
Applying a Selection Method to Choose Quality Attribute Techniques

Yin Kia Chiama,b,c,∗, Mark Staplesa,b, Xin Yed, Liming Zhua,b

aNICTA, 13 Garden St, Eveleigh, NSW 2015, Australia
bSchool of Computer Science and Engineering, University of New South Wales, NSW 2052, Australia

cFaculty of Computer Science and Information Technology, University of Malaya, 50603 Kuala Lumpur, Malaysia
dInstitute of Information and Decision Technology, Dalian University of Technology, Dalian, China

Abstract

Context: Software products have requirements on various software quality attributes such as safety and performance.
Development teams use various specific techniques to achieve these quality requirements. We call these “Quality Attribute
Techniques” (QATs). QATs are used to identify, analyse and control potential product quality problems. Although QATs
are widely used in practice, there is no systematic approach to represent, select, and integrate them in existing approaches
to software process modelling and tailoring.
Objective: This research aims to provide a systematic approach to better select and integrate QATs into tailored software
process models for projects that develop products with specific product quality requirements.
Method: A selection method is developed to support the choice of appropriate techniques for any quality attribute,
across the lifecycle. The selection method is based on three perspectives: 1) risk management; 2) process integration;
and 3) cost/benefit using Analytic Hierarchy Process (AHP). An industry case study is used to validate the feasibility
and effectiveness of applying the selection method.
Results: The case study demonstrates that the selection method provides a more methodological and effective approach
to choose QATs for projects that target a specific quality attribute, compared to the ad hoc selection performed by
development teams.
Conclusion: The proposed selection method can be used to systematically choose QATs for projects to target specific
product qualities throughout the software development lifecycle.

Keywords:
Quality Attribute Techniques, Technique Selection, Risk Management, AHP

1. Introduction

Acceptable levels of product qualities such as safety, per-
formance, reliability and security are determined during
software development. It is costly and time consuming to
fix quality problems at later development stages if a sys-
tem fails to meet the specified levels of product qualities.
Poor software quality can lead to loss of life, personal in-
jury, property damage, loss of money, damaged customer
relations and business failure. It is therefore important to
minimise the risks to poor product quality throughout the
software development process. In this research, product-
quality-risks (PQRs) are the potential problems or failures
that may cause a system to fail to meet its specified levels
of quality requirements. For instance, safety critical sys-
tems are concerned with software failures that may lead
to hazards to life, property or the environment; security-
critical systems aim to reduce faults that may lead to
unauthorized access or control; and performance-critical

∗Corresponding author.
Email address: yinkia@um.edu.my (Yin Kia Chiam)

systems aim to minimise the violation of constraints on
response time or throughput.

Software-intensive systems such as medical systems and
industrial automation systems use software to fully or par-
tially develop most of their functions or requirements. The
amount and complexity of the features provided by soft-
ware have greatly grown over time. Therefore, the risks
due to inadequate software product quality have become
a major concern of development teams.

Development teams use a variety of specific techniques
to identify, analyse, and control potential quality problems
throughout the development of a system. In this research,
we call these “Quality Attribute Techniques” (QATs). We
define QATs as techniques, methods or practices used to
identify, analyse, and control PQRs in the software and
system development. These QATs are often technical engi-
neering techniques [1] that address specific product quality
attributes such as safety, reliability or performance. Ex-
amples of QATs for safety include hazard analysis tech-
niques such as Failure Mode and Effect Analysis (FMEA)
and Fault Tree Analysis (FTA). Examples of QATs for per-
formance include Layered Queueing Network (LQN) and

Preprint submitted to Information and Software Technology January 29, 2013



Stress Testing.
QATs may be specific to a single phase of the devel-

opment lifecycle, or may span multiple phases. However,
QATs are usually not explicitly listed in software process
models, and the relationship between QATs and other pro-
cess elements has not been well studied [1–3]. In order to
create software process models that target specific quality
attributes, it is important to first understand the impor-
tant characteristics of QATs and how they relate to the
development process.

Most software process tailoring methodologies are de-
signed to address variations in organisation and project
context such as size of the organisation, project or team,
complexity of the project, and standard compliance [4–6].
As will be discussed in the next section, the research lit-
erature has not normally regarded product quality as an
important characteristic of software process tailoring. In
previous work [1, 2], we have argued that there is no sys-
tematic approach to represent and integrate QATs for arbi-
trary quality attributes within existing approaches to soft-
ware process modelling and tailoring. Nonetheless, QATs
are used in practice by software engineers. The existence of
a repository of codified knowledge about QATs could help
development teams to better understand the potential ef-
fect of using various QATs to target key product qualities
across all phases of the software development process.

QATs can range from relatively simple and cheap walk-
throughs and checklists, to more complex and expensive
approaches requiring intensive expertise such as Fault Tree
Analysis and formal methods. Development teams need
to select appropriate QATs and incorporate them into de-
velopment processes created or tailored for new projects.
Most prior studies have focused on selecting QATs for a
specific quality attribute (e.g. safety or performance) or
for specific lifecycle phases (e.g. requirements, architec-
ture). Some selection methods are only suitable for ver-
ification and validation QATs. Technique selection is an
important part of the tailoring of technical development
processes [2, 7]. The chosen techniques can significantly
influence the software development processes and product
quality.

The ultimate goal of this research is to help software
development teams to improve product quality and qual-
ity assurance by helping them to better select and in-
tegrate QATs into tailored software process models that
target specific product qualities. Our objective is to pro-
vide a better understanding of the relationship between
QATs, development process models, and product quali-
ties. In [3], we had proposed a framework to capture
and present QAT information required for decision making
during QAT selection and integration with development
processes. The Quality Attribute Technique Framework
(QAT Framework) provides a basis for creating a cata-
logue of QATs to support selection of QATs that target a
specific product quality attribute. This QAT Framework
includes a risk-management based categorisation scheme.
QATs are categorised according to the method by which

they address PQRs. We use risk management to under-
stand how the QATs function to manage product quality
by identifying, analysing, treating and monitoring PQRs.

In this paper, a quality-specific selection method is
proposed, to help development teams choose appropriate
QATs across the lifecycle. This is based on three per-
spectives: product-quality-risk management, process inte-
gration and cost/benefit. Risk management is used as a
general theory to encompass a variety of product quali-
ties. The multicriteria decision-making method (MCDM),
Analytic Hierarchy Process (AHP)[8], is applied to anal-
yse the cost/benefit of applying each candidate QAT. We
sought to address the following research question: How can
appropriate QATs be selected and integrated into process
models that target a specific product quality? In an earlier
paper [9], we presented an initial version of the QAT Selec-
tion Method, and evaluated it using an example real-world
safety system taken from the literature. In the current pa-
per, we present a revised selection method and further
validation from an industry case study.

We report on a case study we have conducted to eval-
uate the method. In the case study, the QAT Selection
Method was used to choose QATs that best fit the prod-
uct quality requirements for a number of projects. The
applicability of the QAT Selection Method was supported
because the analysis indicated that only minor differences
were found when comparing the actual selection made by
the development teams. Compared to ad hoc selection by
development teams, the QAT Selection Method provides a
more systematic approach to provide explicit justification
for the selection.

The remainder of this paper is organised as follows: Sec-
tion 2 discusses work related to this research. Section 3
describes a brief background to the QATs, managing PQRs
and the Analytic Hierarchy Process (AHP) that are used
as the basis for our work. Section 4 describes the QAT
Selection Method to choose QATs for projects that tar-
get a specific product quality. Section 5 presents a case
study to validate the QAT Selection Method. Section 6
discusses the results and findings of the case study. Sec-
tion 7 discusses the limitations and advantages of the QAT
Selection Method arising from the evaluation. Section 8
presents conclusions and discusses future research.

2. Related Work

Desired product quality attributes can be achieved by
using specific processes. Technical development processes
can be created by incorporating into process models tech-
niques that have an impact on specific quality attributes
[7]. These processes can help development teams to man-
age product qualities.

