in proportion to the number of users. Our
contributions in this paper can be summarized as follows:

• We model the interaction between the service provider
and the users as a Stackelberg game [1]. The service
provider sets the price per bandwidth and the users respond
to the price by presenting a certain amount of flow to the
network. The users do not cooperate among themselves,
which thus leads to a Nash game among the users. We
note that the solution to the Nash game is identical to the
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congestion control solution of Kelly et al in [10] for the
specific cost structure used in this paper. However, our
primary focus here is on the Stackelberg game in order to
understand the interplay between the price set by the net-
work and congestion control.
• To understand the possible equilibrium solutions to the
Stackelberg game, we consider a special case with a fixed
link capacity of one unit and obtain explicit expressions for
the users’ flows and the optimal price. In addition to illus-
trating the difficulties in obtaining explicit solutions to the
problem, this special case identifies certain key features of
the optimal solution.
• We then consider a limiting regime where the number of
users and the capacity of the link are increased simultane-
ously. In this case, we obtain explicit asymptotic solutions
to the optimal price and the users’ responses. Our main
result shows that, as the number of users increases, the
service provider’s revenue per unit bandwidth as well as
the performance of each user improve.

We note that there is an extensive literature on game-
theoretic models of routing and flow control in communi-
cation networks (for example, see [19], [11], [12], [16],
[4], [5]). These papers have presented conditions for the
existence and uniqueness of an equilibrium. This has al-
lowed, in particular, the design of network management
policies that induce efficient equilibria [11]. This frame-
work has also been extended to the context of repeated
games in which cooperation can be enforced by using poli-
cies that penalize users who deviate from the equilibrium
[16]. Our paper differs from the above papers due to the
fact that our goal is to devise a revenue-maximizing pricing
scheme for the service provider. Thus, a noncooperative
(Nash) flow control game is played by the users (follow-
ers) in a Stackelberg game where the goal of the leader is
to set a price to maximize revenue.

II. GAME-THEORETIC FORMULATION

Consider a link of capacitync accessed byn users. Let
p be the price per unit bandwidth charged by the network,
and letxi denote the transmission rate of Useri. Useri’s
objective is to maximize the following function with re-
spect toxi over[0, nc− x−i):

Fi(xi, x−i; p) = wi log(1+xi)−
1

nc−∑j xj
−pxi , (1)

wherewi log(1 + xi) is the utility of the flowxi to User
i, 1/(nc − ∑j xj) represents the congestion cost on the
link, andx−i :=

∑
j xj − xi. Unless otherwise stated, we

will use
∑
j xj to denote

∑n
j=1 xj , which we will also oc-

casionally write as̄x. If we assume that the queueing pro-
cess at the link isM/M/1, then the above congestion cost

is simply the delay on the link. For a givenp, this defines
a noncooperative game between the users of the network,
with the underlying solution being the Nash equilibrium
[1]. For each fixedp > 0, a Nash equilibrium for thisn-
player game is ann-tuple{x∗i (p) ≥ 0}ni=1 satisfying, for
all i ∈ N (with N := {1, . . . , n}),

max
0≤xi≤nc−x∗−i

Fi(xi, x∗−i; p) = Fi(x∗i , x
∗
−i; p) . (2)

Assuming that the game admits a unique Nash equilibrium
(which we will prove to be the case), we associate with
the service provider a revenue maximization problem to
determine theoptimumprice to charge, namely

max
p≥0

L(p; x̄∗(p)) , L(p; x̄) := px̄

wherex̄∗(p) :=
∑
j x
∗
j (p). What we have here is therefore

a Stackelberg game [1], with one leader (with objective
function L) andn noncooperative Nash followers (with
objective functionsFi’s).

Remark II.1: The utility function that we have chosen
for User i is wi log(1 + xi), which is closely related to
the utility functionwi log xi that leads to proportionally
fair resource allocation [8], [9]. If we use the utility func-
tion wi log xi, however, then a user is forced to present
a nonzero flow to the network since its utility becomes
−∞ if xi = 0. Our utility function wi log(1 + xi) al-
lows each user to exercise distributed admission control,
i.e., decide whether to join the network or not. As we will
see later, this ensures nontrivial and meaningful solutions
to the Stackelberg game. On the other hand, if we use the
utility functionwi log xi for Useri, then, for a givenp, the
first order necessary conditions (which are also sufficient)
for a Nash equilibrium among the followers are given by

pxi = wi −
xi

(nc−∑j xj)2
, i ∈ N,

leading to

p
∑
j

xj =
∑
j

wj −
∑
j xj

(nc−∑j xj)2
.

