
Data Mining and Knowledge Discovery 3, 373–408 (1999)
c© 1999 Kluwer Academic Publishers. Manufactured in The Netherlands.

MSQL: A Query Language for Database Mining
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Abstract. The tremendous number of rules generated in the mining process makes it necessary for any good
data mining system to provide for powerful query primitives to post-process the generated rulebase, as well as for
performing selective, query based generation. In this paper, we present the design and compilation of MSQL, the
rule query language developed as part of theDiscovery Boardsystem.
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1. Introduction

In Imielinski and Mannila (1996) we have argued that due to the tremendous number of
association rules which are generated by data mining there is a pressing need to provide
rule querying, both to selectively generate rules from data as well as query the rulebase of
rules which were previously generated. Several such query languages have been proposed
in the literature (Han et al., 1996; Meo et al., 1996). Other similar efforts were also recently
noticed in literature, either to generate rules satisfying some constraints in the database (Ng
et al., 1998) or to integrate mining closely with relational databases (Sarawagi et al., 1998).

In our view, although these proposals are a step in the right direction, they still lack a few
features such as closure, using the full expressive power of SQL, and treating rule querying
in a manner similar to rule generation. Following is the set of primitives which, in our
opinion, a rule query language should satisfy:

• Ability to nest SQL:Since SQL is a well accepted interface to relational databases,
and allows for declarative, set level, expressions which are optimized substantially, it is
desirable if users can utilize SQL primitives such as sorting, group-by, and others like
these within MSQL, and be able to express nested queries using the SQL nested query
constructs like [NOT] IN, [NOT] EXISTS etc.
• Closure:Mining is essentially an iterative task, which often involves refinement of exist-

ing queries and regenerating results. The language must provide for operations to further
manipulate the results of the previous MSQL query.
• Cross-over between data and rules:To permit the “iterative refinement” as mentioned

in the previous item, the language must allow primitives which can map generated rules
back to the source data, and vice-versa.
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• Generation versus querying:Given the enormous size of rulebases, it may not always
be possible to “extensionally” maintain rulebases. The language should allow a user to
express rule-generation vs. rule-querying using the same expression syntax.

Keeping the above guidelines in mind, MSQL, the language developed in (Virmani,
1998) starts with the SQL92 standard and adds support for rule-manipulation operations
in a familiar SQL-like syntax. Due to space restrictions, we present an overview and some
examples of the query language here. For a more complete treatment of the language,
including its evaluation and optimizations, we refer the reader to the above reference.

2. Basic notions

Query based rule generation, and successive refinement of the original mining task through
the use of a series of rule queries form an important part of knowledge discovery using
rules. The two main commands in MSQL thus deal with the activities ofdata-mining and
rule-mining . We define data-mining as the process of generating rules from the data in
response to a query, and rule-mining as the process of querying a pre-existing rulebase. The
GetRulesandSelectRulescommands in MSQL perform these two activities respectively.
Below we introduce some terminology and basic notions that are used throughout the rest
of the paper.

Definition 1. A descriptor is an expression of the form (Ai =ai j ), whereai j belongs to
the domain ofAi . For continuous valued attributes, a descriptor of the form (Ai = [lo, hi ])
is allowed, where [lo, hi ] represents a range of values over the domain ofAi .

Definition 2. A conjunctsetstands for a conjunction of an arbitrary number of descriptors,
such that no two descriptors are formed using the same attribute. Thelengthof a conjunctset
is the number of descriptors which form the conjunctset. A descriptor is thus the special
case of a singleton conjunctset.

Definition 3. A record (tuple) inR is said tosatisfy a descriptor(Ai ,= vi j ), if the value
of Ai in the record equalsvi j . To satisfy a conjunctset, a record must satisfyall k descriptors
forming the conjunction.

Example: Let R be a relation represented by the table shown below:

EmpId Job Sex Car

1 Doctor Male BMW
2 Lawyer Female Lexus
3 Consultant Male Toyota
4 Doctor Male Volvo
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Then(Job= Doctor) is an example of a descriptor in the above data, satisfied by records
with EmpId values 1 and 4. Along the same lines,(Sex= Female)∧ (Car= Lexus) is an
example of a conjunctset of length 2 in the above data.

Definition 4. By a propositional rule over R, we mean a tuple of the form〈B,C, s, c〉,
whereB is a conjunctset called theBodyof the rule,C is a descriptor called theConsequent
of the rule,s is an integer called thesupport of the rule, andc is a number between 0 and
1 called theconfidenceof the rule. Support is defined as the number of tuples inR which
satisfy the body of the rule, andconfidenceis defined as the ratio of the number of tuples
satisfying both the body and the consequent to the number of tuples which satisfy just the
body of the rule.

Intuitively, rules are if-then statements of the form “if Body then Consequent”, withs
andc being their quality measures computed inR. We will usually represent rules in the
following syntactic form:

Body⇒ Consequent [support, confidence]

For instance, the following is a rule over the example relation shown earlier:

(Job= Doctor) ∧ (Sex= Male) H⇒ (Car = BMW) [2, 0.5]

A rule in our case is thus a generalization of the association discussed in (Agrawal et
al., 1993). Since we allow user defined procedures and functions in our API, the expressive
power of propositional rules is actually, for all practical reasons equivalent to non-recursive
predicate rules.

A rule can also be viewed as a query when applied to a relation. We say a relationR
satisfiesa ruler =〈B,C, s, c〉 if there are at leasts tuples inR which satisfyB and at least
a fractionc of them satisfy the conjunctionB ∧ C. This is also expressed by saying thatr
holds in R. If R does not satisfyr , then we say thatR violatesr , or alternately,r does not
hold in R.

Since rules represent aggregates over a set of tuples, the relationship between a rule
and an individual tuple cannot be similarly defined. However if we only consider the rule-
pattern〈B,C〉 without the associated support and confidence, we can define the following
relationships between them.

A tuplet satisfiesa rule pattern〈B,C〉, if it satisfies the conjunctionB∧C, and itviolates
the above pattern if it satisfiesB, but notC.

3. Language syntax

The MSQL syntax is comprised of four basic statements. The main intuition behind the lan-
guage design has been to allow representation and manipulation of rule components, mainly
Body and Consequent, which, being sets, are not easily representable in standard SQL.
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The outline of the syntax for these MSQL extension is shown below.

<MSQL Stmt> ::= <GetRules-Query>
| <SelectRules-Query>
| <Sat-Violate-SubQuery>
| <Encode-Stmt>

We consider each MSQL command in its respective section. For complete expansions of any
individual statement syntax, refer to Virmani (1998). A quick overview of these constructs is
as follows. The Encode statement provides pre- and post-processing support and is discussed
in Section 6. The GetRules query is used for rule-generation, and the SelectRules query,
which follows the same syntax (covered in GetRules-Query syntax), is used to query rules
from an existing rulebase. In addition, a standard SQL query on a database table can have
a nested GetRules sub-query in its “where” clause connected via the Satisfy or Violate
keyword. Syntax for this clause is covered under the Sat-Violate-SubQuery statement.

4. General query syntax

The most general formulation of the GetRules Query is as follows:

[Project Body, Consequent, confidence, support]
GetRules(C) [as R1]
[into <rulebase_name>]
[where <conds>]
[sql-group-by clause]
[using-clause]

where C is a database table, and R1 is an alias for the rulebase thus generated. In addition,
〈Conds〉 may itself contain:

<Rule Format Conditions RC> |
<Pruning Conditions PC> |
<Mutex Conditions MC> |
<Stratified Subquery Conditions SSQ> |
<Correlated Subquery Conditions CSQ>

The GetRules operator generates rules over elements of the argument class C, satisfying
the conditions described in the “where” clause. The results are placed into a rule class
optionally named by the user, else named by suffixing ‘RB’ to the name of the source
class. (So for instance, the class Emp generates the rulebase EmpRB). The projection and
group-by operations can optionally be applied, and their meaning is the same as defined in
SQL. Since they basically post-process the generated rules, they do not affect the semantics
of rule generation.
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The GetRules operator, as considered here, generates rules among discrete attributes only.
Continuous attributes are supposed to be have been discretized off-line, using user defined
attributes, or the encode command described later.

Another important thing to note is that the GetRules query operates on the complete class
C, rather than a subset of it. There is a difference. All rules from the subset of data with
(A1=a) in them is not the same as all rules on the whole data with(A1=a) in the Body,
since if we subset and then mine for rules, the confidence and support in the rules generated
will change. Besides, if one mines for rules about a subset of the data, then technically, it is
a different class and therefore, there should be a different rulebase corresponding to it.

Given the above reasoning, the GetRules operator disallows any “where” clause condi-
tions on pure attributes of the source classC. These can always be performed by creating
a view onC with the appropriate selections/projections and then using GetRules on the
view. The only conditions allowed are the ones on rule components: Body and Consequent.
Note that the evaluation of GetRules internally may involve selecting/projecting the data
for efficiency, but it will preserve the query semantics.

4.1. Conditions in the “where” clause

To understand the complete syntax of the query, let us first examine the different types of
conditions possible in the “where” clause. They have been categorized in the following
groups to facilitate understanding of the evaluation plan. Each type of condition affects the
execution plan in a different way.

