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Revenue-Maximizing Pricing and Capacity
Expansion in a Many-Users Regime

Tamer Baar and R. Srikant

Abstract— the economics of providing large capacity from a service
In this paper, we consider a network where each user provider’s point of view.
is charged a fixed price per unit of bandwidth used, but 14 make the problem tractable, we consider a single link

where there is no congestion-dependent pricing. However, accessed by many users, where each user is subject to con-
the transmission rate of each user is assumed to be a func- i trol and prici M dels h b
tion of network congestion (like TCP), and the price per unit gestion control and pricing. Many models have been sug-

bandwidth. We are interested in answering the following 9€sted for pricing in networks. A pricing scheme that can
question: how should the network choose the price to maxi- be viewed as a natural extension of the behavior of TCP,

mize its overall revenue? To obtain a tractable solution, we the widely-used congestion control protocol, is to charge
consider a single link accessed by many users where the causers for every congestion indication signal (for exam-
pacity is increased in proportion to the number of users. We ple, an ECN mark) that they receive [7], [13]. While this

show the following result: as the number of users increases, g me |eads to optimal resource allocation in a network, it

the optimal price-per-unit-bandwidth charged by the ser- may not be very practical. Itis debatable as to whether end
vice provider may increase or decrease depending upon the

bandwidth of the link. However, for all values of the link ~US€rs would agree to a pricing scheme that dynamically
capacity, the service provider’s revenue-per-unit-bandwidth varies with the load in the network. At the other extreme
increases and the overall performance of each user (mea-would be a pricing scheme where each user pays a fixed
sured in terms of a function of its throughput, the network access charge to use the network. Such a scheme is widely
congestion and the cost incurred by the user for bandwidth practiced today by Internet service providers. However,
usage) improves. Since the revenue per unit bandwidth in- this scheme suffers from the limitation that users utiliz-
creases, it provides an incentive for the service provider to ;. jitfarent amounts of network resources are all treated
increase the available bandwidth in proportion to the num- ] :
ber of users. equally, thus this scheme lacks any control over resource
Keywords—Pricing, Capacity expansion, Congestion con- aIIocatfon. . . .
trol, Many-users limit, Quality-of-Service In this paper, we consider an intermediate scheme where
we assume that each user pays a price proportional to the
amount of bandwidth that he/she uses. In addition, we as-
sume that the network provides congestion indication sig-
Recently, there has been much interest in the designnals that allow the users to adapt their transmission rates in
networks where very small queues are maintained at tesponse to network congestion. This congestion control
routers (for example, see [10], [7], [17], [8], [13], [9], [15],action on the part of the users is assumed to be voluntary
[14]). This is accomplished through a combination of coras in the case of TCP. However, if there is a need to police
gestion control by the end users and limited congestitmunresponsive users, the network could impose a conges-
information feedback from the routers. A key assumptidion price, but we assume that this is negligible compared
driving the design of such networks is the following wellto the bandwidth cost paid by the user.
known large deviations result: when the number of usersGiven the above pricing model, our goal is to understand
in the network is large and the capacity of the network it is profitable for a service provider to increase the net-
large, then the probability that the arrival rate will exceegork capacity in proportion to the number of users. Our
the available capacity is small. Thus, the probability @ontributions in this paper can be summarized as follows:

queue build-up is small [3]. In this paper, we examing\ye model the interaction between the service provider
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congestion control solution of Kelly et al in [10] for theis simply the delay on the link. For a given this defines
specific cost structure used in this paper. However, aamnoncooperative game between the users of the network,
primary focus here is on the Stackelberg game in ordentah the underlying solution being the Nash equilibrium
understand the interplay between the price set by the @i For each fixeh > 0, a Nash equilibrium for this-

work and congestion control. player game is an-tuple {z}(p) > 0}7_, satisfying, for

« To understand the possible equilibrium solutions to tledl i € N (with N := {1,...,n}),

Stackelberg game, we consider a special case with a fixed . . s

link capacity of one unit and obtain explicit expressions for o<, £ne—a- Fy(zi,aZsp) = Fy(ai,22sp) - (2)

the users’ flows and the optimal price. In addition to illus- _ , . A
trating the difficulties in obtaining explicit solutions to the\SSuming that the game admits a unique Nash equilibrium

problem, this special case identifies certain key featuresi§f1ich we will prove to be the case), we associate with
the optimal solution. the service provider a revenue maximization problem to
« We then consider a limiting regime where the number g]etermlne theptimumprice to charge, namely

users and t_he capacity of the link are mcrease_d S|mul_tane— m>aXL(p; z*(p)), L(p; ) := p&

ously. In this case, we obtain explicit asymptotic solutions Pz

to the optimal price and the users’ responses. Our mgiferez*(p) := >; #%(p). What we have here is therefore
result shows that, as the number of users increases, ghstackelberg game [1], with one leader (with objective
service provider's revenue per unit bandwidth as well snction L) andn noncooperative Nash followers (with
the performance of each user improve. objective functiong}’s).