Thus, the optimal value of the revenuep
∑
j xj is

∑
j wj ,

which is obtained by lettingp go to∞, which drives the
xj ’s to zero. Such an (unrealistic) situation arises due to
the fact that each user is forced to send a nonzero flow over
the link which the service provider can exploit by setting
an arbitrarily high price.

As a final comment on the utility function, we note that
it is straightforward to modify the results of this paper for
the case where the utility function for Useri is of the form
wi log(δ + xi), for anyδ > 0.
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III. C OMPLETE SOLUTION FOR A SPECIAL CASE

We first consider here a special case of the problem for-
mulated above, wherec = 1. This special case allows
for derivation of an explicit expression for the (unique) so-
lution and provides insight into the solution of the more
general case to be discussed in the next section.

Hence we have as the objective function of Useri ∈ N:

Fi(xi, x−i; p) = wi log(1 + xi)−
1

n− x̄ − pxi

wherex−i and x̄ are as defined earlier, andp is a fixed
price picked by the service provider. Now note that adding
the quantity ∑

j 6=i
wj log(1 + xj)−

∑
j 6=i

pxj

to Fi and treating the resulting function as the new objec-
tive function of Useri will not affect the Nash equilib-
rium, and hence in essence (as far as the Nash equilibrium
is concerned) the original game is equivalent to one where
all users have the identical objective function

F (x1, . . . , xn; p) =
n∑
j=1

wj log(1+xj)−
1

n− x̄−px̄ . (3)

Note that, for allxi, i ∈ N such that̄x < n,

Fxixi = − wi
(1 + xi)2

− 2
(n− x̄)3

< 0 , i ∈ N

Fxixj = − 2
(n− x̄)3

< 0 , j 6= i ; i, j ∈ N .

It is now easy to see that theHessianmatrix ofF is neg-
ative definite, and thusF is strictly concave in the non-
negative orthant bounded by the hyperplanex̄ = n. Fur-
thermore,F ↓ −∞ asx̄ ↑ n, and hence the optimization
problem

max
xi≥0,i∈N ;x̄<n

F (x1, . . . , xn; p)

admits a unique solution, which is also the onlyperson-by-
person optimal(that is, Nash equilibrium) solution. The
optimal flows of the users can be obtained by solving the
set of first-order conditions: fori ∈ N,

Fxi(x
∗
1, . . . , x

∗
n; p) = 0 if x∗i > 0

< 0 if x∗i = 0

where

Fxi =
wi

1 + xi
− 1

(n− x̄)2
− p .

Let us first consider the case whenx∗i > 0 ∀ i ∈ N. It fol-
lows fromFxi = 0 that (suppressing∗ onxi throughout):

wi
1 + xi

=
wj

1 + xj
, ∀ i, j ∈ N ,

or equivalently,

yi =
wi
wj
yj , ∀ i, j ∈ N ,

where yi := 1 + xi. Letting

ȳ :=
∑
j

yj , w̄ :=
∑
j

wj ,

one can expressyi’s in terms ofȳ:

yi =
wi
w̄
ȳ , ∀ i ∈ N .

Using this in the first-order conditionsFxi = 0 , i ∈ N,
we obtain

g(ȳ) =:
w̄

ȳ
− 1

(2n− ȳ)2
− p = 0 , (4)

for which we seek a solution in the interval(n, 2n). Note
thatg is strictly decreasing in the interval(n, 2n), and fur-
thermoreg(2n−) = −∞ andg(n) = w̄−n−2−p. Hence,
equation (4) admits a solution (and a unique one) in the
given interval if, and only if,g(n) > 0, that is

p < wav −
1
n2

=: p̂ , (5)

wherewav := (1/n)w̄. Let us denote the unique solution
to (4) for p satisfying (5) byȳ(p). Clearly, the constraint
onp is necessary for the existence of a positive Nash equi-
librium, since ifp exceeds the given bound, then there will
not exist a feasible solution to (4), meaning that the only
Nash equilibrium (equivalently, the only maximizing so-
lution to (3)) will then dictate some of the users not to
transmit at all. Note that the constraint (5) becomes pro-
gressively less restrictive as the number of users,n, in-
creases, asymptotically reaching the boundwav, assuming
of course that the latter is well-defined asn→∞.