Many researchers have addressed the need for selecting
appropriate practices, process models, and techniques for
a specific software project [10–15]. A wide range of tech-
niques is available to choose from. These techniques have
different quality impacts, benefits and limitations on their

2



use, and applied stages. Glass [13] emphasises that indus-
try needs guidelines on how and when to use the various
techniques in projects.

Safety standards such as IEC 61508 [16] and IEC 62279
[17] provide guidance on the selection of techniques and
measures. According to the guidelines, appropriate tech-
niques or measures are selected or omitted according to the
target software safety integrity level. Recommendations
(M: Mandatory; HR: Highly recommended; R: Recom-
mended; –: No recommendation for or against being used;
NR: Positively not recommended) are given to rank the
appropriateness of the techniques and measures for differ-
ent safety integrity levels. For example, when a technique
is highly recommended, the development teams are ex-
pected to use the technique unless they can provide an ar-
gument that the technique would not reduce risks further,
typically because equivalent outcomes can be achieved by
using other techniques included in the software quality as-
surance plan. These standards aim to rank the appropri-
ateness of techniques rather than provide a step-by-step
approach to help development teams to choose a combina-
tion of techniques.

There are a number of approaches to help development
teams to select techniques, methods and tools for soft-
ware development. However, approaches such as [18–20]
only target safety risk assessment techniques. Techniques
for other product qualities are not considered. These ap-
proaches review and compare alternative hazard analysis
techniques based on factors such as resources and con-
straints, and input and output requirements. The Zurich
Risk Engineering approach [18] is more like a selection
guide than a systematic approach. Bridges [19] and Lyon
[20] have a more systematic approach but Bridges only fo-
cuses on safety hazard assessment, while Lyon focuses on
the resources and information perspectives.

Perry [21], and Vegas and Basili [22] capture informa-
tion about testing techniques and tools to aid in their se-
lection. Perry [21] emphasizes that testing techniques and
tools should be selected based on their ability to accom-
plish test objectives. He outlines a process of selection,
first identifying the test factors, and then determining the
testing objectives for each phase in the software devel-
opment lifecycle. This approach only considers selection
from the process perspective. Other perspectives such as
cost/benefit and quality impacts are not included. Vegas
and Basili [22] select the best-suited techniques for a given
project based on a catalogue containing technique infor-
mation. Desired values of attributes are compared with
the values of each technique. Techniques that match the
specified values are pre-selected and examined. Vegas and
Basili [22] only focus on the selection of testing techniques.

Jiang et al. [23] explicitly link the attributes of a soft-
ware project to the attributes of requirements engineering
techniques, to help select requirements engineering tech-
niques that are well suited to the project. This approach
only considers selection for requirements engineering tech-
niques based on project characteristics.

Various architecture evaluation methods are used to as-
sess quality-related issues at the architecture level. Some
methods conduct attribute-specific evaluations first and
consolidate the results later [24]. These methods focus on
reasoning models and expertise for the quality attribute
required. Other approaches focus on the final stage of the
decision making process to balance trade-offs and select
the best candidates when there are conflicting quality re-
quirements [25, 26]. Although these approaches consider
quality aspects in their approaches, the methods only tar-
get selection for architecture design alternatives. These
approaches focus on the design perspective.

Some studies [14, 18, 22, 27–29] characterize techniques
to support their selection. Characterisation of techniques
is intended to identify useful information that can help
development teams to select techniques for their use in
a software project [30, 31]. The chosen techniques can
significantly influence the software development processes.
Development teams are able to specify the processes and
activities associated with the chosen techniques. Addi-
tional technical processes and activities can be added to
the process to properly handle potential quality issues re-
lated to specific quality attributes [7].

In summary, prior work focuses on a specific quality at-
tribute (e.g. safety) or lifecycle phase(s) (e.g. architecture,
testing). Information which is important to process inte-
gration is missing in these approaches. To support the
selection of techniques that target specific product quali-
ties throughout the software development lifecycle, infor-
mation about techniques must include aspects of product
quality, process integration and cost/benefit.

3. Background

In this section, we give a brief background to QATs,
managing PQRs and the Analytic Hierarchy Process
(AHP) that are used as the basis for our work.

3.1. Quality Attribute Techniques Framework (QAT
Framework)

In this research, QATs are the techniques, methods, or
best practices that address the concerns or potential risks
for specific quality attribute. Development teams apply
various QATs to ensure that requirements of quality at-
tributes are attained. There are a wide variety of QATs.
For example, Jewell [32] states that performance risks can
be reduced by applying proactive performance engineering
techniques such as performance modelling, performance
budgeting, and application profiling before performance
testing starts.

In our earlier work [3], we proposed a QAT Framework
to capture and present information about QATs to help
development teams to understand QATs and to highlight
their relationship to other process elements. A catalogue
of QATs is intended to support development teams to se-
lect appropriate QATs and incorporate them into process

3



models and related process guides. The QAT Framework
also aims to encompass QATs from many quality domains.
QAT characteristics are considered from three perspec-
tives: general information, process integration and selec-
tion. General information addresses how the QAT func-
tions according to a risk-management based categorisation
scheme. Process Integration describes the relationship of
QATs with elements in software process models. For se-
lection, characteristics capture costs, benefits, and quality
impacts in terms of our risk-management based theory of
quality management.

3.2. Managing Product-Quality-Risks (PQRs)

In our framework, QATs are classified according to risk
management theory. Boehm [33, 34] and Charette [35, 36]
discuss risk management and its importance in the soft-
ware engineering context. Risk management can be ap-
plied in various contexts to meet different goals. There are
several types of risk that can occur during a software devel-
opment project (e.g. project risks, process risks, product
risks and business risks). Appropriate techniques, meth-
ods and tools can be applied to analyse, avoid, reduce,
minimise and eliminate the risks related to that software
project. Some approaches apply risk management in the
design and development of medical device software [37],
[38]. Jones et al. [37] emphasizes that the risk manage-
ment process must be an integral part of the quality man-
agement system. The concept of risk management can
be extended to accommodate multiple quality attributes.
Software quality related risks (e.g. safety, performance,
reliability) need to be reduced to assure the quality of the
software and hence contribute to the assurance of system
quality [39, p.34].

In this research, our concern is to manage risks in rela-
tion to software product qualities across the software de-
velopment life cycle. Numerous techniques can be used to
assess and control PQRs. QATs are categorised according
to risk management theory to help development teams se-
lect QATs through understanding how QATs function to
manage product quality by identifying, analysing, treating
and monitoring PQRs.

3.3. Analytic Hierarchy Process (AHP)

Numerous multicriteria decision making (MCDM)
methods have been developed to help with decision prob-
lems by evaluating a set of candidates against pre-specified
criteria. Examples of MCDM include Multi-Attribute
Utility Theory (MAUT) [40], AHP [8], outranking tech-
niques [41], weighting techniques [42], and fuzzy tech-
niques [43]. In this research, we apply AHP to evaluate the
candidate QATs according to cost/benefit criteria because
AHP provides a convenient way to measure both quan-
titative and qualitative factors. AHP is widely used for
many practical decision-making problems in industry and
academia [8], for example in software requirements priori-
tisation [44] and software architecture evaluation [24–26].

These studies have reported the effectiveness of using AHP
to set priorities and analyse tradeoffs and sensitivity.

The decision-making process in AHP [8] is based on rel-
ative assessment. In AHP, all candidates are evaluated
using pairwise comparisons. As a result, the evaluation is
less sensitive to judgment errors when compared to other
MCDM methods using absolute assignments [25, p.246].
It is easier for decision makers to state their preferences
if they focus on a small part of the analysed problem, i.e.
only two chosen elements. The risk of an error is reduced,
and the weights and grades determined in this way more
accurately represent the user’s actual priorities and pref-
erences.

However, exhaustive pairwise comparison is time con-
suming when there are many alternatives to be consid-
ered [45]. To mitigate this problem in our research, QATs
are clustered into smaller groups based on risk manage-
ment and process integration perspectives. AHP is then
applied to compare QATs from smaller groups of candi-
dates. Some AHP analysis tools, such as Expert Choice
and MakeItRational are available to compute the weights
and grades of pairwise comparisons based on matrix al-
gebra. In this research, MakeItRational [46] was used to
perform calculations and analyse data.