We note that there is an extensive literature on game-Remark 11.1: The utility function that we have chosen
theoretic models of routing and flow control in communifor User i is w; log(1 + x;), which is closely related to
cation networks (for example, see [19], [11], [12], [16}he utility function w; logz; that leads to proportionally
[4], [3]). These papers have presented conditions for thgr resource allocation [8], [9]. If we use the utility func-
existence and uniqueness of an equilibrium. This has gbn ), log z;, however, then a user is forced to present
lowed, in particular, the design of network managemegtnonzero flow to the network since its utility becomes
policies that induce efficient equilibria [11]. This frame-_ if »; = 0. Our utility function w; log(1 + ;) al-
work has also been extended to the context of repeafg@s each user to exercise distributed admission control,
games in which cooperation can be enforced by using pqli., decide whether to join the network or not. As we will
cies that penalize users who deviate from the equilibriugae later, this ensures nontrivial and meaningful solutions
[16]. Our paper differs from the above papers due to the the Stackelberg game. On the other hand, if we use the
fact that our goal is to devise a revenue-maximizing pricingility function w; log z; for Useri, then, for a givem, the
scheme for the service provider. Thus, a noncooperatiy&t order necessary conditions (which are also sufficient)

(Nash) flow control game is played by the users (followpr a Nash equilibrium among the followers are given by

ers) in a Stackelberg game where the goal of the leader is .

to set a price to maximize revenue. PT =W — ———= 3, LEN,
P ! " (nc— > xj)?
Il. GAME-THEORETIC FORMULATION leading to
Consider a link of capacityic accessed by users. Let Yz
p be the price per unit bandwidth charged by the network, pZLUj = Z wj — m
and letx; denote the transmission rate of UselUseri’s J J 7

Objective is to maximize the fOIIOWing function with ré-Thus, the Opt|ma| value of the revenpgj x; is Z] wj,
spect tax; over|[0, nc — z_;): which is obtained by letting go to co, which drives the
1 x;'s to zero. Such an (unrealistic) situation arises due to
Fi(zi,x—i;p) = w;log(14+x;) — ——————pxi, (1) the fact that each user is forced to send a nonzero flow over
ne—y;; act that . . : .
the link which the service provider can exploit by setting
wherew; log(1 + x;) is the utility of the flowz; to User an arbitrarily high price.
i, 1/(nc — 32, x;) represents the congestion cost on the As a final comment on the utility function, we note that
link, andz_; := >_, z; — z;. Unless otherwise stated, wet is straightforward to modify the results of this paper for
willuse 3, z; to denote>""_; x;, which we will also oc- the case where the utility function for Useis of the form
casionally write ag. If we assume that the queueing prow; log(d + x;), for anyd > 0. [ |
cess at the link i97/M /1, then the above congestion cost
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[1l. COMPLETE SOLUTION FOR A SPECIAL CASE or equivalently,

We first consider here a special case of the problem for- w;
mulated above, where = 1. This special case allows Yi = w_jyj’
for derivation of an explicit expression for the (unique) so- _
lution and provides insight into the solution of the mor&here y; := 1+ z;. Letting
general case to be discussed in the next section. - o

Hence we have as the objective function of UserN: y-= Zj: Yj» W= ;wj ’

Vi,j € N,

Fi(wi, x—i;p) = wilog(1 4+ z;) — e one can expresg’s in terms ofy:
wherez_; andz are as defined earlier, andis a fixed yi= 2y, VieN.
price picked by the service provider. Now note that adding w
the quantity Using this in the first-order conditions,, = 0, i € N,
we obtain
Z wjlog(l + x;) — prj
j#i j#i _ w 1
. . . . g(y):T_ 9 72_p:07 (4)
to F; and treating the resulting function as the new objec- y (@n-y)

tive function of User: will not affect the Nash equilib- for which we seek a solution in the interval, 2n). Note

rium, and hence in essence (as far as the Nash equilibrlH{’th is strictly decreasing in the intervéi, 2n), and fur-
is concerned) the original game is equivalent to one Wh%eermoreg@n—) — _scandg(n) w_n_’Q _]; Hence

all users have the identical objective function equation (4) admits a solution (and a unique one) in the

" 1 - given interval if, and only ifg(n) > 0, that is
F(z1,...,2n;p) = ij log(l—&—mj)—m—px. 3