Hence, the discussion above shows that the constraint
(5) is necessaryfor existence of a positive solution to the
maximization problem with objective function (3); it is,
however, not sufficient, as̄y > n does not imply positivity
of the individualxi’s. For this, we also need

wi
w̄
ȳ(p) > 1 , ∀ i ∈ N . (6)

Note that this condition brings in dependence on the indi-
vidual wi’s, whereas (5) required only the knowledge of
their sum,w̄. The condition (6) says thatwi’s should not
be too far from their average valuewav := (1/n)w̄, that
is they should cluster aroundwav. If this is not the case,
the users with smallerwi’s will have to drop out of the
game, that is not transmit at all, as we will see later in this
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section. But for the moment, since we are interested only
in the positive Nash equilibrium, let us assume that for a
given p satisfying only (5),wi’s are distributed in such a
way that condition (6) also holds; a precise condition for
this will be derived shortly.

The next step in the solution process is to obtain a
revenue-maximizing price for the service provider, that is
to solve the maximization problem

max
0<p<p̂

L(p; x̄(p)) , L := p x̄(p) ,

where x̄(p) is the sum of individual users’ transmission
rates in the Nash game, in response to a fixed pricep; this
quantity is of course also equal tōy(p) − n. Since there
is a one-to-one correspondence betweenp ∈ (0, p̂) and
ȳ ∈ (n, 2n) through (4), the service provider’s optimiza-
tion problem can equivalently be carried out with respect
to ȳ using (4) as a constraint, that is:

max
n<ȳ<2n

L(p(ȳ); ȳ − n) ,

where

L(p(ȳ); ȳ − n) = (ȳ − n)
(
w̄

ȳ
− 1

(2n− ȳ)2

)
.

This is again a strictly concave function in the given
open interval, and since it becomes unbounded negative
as ȳ ↑ 2n and iszeroat ȳ = n, it admits an inner maxi-
mum (which is also unique) if, and only if, the first-order
stationarity condition leads to a solution in the given in-
terval. The condition (obtained by simply differentiating
L(p(ȳ); ȳ − n) above with respect tōy) is:

−(ȳ − n)
(
w̄

ȳ2
− 2

(2n− ȳ)3

)
+
w̄

ȳ
− 1

(2n− ȳ)2
= 0 ,

which admits the unique solution1

ȳ∗ =
2n(nw̄)

1
3

1 + (nw̄)
1
3

provided that
nw̄ > 1

which ensures that̄y∗ > n, that is the total throughput is
positive. Now, for the individual throughput levels to be
positive, we need also the condition (6):

wi
w̄
· 2n(nw̄)

1
3

1 + (nw̄)
1
3

> 1 , ∀ i ∈ N ,

1The fact that the solution can be obtained explicitly (in closed form)
here is precisely the reason why we have discussed the case ofc = 1
separately. Forc 6= 1 such an explicit solution cannot be obtained,
except asymptotically for largen, as we will see in the next section.

which can be re-arranged and written in the more appeal-
ing form, in terms ofwav:(

2wi
wav
− 1

)
(n2wav)

1
3 > 1 , ∀ i ∈ N . (7)

This condition is of course more restrictive than the earlier
one,n2wav > 1, which will therefore be dropped.

The revenue-maximizing price (for the service provider)
can now be obtained from (4), to read (also written in terms
of wav):

p∗ =
wav
2

(1 + (n2wav)−
1
3 )− 1

4n2
(1 + (n2wav)

1
3 )2 (8)

which can easily be checked to be positive provided that
n2wav > 1, a condition already assumed to hold. It is also
easy to check thatp∗ < p̂. The following theorem now
captures the complete positive solution to the problem of
this section. In the statement of the theorem, we use the
notationf(n) ∼ h(n) to meanlimn→∞ (f(n)/h(n)) = 1.