• 〈Rule Format Conditions RC〉 Rule format conditions occur on the Body and the Con-
sequent, and have the following format:

Body { in | has | is } <descriptor-list>
Consequent { in | is } <descriptor-list>

The operatorsin, has and is represent the subset, superset and set-equality conditions
respectively. A few examples below explain their usage. Note that one or both operands
could be constants.

r.body has {(Job=’Doctor’), (State=’NJ’)}
r1.consequent in r2.body
r.body in {(Age=[30,40]), (Sex=’Male’), (State=*)}
r.consequent is {(Age=*)}

The first condition above is true for all rules which have at least the predicate(Job=
’Doctor’)∧ (State=’NJ’) in their bodies. Similarly, the second condition above is
true for all pairs of rules (r1, r2), such that r1’s Consequent is an element of r2’s Body.
The third clause above, when present in a GetRules query, specifies that the bodies of
rules produced may only belong to a subset of the set of combinations generated by
the expression “(Age = [30,40]) (Sex=’Male’) (State =*)”. The fourth condition
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restricts the Consequent attribute to Age, without restricting its values. In general, the
“where” expression can have several of these conditions connected via AND and OR
logical operators.

Definition 1. The expression(Ai =∗), whereAi is any method inC, is a descriptor-
pattern representing a family of descriptors of the type(Ai =ai j ).

In MSQL, a descriptor pattern can be used anywhere a descriptor is allowed. In the above
case of(Age=∗), any descriptor of the form(Age= [lo, hi ]) satisfies the pattern.
• 〈Pruning Conditions PC〉 These are conditions involving support, confidence and

lengths of Body and Consequent, which can be used to control the algorithm. These
have the format:

confidence <relop> <float-val in [0.0,1.0]>
support <relop> <integer>
support <relop> <float-val in [0.0,1.0]>
length <relop> <integer>
relop ::= { < | <= | = | >= | > }

Confidence is specified as a fraction between 0 and 1, while support can be specified
either as a fraction of the database, or as an absolute number of records.
• 〈Mutex Conditions MC〉 These conditions define sets of two or more attributes such

that, in a given rule, if there is an attribute from one of these sets, then that rule doesn’t
have any other attribute from that set. The syntax is:

Where <other-conditions>
{ AND | OR } mutex(method, method [, method])
[{ AND | OR } mutex(method, method [, method])]

For instance, the condition “mutex(zipcode, county, phone area code)” can be
used in the “where” clause of the GetRules operator to avoid expansion of any rule
containing one of the above attributes with another attribute from the same set.
• 〈Subquery Conditions SSQ〉 These are subqueries which are connected to the “where”

clause using either EXISTS, NOT EXISTS, or the IN connectives. The connectives used
to join outer and inner queries preserve their SQL semantics. Subqueries are dealt with
in more detail in Section 5.2.

5. Generating and retrieving rules

All examples in this section assume the presence of data about employees in the following
schema:

Emp(emp id, age, sex, salary, nationality, position, smoker, car)

To generate rules from the Employee table, one uses the GetRules command as follows:
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GetRules(Emp)
where Consequent in { (Age=*), (Salary=[30000,80000]) }
and Body has { (Job=*) }
and confidence > 0.3
and support > 0.1

The above query would generate rules having at least Job in the antecedent and either Age
or Salary as the Consequent methods with values of salary within the ranges specified. Also
note that there is an implicit line:

Project Body, Confidence, Confidence(Emp), support(Emp)

before the GetRules command. Later we will show how this can be altered to evaluate
existing rules on different sets.

The typical mechanism observed to be most commonly used in query based mining is
for users to first do a fairly general GetRules query and store the result persistently, and to
follow this with a series of SelectRules queries, each of which selects a small subset of the
entire rulebase.

To generate rules for a given database table, theGetRulesoperator must be used with a
table argument as follows:

GetRules(T)
into R
where confidence > 0.3
and support > 0.1

This will generate all rules existing in table T matching the confidence and support require-
ments, and put them in a persistent rulebase namedR.

For future selections of these rules, the language has theSelectRulescommand. Selec-
tRules will not generate any new rules, but rather rely on the contents of the argument
rulebase for providing results. For instance, the following query retrieves rules with at least
Age and Sex in the Body and the car driven as a Consequent.

SelectRules(R)
where Body has { (Age=*), (Sex=*) }

and Consequent is { (Car=*) }

Note that by default, the lowest confidence and support of the rules produced by this query
will be 30 percent and 10 percent respectively, since those were the parameters R was mined
with.

So far we have used the Project operator implicitly. One can use the Projection to explicitly
evaluate different rule patterns over various similar databases. For instance, if NJEmp and
NY Emp are two views defined on the Emp table, one might be interested in knowing how
the two data sets compare with respect to the above rule pattern. The following query, in
this case,
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Project Body, Consequent, Confidence(NJ_Emp), Support(NJ_Emp),
Confidence(NY_Emp), Support(NY_Emp),

SelectRules(R)
where Body has { (Age=*), (Sex=*) }

and Consequent is { (Car=*) }

will select the Bodies and Consequents of rules from R, and evaluate them over the two
views. SelectRules, by definition,does notgenerate new rule patterns.

The above example brings up an interesting issue: What if R is not a rulebase generated
by the Emp table, but rather, by some other table? There are two possible scenarios. In the
simpler case, R could be a rulebase not containing the attributes required in the query (in
this case, Age, Sex and Car). In that case, the query will be syntactically incorrect and will
return an error. In a more complicated case, the rule table and the other data tables in the
above type of SelectRules query could both contain the attributes required by the “where”
clause, even when they semantically meant something totally different. Should the language
be enforcing this “typing” between rulebases and databases?

Our design decision has been to follow strong typing between rulebases and databases in
our API, implemented in C++, but to treat both rulebases and datasets as untyped relational
tables in MSQL. In a typical relational environment, it is quite possible for someone to join
two tables A and B on two integer fields A.length and B.speed thus yielding a senseless result.
Similarly, it is extremely hard to police the proper use of these operators once the queries
span more than one table. The onus in both cases lies on the user and the data dictionary
to ensure correct semantics in the operations. In Virmani (1998), we describe our proposed
catalog enhancements to ensure that there is enough metadata kept in the DBMS catalogs
to allow the user to correctly identify the rulebases developed from a given data table.

5.1. Using satisfy and violate

An extremely important feature in a database mining system is the ability to correlate the
generated knowledge (rules in this case) with the source data which produced that knowl-
edge. TheSatisfyandViolate operators in MSQL provide this capability of connecting the
rules with the data.

Both Satisfy and Violate operators take a tuple and a set of rules and return true if the
tuple satisfies (violates) any (or all) the rules in the set. Syntactically, their usage is much
like the EXISTS operator in SQL:

Select ...
From ...
Where { SATISFIES | VIOLATES } { ALL | ANY } (

GetRules | SelectRules Subquery
)

Example 1. Find all records in Emp table which violate all rules of the form “age ⇒
salary” above a 30% confidence.
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Select *
from Emp
where VIOLATES ALL (

GetRules(Emp)
where Body is { (Age=*) }

and Consequent is { (Salary=*) }
and confidence > 0.3
)

5.2. Nesting the GetRules operator

The Satisfy and Violate connectives discussed above show one form of nesting within
GetRules queries. Interesting queries can also be formulated using SQL-like nesting of
multiple GetRules queries. The semantics for such queries is exactly the same as in SQL if
we first generate both the rulebases in the inner and outer query, and treat them as two classes
in SQL. (However, this may not be the best approach for evaluation, as will be shown later.)

For evaluation purposes, one can distinguish nested queries in which the inner query
makes a reference to the data or rule objects of the outer query, from queries where there is
no cross-referencing of data. Using SQL terminology, the former can be calledcorrelated
queries, and the latter,stratified queries. For instance, the following is an example of a
correlated query, since the rule class generated in the outer query, R1, is referenced in the
inner query.

GetRules(C) R1
where <pruning-conds>
and not exists ( GetRules(C) R2

where <same pruning-conds>
and R2.Body HAS R1.Body )

The above query finds rules that are “on the border”, i.e. if they are expanded any more, they
will drop out of support. The next query is an example of nesting a SelectRules within a
GetRules operator. It generates all rules where the Consequent exists in a prior set of rules.
It is stratified, since no references to R1 are made in the nested subquery.

GetRules(C) R1
where <pruning-conds>

and Consequent is {(X=*)}
and Consequent in ( SelectRules(R2)

where Consequent is {(X=*)} )

6. Pre/Post-processing enhancements

Although GetRules and SelectRules form the basic core around which MSQL was designed,
there is one other extension to the language that we felt was basic enough to be included
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as part of the core. Although the operation presented in this section can be performed by
mapping the data using an external table, the processing required by the end user will be
complex, and the results will not be as smoothly integrateable with the other language
commands.