=1 1 _
) p<wav__2::p7 (5)
Note that, for all;, i € N such thatt < n, n
w; 2 , wherew,, := (1/n)w. Let us denote the unique solution
Fowi = — ta)? m—zp 0, ieN to (4) for p satisfying (5) byy(p). Clearly, the constraint
2 S onp is necessary for the existence of a positive Nash equi-
Fow; = —m <0, j#1; i, €N. librium, since ifp exceeds the given bound, then there will

_ _ _ _ not exist a feasible solution to (4), meaning that the only
It is now easy to see that téessianmatrix of " is neg- Nash equilibrium (equivalently, the only maximizing so-
ative definite, and thug’ is strictly concave in the non- | tion to (3)) will then dictate some of the users not to

negative orthant bounded by the hyperplane: n. Fur-  gansmit at all. Note that the constraint (5) becomes pro-

thermore,F” | —oco asz T n, and hence the optimizationgressively less restrictive as the number of usersin-

problem creases, asymptotically reaching the boungd, assuming
mizoglea]{’,‘;knF(xl’ coes Tnip) of course that the latter is well-definedas— co.

admits a unique solution, which is also the opirson-by- Hence, the discussion above shows that the constraint

person optimalthat is, Nash equilibrium) solution. The(5) is necessaryor existence of a positive solution to the

optimal flows of the users can be obtained by solving th&@ximization problem with objective function (3); it is,
set of first-order conditions: fore N, howev_er, _npt sufficient, agﬁ_> n does not imply positivity
of the individualz;’s. For this, we also need

Fp(af,...,apsp) = 0 if 27 >0 "
1 — .
< 0 if =0 —yp)>1, VieN. (6)
where w: ) Note that this condition brings in dependence on the indi-
Fy, = ! 5 —D- vidual w;’s, whereas (5) required only the knowledge of

Ita;  (n-1) their sum,w. The condition (6) says that,'s should not
Let us first consider the case whep> 0Vi € N. Itfol-  pe too far from their average value,, := (1/n)w, that
lows from F;; = 0 that (suppressingon z; throughout): s they should cluster around,,. If this is not the case,
the users with smalletw;’s will have to drop out of the
game, that is not transmit at all, as we will see later in this

ws o Wwj
l+z; 1+

, Vi, jeN,
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section. But for the moment, since we are interested onifich can be re-arranged and written in the more appeal-
in the positive Nash equilibrium, let us assume that foriag form, in terms ofw,,:
given p satisfying only (5),w;’s are distributed in such a

way that condition (6) also holds; a precise condition for (Zwi _ 1) (n*way)
this will be derived shortly. Way

The next s_te.p.m th(_—} solution progess IS '_[O Obtamﬁwis condition is of course more restrictive than the earlier
revenue-maximizing price for the service provider, that he n2w.. > 1. which will therefore be dropped
Ll av 7 .

to solve the maximization problem The revenue-maximizing price (for the service provider)

W=

>1, VieN. (7

max_ L(p; Z(p)), L:=pz(p), can now be obtained from (4), to read (also written in terms
0<p<p of wgy):
wherez(p) is the sum of individual users’ transmission
. . ' . * av 2 _1 1 ) 1.2
rates in the Nash game, in response to a fixed pritkis »* = — (1 + (n“wa) " 3) — w(l + (n*"waw)3)” (8)

o , 2
quantity is of course also equal fdp) — n. Since there

is a one-to-one correspondence betwpea (0,5) and Wwhich can easily be checked to be positive provided that
7 € (n,2n) through (4), the service provider's optimizan®w,, > 1, a condition already assumed to hold. It is also
tion problem can equivalently be carried out with respeeasy to check thgt* < p. The following theorem now

to ¢ using (4) as a constraint, that is: captures the complete positive solution to the problem of
o this section. In the statement of the theorem, we use the
Jmax L(p(g):g—n), notationf (n) ~ h(n) to meanimy, .. (f(n)/h(n)) = 1.
where
Lp(@§):7—n) = (5 —n) (@ _ 1 > Theorem lll.1: The special case of the general problem
Py Y Y g (2n—79)? of this paper, characterized ley= 1, admits a solution

. . . Lo . where all n users transmit at positive rates if, and only if,
This is again a strictly concave function in the given . ) T )
; . : condition (7) holds. In this case, the solution is unique,

open interval, and since it becomes unbounded negativ. , . . .
_ . - . . : .~ with the optimal price charged by the service provider be-
asy 1 2n and iszeroaty = n, it admits an inner maxi- . . A e
L , : . . ing (8), and with the Nash equilibrium transmission rates
mum (which is also unique) if, and only if, the first-order :
. . o o . . of the users given by
stationarity condition leads to a solution in the given in-

terval. The condition (obtained by simply differentiating o Wiw Ly 9
L(p(j); § — n) above with respect tg) is: v =@+ 1) - ©)

av

—(j—n) <ﬂ _ L) w_ 1 —0 wherezx?  is the optimal average throughput, given by
7o @2n=9?) 5 (2n-9)? )
which admits the unique solutién Ty =1———"—71. (10)
1+ (nwgy)3
1
. 2n(nw)s