4. QAT Selection Method

The QAT Selection Method described here is intended to
help developers to choose QATs for any quality attribute,
across the lifecycle. The method compares and evaluates
QATs based on three perspectives: Product-Quality-Risk
Management, Process Integration and Cost/Benefits.

Figure 1: Overview of the QAT Selection Method (Our earlier work,
the QAT Framework and our proposed work, the QAT Selection
Method are highlighted in yellow. A catalogue of QATs has been
developed based on the QAT Framework to provide the input, QAT
information for the selection process.)

4.1. Pre-selection

In the pre-selection stage, QAT information and project
information are gathered to provide inputs for the decision-
making process. The following steps are performed:

4



• Gather the characteristics of the project, e.g. software
process model used, team size, team expertise, stan-
dards used, degree of complexity of the software sys-
tem, time constraints, cost constraints, and resource
constraints.

• Determine the product quality goals/objectives and
criticality of the system, e.g. the product qual-
ity attribute(s) that the software system intended to
achieve.

• List the candidate QATs from which the selection is
to be made. This list might be taken from an existing
catalogue, or be extended with additional candidate
QATs. An existing catalogue of QATs provides infor-
mation about candidate QATs. This catalogue can be
revised for adding new candidate QATs and captur-
ing the characteristics of QATs using QAT Framework
[47].

Taking into account the relevant QAT characteristics
and project characteristics, suitable QATs are selected for
the situation and to achieve the product quality goals. The
selection process involves comparing and evaluating the
characteristics of a list of candidate QATs. Development
teams make the selection based not only on their personal
knowledge but also on the relevant QAT information cap-
tured by the QAT Framework [47].

4.2. Decision-Making Process for Selecting QATs

In this stage, candidate QATs are compared and evalu-
ated according to the three perspectives: Product-Quality-
Risk Management, Process Integration and Cost/Benefit,
to decide the best-suited QATs for the given projects. Risk
Management and Process Integration perspectives will be
used to form groups of QATs from which the selection is
made. The shortlisted candidates will be evaluated using
the AHP [8] method based on cost/benefit selection crite-
ria. Safety QATs will be used as examples to illustrate the
QAT Selection Method below.

4.2.1. Stage 1: Product-Quality-Risk Management Per-
spective

Risk management theory is used to compare candidate
QATs based on how they address PQRs. Each QAT
has different kinds of impacts, benefits and limitations in
managing PQRs. The categorisation scheme is based on
AS/NZS 4360: Risk Management (see Fig. 2). Following
the categorization scheme, the candidate QATs from which
the selection is to be made can be classified into two main
categories: PQR assessment and PQR control. PQR as-
sessment techniques are QATs that can be used to identify,
analyse and evaluate the PQRs. PQR control techniques
are either treatment QATs that can be used to avoid, re-
duce, minimise or eliminate the identified risks or monitor-
ing techniques that can be used to determine whether the
treatments are effective in addressing the identified risks

Figure 2: Categorisation scheme based on AS/NZS 4360:2004

as planned or required. The definition of each category
can be found in [3].

This categorisation of QATs is intended to help devel-
opment teams select QATs based on how they manage
PQRs. QATs in the same category can be compared ac-
cording to these factors, by referring to information in the
QAT Framework [47]:

• type of results needed,

• characteristics of the system that are applicable (e.g.
complexity of the risk, software safety integrity level),

• event of concern (e.g. single/multiple failure(s), hu-
man error), and

• type of application.

No single QAT can handle all aspects of system qual-
ity, especially for high assurance systems. If development
teams apply only one or two QATs without understanding
the function of the QATs in quality risk management, the
intended product quality may not be achieved. A combina-
tion of QATs across the risk management lifecycle should
be selected for effective PQR assessment and control across
the software development lifecycle.

4.2.2. Stage 2: Process Integration Perspective

The Process Integration perspective is used to integrate
candidate QATs into the software development lifecycle,
and to cover the lifecycle. Some QATs have different im-
pacts in managing PQRs when they are applied at differ-
ent stages of the lifecycle. One way this can arise is when
a QAT can be performed in more detail in later lifecycle
phases. For example, Fault Tree Analysis (FTA) has lim-
ited usefulness when it is used to construct generic fault
trees before design details are known. When the infor-
mation of complete system design and a thorough under-
standing of the system are available, FTA can be applied
to perform detailed analysis. Also, FTA can be used to
completed or existing system to verify that the system is
safe [48].

We have used AS/NZS ISO/IEC 12207 [49] as a basis
for defining a generic software development process.

• Requirements Elicitation: “to gather, process, and
track customer needs and requirements throughout
the lifecycle so as to establish a requirements base-
line that serves as the basis for defining the needed
work products” [49, F.1.3.1, p.11].

5



• Software Requirements Analysis: “to establish the re-
quirements of the software elements of the system”
[49, F.1.3.4, p.13].

• Software Design: “to provide a design for the soft-
ware that implements and can be verified against the
requirements” [49, F.1.3.5, p.13].

• Software Construction (Code and Unit Test): “to pro-
duce executable software units that properly reflects
the software design” [49, F.1.3.6, p.14].

• Software Integration: “to combine units into inte-
grated software items, consistent with the software
design, that demonstrate that the functional and non-
functional software requirements are satisfied” [49,
F.1.3.7, p.14].

• Software Testing: “to confirm that the integrated
software product meets its defined requirements” [49,
F.1.3.8, p.14].

Table 1 shows a mapping of QATs between their risk
managment role and software development lifecycle phase.
This table was derived from a study mapping safety
QATs into the PQR management lifecycle and software
development lifecycle [50]. The safety QATs were first
mapped into corresponding software development lifecy-
cle according to the recommendations in the literature.
The safety QATs were fit into PQR management lifecy-
cle by analysing their impact in addressing PQRs. The
definition of each safety activity was compared with the
definition of each PQR management activity. In safety
engineering, the safety activities have the greatest degree
of similarity in objectives lies in the PQR activities. This
mapping study shows that the PQR management activi-
ties take place throughout the software lifecycle to assess
and control PQRs.

After matching PQR management activities to the soft-
ware processes, development teams select QATs which are
intended to perform PQR management activities in spe-
cific phases. For example, QATs can be used to identify
lists of PQRs for software systems during requirements
elicitation and software requirement analysis. Develop-
ment teams can use QATs to investigate the causes and
consequences of identified PQRs, evaluate and prioritise
the severity of the PQRs during software requirement anal-
ysis and software design phases. QATs to treat the PQRs
(e.g. elimination of cause and event, reduction of the ef-
fects of negative consequences) can be selected and applied
in software design and coding. Verification and valida-
tion QATs can be used throughout software development
processes to monitor and review the product quality re-
quirements, design and coding and to ensure the selected
treatments address the PQRs.

Process information captured for QATs is intended to
help development teams to select QATs for risk manage-
ment activities and software phases. These QAT charac-
teristics include inputs (the pre-requisite work products),

outputs (the work products created or modified), and the
development process phase(s). In each phase, different lev-
els of detail of information are available for QATs. Some
QATs generate output or results for other process activi-
ties or QATs. Appropriate QATs can be selected based on
the types of inputs available and output required in each
phase. Some QATs can be used in multiple development
phases. In later phases, such as design and coding, the
range of QATs available to be selected increases when more
detail information about product quality requirements and
design is available.

4.2.3. Stage 3: Cost/Benefit Perspective

AHP [8] is used to evaluate the ranking of each candi-
date QAT under cost/benefit selection criteria. An initial
review of literature relevant to software safety (e.g. [18–
20, 48, 51, 52], software architecture design (e.g. [25, 26])
and software testing technique (e.g. [27, 53]) identified cri-
teria which influence the cost/benefit of applying a QAT.
Criteria that can be used to analyse the tradeoffs between
cost/benefit of applying each candidate QAT are as fol-
lows:

• Quality Impact: Impact of QATs in managing PQRs.

• Cost of Application: The effort, time and resource
required.

• Ease of Use: The complexity of applying the QAT.

• Expertise: The knowledge, experience or training re-
quired or available.