6.1. Preprocessing continuous valued attributes

Continuous valued attributes in the original data must first be discretized or “binned” into
intervals before mining can performed on them, to ensure that they will reach a sufficient
level of support. (It is less likely for an individual value from a continuous range to gather
enough support in real data sets.) A fairly straightforward way to preprocess such attributes
is to create a new table, with all continuous values replaced with a discrete identifier which
stands for an interval and then apply GetRules to this modified table. However, there are a
few disadvantages with this approach:

• It is time and space consuming to create a separate copy of a large table.
• Different users may want different discretizations for the same attribute.
• When using Satisfy/Violate primitives, the resulting tables will have interval identifiers,

which make the results harder to interpret, not to mention the information loss due to any
kind of discretization.

The Encode operator solves most of the above problems by effectively telling the mining
program to do an “on the fly” discretization. No separate copy of the table is needed, and
different users can share, or specify their own discretization functions on various attributes.
The results of satisfy and violate present the original table with no modifications, which is
better for future mining.

The syntax for the create encoding command effectively creates ranges of values, and
assigns discrete integers to those ranges. MIN and MAX stand for the lowest and highest
values of the attribute. The complete range need not be covered; anything not covered by
any of the encoding ranges, and NULLs get the default value.

CREATE ENCODING <name> ON <user.table.attribute> AS
BEGIN

(<lo|MIN>, <hi|MAX>, <id>)
[, (<lo|MIN>, <hi|MAX>, <id>) ..]
, <default_value>

END;

The above syntax creates a discretization for an attribute which can then be used in the
GetRules command as follows:

GETRULES(T)..
...
USING <encoding> FOR <attribute>
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An example of its usage follows (keywords are in uppercase). In the example, any value
of age below 30 gets the identifier 1, values between 31 and 40 (inclusive) get the discrete
identifier 2, and so on.

CREATE ENCODING e_age1 ON employees.Age AS
BEGIN

(MIN, 30, 1),
(31, 40, 2),
(41, 50, 3),
(51, 60, 4),
(60, MAX, 5),
,0

END;

GETRULES(Emp)
INTO EmpRB
WHERE Body has { (Age=*) }

and Consequent is { (Car = ’BMW’) }
and support > 0.1 and confidence > 0.4

USING e_age1 FOR Age;

Encoding is a new object in the data dictionary and users can grant privileges on their
own encodings to each other just like another database object. The optionalUsing clause
in the GetRules forces the mining engine to apply the encodinge age1when evaluating the
above query.

Encoding an attribute automatically creates a corresponding decoding for it, which is
employed by MSQL. The continuous columns displayed in rules thereafter show a[lo, hi]
value pair, instead of the encoded value.

7. More examples

A few more examples are presented to further clarify the syntax, and illustrate some other
capabilities of MSQL. The complete grammar for MSQL commands is presented in Virmani
(1998). All examples below assume the same Emp schema described above. EmpRB is
supposed to be the persistent rulebase mined with a minimum support of 0.1 and minimum
confidence of 0.3.

Example 1. Select from the set of already mined rules, all rules with Nationality=’Indian’
in the Body and having up to 3 descriptors in the antecedent.

SelectRules(EmpRB)
where length <= 3
and ( Body has {(Nationality=’Indian’)}
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Example 2. Find rules which subsume the above ruler in Body, have the same Consequent,
and a higher confidence thanr .

This is a classic example of mining around a rule, where we find an interesting rule and
want to “expand” its Body (stronger condition) to gain confidence.

GetRules(Emp)
where Body has r.body

and Consequent is r.consequent
and confidence > r.confidence

Example 3. For every rule-body inR which has over 50 occurrences, generate a report
showing the Body, and the associated number of rules it occured in.

This example demonstrates how reporting features of SQL can be employed to generate
understandable summaries for Rulebases.

Project Body, count(*)
SelectRules(R)
group by Body
having count > 50

Example 4. Find rules in Emp of the form ABC→D, such that it has 10% more confidence
than at least one of its immediate predecessors (e.g. AB→D).

This example uses table aliasing with rulebases and the SQL exists operator. It also
presents an example of a nested GetRules query.

GetRules(Emp) r1
where length = 3
and exists ( GetRules(Emp) r2

where length = 2
and r1.Body has r2.body
and r1.consequent is r2.consequent
and r1.confidence > r2.confidence + 0.1 )

The main idea demonstrated in the above examples is that by restricting MSQL to a small
subset, and by allowing full embedding of SQL within it, we can leverage the built-in data
processing and reporting features of SQL. The representation of rules chosen, coupled with
their persistent storage allows enormous post-processing capability with queries expressed
in a few lines.

The next two sections describes the actual process of generating rules from the data. We
first describe the evaluation procedure for what we defined as a “Basic-MSQL-query”, and
in the following section, present the evaluation of arbitrary MSQL queries by reducing them
into the basic query form.
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8. Basic query compilation

A Basic-GetRules query has similar syntax as the general GetRules query described above,
except that it is a bit more restrictive. The “where” clause of the basic query may contain:

• conditions on Body
• conditions on Consequent
• conditions on support and confidence of rules required
• conditions on number of descriptors in Body (length conditions)
• sets of attributes that may not occur together in a rule (mutex conditions).

A Basic-GetRules query maynot contain:

• disjunctions of expressions involving Body or Consequent,
• nested GetRules or SelectRules queries, or
• operations on partitioned tables, defined using “Create Partitioning” clause.

The last two conditions in the basic GetRules query (mutex and length conditions) simply
alter the basic algorithm in a minor way and are discussed after presenting the basic algo-
rithm. In terms of the rule patterns expected, the “where” clause of a simple rule query can
be expressed in the following formulation, henceforth called aD-condition:

(MUST⊆ Body) AND (Body⊆ MAY) AND (Consequent IN TARGET)

The setMUSTdescribes descriptors whichmustoccur in rule bodies of the query answer1,
the setMAY, descriptors whichmay occur in rule bodies of the answer, and finally set
TARGET, descriptors whichmayoccur in rule consequents of the query answer (here only
one descriptor from theTARGETmay occur there). Notice that all three sets may contain, as
a special case, all descriptors for a specific method. This would correspond to queries which,
for example, ask about “all rules between method A and method B”. A simple example of
a GetRules query might be:

GetRules(C)
where Body has {(Age=[30,40])}

and Body has {(Job=’Manager’) or (Job=’Sales’)}
and support > 0.2
and confidence > 0.3

For purposes of the algorithm, we consider discrete attributes only. Continuous attributes
are supposed to be have been discretized off-line, using either user defined attributes, or the
encode command described earlier. We will later describe generalization of this algorithm
for an arbitrary disjunction of such conditions.

The overall algorithm follows an “eager evaluation” strategy, i.e. generate rules as soon
as possible. We believe that it is more important to maintain a certain rate of rule production
(“bandwidth”) rather than wait for a long time and suddenly swamp the user with a thousand
rules.
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9. Algorithm

Given a query Q, the overall algorithm proceeds as follows:

1. First, identify the required methods in the database, then make a single pass through the
database and build the necessary d-lists for MUST, MAY and TARGET. In this pass,
methods that are not materialized in the database are also evaluated on an object-by-
object basis.

2. Next, generate the Seed C-lists using the index-ANDing approach described above. If
atanypoint during the formation, the C-list fails the support requirement, we exit.

3. Now recursively keep expanding each C-list inSeedwith a d-list from descriptors in
MAY until we either run out of support or construct all C-lists from descriptors inMAY.
Each time a new C-list is generated proceed torule generation, which can happen in
either of the two ways:

• Rule Generation by Decomposition:Given a C-list (C,L), take all d such that d is
in C and d is in the intersection ofTARGETandMAY, generate all rules (C-d, d),
which meet support and confidence requirements imposed by the query.
• Rule Generation by Expansion:Expand (not extend) C-list with each d-list for d in

TARGET– MAY (but only one at a time!) and generate the rules (C,d) which meet
support and confidence requirements of the query.

Reasons for providing two methods of rule generation are twofold: we want to do “eager
evaluation” of rules, i.e. produce them as soon as possible, and we want to avoid the need
for generating similar conjuncts repeatedly. The pseudo-code for the algorithm is presented
in figure 1.

By significant extensions, we mean extensions which meet support requirements. The
while loop in lines (5)–(10) will terminate either when we exhaust all extensions inMAY,
or when there are no extensions possible, which can meet the support requirements. Note
that while developing the Seed set forMUST, we can optimize by pruning the conjunctsets
(and their future extensions) as soon as they fall below the minimum support. However, we
still need to keep the ones that have too large support, since their extensions might fall into
the acceptable range. Also important is the fact, that in line (9) weextendthe seed rather
thanexpandingit. This, coupled with the rule generation procedure, ensures that we get all
rules, and that we don’t produce any duplicates. Splitting rule generation into two different
modules (lines 3 and 5) helps to avoid multiple generations of the same C-list. The main
difference between these two steps is that C-lists contributing to the step (2) are further
expanded, while C-lists in the step (5) are not used any more beyond the rule generation.