Asymptotically, for largen, and with the smallesty;

L+ (nw)% bounded away froraerg condition (7) is satisfied, and
provided that 2
nw > 1 p* o~ wéw + (wif)?) n3 , ah,~1— 2(ww)_%n_% )
which ensures thaj* > n, that is the total throughput is (11
positive. Now, for the individual throughput levels to bégain asymptotically, the revenue per unit bandwidth,
positive, we need also the condition (6): which is the product op* andz},, becomes
1
Wi, M ~1. VieN Revenue/bwe 2% §(w,w)§n 3, (12)
O 14 (nw)s ’ 2 4

1The fact that the solution can be obtained explicitly (in closed forii€ congestion cost is given by
here is precisely the reason why we have discussed the case df
separately. For # 1 such an explicit solution cannot be obtained, * 1 1 1 1
) > . . Di=——~ _(wav)?’n 3, (13)
except asymptotically for large, as we will see in the next section. n(l — 3;*) 2
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and the equilibrium net utility levels of the users admit the Theorem 1l1.2: Consider the problem of this section,
expressions with the indexing of the users such that > w; = @ < j.
Further, letw; > 1, andn* be defined as above (the largest
2w + }w(w —w; — l(wav)%n—% . (14) Iintegern satisfying (15)). Thenp* > 1, and the problem
Wav 2 2 admits a unique solution with?, « < n*, andp* given as
m in Theorem lll.1 withn* replacingn, andz; = 0, j > n*.
|

F = wjlog

Remark 111.1: An interesting observation that can be _ _
made from the asymptotic results of the theorem above ig=x@mple 111.1: Consider a network witho; = 3, w; =
that forn sufficiently large, the optimum price decreases ¢ = 2- Checking the condition of Theorem I11.2 for
with increasing, while the average (per user) throughpdfifferent values of., we have:
increases witm. The net effect on the revenue per unit .
bandwidth is that it increases with and so do the utility =1 if n<4 n'=mn fornz=5.
levels of individual users—all very appealing features. Note
also that the congestion cost goes asymptoticallyeta Computing the optimum throughputs, price levels, revenue
with the convergence being monotonic for large All Per unit bandwidth, and user's net utility levels;’, for
these features will be discussed further in the next secti§flected, we have:
where we will see that the solution to the original problem

(that is, with generat) also shares them. R 1= 2q, = 01811, p7 = 1.0489, pTag, = 0.1899,
Fy = —1.00428

5= x, = 0.5317, p* = 0.7316, p*z}, = 0.3890,
w} = 2.2823, 2% = 0.0941,5 > 2,
Fi' = —0.548245, F} = —0.456863, j > 2

The result of Theorem I1I.1 relies on condition (7)7 N
which we have already seen to be satisfied ifs suffi-
ciently large. The other extreme case is the single-user

roblem @ = 1), in which case it is also satisfied, pro- X X
\Fjided tha(thl >)1. In this extreme case, one can eZsilg} _*18 ~ Tav = 0'66?9’ o 0'633*7’ :
see that ifw; < 1 then the optimum throughput is sim- © “av = 0;4200’ 1= 3'1572*2’ Ty = 0'3857’*,7 2 2
ply 7 = 0. Now, to obtain the complete solution for the Fy = —0.440802, Fj = —0.399363,7 = 2
generaln case, let us first adopt the convention that thne_>
users are ordered in decreasing values ofitlig, that is
w; > wj; = 1 < j, withw; > 1. Letn* be the largest in-
tegern < n for which the following inequality is satisfied:

oo =z, =1, p* =0.5, p*x}, = 0.5,
] =95, x; =1, >2,
Fi = —0.165546, F; = —0.19897,5 > 2.

(27;”73 — 1) (ﬁ2w~m))% >1, (15) The numerical results above indicate that the asymp-
Wav totic behavior alluded to earlier holds even for relatively

whereuw,, is defined asv,, with n replaced byi. Clearly, Small values of, as in going fromn = 1to 5 and then to
if the original n-user problem is replaced with a new oné0, We see the average throughpf,, increasing, price,
that retains only the first* users, this new one will ad-P", decreasing , the revenue per unit bandwidth increasing,

mit a unique solution that is covered by Theorem I11.nd the utility levels of each user improving, thus showing
with n replaced by.*. Furthermore, this unique solution2n overall monotonic trend toward the values reached as

appended with:; = 0, j > n*, constitutes the unique” — °- Another_ipteresting fe_zature of the_ results above
solution to the originah-user problem. This follows be-iS that adding additional capacity for potentially new users
cause of the uniqueness of the solution to the noncooprNOt always a revenue-improving move for the service
ative game faced by the users for eaglthe fact thap is Provider. As we see from the above, as compared with the
strictly decreasing im, and the property that with fixed, Single-user case, a benefit accrues to the service provider
no other ordering of the users can lead to a higher valgily if 4 or more additional users (with lower; parame-

for the left-hand-side of (15). We now summarize this rder values) are admitted to the network (with an additional
sult (the complete solution to the problem of this sectiof)it of capacity added for each new user). u

in the following theorem.
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IV. THE GENERAL SOLUTION or, equivalently,