Theorem III.1: The special case of the general problem
of this paper, characterized byc = 1, admits a solution
where all n users transmit at positive rates if, and only if,
condition (7) holds. In this case, the solution is unique,
with the optimal price charged by the service provider be-
ing (8), and with the Nash equilibrium transmission rates
of the users given by

x∗i =
wi
wav

(x∗av + 1)− 1 (9)

wherex∗av is the optimal average throughput, given by

x∗av = 1− 2

1 + (n2wav)
1
3

. (10)

Asymptotically, for largen, and with the smallestwi
bounded away fromzero, condition (7) is satisfied, and

p∗ ∼ wav
2

+
(wav)

2
3

4
n−

2
3 , x∗av ∼ 1− 2(wav)−

1
3n−

2
3 .

(11)
Again asymptotically, the revenue per unit bandwidth,
which is the product ofp∗ andx∗av, becomes

Revenue/bw∼ wav
2
− 3

4
(wav)

2
3n−

2
3 , (12)

the congestion cost is given by

D∗ =
1

n(1− x̄∗) ∼
1
2

(wav)
1
3n−

1
3 , (13)
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and the equilibrium net utility levels of the users admit the
expressions

F ∗i = wi log
2wi
wav

+
1
2
wav − wi −

1
2

(wav)
1
3n−

1
3 . (14)

Remark III.1: An interesting observation that can be
made from the asymptotic results of the theorem above is
that forn sufficiently large, the optimum price decreases
with increasingn, while the average (per user) throughput
increases withn. The net effect on the revenue per unit
bandwidth is that it increases withn, and so do the utility
levels of individual users–all very appealing features. Note
also that the congestion cost goes asymptotically tozero,
with the convergence being monotonic for largen. All
these features will be discussed further in the next section,
where we will see that the solution to the original problem
(that is, with generalc) also shares them.

The result of Theorem III.1 relies on condition (7),
which we have already seen to be satisfied ifn is suffi-
ciently large. The other extreme case is the single-user
problem (n = 1), in which case it is also satisfied, pro-
vided thatw1 > 1. In this extreme case, one can easily
see that ifw1 ≤ 1 then the optimum throughput is sim-
ply x∗1 = 0. Now, to obtain the complete solution for the
generaln case, let us first adopt the convention that the
users are ordered in decreasing values of thewi’s, that is
wi > wj ⇒ i < j, with w1 > 1. Let n∗ be the largest in-
tegerñ ≤ n for which the following inequality is satisfied:(

2wñ
w̃av
− 1

)
(ñ2w̃av)

1
3 > 1 , (15)

wherew̃av is defined aswav with n replaced bỹn. Clearly,
if the originaln-user problem is replaced with a new one
that retains only the firstn∗ users, this new one will ad-
mit a unique solution that is covered by Theorem III.1,
with n replaced byn∗. Furthermore, this unique solution,
appended withxj = 0, j > n∗, constitutes the unique
solution to the originaln-user problem. This follows be-
cause of the uniqueness of the solution to the noncooper-
ative game faced by the users for eachp, the fact that̂p is
strictly decreasing inn, and the property that with̃n fixed,
no other ordering of the users can lead to a higher value
for the left-hand-side of (15). We now summarize this re-
sult (the complete solution to the problem of this section)
in the following theorem.

Theorem III.2: Consider the problem of this section,
with the indexing of the users such thatwi > wj ⇒ i < j.
Further, letw1 > 1, andn∗ be defined as above (the largest
integerñ satisfying (15)). Then,n∗ ≥ 1, and the problem
admits a unique solution withx∗i , i ≤ n∗, andp∗ given as
in Theorem III.1 withn∗ replacingn, andx∗j = 0, j > n∗.

Example III.1: Consider a network withw1 = 3, wi =
1 ∀i ≥ 2. Checking the condition of Theorem III.2 for
different values ofn, we have:

n∗ = 1 if n ≤ 4; n∗ = n for n ≥ 5 .