• Regulatory (standard) Requirements: Recommenda-
tions by regulator/standard.

• Contractual Requirements: Requirements specified
by contract.

• Tool Support: Availability of the tool support.

AHP [8] involves five steps for evaluation of candidate
QATs. We use an example to illustrate these steps. Four
PQR analysis techniques for safety: HAZOP (Hazard and
Operability Study), FMEA (Failure Modes and Effect
Analysis), FTA (Fault Tree Analysis) and ETA (Event
Tree Analysis) are used as candidates for selection in this
example.

Step 1: Define the evaluation criteria used to
select candidate QATs.

First, we need to decide the selection criteria used to
compare and evaluate candidate QATs. In our example,
we want to evaluate the four safety PQR analysis tech-
niques based on four selection criteria: Cost of Applica-
tion, Expertise, Ease of Use and Quality Impact.

Step 2: Weighting selection criteria using pair-
wise comparisons or direct ratings.

The relative importance of one criterion over another
can be expressed by using pairwise comparisons or direct

6



Table 1: Mapping of Product-Quality-Risk Management Activities to Software Development Process

Requirements
Elicitation

Requirements
Analysis

Design Construction Integration Testing

PQR Identification X X X X
PQR Analysis X X X
PQR Evaluation X X X
PQR Treatment X X X
PQR Monitoring X X X X X X

ratings. Each selection criteria may have varying degrees
of importance, depending on the needs of the development
teams and also the criticality of the software systems. De-
velopment teams can use their judgement to weight the
relative meaning and importance of each criteria based on
the QAT and project characteristics. The development
teams can use direct ratings instead of pairwise compar-
isons if the weights of criteria are known. For pairwise
comparisons, every pair of selection criteria is compared
using the weighting scale (1=Equal importance; 3=Mod-
erate importance; 5=Strong importance; 7=Very strong
importance; 9=Extreme importance; 2,4,6,8=Intermedi-
ate values between two adjacent judgement) [8]. Once the
pairwise comparisons matrix is formed, weights of criteria
are calculated by solving the eigenvector of the pairwise
comparison matrix. When pairwise comparison is too time
consuming, direct ratings allow us to provide the relative
weights for all the criteria directly. In our example, we use
pairwise comparisons to weight the priority among four
criteria: with quality impact as the most important with
a weight of 50.83%, followed by expertise (26.53%), cost
of application (15.12%) and ease of use (7.52%).

Step 3: Determine relative ranking of each can-
didate QAT over another under each criterion.

For each criterion, the values of the weighting scale in
the Step 2 are used to weight the preference of each candi-
date over another in pairs. The information captured by
the QAT Framework for each candidate is intended to help
development teams to make these judgements with refer-
ence to the literature, practitioners and experts. In our
example, pairwise comparisons were made between HA-
ZOP, FMEA, FTA and ETA for each criterion.

Step 4: Compute the overall value score for each
alternative with all criteria considered.

Finally, the overall value score for each candidate can
be computed with all criteria considered. The judgments
(pairwise comparisons) are transformed into weights (cri-
teria) and utilities (candidates). The weights and utilities
are calculated and transformed into candidates ranking.
In our example, the overall value score and candidates
ranking were analysed for HAZOP, FMEA, FTA and ETA
using the analysis tool. Table 2 shows the value score
of candidate QATs comparison for each criterion. The
value scores are hypothetical to illustrate the application
of AHP. Table 3 depicts the overall value score for candi-
date QATs ranking weighted with criteria priority. Fig. 3

illustrates a chart for candidates ranking weighted with
criteria priority. In this example, FTA has the highest
ranking, followed by HAZOP, FMEA and ETA.

Step 5: Perform sensitivity analysis.
Sensitivity analysis provides information on how the

candidates’ rankings behave in response to changes in pri-
orities. This will help to analyse stability of candidates
ranking. This analysis can be illustrated using diagrams.
In our example, Fig.4 illustrates a sensitivity analysis di-
agram for criterion, Cost of Application. The current
weight for this criterion is 15.12% and the current over-
all value score for HAZOP, FMEA, FTA and ETA are
29.13%, 21.04%, 31.12% and 18.71%. The diagram shows
how the candidates ranking change in response to changes
in weight priorities for this criterion, Cost of Application.

Figure 3: Candidates ranking weighted with criteria priority (illus-
trative example)

Figure 4: Sensitivity analysis diagram for criterion, Cost of Applica-
tion (illustrative example)

4.3. Select QATs

Based on the comparison and analysis from these three
perspectives, development teams can select a combination

7



Table 2: Candidates Comparison for Each Criterion (illustrative example)

Criterion HAZOP FMEA FTA ETA
Cost of Application 52.99% 26.26% 11.58% 9.88%
Ease of Use 55.96% 24.95% 9.55% 9.55%
Expertise 41.49% 34.64% 14.60% 9.27%
Quality Impact 11.82% 11.82% 48.74% 27.62%

Table 3: Overall Value Score for Candidates Ranking Weighted with Criteria Priority (illustrative example)

Candidate Total Cost of Application Expertise Quality Impact Ease of Use
FTA 31.12% 1.75% 3.87% 24.78% 0.72%
HAZOP 29.13% 7.90% 11.01% 6.01% 4.21%
FMEA 21.04% 3.97% 9.19% 6.01% 1.88%
ETA 18.71% 1.49% 2.46% 14.04% 0.72%

of QATs to manage PQRs throughout software develop-
ment lifecycle for their projects. Justifications for the
selected QATs can be provided through qualitative and
quantitative evaluation of candidate QATs according to
these three perspectives. The candidate rankings anal-
ysed by AHP are used to assist the development teams to
make the final decision. When making a selection decision
for QATs in a category, the candidate QATs with high
aggregated utility will be selected or shortlisted for final
selection.

5. Case Study: Applying the QAT Selection
Method

The objective of the case study was to evaluate the effec-
tiveness of the QAT Selection Method. The QAT Selection
Method was applied to retroactively choose safety QATs
for three projects. Candidate QATs were compared and
evaluated systematically using the QAT Selection Method.

A case study approach is particularly suitable for
addressing “how-and-why” type research questions [54].
When there is a need to investigate the importance that
context plays in relation to the subject being researched,
the case study approach can be applied to study a specific
bounded case or a number of cases in a particular setting.
In this research, the case study approach was used to eval-
uate the proposed work. The methodology for this case
study was based on the guidelines proposed by Runeson
and Höst [55].

5.1. Study Context

The case study was conducted in Australia. It is an
embedded case study in one company with three different
projects as units of analysis. The context is the same com-
pany and same application domain. An embedded case
study is a case study containing more than one sub-unit of
analysis [54]. The company was selected opportunistically
based on an existing academic-industry relationship. The
company is an automation specialist for safety-critical in-
frastructure. The units of analysis were selected to fit the
specific case study purposes.

Three projects were selected for three reasons. Firstly,
the three development projects target a specific product
quality, safety. Secondly, these three projects developed
systems certified to different software safety integrity lev-
els (SWSIL). Finally, development teams from these three
projects applied different sets of QATs to target software
safety. These projects are good for comparison because
they are in a similar organisational and project context,
but are good contrasts for our evaluation because they tar-
get different SWSILs, had different QAT selection criteria,
and chose different combinations of QATs.

SWSIL is “a classification number which determines the
techniques and measures that have to be applied in order
to reduce residual software faults to an appropriate level”
[17]. A SWSIL is one of the following five levels: 4 (very
high), 3 (high), 2 (medium), 1 (low) and 0 (non-safety-
related).

• Project 1 developed a safety real-time control system
certified to SWSIL 3.

• Project 2 developed an information and real-time con-
trol system certified to SWSIL 2.

• Project 3 developed an offline design tool certified to
SWSIL 2.

These projects were required to comply with the In-
ternational Standard IEC 62279 for Railway applica-
tions (Communications, signalling and processing systems
- Software for railway control and protection systems).
There are 70 safety and performance QATs recommended
in this standard. These candidate QATs were compared
and evaluated using the proposed QAT Selection Method.