We now return to the original problem with a genefal wi = (1+ 1) ( 1 N p)
and develop the solution by following essentially the same ! "\ (nc—1z)2 ’
steps as in the previous section. By a slight abuse, we wji
use the same notation as in the previous section, wh
appropriate. Also, for convenience we will order the uset¥ ¥ =
according to theiny; values, so that’ > w? will imply B
i<j. 9(y) =

We first consider the Nash game faced bythesers, for
each fixedp > 0. The following lemma settles the issue
of existence and uniqueness of Nash equilibrium for this v = gy _1, ieN, (18)
game. w

Lemma IV.1:For each fixegh > 0, then-person nonco- \yhich are required to be positive. Hence, the Nash equilib-
operative game where Playgs objective function (to be rjum is positive for a giver if, and only if, there exists a
maximized) is given by (1), admits a unique Nash equilil; - 1, solving (17) and further making (18) positive. Since
rium {z7(p) = 0; i € N}, withz*(p) = 32 25(p) <nc. g(5 1 n(c+1)) = —o0, andg(y = n) = wey—(nc)~2—p,
Proof: Following the line of reasoning in the previous se@nd ¢ is strictly decreasing irjn, (¢ + 1)n), similar to
tion, every Nash equilibrium solution of this game is als§'¢ development in the previous section, there will exist
a Nash equilibrium solution of a game with the following Unique solution to (17) in the open interval (¢ + 1))

Il

gé(ing the sum of the above equation overiahd defin-
y =+ n, we get

1

< | ]

éJsing (17) in (16), and solving far;, we obtain

objective for Use: if, and only if, g(n) > 0, thatis
1
1 - p<wav_—::]5 (19)
F(:L‘l,...,xn;p):ijlog(l—i—:vj)—nc_a_c—px. (nc)?

’ which is the counterpart of (5) for the more general game

Note that this objective function is identical for all user®f this section. Hence, for anysatisfying (19), the unique
and is strictly concave in the n-tupley, ..., z,) which Nash equilibrium is positive if, and only if, the unique so-
is restricted to the nonnegative orthant bounded by th&ion, y*(p), to (17) satisfies (in view of (18) and the or-
hyperplanez = nc on which F is unbounded from be- dering of the users) the condition
low. Then, from standard results in finite-dimensional op- wy
timization [2], it follows thatF’ has a unique maximum in 7 () >1.
this bounded region (where it is finite, except on the given _ o
hyperplane), and eveperson-by-person optimablution Now proceeding on to the maximization problem (2)

is also globally optimal. Hence, the Nash equilibrium e@ced by the service provider, because of the one-to-

ists and is unique. Clearly, the maximizing solution cann%pe correspondence betwegrfor equivalentlyz) andp

lie on the hyperplane, thus the strict inequalityzdiip). B t rough t,he ponstralnt (17), a problgm equwalent o (2)
is maximization of the following function with respect to

7 > n (obtained by substitution gf from (17) in terms of

(20)

Depending on the value gfand values of other param-2
eters, the unique solution alluded to in the lemma abo%' N n j—n
could lie on the lower boundary of the constraint region L(y) = w(1 - 5) T (nle+ 1) —p)2°
(thatis some of the;’s could bezerg. If this does not hap- . . N .
o o We seek a solution to this maximization problem in the
pen, we say that the Nash equilibriumnser or positive qpen intervaln, (c+1)n). L is analytic over this interval
We now first obtain necessary and sufficient conditions fop (¢ ) y '
I o . ._an
the equilibrium to be positive, and obtain a characteriza-
tion for it. Clearly, from first-order conditions (which are jo_nw nc—=1)+y i <o
also sufficient), the Nash equilibrium will be positive if, Yooz (n(e+1)—g)3 W T

and only if, the following set of equations admits a posi- .
tive solution (forz;’s): Hence,L is strictly concave, and further since it becomes

unbounded negative at the upper end of the interval, it fol-
w; 1 lows that it has a unique maximum in the half-open inter-

1+z; (nc—1)? —p=0, (16) val [n, (¢ + 1)n). Moreover, the situatioy = n can be
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avoided by requiring thaftg(n) > 0, which translates into first n* w;’s andg* is the unique solution of (22) with
the simple condition replaced by.*; p* is given by (23) with again* replacing
) n;andzi =0, j > n*.