9.1. Introducing the mutex clause

It may often be the case that users might be interested in rules about certain methods
present in a rule separately, but not together. An example could be methods like “county”,
and “phone area-code”. It might be interesting to find rules across counties, and area codes,
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main(): (1)
identify MUST, MAY and TARGET from the query (2)
build all d-lists required for MUST, and the ones for MAY and TARGET (3)
Seed :={all possible “significant” intersections of d-lists required in MUST} (4)
/* there could be more than one since we allow (method=*) constructs */
while Seed6= ∅ { (5)

s := get first element from Seed (6)
Seed := Seed -{s} (7)
generateall rules(s) (8)
add all significant extensions of s obtained by merging s with

d-lists from MAY to{Seed} (9)
} (10)

generateall rules(S): (1)
let S = (C,L) (2)
for each descriptor d∈ { TARGET∩ MAY∩ C } (3)

generate the rule (C-d,d) if it meets confidence & support (4)
for each descriptor d∈ {TARGET – MAY} (5)

generate the rule (C,d) if it meets confidence & support (6)

Figure 1. Pseudo-code for GetRules algorithm.

but perhaps not as interesting to find rules where counties predicted area-codes (county⇒
area-code), or area-code and counties occured together in the Body.

The mutex primitive handles this situation by restricting the patterns which are allowed
in the rules to be generated. Note that this construct in no way affects the expressive power
of the language, it merely provides a cleaner way to specify and optimize the desired result.
For example, the following query generates all rules with methods A,B,C,D in them, but
where no two of A,B,or C occur together.

GetRules(C)
where Body in {A,B,C,D}

and Consequent in {A,B,C,D}
and mutex(A, B, C)
and support > 0.2

Expressing this without using this primitive leads to a very complicated disjunctive
expression, which is harder to optimize.

The presence of the mutex expression alters the algorithm in the following way: A two
dimensional table is created for all attributes involved in the mutex clauses present in the
query. A conjunctset C, during expansion is checked for the presence of one of the attributes
from the mutex set, and if present, all pairwise mutually exclusive attributes to it are not
used in its expansion. Since this is done starting with conjunctsets of length 1, it is assured
that a conjunctset will never have more than 1 method from the mutex set. For each extra
table lookup for a method, this structure saves one merge operation.
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9.2. Introducing the length clause

The length construct was added to the basic query specification to permit users to easily
specify queries like “Show me rules with at least three descriptors in Body”, or “Find all
rules between given attributes at most k-descriptors in Body”. The handling of this construct
can be divided into three cases:

• length< k. In this case, a global variable minlength keeps the minimum length of a
conjunctset in the seed list. At each iteration, conjunctsets in MAY which are of length
greater than k- minlength are deleted. Also, while merging a conjunctset from the seed
set with another in the MAY set, if the resulting conjunctset is bigger than size k, the
merge is not performed.
• length> k. In this case, rule generation steps are skipped from the algorithm, until the

seed set has one or more conjunctsets of size k+1. From then on, we start rule generation
for cases, where the seed conjunctset has a size larger than k.
• length= k. This is a combination of the above two cases, and is handled by combining

them.

9.3. Example

This section presents a complete walk-through of the algorithm on a simple dataset to aid
in understanding of the various steps. The example query is shown below:

GetRules(T) R
where R.Body in {(Disease=*), (Age=*), (Occupation = *)}

and R.Body has {(Disease = Pneumonia),(Age = Middle)}
and R.Consequent in {(ClaimAmt=*), (Occupation =*)}
and Support > 0.07
and Confidence > 0.35

We assume that both Age and ClaimAmt methods have been discretized already by
partitioning the values of the corresponding materialized attributes and have three values
each:Young, MiddleAgeandOld for Age andLow, MediumandHigh for the ClaimAmt
method.

Comparing with the standard form of D-CONDITION, we have in the above query:

MUST= {(Disease= Pneumonia),(Age= Middle)}
MAY= {(Disease=*), (Age=*), (Occupation= *)}, and
TARGET= {(ClaimAmt=*), (Occupation= *)}

We use the “∗” symbol to denote all descriptors for a particular method.
We will assume the method order to be Disease, Age, Occupation, and ClaimAmt for

this example. Following the pseudocode, we consider only those objects in the database
which have (Disease= Pneumonia) and (Age= Middle). For this subset of the database,
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Table 1. d-lists for the example dataset.

(Disease=Pneumonia) 3,7,11,15,17,24,26,33,37

(Age=Middle) 3,7,11,15,17,24,26,33,37

(Occupation=Clerk) 11,15,37

(Occupation=Fieldworker) 7,17,24,33

(Occupation=Nurse) 3,26

(ClaimAmt=Low) 3,7

(ClaimAmt=Medium) 11,17,24

(ClaimAmt=High) 15,26,33,37

we generate d-lists for the four methods needed for this query. For the sake of illustration,
let Table 1 show all the d-lists generated for this dataset of size, say, 40 objects.

To generate the initial seed, we intersect the d-lists corresponding to (Disease=
Pneumonia) and (Age=Middle). In this example, this is the only element in the Seed
set, and it meets the minimum support of 3 objects (7% of 40).

Before we extend the seed, we first generate all possible rules with it. In this case, we can
only get rules by expansion, since{C ∩TARGET∩MAY} = ∅. Expanding the seed with
ClaimAmt (only method in (TARGET – MAY)), we get the following rule which meets the
support and confidence constraints:

(Disease=Pneumonia),(Age=Middle) => (ClaimAmt=High) [s:9, c:44%]

The other two expansions fail the confidence requirement of 35%.
Next, since Occupation is the only method inMAYwhich does not occur inMUSTwe

add to ourSeedset, d-lists of the form (Occupation=∗). That gives us two C-lists meeting
the support requirement:

(Disease=Pneumonia),(Age=Middle),(Occupation=Clerk), {11,15,37}
(Disease=Pneumonia),(Age=Middle),(Occupation=Fieldworker),

{7,17,24,33}

For the above seeds, both decomposition, and expansion methods for rule generation can
be applied. The first of above C-lists forms the following rules:

(Disease=Pneumonia),(Age=Middle) => (Occupation=Clerk)
[s:9, c:33%]

(Disease=Pneumonia),(Age=Middle),(Occupation=Clerk)
=> (ClaimAmt=High) [s:3, c:67%]

the first of which fails the confidence requirement, and is rejected. The second C-list yields:
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(Disease=Pneumonia),(Age=Middle) => (Occupation=Fieldworker)
[s:9, c:44%]
(Disease=Pneumonia),(Age=Middle),(Occupation=Fieldworker) =>
(ClaimAmt=Medium) [s:4, c:50%]

both of which are acceptable rules.

10. General query compilation

The syntax of the most general GetRules query was described in Section 4. Earlier, we
described the evaluation of what we defined as the “Basic-MSQL-query”. In this section,
we describe the evaluation procedure for general MSQL queries.

Evaluation of the general query is presented as follows. First, we consider each of the
extensions to the Basic-MSQL-query individually, and using some pre- and post- processing,
reduce them into the “Basic-MSQL-query” formulation discussed in the last section. Next,
in Section 12, we present the pseudocode for the overall query processing algorithm which
takes a general query with all such extensions together, and transforms them to the simplest
MSQL query form in a well defined manner. Finally, we draw some observations from the
algorithm, and present some optimizations to it.

11. Reduction of nested subqueries

Based on the evaluation model, nested queries can be classified into two basic types:

• Stratified queries, in which the subquery can be evaluated fully before the outer query
needs to be considered, and
• Correlated queries, in which the subquery is connected to the outer query via correlated

variables, and the execution plan requires some form of “loop unfolding”.

Both these query types are discussed below.

11.1. Stratified subqueries

The subquery condition in this case looks like one of the following:

{Body|Consequent} IN <nested Q’>} |
{confidence|support} {<|>|=|<=|>=|<>} <nested Q’> |
[NOT] EXISTS {<nested Q’>}

In the first type of condition, nested-Q’ is a query that returns a set of objects of the same
type as the object used in the left side of the IN operator. In the second case, the query
returns a single row containing a value which yields a predicate on confidence or support.
In the third condition type, the nested-Q’ evaluates to some finite set of values (which yields
either True or False in the presence of EXISTS/NOT EXISTS).
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The evaluation method of such queries is “bottom-up”. The subquery is evaluated first,
and is replaced with its results in the outer query. The outer query is now free of this stratified
query. This process is applied to each stratified subquery till the outer query is reduced to
the simple MSQL query type.

The pseudocode for stratified evaluation of nested queries can be expressed as:

EvaluateQ(Q) (1)
begin (2)

Let Q contain a stratified subquery clauseSSQ (3)
if SSQis of the form:expr IN nested-Qthen (4)

Let tmpResult= EvaluateQ(nested-Q) be< v1, v2..vn > (5)
Qnew= ReplaceSSQwith (expr= v1) ∨ .. ∨ (expr= vn) (6)

else ifSSQis of the form:[NOT] EXISTS nested-Qthen (7)
tmpResult= EvaluateQ(nested-Q) (8)
Qnew= ReplaceSSQwith “[ NOT](tmpResult6= φ)” (9)

end if; (11)
EvaluateQ(Qnew) (12)

end (13)

11.2. Correlated subqueries

The subquery format for these queries has similar syntax as for stratified queries except that
the inner query contains references to one or more instances of classes (or methods within
those classes) from the outer query. This makes it impossible to evaluate either the outer
query or the inner query independently of the other.

For purposes of query evaluation, we definea correlated variable as a reference in the
inner (nested) subquery, to a class or a method within a class which is being computed in
the outer query. For example, the following query generates those rules above 10% support
and 30% confidence, which have no successors.