5.2. Data Sources

In this case study, a questionnaire was the major source
of data, and a follow-up interview was conducted to collect
general feedback and suggestions from the participants af-
ter completing the questionnaire. The selection criteria,
project information and also the QAT information were
required to choose the appropriate QATs for each project

8



using the proposed QAT Selection Method. The follow-
ing preparation was completed before conducting the data
collection.

5.2.1. Questionnaire

A questionnaire was designed to collect the data of the
case study. The questionnaire comprises two sections. The
first section was to collect information about individual
participants and projects. The second section included six
questions to collect data for each candidate QAT:

1. Which category matches how the technique functions
to manage product-quality-risks?

2. Do you use this technique in the project?

3. Which ranking best fits your personal exper-
tise/experience and team capability (Not at all, Low,
Medium, High Very High)?

4. Which lifecycle phase(s) this technique had been ap-
plied to?

5. What were the reason(s) for selecting the technique?

6. What were the reason(s) for not selecting the tech-
nique?

We had included all the QATs suggested by IEC 62279
in the questionnaire. The participants were required to
classify each safety QAT according to the risk-management
based categorisation scheme. They could choose more
than one category for how the QAT managed product-
quality-risks. In the questionnaire, participants were al-
lowed to add QATs not listed in the standard but which
had been used in the projects. The questionnaire provided
participants with reasons for selecting and not selecting
QATs. These reasons were derived from factors influenc-
ing the selection of QATs. Participants were also allowed
to add reasons not listed in the questionnaire.

5.2.2. Training Document

To assist the participants in correctly classifying the
QATs, a training document which explains the risk man-
agement theory and risk-management based categorisation
scheme was prepared and presented to participants imme-
diately before the questionnaire. This training document
was intended to help the participants understand the pro-
posed risk-management based categorisation scheme. Ad-
ditionally, a QAT catalogue was extracted from IEC 62279
and provided to participants, giving a brief description for
each QAT.

5.2.3. Interview Questions

Interview questions were formulated based on the ob-
jective of the case study. The interview was conducted
to collect general feedback and suggestions from the par-
ticipants after filling in the questionnaire. The purpose
of this interview was to justify whether the participants
had the right understanding about the risk-management
based categorisation scheme. This may affect the results
of the questionnaire analysis. Also, we wanted to identify

reasons for QAT selection that had not been asked in the
questionnaire. These reasons can be considered as new se-
lection criteria for our approach. The interview questions
were:

• Do you have any general feedback about the risk-
management based categorisation?

• Based on the presentation, are you clear about the
concept of applying risk management theory in man-
aging product-quality-risks?

• Are there any other reasons not listed in the ques-
tionnaire that would be relevant to the technique se-
lection?

5.2.4. Capture QAT Information and Categorise the
QATs

The QAT Framework [47] is used to capture information
on safety and performance QATs from the literature. On a
technique-by-technique basis, the relevant research papers,
guidelines, books and electronic sources (e.g. publication
available from websites) that describe or review a QAT
in theory or practice were identified by the researchers.
Information about the QAT characteristics proposed by
the QAT Framework [47] was recorded. The QAT infor-
mation provided input to compare and evaluate the QATs
for further selection. Also, two researchers classified QATs
independently, based on the risk-management based cate-
gorisation scheme. The categories assigned to each QAT
were compared and finalised in a joint meeting.

5.2.5. Trial Case Study and Pilot

A trial case study was performed before conducting the
actual case study. Five participants, including four soft-
ware engineering Ph.D. students and one researcher were
invited for this trial. The objective of this trial was to esti-
mate the time required to complete the questionnaire and
to collect the feedback regarding the design of question-
naire and the training material for the risk-management
based categorisation scheme. Based on the feedback ob-
tained from the trial participants, the following changes
were made to improve the data collection:

• Training document for risk-management based
categorisation scheme: To avoid misunderstand-
ings between product-quality-risks and project-risks
or business-risks, an example to describe the product-
quality-risks management process was added. Also, a
description of each category was elaborated with more
details to improve the understanding of the categori-
sation scheme.

• Presentation: A presentation was given before the
participants filled in the questionnaire. In the pre-
sentation, the risk-management based categorisation
scheme was introduced. This helped to improve the

9



understanding of the categorisation especially for par-
ticipants who did not have any background in risk
management. The procedures to fill in the question-
naire were explained.

• Questionnaire: To reduce the time to complete the
questionnaire and ease the data collection and anal-
ysis, the questionnaire was converted from Microsoft
Word documents to Microsoft Access forms. The in-
structions in the questionnaire were revised (e.g. to
clarify that the participants could choose multiple an-
swers). In addition, a questionnaire guide was pre-
pared. This helped participants to better understand
each question and to enter the data correctly into the
Microsoft Access forms. Some questions were revised
to avoid misunderstanding.

5.3. Data Collection

Participants: The case study was conducted with
three industry experts: 1 senior software engineer, 1 senior
RAMS (reliability, availability, maintainability and safety)
Engineer and 1 R&D RAMS Manager. The RAMS engi-
neer and RAMS manager played important roles in manag-
ing and executing systems safety assessments. They were
responsible to ensure that all the components in a system,
including software met the required level of product qual-
ity for safety, availability, reliability and maintainability.
The senior software engineer provided inputs related to
software in system safety analysis to analyse and evalu-
ate the potential safety risks in software components. He
was also involved in deciding on and implementing the
treatments appropriate to avoid, minimise or reduce safety
risks. In these projects, the system safety analysis was
done entirely within the project. An industry expert who
had been actively involved in the selected project repre-
sented the development team of each project:

• Senior Software Engineer - Project 1

• Senior RAMS Engineer - Project 2

• R&D RAMS Manager - Project 3

The following documents were provided to participants
before filling in the questionnaire: Training guide for the
risk-management based categorisation scheme, question-
naire guide, QAT catalogue, participant information sheet
and consent form. The procedure was as follows:

1. The questionnaire guide, training document, QAT
bibliography, and participant information sheet and
consent form were distributed to each participant.

2. A presentation was given to introduce the risk-
management based categorisation scheme. An
overview of the questionnaire in Microsoft Access
forms was explained to assist the participant in un-
derstanding the questions and procedures.

3. Each participant used a laptop to fill in the question-
naire.

4. After completing the questionnaire, general feedback
was obtained from each participant regarding the cat-
egorisation scheme through interview and a feedback
form. Participants were allowed to write down their
opinions on a feedback form.

5. A follow-up interview session was conducted to dis-
cuss the results of data analysis.

In this case study, data was collected mainly through a
questionnaire. Each participant filled in the questionnaire
for one project and for every QAT. Data collected include
the QAT categories assigned by each expert that were used
to provide inputs to evaluate the QAT Selection Method.

A semi-structured interview method was chosen, which
supports this type of exploratory and validation study.
Two researchers conducted the interviews together, the in-
terviews were audio recorded, and later transcribed. The
interviewers also allowed participants to write down their
opinions on a feedback form provided.

5.4. Data Analysis

The following inputs were collected and analysed to val-
idate the QAT Selection Method:

• Inputs from the questionnaire: project characteristics,
list of QATs used or not used in the project (Question
2), the level of team expertise for each QAT (Question
3), lifecycle phase(s) that the QAT had been applied
in practice (Question 4), reason for selecting and not
selecting the QATs (Questions 5 and 6)

• Inputs from the QAT Framework [3]: Catalogues of
safety and performance QATs which include QAT in-
formation and categories assigned to each QAT [50].

The inputs obtained from questionnaire were used to
compare and evaluate the QATs based on the cost/benefit
perspective. The selection criteria and weights assigned
to each criterion in AHP [8] were based on the priority of
the factors analysed from the collected data. Information
about QATs was used to compare the QATs based on the
PQR management perspective, process integration per-
spective and cost/benefit perspective. Finally, the QATs
chosen for each project using the QAT Selection Method
were compared with the actual list of QATs selected by
the projects.

5.4.1. Pre-Selection

Before applying the QAT Selection Method, the follow-
ing inputs were collected and analysed:

• The characteristics of the three projects as captured
through the questionnaire (see Table 4).