o wey > 1. (21) Proof: Proof follows readily from the discussion preced-

ing the statement of the theorem, in view of also the discus-
sion on the speciak(= 1) case in the previous section. We
should simply point out here that the reason wity> 1
under the conditiom?w; > 1, is because this condition is
no  nlc-=1)+y 0 (22) precisely (21) whem = 1, and there is no need for (24)
7> (n(c+1)—19)3 ‘ in the single user case (the condition is automatically sat-

. o o isfied). ]
The corresponding value ¢f, which in fact maximizes

L(p; z*(p), is then obtained directly from (17):

Under this condition, there exists a unique solutigh,c
(n,(c + 1)n), to Ly(y) = 0 which we rewrite here for
future reference:

Remark IV.1:In deriving the solution to the Stackel-
. 1 berg game, we have assumed that the users respond to the
P = T e (23)  service provider’s price by reaching a Nash equilibrium.
y (ne+n—y) . : L

Given a pricep, our model fits into the framework devel-
which, by construction, satisfies (19) and the positivityped by Kelly et al [10], and hence the Nash equilibrium
constraint. To complete the solution to the problem, howan be reached in a distributed fashion by the users, with
ever, we still have to require that (20) holds witreplaced each user implementing a congestion control algorithm.

by p*, or equivalently Consider the congestion control algorithm

w .

gnﬂ* > 1, (24) & = ri(w; —p — pr; — (L+23)q(Y_ )

J
with ¢* solving (22). The counterpart of this condition
: . - where

for the case: = 1 is (7), which is more explicit because 1
y* admitted a closed-form expression in that case; in the q(A) = —(nc —\Z

present more general cagg, satisfies a third-order poly-

nomial equation, which does not admit an easily expreéglhe Nash equilibrium solution is positive, then the equi-

ible solution. librium point of this system of congestion controllers is
Now, if the two conditions above, that is (21) and (24)'2"?0 the unique Nash equilibrium solution. FoIIowing [10],

do not hold, then one has to look for a boundary solutiofs,/S NOW €asy to verify that'(z1, z2,. .., zn; p), defined

that is a solution where some users are dropped out of {ighe proof of Lemma IV.1, is a Lyapunov function for

network. In this scheme. users will have to be droppé’ﬂl‘s system of congestion controllers and hence, the system

in reverse order, until the first time both these conditiof9NVerges to its equilibrium point. Even in the presence of
hold: let this number be*. That is.n* is the maximum "NCIS€ in the system due to various sources of randomness

number of ordered users for which conditions (21) arﬁﬂ‘Ch as departures and arrivals of short-lived flows, inaccu-
(24) hold. As in the previous section, no other orderir@te congestion feedback, etc., it has been established that,

will lead to a higher number of users for whom the condiNder appropriate limiting regimes, the above congestion
tions hold. Then, the problem is essentially equivalent §@ntrol equations are valid [21]. Recently, local conver-

a network with onlyn* users, for which we again have af#€nce of these congestion controllers has been established
inner Nash equilibrium. even in the presence of delays for appropriate choice of the

This now brings us to the following theorem, which i§ontroller gainss; [6], [18], [22]. Similar results for the
the counterpart of Theorem I11.2 for this general case. dual version of the optimization problem can be found in

[20]. |
Theorem IV.1:Consider the general problem of this
section, with the indexing of the users such that >
w; = i < j. Further letc>w; > 1, andn* be de-
fined as above (the largest integefor which conditions  We now study the behavior of the solution obtained in
(21) and (24) both hold). Them* > 1, and the prob- the previous section for large Studying thisnany-users
lem admits a unique solutiofir} ...,z ; p*} as follows: regimewill allow us to obtain an explicit expression fgt
xzf = (w;/w*)y* — 1, i < n*, wherew* is the sum of the (or z*), which was not possible for finite, unlessc = 1.

V. MANY-USERSREGIME
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The study will also enable us to ask (and answer) queerothorder term to be positive:

tions like whether it is possible for the service provider to ' W

admit new users to the network by increasing the capacity, LI W; > crl’ (29)
and whether the existing users would benefit (measured in _ N ) o

terms of their utilities) from a “crowding” of the network. Which is essentially condition (24) in the limit as— oc.