Project Body, Consequent, support, confidence
GetRules(C) as R1
where support > 0.1 and confidence > 0.3

and not exists ( GetRules(C) as R2
where support > 0.1 and confidence > 0.3
and R2.Body has R1.Body
and not (R2.Body is R1.Body)
and R2.consequent is R1.consequent )

In the above query, references to R1.Body and R1.consequent in the subquery are two in-
stances of correlated variables. Furthermore, let us define aninstantiationof a correlated
subquery as follows: LetQ(R1, R2..Rn) be a query over classesC1..Cn, such thatRi cor-
responds to the Rule class generated fromCi . Let CSQ(vR1, vR2..vRk) be the correlated
subquery withinQ, containing correlated variablesvR1..vRk, which are references to rule
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classesR1..Rn defined outside the scope ofCSQ. Then aninstantiation or “grounding”
Ir1,r2..rn(CSQ) of the subquery is defined as a complete substitution of the correlated vari-
ables inCSQ, such thatri is an element ofRi , and

• if vRi is a reference to methodM of classRi , it is replaced withri .M , value of method
M in r i .
• if vRi is a reference to the whole classRi , it is replaced with the instanceri of Ri .

The same definition applies to stand-alone “where” clause expressions within a query. The
instantiation, as defined above, is used in the evaluation of correlated subquery conditions.
Contrary to stratified queries, where the outer and inner queries are evaluated separately,
correlated queries can be evaluated either top-down or bottom-up using “loop unfolding”.
Both these ideas are described in the subsections below.

11.3. Top-down evaluation

The idea in top-down evaluation follows the “generate and test” strategy—we evaluate the
outer query first while ignoring the correlated subquery condition, in effect generating a
superset of the answers. Then for each resulting row, we test if the subquery holds. The
procedure is described more formally below.

Let Q(R1, R2, ..Rn) be an MSQL query, containing a subqueryCSQ(vR1, vR2..vRk),
wherevRi is a correlated reference toRi , as defined above. The “where” clause conditions
of Q can then be written as:COND∧CSQ(vR1, vR2, ..vRk). Here is how we evaluate this
query:

1. Let Q′ be the more general query formed by substitutingCSQwith “True” in Q. In
other words, the answerA of Q is now a subset of the answerA′ of Q′.

2. Evaluate Q′, without applying any projections yet. The answerA′ of Q′ is then the set
of tuples〈r1, r2..rn〉 ⊆ {×n

i=1Ri }
3. The answerA to the original queryQ is then the set of those tuples〈r1, r2..rn〉 (with

projections now applied), for which the instantiationIr1,r2..rn(CSQ)= true

11.3.1. Example: To illustrate the above procedure, let us apply it to the example query
presented above. After eliminating the correlated subquery from this query, we get:

Project Body, Consequent, support, confidence
GetRules(C) as C1
where support > 0.1 and confidence > 0.3

Let us say the results of the above query are as follows:

(A=a1) ==> (C=c1) [0.33, 0.40]
(A=a1) (B=b1) ==> (C=c1) [0.15, 0.35]
(B=b2) (C=c3) ==> (D=d5) [0.11, 0.60]
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The respective instantiations of the subquery, formed using the above result set are:

not exists ( GetRules(C) as R2
where support > 0.1 and confidence > 0.3
and R2.Body has { (A=a1) }

and not (R2.Body is { (A=a1) })
and R2.consequent is { (C=c1) } )

not exists ( GetRules(C) as R2
where support > 0.1 and confidence > 0.3
and R2.Body has { (A=a1), (B=b1) }

and not (R2.Body is { (A=a1), (B=b1) })
and R2.consequent is { (C=c1) } )

not exists ( GetRules(C) as R2
where support > 0.1 and confidence > 0.3
and R2.Body has { (B=b2), (C=c3) }
and not (R2.Body is { (B=b2), (C=c3) })

and R2.consequent is { (D=d5) } )

On evaluation of these queries, we find that the second and third one are true, which
means that the last two rules belong to the set of valid results. Applying the projection
operation on them doesn’t alter anything in this case, and so our final result is:

(A=a1) (B=b1) ==> (C=c1) [0.15, 0.35]
(B=b2) (C=c3) ==> (D=d5) [0.11, 0.60]

11.4. Bottom-up evaluation

Contrary to the top down evaluation, the bottom-up evaluation attempts to unfold the inner
query into a large boolean condition formed by evaluatingCSQwithout the correlating
conditions first, and then instantiating the correlating conditions with the answers thus
obtained.

Let Q(R1, R2, ..Rn) be an MSQL query, containing a subqueryCSQ(L1, L2..L j , vR1,
vR2..vRk), wherevRi ’s are correlated references toRi outsideCSQ’s scope, andLi ’s are
the rule classes corresponding to classes withinCSQ. The steps to the algorithm can then
be expressed as follows:

1. Let the “where” clause ofCSQbe of the form(CC ∧ Rest), whereCC is the set of
conditions involving correlated expressions. LetCSQ′ be the query formed by removing
CC from the “where” clause inCSQ.

2. EvaluateCSQ′. The result is a set of tuplesA of the form〈r1 . . . r j 〉 such thatri ∈ Li

and〈r1 . . . r j 〉 ⊆ {×n
i=1Li }

3. For each tuplet = 〈r1 . . . r j 〉 in the intermediate result, create an instantiationINSt

formed by instantiatingCC with t . In other words,INSt = I〈r1...r j 〉(CC).
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4. ReplaceCSQin Q with the expression
∨

t∈A(INSt ).

What we have effectively done in the above procedure is to “flatten” the nested query
into a large logical OR expression made from intermediate results of the subquery.

To help draw a comparison later, we apply this procedure on the same example as in the
above section.

11.4.1. Example: In the correlated subquery example presented above, the correlated
subquery looks like:

( GetRules(C) as R2
where support > 0.1 and confidence > 0.3
and R2.Body has R1.Body
and not (R2.Body is R1.Body)
and R2.consequent is R1.consequent )

After removing the “where” clause conditions which have references to correlated variable
R1, we are simply left with:

GetRules(C) as R2
where support > 0.1 and confidence > 0.3

Let us say the results of the above query are as follows:

(A=a1) ==> (C=c1) [0.33, 0.40]
(A=a1) (B=b1) ==> (C=c1) [0.15, 0.35]
(B=b2) (C=c3) ==> (D=d5) [0.11, 0.60]

The respective instantiationsI1..I3 of the correlated conditions in the subquery, formed
using the above result set are:

I1: { (A=a1) } has R1.Body
and not ({ (A=a1) } is R1.Body)
and { (C=c1) } ) is R1.consequent

I2: { (A=a1), (B=b1) } has R1.Body
and not ({ (A=a1), (B=b1) } is R1.Body)
and { (C=c1) } is R1.consequent )

I3: { (B=b2), (C=c3) } has R1.Body
and not ({ (B=b2), (C=c3) } is R1.Body)
and { (D=d5) } is R1.consequent

The correlated subquery in the outer query can now be removed and replaced with the logical
OR of boolean conditionsI1..I3. The outer query is now free of correlated subqueries and
looks like:
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Project Body, Consequent, support, confidence
GetRules(C) as R1
where support > 0.1 and confidence > 0.3

and not exists ( (I1) or (I2) or (I3) )

On evaluation of the above query, we find that the second and third rules produced above
satisfy the boolean conditions, and thus are part of the overall result set. Applying the
projection operation on them doesn’t alter anything in this case, and so our final result is:

(A=a1) (B=b1) ==> (C=c1) [0.15, 0.35]
(B=b2) (C=c3) ==> (D=d5) [0.11, 0.60]

11.5. Deciding between top-down and bottom-up evaluation

For correlated queries, both top-down and bottom-up evaluation procedures perform in
spirit, what is commonly referred to as “loop unfolding” in compilers research. Irrespective
of whether the outer or the inner query is “flattened”, both transformations lead to the same
result. However, for certain types of queries, it may be much more efficient to choose one
method over the other. In this section, we first discuss two differentiating examples, and
then generalize the observations from these into a set of heuristics, similar to the ones used
in database optimization, to be used by the general evaluation algorithm.

Consider the following example, which tries to generate all rules such that a successor
for the rule exists with a support above 30 percent:

Ex1: GetRules(C) as R1
where exists ( GetRules(C) as R2

where R2.Body has R1.Body
and R2.length > R1.length
and R2.Consequent = R1.Consequent
and R2.support > 0.3 and R2.confidence

> 0.4
)

Consider a second example, in which the query returns all rules above 40 percent support
and 50 percent confidence which have an immediate predecessor within 20 percent of the
rule’s support.

Ex2: GetRules(C) as R1
Where support > 0.4 and confidence > 0.5

and exists ( GetRules(C) as R2
where R2.Body in R1.Body

and R2.length = R1.length-1
and R2.Consequent = R1.Consequent
and R2.support < 1.2*R1.support

)
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In the first example, the only constraints on rule generation are present in the inner query.
The outer query is almost “unsafe” in a way, since the universe of rules is not present
“extensionally” in a table, as is the case with similar database queries. Expanding the outer
query first would almost be futile, as the number of rule combinations to generate and test
will be truly exponential. However once the inner query is unfolded, we have a finite number
of “successor” rules in R2 for which we have to look for predecessors.