• Candidates identified: 70 safety and performance
techniques are listed in the standard. All the QATs
are safety-related. In this content, four performance

10



techniques: Performance Modelling (PM), Perfor-
mance Requirements (PR), Avalanche/Stress Test-
ing (A/ST) and, Response Timing and Memory Con-
straints (RT&MC), had safety implications and were
included in the comparison.

• The relevant characteristics for the candidate QATs
were captured using the QAT Framework [3]. For
each QAT, highly cited safety and performance re-
search papers and text books were identified to de-
scribe or review the QAT in theory or practice. The
information of safety and performance QATs was cap-
tured. The QAT information (aims, description, per-
former(s), lifecycle phase, input needed, output pro-
duced, guidelines available, provide output for other
QAT, benefits, limitations, cost of application, exper-
tise/knowledge required, team/individual approach,
tool(s) support) were recorded from the literature.
When there was uncertainty or lack of information,
more literature (e.g. papers, guidelines, books and
electronic sources) was searched to find the relevant
information for these characteristics. Two catalogues
of safety and performance QATs were developed based
on the QAT information collected.

Safety is the main target quality attribute for the soft-
ware systems developed by these three projects. Perfor-
mance has less quality impact, especially for Project 3.
For the purpose of this evaluation, the selection only chose
QATs to target safety. The five goals of PQR management
for this study were defined as follows:

1. Identify safety PQRs.

2. Analyse safety PQRs.

3. Evaluate safety PQRs.

4. Treat the identified safety PQRs.

5. Monitor the safety PQRs.

5.4.2. Stage 1: Compare Candidate QATs from Product-
Quality-Risk Management Perspective

The candidate QATs listed in IEC 62279 were classi-
fied according to the risk-management based categorisa-
tion scheme (Section 4.2.1). By referring to the informa-
tion in the QAT Framework, we analysed the aims and
descriptions of each candidate QAT to classify its role in
managing PQRs. For each QAT, the descriptions were
compared with the definitions and features of the risk-
management based categories [3]. Some keywords/terms
were used to identify the most relevant category for each
QAT:

• PQR Assessment

PQR Identification: e.g. identify, determine,
find, discover cause/source, identify risk event (e.g.
hazards (safety), critical use cases (performance)

PQR Analysis: e.g. analyse consequences, anal-
yse probability, analyse level of risk or hazards

PQR Evaluation: e.g. evaluate/prioritise
risks/potential problems, hazards (safety), critical use
cases (performance)

• PQR Treatment:

Runtime treatment: e.g. detect PQR event, pro-
tect, target, limit consequences, recovery routines, di-
agnose PQR event

Design time treatment: Avoid/prevent safety or
performance PQR event, remove/eliminate source of
PQR

• PQR Monitoring: e.g. verify, validate, testing, mon-
itoring, proof of correctness, proof of safety, proof of
adequacy

When we analysed the candidate QATs, we found that
many candidates had been classified under PQR treatment
and PQR monitoring categories. The risk-management
based categorisation scheme was modified significantly in
order to apply it to the case study. Candidate QATs were
clustered into smaller groups that have similar functions
in managing PQRs. This helps to avoid the excessive cost
of exhaustive pairwise comparisons at stage 3. Fig. 5 illus-
trates the QATs which fell under the PQR identification,
PQR analysis and PQR evaluation categories. Fig. 6 and
Fig. 7 illustrate clusters for each category. The definition
of each cluster is described as follows:

1. PQR Treatment

• Suitable programming languages: The program-
ming languages chosen that can produce easily
verifiable code with a minimum of effort and fa-
cilitate program development, verification and
maintenance.

• PQR treatment at design time: QATs which pre-
vent PQR events or eliminate the source of PQRs
at design time.

• PQR treatment at run time: QATs which de-
tect and diagnose PQR events, protect and limit
consequences or recover systems to correct func-
tional operation in the presence of PQRs at run-
time.

2. PQR Monitoring

• Independent verification and validation (V&V):
Phase independent QATs which can be applied
to monitor safety PQRs across the lifecycle.

• Static analysis: QATs which monitor the PQRs
by examining the properties of software systems
without execution.

• Dynamic analysis: QATs which monitor the
PQRs by examining particular aspects (the code
or a model of the code) of software systems under
execution.

11



Table 4: Overview of the characteristics of each project

Characteristics Project 1 Project 2 Project 3
Process Model V-Model V-Model Iterative V-Model
Programming Languages
Used

Ada 95, Delphi C++, Java, VB, Pearl C++

Team Size 4-30 20 8
Highest SWSIL 3 (High) 2 (Medium) 2 (Medium)

Candidate QATs in the same category or cluster were
then compared according to process integration and
cost/benefit perspectives to choose a combination of cost-
effective QATs to assess and control PQRs across the soft-
ware development lifecycle.

5.4.3. Stage 2: Compare Candidate QATs from Process
Integration Perspective

Process information about QATs was used to integrate
candidate QATs into software development lifecycle phases
in which they could be used. The software development
lifecycle model used by the three case projects was the
V-Model. According to IEC 62279, Structured Method-
ology and Impact Analysis are highly recommended to
be applied in Software Requirements Analysis and Soft-
ware Maintenance phases. However, other QATs under
the same clusters are not recommended to be used in these
two phases. As a result, these two QATs were included
separately from their clusters in Table 5.

5.4.4. Stage 3: Compare and Evaluate Candidate QATs
from Cost/Benefit Perspective Using AHP

AHP [8] was used to evaluate the ranking of each candi-
date QAT in the same risk-management based category or
cluster under cost/benefit selection criteria. The following
five steps were performed to evaluate candidate QATs:

Step 1: Define the evaluation criteria used to
select candidate QATs.

Selection criteria were defined for each project based on
the questionnaire results (priority of the reasons for select-
ing and not selecting the QATs). The selection criteria for
each project are as follows:

• Quality impact: Impact of QATs in managing PQRs
(Projects 1, 2 and 3).

• Cost of application: The effort, time and resource re-
quired (Projects 1, 2 and 3).

• Expertise/Experience: The knowledge, experience or
training required or available (Projects 1, 2 and 3).

• Ease of use: The complexity of applying the QAT
(Projects 1, 2 and 3).

• Regulatory requirements: Recommendations by reg-
ulator/standard (Projects 1 and 3).

• Contractual requirements: Requirements specified by
contract (Projects 1, 2 and 3).

Step 2: Weighting selection criteria using direct
ratings.

In this case study, direct ratings were used to weight
the selection criteria instead of pairwise comparisons. The
relative importance of one criterion over another was ex-
pressed by comparing priority of selection criteria based on
the questionnaire results. Reasons for selecting and not se-
lecting the QATs for each project were collected from the
questionnaire. For each criterion, the reasons for select-
ing and not selecting QATs were calculated based on the
project responses in questionnaire for all the QATs under
the same category. The ratio of one criterion over another
was used as a relative weight to compare and evaluate can-
didate QATs in the same category. The main perceived
selection criteria for each project were identified.

• PQR Assessment

Project 1 - Contractual requirement: Exper-
tise: Ease of use: Quality impact: Cost of application:
Regulatory requirement = 14: 11: 7: 5: 5: 3 = 0.31:
0.24: 0.16: 0.11: 0.11: 0.07

Project 2 - Cost of application: Expertise:
Quality impact: Contractual requirement: Ease of use
= 16: 14: 13: 9: 6 = 0.28: 0.24: 0.22: 0.16: 0.10

Project 3 - Quality Impact: Cost of application:
Expertise: Ease of use: Regulatory requirement = 13:
4: 4: 3: 1 = 0.52: 0.16: 0.16: 0.12: 0.04

• PQR Treatment:

Project 1 - Cost of application: Contractual re-
quirement: Expertise: Ease of use: Quality impact:
Regulatory requirement = 23: 23: 23: 22: 14: 14 =
0.19: 0.19: 0.19: 0.18: 0.12: 0.12

Project 2- Cost of application: Quality impact:
Expertise: Contractual requirement: Ease of use =
33: 30: 21: 20: 16 = 0.275: 0.25: 0.175: 0.167: 0.133