Computing the optimum throughputs, price levels, revenue
per unit bandwidth, and user’s net utility levels,F ∗i , for
selectedn, we have:

n = 1⇒ x∗av = 0.1811, p∗ = 1.0489, p∗x∗av = 0.1899,
F ∗1 = −1.00428

n = 5⇒ x∗av = 0.5317, p∗ = 0.7316, p∗x∗av = 0.3890,
x∗1 = 2.2823, x∗j = 0.0941, j ≥ 2,
F ∗1 = −0.548245, F ∗j = −0.456863, j ≥ 2

n = 10⇒ x∗av = 0.6629, p∗ = 0.6337,
p∗x∗av = 0.4200, x∗1 = 3.15722, x∗j = 0.3857, j ≥ 2,

F ∗1 = −0.440802, F ∗j = −0.399363, j ≥ 2

n→∞⇒ x∗av = 1, p∗ = 0.5, p∗x∗av = 0.5,
x∗1 = 5, x∗j = 1, j ≥ 2,

F ∗1 = −0.165546, F ∗j = −0.19897, j ≥ 2 .

The numerical results above indicate that the asymp-
totic behavior alluded to earlier holds even for relatively
small values ofn, as in going fromn = 1 to 5 and then to
10, we see the average throughput,x∗av, increasing, price,
p∗, decreasing , the revenue per unit bandwidth increasing,
and the utility levels of each user improving, thus showing
an overall monotonic trend toward the values reached as
n → ∞. Another interesting feature of the results above
is that adding additional capacity for potentially new users
is not always a revenue-improving move for the service
provider. As we see from the above, as compared with the
single-user case, a benefit accrues to the service provider
only if 4 or more additional users (with lowerwi parame-
ter values) are admitted to the network (with an additional
unit of capacity added for each new user).
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IV. T HE GENERAL SOLUTION

We now return to the original problem with a generalc,
and develop the solution by following essentially the same
steps as in the previous section. By a slight abuse, we will
use the same notation as in the previous section, where
appropriate. Also, for convenience we will order the users
according to theirwi values, so thatwi > wj will imply
i < j.

We first consider the Nash game faced by then users, for
each fixedp > 0. The following lemma settles the issues
of existence and uniqueness of Nash equilibrium for this
game.

Lemma IV.1:For each fixedp > 0, then-person nonco-
operative game where Playeri’s objective function (to be
maximized) is given by (1), admits a unique Nash equilib-
rium {x∗i (p) ≥ 0 ; i ∈ N}, with x̄∗(p) =

∑
j x
∗
j (p) < nc.

Proof: Following the line of reasoning in the previous sec-
tion, every Nash equilibrium solution of this game is also
a Nash equilibrium solution of a game with the following
objective for Useri:

F (x1, . . . , xn; p) =
∑
j

wj log(1 + xj)−
1

nc− x̄ − px̄ .

Note that this objective function is identical for all users,
and is strictly concave in the n-tuple(x1, . . . , xn) which
is restricted to the nonnegative orthant bounded by the
hyperplanex̄ = nc on whichF is unbounded from be-
low. Then, from standard results in finite-dimensional op-
timization [2], it follows thatF has a unique maximum in
this bounded region (where it is finite, except on the given
hyperplane), and everyperson-by-person optimalsolution
is also globally optimal. Hence, the Nash equilibrium ex-
ists and is unique. Clearly, the maximizing solution cannot
lie on the hyperplane, thus the strict inequality onx̄∗(p).

Depending on the value ofp and values of other param-
eters, the unique solution alluded to in the lemma above
could lie on the lower boundary of the constraint region
(that is some of thexi’s could bezero). If this does not hap-
pen, we say that the Nash equilibrium isinner or positive.
We now first obtain necessary and sufficient conditions for
the equilibrium to be positive, and obtain a characteriza-
tion for it. Clearly, from first-order conditions (which are
also sufficient), the Nash equilibrium will be positive if,
and only if, the following set of equations admits a posi-
tive solution (forxi’s):

wi
1 + xi

− 1
(nc− x̄)2

− p = 0, (16)

or, equivalently,

wi = (1 + xi)
(

1
(nc− x̄)2

+ p

)
.