In the second example, the inner query does have constraints on support and other at-
tributes, but all the constraints are part of “correlated expressions” as defined earlier. In
order to follow bottom up evaluation, we will have to remove them first, and then execute
the remaining query, which will lead to a similar problem as in the first one. In this case, it
is easy to see that the outer query should be given preference.

In general, the optimized algorithm must first examine the conditionsindependent of
correlated expressionsin both inner and outer query, and then select the query which has
more restrictive conditions.

It is not possible to determine which query will generate fewer rules, but we have found
the following heuristics to work well in practice:

1. The query with higher support threshold should be evaluated first.
2. Failing support, confidence should be considered next.
3. A (length= x) type expression is in general, more restrictive than a(length> x) ex-

pression, which is in general, more restrictive than a(length< x) expression.
4. A “Body IS (constant expression)” should be given higher priority over a “Body HAS”

expression, which should be preferred over a “Body IN” type of expression.
5. “Consequent IN” expression.
6. 6) When comparing descriptors, a descriptor of the form(A = ai ) is much more restric-

tive than a wild-card descriptor of the form(A=∗).

The fourth heuristic above may not always lead to the best choice. For example, an expres-
sion like “Body H AS(A=∗)” might turn out to be less restrictive than “Body I N (C= c3),
(B= b4), (D= d5)”, which must examine all subsets of the three descriptors. But if the
two expressions are present in the outer and inner queries, they both must eventually be
evaluated by the query. Besides, once it boils down to selecting the more “tighter” constant,
it doesn’t make a crucial difference in performance. The heuristics are there just to help
prevent selecting an almost unconstrained query from being expanded.

There still exist several pathological cases, where no heuristic will work. Consider the
following example, which generates all rules of the form(X= xi )⇒ (Y= yi ) such that the
reverse rule(Y= yi )⇒ (X= xi ) also exists with support and confidence within 5 percent
of the original rule.

GetRules(C) as R1
where length = 1

and exists (GetRules(C) as R2
where length = 1

and R1.Body = R2.Consequent
and R2.Body = R1.Consequent
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and R2.support >= 0.95 * R1.support
and R2.support <= 1.05 * R1.support
and R2.confidence >= 0.95 * R1.confidence
and R2.confidence <= 1.05 * R1.confidence)

The only non-correlated condition in both outer and inner queries is (length= 1). In either
type of evaluation, the evaluation procedure must consider every element of the set{R× R},
whereR is the set of rules of length 1 inC, and validate the rest of the conditions.

Before applying the heuristics, however, one must propagate constants (as in database
query evaluation) between inner and outer queries whenever possible. This is usually the
case when either the inner or the outer query contains a comparison of an expression
with a constant, and the other query compares the same expression with the corresponding
expression in its own scope. For e.g., in the example below, the inner query canadditionally
have the condition “(length> 3)” without losing any results.2

...
where R1.length > 3

and exists (..
where R2.length > R1.length)

12. Overall evaluation algorithm

We can now combine the procedures developed in Sections 11.1, 11.4 and 11.3 to take an
arbitrary query with subqueries, and transform it into a query without subqueries. (Note: the
assumption still in use is that the all query conditions are “AND”-ed together. Disjunctions
are dealt with in the following section).

The overall query evaluation function “EvaluateQ” can be described by the following
pseudocode. It recursively calls EvaluateQ to remove flatten subquery conditions, and finally
calls the Basic-MSQL-Eval algorithm described earlier.

EvaluateQ(Q)
begin

Let Conds be the “where” clause conditions inQ
if Conds contains a stratified subquerySSQ/* See definition */

ReduceSSQto a set of boolean conditions as in 11.1
Let Q’ be the query thus formed. EvaluateQ(Q′).

else ifConds contains a correlated subqueryCSQ/* See definition */
Examine the conditions inQ andCSQ, and using heuristics developed
in 11.5, decide between top-down and bottom-up unfolding.
if top-down, then

Use EvaluateQ in the procedure described in 11.3 to
reduce the query to a set of subquery instantiations.

Apply EvaluateQ on each instantiation recursively and union the results.
else if bottom-up, then
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Flatten the inner query to a boolean condition as described in 11.4
Let Q’ be the resulting query.
EvaluateQ(Q′).

end if
elseBasic-MSQL-Eval(Q)

end

13. Query evaluation in the presence of disjunctions

Until now, we assumed that our query conditions were composed using only the AND
operator. In the more general case, a query can have multiple conditions connected using
a combination of the “AND” and the “OR” operators. In a naive evaluation scheme, one
can reduce a general boolean condition correctly into a union/intersection of the results of
queries over each individual condition as shown below:

Evaluate SimpleQ(P, T[A1..An], Conds) (1)
begin (2)

if C is of the form (C1 OR C2) then (3)
Result= (EvaluateSimpleQ(P, T[A1..An], C1) (4)⋃

EvaluateSimpleQ(P, T[A1..An], C2))
else if C is of the form (C1 AND C2) then (5)

Result= (EvaluateSimpleQ(P, T[A1..An], C1) (6)⋂
EvaluateSimpleQ(P, T[A1..An], C2))

else (7)
Result= BasicMSQL Eval(P, T[A1..An], C) (8)

end if; (9)
return Result (10)

end;

Although correct, the above procedure will result in extremely inefficient evaluation. For
example, in a rule condition like:

Body has { A, B } and support > 0.5 and consequent is { F }

it will process three queries, each with a single component condition above and then take
intersection of the results. This will lead to generation of all rules with support>0.5,
all rules with Consequent={F}, and all rules containing A and B in the Body, and then
intersecting the results. The BasicMSQL Eval procedure can already accept queries with
multiple conditions ANDed together.

In case of a disjunction, evaluating the query by first evaluating each operand of the OR,
and then forming set theoretic union will in general result in replication of the same work.
As an example, whenMUSTsets for different disjunctions intersect, the intermediate C-lists
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obtained in the construction of a C-list for one atom may be reused for another. Consider
the following motivating example:

GetRules(C)
where (Body in {(Age=*),(Sex=*),(Salary=*)}

or Body in {(Age=*),(Job=*),(Salary=*))
and Consequent in {(Car=*)}
and confidence > 0.4
and support > 0.1

The intermediate C-lists for (Age=*)(Salary=*) produced for the first Body expression
could be recycled for the second. However, stand-alone evaluation of both clauses will
produce, as its result, conjunctsets of the form “(Age=v1)(Sex=v2)(Salary=v3)”, which
cannot be used for generating conjunctsets in the second Body expression.

The optimized algorithm for evaluating disjunctive queries uses the GetRules evaluation
engine described earlier as a procedure, and makes multiple calls to it. However, it is different
from the EvaluateSimpleQ procedure in its approach. There are four key issues that we
have identified in the evaluation of disjunctive queries:

• Distribution pruning conditions over disjuncts.
• Reusing conjunctsets between disjuncts.
• Evaluation order of disjuncts.
• Swapping Priority of conjunctsets.

Below we discuss each issue separately, and finally present our algorithm.

13.1. Distributing the constraints:

An important observation is that support, length and mutex conditions happen to be the only
pruning conditions that can control the number of possible conjunctsets generated. The idea
therefore is to distribute the pruning conditions over the OR expressions as much as possible,
and invoke theBasic-MSQL-evalengine with as many constraints from logically “AND-
ed” subexpressions as possible, rather than making multiple invocations. For instance, a
query like

(Body has {A,B} or Body has {C,D})
and support > 0.5 and consequent is {F}

should result in two invocations like:

Basic-MSQL-Eval(Body has {A,B} and support > 0.5 and consequent
is {F})

Union
Basic-MSQL-Eval(Body has {C,D} and support > 0.5 and consequent

is {F})
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as opposed to:

Basic-MSQL-Eval(support > 0.5)
Intersect
Basic-MSQL-Eval(consequent is {F})
Intersect
( Basic-MSQL-Eval(Body has {A, B})

Union
Basic-MSQL-Eval(Body has {C, D}) )

13.2. Reusing conjunctsets between invocations

The second task of the algorithm should be to identify common subexpressions between
two calls to the Basic-MSQL-eval engine, and prevent their regenerationfrom the disk a
second time.

To formalize this notion of reusing work between two disjuncts, let us first define a
conjunct-patternto be the expressionA1A2..An representing the family of conjunctsets of
the form “(A1 = a1i )(A2 = a2 j )..(An = ank)”, where Ai ’s are the methods of the class to
be mined. Instantiations of conjunct-patterns yield C-lists, and are said to be “generated”
by the respective pattern. For instance, a conjunct-pattern(A=∗)(B=∗) generates C-lists
of the form((A=a1)(B= b1), L), and((A=a2)(B= b2),M), and so on, whereai ’s and
bi ’s belong to the domains ofA andB respectively, and L and M are the support lists for
the respective conjunctsets.