Project 3 - Expertise: Ease of use: Cost of ap-
plication: Quality impact: Regulatory requirement =
18: 14: 12: 10: 1 = 0.33: 0.25: 0.22: 0.18: 0.02

• PQR Monitoring:

Project 1 - Contractual requirement: Expertise:
Cost of application: Quality impact: Regulatory re-
quirement: Ease of use = 25: 21: 17: 13: 12: 11 =
0.25: 0.21: 0.17: 0.13: 0.12: 0.11

12



Table 5: Matching QAT clusters into the appropriate lifecycle phase(s) based on process information about QATs that summarised from
literature and IEC62279

Phase
QAT Category

PQR Assessment PQR Treatment PQR Monitoring

System Development Safety PQR Static Analysis,
Identification, Initial Independent V&V
Safety PQR Analysis

Software Requirements Safety PQR Structured Methodology Static Analysis,
Specification Identification, Dynamic Analysis,

Safety PQR Analysis, Independent V&V
Safety PQR Evaluation

Software Architecture Safety PQR Analysis, PQR Treatment at Static Analysis,
and Design Safety PQR Evaluation runtime, PQR Treatment Independent V&V

at design time
Software Module Design Safety PQR Analysis, PQR Treatment at Static Analysis,

Safety PQR Evaluation runtime, PQR Treatment Independent V&V
at design time

Implementation Safety PQR Analysis, PQR Treatment at Static Analysis,
Safety PQR Evaluation runtime, PQR Treatment Dynamic Analysis,

at design time, Suitable Independent V&V
Programming Languages

Software Module Testing Static Analysis,
Dynamic Analysis,
Independent V&V

Software Integration Static Analysis,
Dynamic Analysis,
Independent V&V

Software/Hardware Static Analysis,
Integration Dynamic Analysis,

Independent V&V
Software Validation Static Analysis,

Independent V&V
Software Assessment Safety PQR Analysis Static Analysis,

Safety PQR Evaluation Independent V&V
Operations PQR Treatment at Independent V&V

runtime
Maintenance Impact Analysis Independent V&V

13



Figure 5: Candidate QATs for safety PQR assessment techniques

Figure 6: Candidate clusters for safety PQR treatment techniques

Project 2 - Cost of application: Expertise:
Quality impact: Contractual requirement: Ease of use
= 26: 19:17: 17: 8 = 0.30: 0.22: 0.19:0.19: 0.10

Project 3 - Quality impact: Expertise: Cost of
application: Ease of use: Regulatory requirement =
15: 11: 8: 8: 1 = 0.35: 0.26: 0.19: 0.19: 0.02

Step 3: Determine relative ranking of each candi-
date QAT over another under each criterion using
pairwise comparisons.

The candidate QATs in each cluster were evaluated in
terms of how well they satisfy each selection criterion. For
each criterion, a 9-point weighting scale [8] was used to
weight the preference of each candidate over another in
pairs. The information captured by the QAT Framework
for each candidate helped to make pairwise comparisons.
In this case study, pairwise comparisons were also made
according to the standard recommendations, and project
information analysed from questionnaire for the follow-

ing criteria: team expertise, contractual requirement and
quality impact. For each pair of candidate QATs, prefer-
ence was determined based on the following QAT, Project
and Standard (IEC 62279) information:

• Quality impact: (1) QAT Framework - aims, descrip-
tion, benefits and limitations of the QATs. (2) Project
- industry experts’ opinions for each project as indi-
cated in the questionnaire.

• Cost of application: (1) QAT Framework - cost of
application information captured by the QAT Frame-
work; (2) Project - industry experts’ opinions as indi-
cated in the questionnaire.

• Expertise/Experience: (1) QAT Framework - the level
of expertise or training captured by the QAT Frame-
work; (2) Project - rankings by industry experts using
a five-level scale (Not at all, Low, Medium, High, Very
High).

14



Figure 7: Candidate clusters for safety PQR monitoring techniques

• Ease of use: (1) QAT Framework - the complexity of
applying the QATs was evaluated according to bene-
fits and limitations captured by the QAT Framework;
(2) Project - industry experts’ opinions as indicated
in the questionnaire.

• Regulatory requirements: (1) Standard - Recommen-
dations (M: Mandatory; HR: Highly recommended;
R: Recommended; –: No recommendation for or
against being used; NR: Positively not recommended)
provided by IEC 62279 to rank the appropriateness of
the QATs for different SWSIL.

• Contractual requirements: (1) Project - each industry
expert represented one project and reported whether
QATs were explicitly required in the project’s con-
tract.

To illustrate the pairwise comparison between the can-
didate QATs, consider the comparison of Fault Tree Anal-
ysis (FTA) and Common Cause Failure Analysis (CCFA)
on the expertise/experience criterion. The development
team’s capability for Project 1 was ranked “Very High”
for FTA and “Low” for CCFA by the industry expert. As
a result, FTA was considered strongly more important over
the CCFA in terms of team expertise/experience.

Step 4: Compute the overall value score for each
alternative with all criteria considered.

A pairwise comparison matrix was constructed for all
candidate QATs in a cluster. Once the pairwise compar-
ison matrix was formed, weights of candidates are calcu-
lated by solving for the eigenvector of the pairwise com-
parison matrix. The weights and utilities are calculated
and transformed into candidates ranking (see Table 6).

Step 5: Perform sensitivity analysis.
Sensitivity analysis provides information on how the

candidates ranking behaves in response to changes in pri-
orities. For example, Fig. 8 illustrates a sensitivity analysis

diagram of PQR identification QATs (Project 1) for cri-
terion, Expertise. The current weight for this criterion is
0.24 and the current overall value score for FTA, Check-
lists, HAZOP, ETA, SCA (Sneak Circuit Analysis), CCFA
(Common Cause Failure Analysis) and CCD (Cause Con-
sequence Diagrams) are 30.58%, 22.04%, 11.58%, 10.26%,
9.90%, 8.57% and 7.07%. The diagram illustrates how the
candidates ranking changed in response to the changes in
weight priorities for the Expertise criterion.

Figure 8: Sensitivity analysis diagram for criterion, Expertise (PQR
Identification Techniques - Project 1)

6. Results

6.1. Candidates Ranking (Analysed using AHP)

Charts and matrices of candidates ranking for each
project were produced using the analysis tool. An exam-
ple of the candidates’ ranking matrix and chart for PQR
identification techniques of Project 1 are showed in Table 6
and Fig. 9.

6.2. Comparison

A combination of PQR assessment, treatment and mon-
itoring QATs were selected based on the candidates rank-
ing analysed by AHP [8]. When making the QAT selection

15



Table 6: Candidates ranking matrix for PQR identification techniques (Project 1)

Candidate Total Regulator Contract Expertise Quality Impact Ease of Use Cost
B.28 FTA 30.58% 1.40% 14.09% 7.30% 5.00% 1.65% 1.13%
B.08 Checklists 22.04% 1.40% 2.82% 7.62% 1.00% 5.34% 3.87%
B.34 HAZOP 11.58% 0.47% 2.82% 1.24% 1.00% 3.52% 2.53%
B.23 ETA 10.26% 1.40% 2.82% 2.26% 1.00% 1.65% 1.13%
B.55 SCA 9.90% 0.47% 2.82% 2.17% 1.00% 2.31% 1.13%
B.10 CCFA 8.57% 1.40% 2.82% 2.17% 1.00% 0.63% 0.55%
B.06 CCD 7.07% 0.47% 2.82% 1.24% 1.00% 0.89% 0.65%

Figure 9: Candidates ranking for PQR identification techniques
(Project 1)

decision for each QAT cluster, the candidate QATs with
the highest aggregated utility were chosen. Other can-
didate QATs which also showed high aggregated utility
were shortlisted for final consideration. The quality im-
pact, regulatory requirement and contractual requirement
of the shortlisted candidate QATs were analysed to decide
whether the QATs should be included. For example, if
a shortlisted QAT has significant quality impact in man-
aging PQRs, is highly recommended by the standard or is
required by the contract, this QAT will be selected. Fig. 10
shows a comparison of the QATs chosen using the QAT
Selection Method and the actual QATs used in Project 1.
Overall, the selection is broadly comparable with the ac-
tual QATs used in these projects. The differences will be
discussed in the following sections for each project.