Taking the sum of the above equation over alli and defin-
ing ȳ = x̄+ n, we get

g(ȳ) :=
w̄

ȳ
− 1

(nc+ n− ȳ)2
− p = 0 . (17)

Using (17) in (16), and solving forxi, we obtain

xi =
wi
w̄
ȳ − 1 , i ∈ N , (18)

which are required to be positive. Hence, the Nash equilib-
rium is positive for a givenp if, and only if, there exists a
ȳ > n solving (17) and further making (18) positive. Since
g(ȳ ↑ n(c+1)) = −∞, andg(ȳ = n) = wav−(nc)−2−p,
and g is strictly decreasing in[n, (c + 1)n), similar to
the development in the previous section, there will exist
a unique solution to (17) in the open interval(n, (c+ 1)n)
if, and only if,g(n) > 0, that is

p < wav −
1

(nc)2
=: p̂ (19)

which is the counterpart of (5) for the more general game
of this section. Hence, for anyp satisfying (19), the unique
Nash equilibrium is positive if, and only if, the unique so-
lution, ȳ∗(p), to (17) satisfies (in view of (18) and the or-
dering of the users) the condition

wn
w̄
ȳ∗(p) > 1 . (20)

Now proceeding on to the maximization problem (2)
faced by the service provider, because of the one-to-
one correspondence betweenȳ (or equivalentlyx̄) andp
through the constraint (17), a problem equivalent to (2)
is maximization of the following function with respect to
ȳ > n (obtained by substitution ofp from (17) in terms of
ȳ):

L̃(ȳ) = w̄(1− n

ȳ
)− ȳ − n

(n(c+ 1)− ȳ)2
.

We seek a solution to this maximization problem in the
open interval(n, (c+1)n). L̃ is analytic over this interval,
and

L̃ȳ =
nw̄

ȳ2
− n(c− 1) + ȳ

(n(c+ 1)− ȳ)3
, L̃ȳȳ < 0.

Hence,L̃ is strictly concave, and further since it becomes
unbounded negative at the upper end of the interval, it fol-
lows that it has a unique maximum in the half-open inter-
val [n, (c + 1)n). Moreover, the situation̄y = n can be
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avoided by requiring that̃Lȳ(n) > 0, which translates into
the simple condition

n2c2wav > 1 . (21)

Under this condition, there exists a unique solution,ȳ∗ ∈
(n, (c + 1)n), to L̃ȳ(ȳ) = 0 which we rewrite here for
future reference:

nw̄

ȳ2
− n(c− 1) + ȳ

(n(c+ 1)− ȳ)3
= 0 . (22)

The corresponding value ofp, which in fact maximizes
L(p; x̄∗(p), is then obtained directly from (17):

p∗ =
w̄

ȳ∗
− 1

(nc+ n− ȳ∗)2
(23)

which, by construction, satisfies (19) and the positivity
constraint. To complete the solution to the problem, how-
ever, we still have to require that (20) holds withp replaced
by p∗, or equivalently

wn
w̄
ȳ∗ > 1 , (24)

with ȳ∗ solving (22). The counterpart of this condition
for the casec = 1 is (7), which is more explicit because
ȳ∗ admitted a closed-form expression in that case; in the
present more general case,ȳ∗ satisfies a third-order poly-
nomial equation, which does not admit an easily express-
ible solution.

Now, if the two conditions above, that is (21) and (24),
do not hold, then one has to look for a boundary solution,
that is a solution where some users are dropped out of the
network. In this scheme, users will have to be dropped
in reverse order, until the first time both these conditions
hold; let this number ben∗. That is,n∗ is the maximum
number of ordered users for which conditions (21) and
(24) hold. As in the previous section, no other ordering
will lead to a higher number of users for whom the condi-
tions hold. Then, the problem is essentially equivalent to
a network with onlyn∗ users, for which we again have an
inner Nash equilibrium.

This now brings us to the following theorem, which is
the counterpart of Theorem III.2 for this general case.

Theorem IV.1:Consider the general problem of this
section, with the indexing of the users such thatwi >
wj ⇒ i < j. Further letc2w1 > 1, andn∗ be de-
fined as above (the largest integern for which conditions
(21) and (24) both hold). Then,n∗ ≥ 1, and the prob-
lem admits a unique solution{x∗1 . . . , x∗n; p∗} as follows:
x∗i = (wi/w̄∗)ȳ∗ − 1, i ≤ n∗, wherew̄∗ is the sum of the

first n∗ wi’s and ȳ∗ is the unique solution of (22) withn
replaced byn∗; p∗ is given by (23) with againn∗ replacing
n; andx∗j = 0, j > n∗.