An underlying assumption (or rather conventior{)\n interpretation for th|§ f.o.r eachis thatw; fqr Users .
throughout this section is that as — oo, the sequence must b_e more than the limiting value of the price-per-unit-
{wa(n) == (1/n) X7 w;} has a well-defined limit, banO!W|dth for the usertg be ab!e to send nonzero flow over
way. This would be the case, for example, when beyond € link. Overall, (29) is precisely the condition for all
finite n the users added to the network all have the safgers in the many-users regime to send positive flow over
wi’s, thatisw; = w Vi > n -+ 1. In this case, of course,the network, as dictated by the optimal solution. Users

was = w. An immediate implication of this assumption igVh0sew; values fall short of the bound,, /(c + 1) drop

that now the condition (21) is readily satisfied. out of the network. If, on the other hand, there is a high
Now, to study the asymptotic behavior, it is also convéopulation of users with the '9W9st@' values, In Wh"fh

nient to work with the arithmetic mean of thg's (or y’s), Case asymptotically,, (n) ~ min; w;, the condition will

rather than their sum. denoted for the former as be satisfied for all positive, thus imposing no specific
conditions onc; otherwise, the value af will have to be
1 & increased to accommodate the users with smallalues.
xav(n):—ij. . . ) .
n i It is worth also noting that the optimal price charged by

the network is positive for sufficiently large but whether
Then, we can re-write (22) as it is an increasing or decreasing functionrotiepends on
the specific value of. Forc > 1/2, it decreases with,
Wan() _ _ ct Tan(n) h for < 1/2, iti it In spite of thi
72 = 72(c = zau(n))* whereas for < /_ , itincreases with. In spite of thisc-
(Zav(n) + av dependent behavior of the optimum price, the revenue per
Under our assumption that,,(n) — w,, asn — oo, a Unit bandwidth exhibits a-independent trend—increasing

positive solution taz,, (n) exists for largen if, and only With 7 in the many-users regime:

if, DPZav Way _2 _2
nlLIEO ng(c B xav(n))3 —a Revenue/bw= s 1 3a”3n" 3.
for somea: > 0. Substituting this in (17), we obtain Suppose thatb,, /(c + 1) is larger than the cost of adding

one unit of bandwidth, then, as the number of users in-
(25) creases, the service provider’s profit increases. Thus, the
service has an incentive to increase the link capacity which
where we have again used the notational convention thlatres the congestion cost to zero as shown next.
f(n) ~ h(n) if lim, . (f(n)/h(n)) = 1. Using (25) in ~ The congestion cost decreases witim the many-users

Wav n 2c—1
Y1 223

p

(22), and lettingr — oo, yields regime:
2¢(c +1)? Congestion cost B T
LT (26) n(c — 2an(n))
Then and so does the net utility of each user:
1 + Dw; w 11
2 1)2\3 s owiloe CH VW Way L
Tav(1) ~e—n"2BalP = - (70(0—1— ) 3n_%, E = wilog Way wz—'—c—i-l asns
Waw
(27)  Remark V.1:In the limit asn — oo, the congestion
and from (18), costs go to zero. Thus, it would be interesting to explore
w; if the limiting solution coincides with the solution to the
zi(n) = Waw (1) (Tav(n) +1) =1 Stackelberg game where the followers (users) do not have
w; w; 1 _2 congestion costs in their objectives. Accordingly, suppose
~ (e+1) T 1= s (28)  that Useri's objective is to maximize the following func-

o o N tion with respect ta; over[0,nc — x_;):
Now, for n sufficiently large, a positivity condition on the

x;'s can be obtained from (28) by simply requiring the Fi(zi,x_i;p) = wilog(l + x;) — px; . (30)
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subject to the constrait; z; < nc. For a fixedp, as ar- documented. The key assumption required for providing
gued earlier, the Nash equilibrium solution coincides witkuch a high quality-of-service is that the capacities of the
the solution to a team problem with the following objectivénks in the network are large, in proportion to the number
function: of users in the network, which is typically large. In this
paper, we have examined the question of whether there
F(xy,22,...,an;p) = ij log(1 + ;) — prj, is an economic incentive for a service provider to provi-

J J sion large link capacities. For a simple single-link model,
which is subject to the same constraint as above. Using ¥ have established the following result: under a pricing
grange multiplier approach [2], the unique solution to ti¥heme that charges users for bandwidth (bits-per-second)
above constrained optimization problem can be obtaing&2g€ and a collection of congestion-controlled sources

as follows: subject to distributed admission control, the optimal rev-
;= Wi enue of the service provider increases with the number
p+A of users if the provisioned capacity is proportional to the

where) satisfies number of users.

)\(Z:Bj—nc):(); A>0.
J

REFERENCES
(1]

T. Bagar and G. J. OlsdeDynamic Noncooperative Game The-
ory. SIAM Series in Classics in Applied Mathematics, Philadel-

phia, PA, 1999.