Consider two disjunctsD1 andD2. Let the set of C-lists generated by a conjunct-pattern
P for D1 beP(D1), and forD2 beP(D2). We then say thatD1 subsumesD2 underP,
iff the setP(D1) is a superset ofP(D2) for any dataset. This is expressed as:

D1
P→ D2 i f f P(D1) ⊇ P(D2)

The set of reusable conjunct-patterns fromD1 to D2 is then the set of conjunct-patterns
P such thatD1 subsumesD2 underP. This can be expressed as:

ReUse(D1, D2) = { P | P(D1) ⊇ P(D2)}

The intuition behind using a conjunct-pattern as opposed to a C-list to define the gran-
ularity of reusable work between two disjuncts is as follows. LetD1 andD2 share C-lists
generated by a patternP, and let{i1, i2, i3} be the instantiations ofP needed inD1, and let
{i1, i2, i3, i4, i5} be the corresponding set forD2. To generate these C-lists, the algorithm
must scan the database to construct the support list for each instantiated conjunctset. If
we were to reuse the C-listsi1..i3 from D1 to D2, the algorithm would still have to scan
the database for generating the remaining C-listsi4 and i5. This does not result in much
savings, since the algorithm doesn’t know how many more instantiations ofP could meet
the conditions inD2, and must “count” each possible instantiation ofP during the data
scan. However, if we canguaranteethat the set of instances for a pattern inD2 is a superset
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of the instances needed inD1, then the algorithm need only “refine” the existing set by
pruning it further, without the need to go to the data (on disk) a second time. Therefore,
even though the first three C-lists can be reused in either direction in the example above,
it is the reusability of the patternP as a whole (which is only possible fromD2 to D1 in
this case) which promises some savings for the algorithm. Note that the definition ofReUse
does not involve a given data set, hence we are interested in conjunct-patterns that can be
claimed to be reusable across two disjuncts, for any general data set.

Below, we describe a way to compute the ReUse sets between several disjuncts of a
query, when each disjunct contains only logically “AND”-ed conditions on Body, Conse-
quent, support, confidence and mutex. Further, the conditions on Body and Consequent
within each disjunct are assumed to have been reduced to the form:

(MUST⊆ Body) AND (Body⊆ MAY) AND (Consequent IN TARGET)

as described for the Basic evaluation algorithm.
We now define the termsconj reuseanddescripreusebetween two disjunctsD1 and

D2, and later use them to deriveReUse(D1, D2). Intuitively, conj reuse(D1, D2) returns
the conjunct-patterns which can be reused fromD1 to D2, if possible, anddescripreuse
(D1, D2) tries to capture descriptor patterns which can be reused fromD1 to D2.

LetDQbe the disjunctive query, with the “where” clause of the form(D1∨D2∨ ..∨Dn),
whereDi is a disjunct of the form mentioned above, and letMUSTi , MAYi andTARGETi
be the corresponding MUST, MAY and TARGET sets for disjunctDi .

Let MUSTi and MUSTj be the theMUST sets forDi and Dj , then theconj reuse,
betweenDi andDj can be computed as follows:

conj reuse(D1, D2):
if length(MU ST1) <= 1, returnφ; (1)
if min support inD1 > min support inD2 returnφ; (2)
if (signature(MU ST1) = signature(MU ST2) and

(MU ST1 hasMU ST2)) then (3)
Let {A1, ...An} be the attributes used inMU ST1. (4)
Return the conjunct-pattern “A1A2..An”. (5)

else returnφ;

Line (1) above returns the empty set if either of the MUST sets is a single descriptor. In
this case, the MUST-descriptor is used in the next procedure descripreuse. The rest of the
code simply verifies that the signatures match and the MUST pattern of the first disjunct is
more general than the second.

As computed by the above procedure, conjreuse between must sets(A=a2)(B=∗)
and(A=a2) is an empty set, since their signatures don’t match, and conjreuse between
(A=a2)(B=∗) and(A=∗)(B=∗) is empty, since the first doesn’t contain the second, while
conj reuse between(A=∗)(B=∗)(C=c3) and(A=a2)(B=∗)(C=c3) is the conjunct-pattern
(A=*)(B=*)(C=*).

The “strictness” of conjreuse follows from the following observation: The MUST set
represents the descriptors that must all be present in the Body, hence the GetRules evaluation
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engine directly pushes these conditions on the data and “counts” only those records which
have all conditions in them. Therefore the algorithm will build the initial C-lists quite dif-
ferently for a query requiring(A=∗)(B=∗) as its MUST set, versus for a query requiring
(A=a1)(B=∗)(C=c3) as the MUST set, even though the condition(A=a1)(B=∗) is com-
mon to both of them. On the other hand, for theTARGETandMAY sets, the algorithm
constructs singleton d-lists from the data, which are the simplest patterns and thus easier to
recycle, as opposed to conjunct-patterns, since the more complicated the pattern, the less
the probability of another disjunct needing it.

Let MAYi , TARGETi andMAYj , TARGETj be the theMAY andTARGETsets for dis-
juncts Di and Dj . Let MTi represent the union of descriptors fromMAYi andTARGETi ,
and alsoMUSTi , if length(MUSTi ) = 1 (when they are not handled by conjreuse), with
the following transformation applied: All instances of descriptors(A=a1), (A=a2), ..

(A=an), sharing the same attribute are collected together into one expression of the form
(A={a1,a2, ..,an}). ThusMTi contains just one descriptor per attribute.

We can now compute the descripreuse betweenDi andDj , as follows:

descrip reuse(D1, D2):
if min support inD1 > min support inD2 returnφ; (1)
for every attributeAi such that descriptor(Ai = V1) ∈ MT1

and(Ai = V2) ∈ MT2 { (2)
If (V1 = “*” || V1 ⊇ V2), add(Ai = ∗) to result (3)
}

return result (4)

For example, ifMAY1 is {(A=∗), (B=b1), (C=∗)} and TARGET1 is {(F=∗)}, while
MAY2 is {(A=∗), (F=∗)} andTARGET2 is {(C=C3), (B=∗)} then
descripreuse(D1, D2) is the set{(A=∗), (C=∗), (F=∗)}.
Claim: The setReUse(Di , Dj ) can be computed as:

ReUse(Di , Dj ) = conj reuse(Di , Dj ) ∪ descripreuse(Di , Dj )

Proof: descripreusecaptures individual descriptor patterns which can be reused from
Di to Dj , which conj reusecaptures longer length patterns which can be reused between
the same disjuncts.

Let us first assumethat the descriptor pattern(A=∗)∈ReUse(Di , Dj ). This implies that
both Di andDj compute some subset ofall descriptors of the form(A=ai ). In addition,
it implies that the set of such descriptors generated inDi is guaranteed to be a superset
of the set of such descriptors computed inDj , for any database. This guarantee is only
possible if the minimum support requirement inDi is less than the similar requirement in
Dj , and the query pattern computing descriptors of the form(A=ai ) is either unrestricted
((A=∗)), or is more general (enumerates more instances) than its counterpart inDj . What
we listed above through semantic reasoning are exactly the procedural steps to compute
descripreuse(Di , Dj ).

Now assume that the conjunct-pattern(A=∗)(B=∗)..(N=∗) ∈ ReUse(Di , Dj ). Fol-
lowing similar reasoning as above, we can arrive at the conclusion that the above conjunct-
pattern must be computed byconj reuse(Di , Dj ).
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Sinceconj reusecaptures all conjunct-patterns of length> 1, which fit the definition of
ReUse, anddescripreusecaptures all descriptors (conjunctsets of length 1) which fit the
above definition, anything that is inReUseis computed by the right hand side. Anything
computed by the right hand side, by definition is inReUse, since the procedures implement
the definition ofReUse.

Claim: if the setsReUse(Di , Dj ) andReUse(Dj , Di ) are both non-empty, the minimum
support required in disjunctsDi andDj is the same.

Proof: For ReUse(Di , Dj ) to be non-empty, it means that there exists some conjunctset
C for which all patterns computed by disjunctDi are a superset of similar patterns computer
by D2, irrespective of the database. This is possible only if support(D1)≥ support(D2). Sim-
ilarly for ReUse(Dj , Di ) to be non-empty, it must follow that support(Dj ) ≥ support(Di ).
Together, these two cases imply that support(Di ) = support(Dj ).

13.3. Conjunctset caching and replacement policies

Empirical studies of the rule generation process, including the results presented in Virmani
(1998), show that the CPU time is a small fraction of the elapsed time, indicating the
I/O bound nature of the problem. One of the main reasons for high disk activity is that
the available memory cannot hold all the intermediate conjunct-patterns needed by less-
restrictive queries. Given infinite memory, one can trivially generate and maintain the union
of all d-lists required by all disjuncts for the duration of the query, avoiding the need for
regeneration or swapping. However, given a finite memory, it becomes important for the
algorithm to ensure minimal disk activity and maximum reuse of conjunctsets.

More specifically, once the pairwise reuse sets are known, the algorithm must examine
the following two issues:

• Given a graph where each vertex is a disjunct, and directed edges from disjunct D1 to D2
representReUse(D1, D2), come up with a “traversal” of this graph to ensure maximum
conjunctset reuse.
• When faced with a decision to swap certain conjunct-patterns out of memory in order to

make progress, come up with a strategy to minimize the number of such swaps.