Proof: Proof follows readily from the discussion preced-
ing the statement of the theorem, in view of also the discus-
sion on the special (c = 1) case in the previous section. We
should simply point out here that the reason whyn∗ ≥ 1
under the conditionc2w1 > 1, is because this condition is
precisely (21) whenn = 1, and there is no need for (24)
in the single user case (the condition is automatically sat-
isfied).

Remark IV.1:In deriving the solution to the Stackel-
berg game, we have assumed that the users respond to the
service provider’s price by reaching a Nash equilibrium.
Given a pricep, our model fits into the framework devel-
oped by Kelly et al [10], and hence the Nash equilibrium
can be reached in a distributed fashion by the users, with
each user implementing a congestion control algorithm.
Consider the congestion control algorithm

ẋi = κi(wi − p− pxi − (1 + xi)q(
∑
j

xj))

where

q(λ) :=
1

(nc− λ)2
.

If the Nash equilibrium solution is positive, then the equi-
librium point of this system of congestion controllers is
also the unique Nash equilibrium solution. Following [10],
it is now easy to verify thatF (x1, x2, . . . , xn; p), defined
in the proof of Lemma IV.1, is a Lyapunov function for
this system of congestion controllers and hence, the system
converges to its equilibrium point. Even in the presence of
noise in the system due to various sources of randomness
such as departures and arrivals of short-lived flows, inaccu-
rate congestion feedback, etc., it has been established that,
under appropriate limiting regimes, the above congestion
control equations are valid [21]. Recently, local conver-
gence of these congestion controllers has been established
even in the presence of delays for appropriate choice of the
controller gainsκi [6], [18], [22]. Similar results for the
dual version of the optimization problem can be found in
[20].

V. M ANY-USERSREGIME

We now study the behavior of the solution obtained in
the previous section for largen. Studying thismany-users
regimewill allow us to obtain an explicit expression forȳ∗

(or x̄∗), which was not possible for finiten, unlessc = 1.
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The study will also enable us to ask (and answer) ques-
tions like whether it is possible for the service provider to
admit new users to the network by increasing the capacity,
and whether the existing users would benefit (measured in
terms of their utilities) from a “crowding” of the network.

An underlying assumption (or rather convention)
throughout this section is that asn → ∞, the sequence
{wav(n) := (1/n)

∑n
j=1wj} has a well-defined limit,

wav. This would be the case, for example, when beyond a
finite n the users added to the network all have the same
wi’s, that iswi = w ∀ i ≥ n + 1. In this case, of course,
wav = w. An immediate implication of this assumption is
that now the condition (21) is readily satisfied.

Now, to study the asymptotic behavior, it is also conve-
nient to work with the arithmetic mean of thexi’s (or yi’s),
rather than their sum, denoted for the former as

xav(n) =
1
n

n∑
j=1

xj .

Then, we can re-write (22) as

wav(n)
(xav(n) + 1)2

=
c+ xav(n)

n2(c− xav(n))3
.

Under our assumption thatwav(n) → wav asn → ∞, a
positive solution toxav(n) exists for largen if, and only
if,

lim
n→∞

n2(c− xav(n))3 = α

for someα > 0. Substituting this in (17), we obtain

p ∼ wav
c+ 1

+
2c− 1
α2/3n2/3

, (25)

where we have again used the notational convention that
f(n) ∼ h(n) if limn→∞ (f(n)/h(n)) = 1. Using (25) in
(22), and lettingn→∞, yields

α =
2c(c+ 1)2

wav
. (26)

Then,

xav(n) ∼ c− n−2/3α1/3 = c−
(

2c(c+ 1)2

wav

) 1
3

n−
2
3 ,

(27)
and from (18),

xi(n) =
wi

wav(n)
(xav(n) + 1)− 1

∼ (c+ 1)
wi
wav
− 1− wi

wav
α

1
3n−

2
3 (28)

Now, for n sufficiently large, a positivity condition on the
xi’s can be obtained from (28) by simply requiring the

zeroth-order term to be positive:

min
i
wi >

wav
c+ 1

, (29)

which is essentially condition (24) in the limit asn→∞.
An interpretation for this for eachi is thatwi for User i
must be more than the limiting value of the price-per-unit-
bandwidth for the user to be able to send nonzero flow over
the link. Overall, (29) is precisely the condition for all
users in the many-users regime to send positive flow over
the network, as dictated by the optimal solution. Users
whosewi values fall short of the boundwav/(c + 1) drop
out of the network. If, on the other hand, there is a high
population of users with the lowestwi values, in which
case asymptoticallywav(n) ∼ miniwi, the condition will
be satisfied for all positivec, thus imposing no specific
conditions onc; otherwise, the value ofc will have to be
increased to accommodate the users with smallwi values.