If A =0, the above conditions lead to

> w [2] D. BertsekasNonlinear ProgrammingAthena Scientific, Bel-
P= e mont, MA, 1995.
[3] D.D. Botvich and N.G. Duffield. Large deviations, economies
and of scale, and the shape of the loss curve in large multiplexers.
xz(p) — % —1. Queueing System20:293—-320, 1995.
p [4] E.Altman, T. Basr and R. Srikant. Nash equilibria for combined

flow control and routing in networks: Asymptotic behavior for a
large number of userdEEE Transactions on Automatic Control
2002 (to appear).

E. Altman, T. Baar, T. Jiminez and N. Shimkin. Competitive
routing in networks with polynomial costslEEE Transactions
on Automatic Contrgl2002 (to appear).

R. Johari and D. Tan, “End-to-end Congestion Control for the
Internet: Delays and Stability,” preprint. A shorter version was
presented at thé/orkshop on Stochastic Networkéadison, WI,
June, 2000.

R.J. Gibbens and F.P. Kelly. Resource pricing and the evolution
of congestion control, Automatica, 35(6):1969-1985, 1999.

F.P. Kelly. Models for a self-managed InternePhilosophical
Transactions of the Royal Societ358:2335-2348, 2000.

F.P. Kelly. Mathematical modelling of the Internet. Mathemat-
ics Unlimited - 2001 and Beyon(Editors B. Engquist and W.
Schmid). Springer-Verlag, Berlin, pages 685-702, 2001.

On the other hand, ik > 0, then the inequality constraint
would be an equality, leading to

A= —p>0,

(n+1)c
and ) o]
zi(p) = w
w

Maximization ofp 3", z;(p) overp > 0 dictates that the [7]
revenue-maximizing price is given by 8]

. Way

c+1

p 9]

which coincides with theerothorder term in (25). How-

ever, the fact that this is indeed therothorder term can- [10]

not be established without going through the full solution
to the Stackelberg game and carrying out the asymptqig,
analysis. Further, the asymptotic expansion provides in-
sight into the behavior of the price, the service provider’s
total revenue, revenue per unit bandwidth, and the net uth2!
ities of the users, for finite, but large, |

[13]

VI. CONCLUSIONS
. 4]
The roles of the congestion controllers at the end user

F. P. Kelly, A. Maulloo, and D. Tan. Rate control in communica-
tion networks: shadow prices, proportional fairness and stability.
Journal of the Operational Research Socje19:237-252, 1998.

Y. Korilis, A. Lazar, and A. Orda. Architecting noncooperative
networks. IEEE Journal on Selected Areas in Communicatjons
13:1241-1251, 1995.

Y. A. Korilis, A. A. Lazar, and A. Orda. Achieving network op-
tima using Stackelberg routing strategid&EE/ACM Transac-
tions on Networking5:161-173, Feb. 1997.

S. Kunniyur and R. Srikant. End-to-end congestion control: util-
ity functions, random losses and ECN marks.Phoceedings of
INFOCOM 2000 Tel Aviv, Israel, March 2000.

S. Kunniyur and R. Srikant. Analysis and design of an adaptive
virtual queue algorithm for active queue management.Prio-

and active queue management schemes at the routers inceedings of ACM Sigcomr8an Diego, CA, August 2001.

designing low-loss, low-queueing-delay networks are weib]

S. Kunniyur and R. Srikant. A time-scale decomposition ap-



IEEE INFOCOM 2002

[16]

[17]

(18]

(19]

(20]

[21]

[22]

proach to adaptive ECN marking. Proceedings of the IEEE
INFOCOM, Anchorage, AK, April 2001.

R. J. La and V. Anantharam. Optimal routing control: a game
theoretic approach. IRroceedings of the 36th IEEE Conference
on Decision & Control San Diego, CA, December 1997.

S. H. Low and D. E. Lapsley. Optimization flow control, I: Ba-
sic algorithm and convergencEEEE/ACM Transactions on Net-
working, 35(6):861-875, December 1999.

L. Massoulie, “Stability of Distributed Congestion Control with
Heterogeneous Feedback Delays,” Microsoft Research Technical
Report, 2000.

A. Orda, R. Rom, and N. Shimkin. Competitive routing in mul-
tiuser communication networkEEEE/ACM Transactions on Net-
working, 1(5):510-521, October 1993.

F. Paganini, J. Doyle and S. Low. “Scalable laws for stable net-
work congestion control.Proceedings of the IEEE Conference
on Decision and Controlpp. 185-190, Orlando, FL, December
4-7, 2001.

S. Shakkottai and R. Srikant. Mean FDE Models for Internet Con-
gestion Control Under a Many-Flows Regime. 2001. Available at
http://www.comm.csl.uiuc.edu/"srikant/pub.html

G. Vinnicombe, On the stability of end-to-end congestion control
for the InternetUniversity of Cambridge Technical Repo2001.
Also in Proceedings of the 39th Allerton Conference on Control,
Communications and Computiri@ctober 3-5, 2001), 2002 (to
appear).

10