As we shall see later, several well established heuristics from operating systems field can
be applied here to guarantee best performance for disjunctive query evaluation.

The graph we arrive at, by following the construction mentioned above, has the form
shown in figure 2. The disjuncts can be partitioned into levels of increasing minimum
support, with disjuncts sharing the same minimum support level belonging to the same
level. Between two levels, we are guaranteed to have edges only going from lower to higher
support levels. This implicitly gives us a partial order on disjunct evaluation. In addition,
we label each reuse-edge with the number of conjunct-patterns that are being reused from
source to destination. This serves us a weight assignment for each edge, later used in a
heuristic to break ties, if necessary.
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Figure 2. Typical graph for a disjunctive query. Nodes represent disjuncts, and edges represent the ReUse sets
between source and destination.

Here is how we order the nodes for evaluation:

1. Disjuncts are evaluated level by level: all nodes with smaller support requirement are
evaluated before nodes with the next higher support requirement.

2. Within each level, we do the following:

(A) if there are no cycles, we use the ReUse edges to do a topological sort, and evaluate
the nodes from least to highest in-degree. At any step (say for in-degree k), if we
have more than one choice, we rank them using the tie-breaker, and consider them
¿from highest to lowest value of tie-breaker.

(B) If there are cycles within a level, for each cycle, we use the tie breaker to rank
the nodes within a cycle, then evaluate them from highest to lowest value of the
tie-breaker.

The tie-breaker is a simple heuristic function, which computes the following expression
for a node at leveli :

(IN(i−1) +OUTi )− (INi +OUT(i+1))

whereIN(i−1) is the number of incoming reuse patterns from top level,OUTi is the number
of outgoing patterns within the same level,INi is the number of incoming patterns from
within the same level, andOUT(i+1) is the number of outgoing patterns to the next level.

The intuition behind the tie-breaker is as follows: Nodes which are using maximum
conjunct-patterns from the previous levels should be given priority, lest we are forced to
swap them out while evaluating other nodes. By contrast, if a node generates a large number
of conjunct-patterns to be used in the next level, it better be evaluated as close to the end of
the current level, to maximize the chances of the conjunctsets being in memory when we
get to the next level (since all nodes of the current level must be processed before then). In
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addition, nodes which generate more conjunctsets for use by the same level should be done
earlier, so the other nodes may benefit.

In the interest of simplicity, the above heuristic treats each pattern to be the same weight,
when weighing a reuse edge. However, the same intuition can be developed into a cost-
based optimization algorithm, much like used by relational databases today, if we considered
the weight, and actual memory usage of each conjunct-pattern, and how much of it was
being re-utilized by the consumer disjunct(s). Needless to say, doing that would increase
the complexity of the query processing algorithm lot, and would preclude full compile-
time ordering of disjuncts, since assigning real cost to the edges would require run-time
examination of generated conjunctsets and a much closer syntactic examination of the query
patterns. It is a reasonable problem, to be studied as part of future work.

13.3.1. Swapping priority A related issue to the one above, is that of deciding which
conjunct-patterns to swap out of memory, when it becomes necessary to do so for the
algorithm to make progress.

In this case, the algorithm follows a simple scheme. The priority to “stay in memory”
is given to the conjunct-patterns likely to be used “most recently”, with respect to evalua-
tion order. This is similar to the optimal page replacement algorithm in operating systems
research, which simply states that “pages which are not going to be used for the longest
amount of time should be swapped out, if necessary.” In operating systems, however, no
page replacement scheme matches the performance of the optimal algorithm, since that
requires some degree of clairvoyance. (The least recently used (LRU) algorithm, however,
closely approximates the performance of the optimal algorithm).

In our particular case however, we can apriori know the order in which the nodes (dis-
juncts) will be evaluated by the algorithm. Therefore, when there is the need to swap
conjunct-patterns out of memory, we select the ones which will be used by the nodes to be
evaluated farthest in time.

13.4. The algorithm

Having understood the above issues of constraint distribution, conjunctset reuse and con-
junctset replacement policies, the algorithm itself is easy to follow. The steps to the algorithm
are described below:

1. Arrange the “where” clause in DNF (disjunctive normal form)3. In other words, the query
looks like(D1 ∨ D2 ∨ ..∨ Dn), where each disjunct can only be made up of conditions
involving Body, Consequent, support, confidence, length and mutex logically “AND”-ed
together. This step effectively distributes any pruning constraints over the disjunctions
as discussed in section 13.1.

2. Consider the disjuncts pairwise. For any pair of disjuncts (Di , Dj ), evaluateReUse
(Di , Dj ) andReUse(Di , Dj ). If either one is non-empty, draw an edge from the respec-
tive source to the respective target, and label it with the conjunct-patterns which can be
recycled. Assign each edge with a weight equal to the number of conjunct-patterns in
the respectiveReUseset.
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3. Perform a depth-first traversal on this forest of nodes. It may yield a set of more than
one completely disconnected graphs. What this means is that the different graphs thus
formed don’t share any subexpressions and can be executed totally independently. This
has the nice effect of reducing the memory requirements of the complete query.

Denote each independent subgroup of nodes a subquery. For each such subquery,
execute the next step.

4. Consider the nodes in the graph one at a time, using the evaluation order developed in
Section 13.3. When faced with the decision to swap conjunct-patterns, use the optimal
algorithm for swapping conjunct-patterns, as discussed in the last section.

The ideas developed for effectively evaluating multiple disjuncts of a query, notably the
construction of ReUse sets, are not limited to “within” a query, but can also be deployed
across independent queries posed by multiple users in a KDMS setting. In Virmani (1998),
when we talk about “mining sessions” and batch-jobs submitted in different sessions for
evaluation, the set of all queries submitted by different users can be treated as the set of
disjunctions of a large query, and the ideas of conjunctset caching and reusing applied to
them in a similar fashion.

14. Comparison with other rule query languages

We are aware of several other efforts in addition to ours, in terms of providing a declarative
query format to generate and manipulate association rules.

DMQL, proposed by Han et al. (1996) allows declarative specification of several rule
generating tasks, including generation of association rules, discriminant rules, classification
rules, and characteristic rules. The constructs for the above tasks appear to “generate”
knowledge, while allowing for expressions to pre-process the data. The language also
contains commands to specify concept hierarchies at intensional or extensional level and
apply them during mining tasks. However, we are not aware of similar operations to query,
or post process the results of mining in the language. The language works on relational
databases with discrete attributes. For continuous attributes, a hierarchy could be externally
defined and specified in the mining query.

The other effort, presented by Meo et al. (1996) proposes the MINE RULE operator, which
follows an SQL like syntax to generate rules. The work in Meo et al, (1996) reformulates
several typical rule generation queries into the MINE RULE format, and provides procedural
semantics of the operator. In contrast with the GETRULES operator presented in this paper,
the MINE RULE operator works on the market basket data, kept in the normalized relational
format with one row per item purchased per transaction. The MINE RULE operator is
proposed as an extension to SQL, and is used to generate rules only, as opposed to querying
persistently stored rules.

Sarawagi et al. in (1998) describe various levels of coupling mining systems with
databases, one of which involves embedding computation into a DBMS engine by extending
sql-92 with several primitives such as KWayJoin, and several other others such as Gather-
Join, GatherPrune in the area of object-relational extensions to SQL. The work also draws
comparisons to the approach of mining on data cached in a file system, and to the approach of
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pushing user-defined functions (UDFs) into the mining algorithms implemented in SQL.
Although not fully language related, has good bearing on the performance and scalability
of various language extensions.

There has also been some effort in integrating deductive database languages with data
mining. KnowledgeMiner is a data mining system, developed by Shen et al. (1996), which
uses meta-rules based onLDL++ to guide the data mining process. More recently, in (Tsur
et al., 1997) the authors have used Datalog to express query flocks: a generate-and-test
model for data mining problems. Our method differs from those works as we have focused
our language to be close to SQL, allowing easy adaptations for a user.

15. Conclusion

Much of the research in this area has focussed on“massive rule generation”, i.e. generating
all rules above a certain confidence and support. The algorithms have accordingly been
performance-tuned for that task. Given the large number of rules produced in such an
endeavor, we feel that a powerful, expressive language is essential to query the generated
set of rules. In addition, the same language can be used to specify selective, query based
generation of rules from data.

In this paper, we identified the key requirements of such a language, and presented the
design, syntax, and compilation of MSQL and SQL based language used in theDiscovery
Board data mining system. We presented algorithms for evaluating basic MSQL queries
and for more complicated cases involving arbitrary SQL nesting. We also identified several
scenarios where interesting optimizations are possible due to the various types of nested
query formats. We finally compared our approach with other approaches in literature.

At this point, a limited subset of MSQL has been implemented in theDiscovery Board
system. The full implementation of the above design will shortly be integrated into the
system.

Notes

1. We also allow descriptor-patterns of the form (method=*) in the must set. This is interpreted as meaning that
a rule may have any value for this method in the Body.

2. One must be careful to simplyadd and notreplacethe inner length-clause, since that will change the
semantics of the inner query!

3. This may, in the worst case, yield an exponential increase in the number of terms in the query, but the increase
is only in the size of the original query, which on an average is going to be fairly small (rarely more than ten
conditions).
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