It is worth also noting that the optimal price charged by
the network is positive for sufficiently largen, but whether
it is an increasing or decreasing function ofn depends on
the specific value ofc. For c > 1/2, it decreases withn,
whereas forc < 1/2, it increases withn. In spite of thisc-
dependent behavior of the optimum price, the revenue per
unit bandwidth exhibits ac-independent trend–increasing
with n in the many-users regime:

Revenue/bw=
pxav
c
∼ wav
c+ 1

− 3α−
2
3n−

2
3 .

Suppose thatwav/(c+ 1) is larger than the cost of adding
one unit of bandwidth, then, as the number of users in-
creases, the service provider’s profit increases. Thus, the
service has an incentive to increase the link capacity which
drives the congestion cost to zero as shown next.

The congestion cost decreases withn in the many-users
regime:

Congestion cost=
1

n(c− xav(n))
∼ α− 1

3n−
1
3 ,

and so does the net utility of each user:

F ∗i = wi log
(c+ 1)wi
wav

− wi +
wav
c+ 1

− α− 1
3n−

1
3 .

Remark V.1:In the limit asn → ∞, the congestion
costs go to zero. Thus, it would be interesting to explore
if the limiting solution coincides with the solution to the
Stackelberg game where the followers (users) do not have
congestion costs in their objectives. Accordingly, suppose
that Useri’s objective is to maximize the following func-
tion with respect toxi over[0, nc− x−i):

Fi(xi, x−i; p) = wi log(1 + xi)− pxi . (30)
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subject to the constraint
∑
j xj ≤ nc. For a fixedp, as ar-

gued earlier, the Nash equilibrium solution coincides with
the solution to a team problem with the following objective
function:

F (x1, x2, . . . , xn; p) =
∑
j

wj log(1 + xj)− p
∑
j

xj ,

which is subject to the same constraint as above. Using La-
grange multiplier approach [2], the unique solution to the
above constrained optimization problem can be obtained
as follows:

xi =
wi
p+ λ

− 1

whereλ satisfies

λ(
∑
j

xj − nc) = 0; λ ≥ 0.

If λ = 0, the above conditions lead to

p ≥ w̄

(n+ 1)c

and
xi(p) =

wi
p
− 1.

On the other hand, ifλ > 0, then the inequality constraint
would be an equality, leading to

λ =
w̄

(n+ 1)c
− p > 0,

and

xi(p) =
wi(n+ 1)c

w̄
.

Maximization ofp
∑
j xj(p) overp ≥ 0 dictates that the

revenue-maximizing price is given by

p∗ =
wav
c+ 1

which coincides with thezerothorder term in (25). How-
ever, the fact that this is indeed thezerothorder term can-
not be established without going through the full solution
to the Stackelberg game and carrying out the asymptotic
analysis. Further, the asymptotic expansion provides in-
sight into the behavior of the price, the service provider’s
total revenue, revenue per unit bandwidth, and the net util-
ities of the users, for finite, but large,n.

VI. CONCLUSIONS

The roles of the congestion controllers at the end users
and active queue management schemes at the routers in
designing low-loss, low-queueing-delay networks are well

documented. The key assumption required for providing
such a high quality-of-service is that the capacities of the
links in the network are large, in proportion to the number
of users in the network, which is typically large. In this
paper, we have examined the question of whether there
is an economic incentive for a service provider to provi-
sion large link capacities. For a simple single-link model,
we have established the following result: under a pricing
scheme that charges users for bandwidth (bits-per-second)
usage and a collection of congestion-controlled sources
subject to distributed admission control, the optimal rev-
enue of the service provider increases with the number
of users if the provisioned capacity is proportional to the
number of users.
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