The actual lifecycle phase(s) that apply to the selected
QATs were analysed. Most of the QATs were applied in
the phases suggested by research literature and IEC 62279.
However, there are some differences between the lifecy-
cle phases recommended by the literature and the phases

used in practice. In project 1, PQR treatment techniques
were applied throughout the lifecycle phases. These QATs
were used to generate test cases to verify and validate the
product quality at later stages. Project 2 applied some
PQR treatment techniques in early phases (system devel-
opment and software requirements specification) based on
the project needs. This project also applied Event Tree
Analysis (ETA) to analyse safety PQRs during the Main-
tenance phase. Besides applying Design and Coding Stan-
dards (D&CS) during implementation, Project 3 also used
them to generate test cases for module testing. Accord-
ing to IEC62279, the Impact Analysis technique was only
recommended for Maintenance phase. In practice, devel-
opment teams have applied this QAT across the software
development lifecycle to analyse and evaluate PQRs, due
to the effect that a change or an enhancement to a soft-
ware system will have to other modules in that software
system as well as to other systems.

6.2.1. Project 1

Although Checklists have different quality impact when
applied in different phases, in this project they were only
used for code review and for completion of code check-in.
The impact of this QAT is through monitoring PQRs dur-
ing the design, implementation and module testing phases.
Checklists were not applied to identify PQRs. Although
the development team has adequate expertise to apply Fi-
nite State Machine/State Transition Diagrams (FSM), this
QAT was not selected because the legacy system designs
are not suitable for using the QAT. Assembler was used
in the actual project but was not selected by the Selection
Method because the development team has low expertise
with it. Nevertheless, in this project, assembler was re-
quired to implement certain hardware specific constructs,
e.g. “test-and-set” operations used as the basis for im-
plementing semaphores in shared memory. Another PQR
monitoring technique called Automated Testing and Log
Analysis was not chosen by the Selection Method because
this QAT is not listed in IEC 62279. This QAT was used
in the actual project.

• 93.5% of the techniques recommended by the selection
method were actually used in the project

• 2.2% of the techniques recommended by the selection
method were not used in the project

16



Figure 10: Comparison of the QATs chosen by the Selection Method
and the actual QATs used in Project 1

• 4.3% of techniques not recommended by the selection
method were actually used in the project

6.2.2. Project 2

In project 2, there were a few QATs (Forward Recov-
ery (FR), Dynamic Reconfiguration (DR) and BASIC) not
recommended by the standard but nonetheless chose by
the Selection Method for this project. FR was selected be-
cause it has a significant impact on quality objectives the
cost of application is feasible, and the development team
had adequate expertise/experience to apply this QAT. DR
also has a significant impact on quality objectives and this
QAT was required by contract. BASIC was selected by
the Selection Method and also the development team but
it has limited use in Project 2. The PQR monitoring tech-
nique, Metrics was used in the actual project but was not
selected by the Selection Method because the development
team had low expertise to perform this QAT. The devel-
opment team had applied Functional Failure Analysis to
identify and analyse PQRs and Hot Standby/Failover to
treat the PQRs at runtime. These two QATs were not
chosen by the method because they are not listed in the

standard.

• 94.3% of the techniques recommended by the selection
method were actually used in the project

• 0% of the techniques recommended by the selection
method were not used in the project

• 5.7% of the techniques not recommended by the se-
lection method were actually used in the project

6.2.3. Project 3

HAZOP, and Library of Trusted/Verified Modules and
Components (LTM&C) were selected by the Selection
Method but were not used in the actual project because
they are covered by other PQR assessment and treatment
techniques which have similar quality impact but are more
cost-effective. Although the development team has ade-
quate expertise to use Data Flow Diagrams (DFD), it was
not selected because the role of this QAT in PQR man-
agement is covered by Sequence Diagrams. Finite State
Machine/State Transition Diagrams (FSM) was selected
but had very limited use and was only applied where there
was a clear benefit.

• 94.9% of the techniques recommended by the selection
method were actually used in the project

• 5.1% of the techniques recommended by the selection
method were not used in the project

• 0% of the techniques not recommended by the selec-
tion method were actually used in the project

7. Discussion

This section discusses the effectiveness of decision mak-
ing using the QAT Selection Method, uncertainty in de-
cision making given changing priorities, and the applica-
bility of the QAT Selection Method. The limitations of
the study, and threats to construct, internal and external
validity are also discussed.

7.1. Effectiveness of the decision-making process

The development teams originally selected their
projects’ QATs in an ad hoc manner based on their ex-
pertise and experience. In the case study, a set of QATs
were selected for each project more systematically us-
ing the QAT Selection Method based on the three per-
spectives: PQR management, process integration and
cost/benefit. Only a few QATs chosen by the QAT Selec-
tion Method were different from the actual selection. The
risk-management based categorisation proved to be use-
ful to compare and cluster the candidate QATs according
to their functionality in managing PQRs. Additionally,
categories or clusters of QATs were well integrated into
software development lifecycle phases. Decision making

17



was supported by the rankings based on the cost/benefits
perspective, to help select and shortlist QATs.

The QAT Selection Method identified the relative im-
portance and position of QATs in the overall project con-
text using AHP [8]. Three different combinations of QATs
were selected based on the project needs. Project 1 and
Project 2 developed real time systems. Also, the highest
SWSIL of Project 1 is 3 (high). On the other hand, Project
3 developed offline design tools. Slow performance will not
lead to safety issues. Response Timing and Memory Con-
straints (RT&MC) was the only performance related QAT
that was selected by the QAT Selection Method for Project
3. Project 1 and 2 applied more QATs to ensure the safety
of the software systems.

For these three projects, QATs such as Formal Methods,
Fault Correction and Formal Proof were not selected be-
cause of the high level of expertise required to apply these
QATs. The development teams were not sufficiently famil-
iar with these QATs. It was too expensive and complex
to apply them in the projects although these QATs were
recommended by the standard. Other QATs which were
more cost effective and had a similar quality impact were
selected instead.

7.2. Uncertainty in Decision Making

Changes to the priorities in the decision criteria will af-
fect the selection of QATs. The candidates’ rankings (e.g.
Fig. 9) show the sensitivity of the priority of these crite-
ria. Tradeoffs analysis were made between conflicting se-
lection criteria, with and without considering the priority
weights. Tradeoffs highlight the most important criteria
when the weights are prioritised. On the other hand, when
the tradeoffs were analysed for candidate QATs without
considering the priority weights, some of the candidates
ranking were changed.

If there are new quality requirements or new PQRs in-
troduced to the system, other candidates may have greater
quality impact compared to the current ones. The initial
choice of rankings may not be the best later on. This
might be caused by team expectations for criteria change
or the uncertainty of the initial decision. Development
teams may only be aware of the actual impact of QATs
after applying them. The effectiveness of applying selected
QATs needs to be monitored. The lessons learned will be
useful for future selection.

Development teams may have other options for using
QATs to manage PQRs that are not listed in the standard.
The standard IEC 62279 appears to reflect best practice
of a few years ago rather than current best practice. Some
commonly used or new QATs are not included in the stan-
dard, for example failure modes and effects analysis and
the Java programming language. Also, some older QATs
are rarely used in newly developed systems, and it can be
now difficult to purchase a compiler/tool to support old
QATs for a modern machine. There may be new stan-
dards or guidelines available in future which recommend

new candidate QATs. The new options need to be consid-
ered for new projects.

7.3. Applicability

The case study of these three projects shows that it is
feasible to apply the QAT Selection Method. QATs were
selected to manage PQRs across lifecycle for each project.
The QAT Selection method is a more systematic approach
to choose appropriate QATs based on multiple criteria.
The QAT information captured by the QAT Framework
[47] was useful to aid in tradeoff analysis between QATs
using pairwise comparisons. Information and categorisa-
tion of these QATs were recorded in catalogues which can
be reused to select QATs for new projects which apply
the same standard. Quantitative evaluation of candidate
QATs using AHP [8] provided guidance for development
teams to make decisions and explicit justifications for the
selected QATs.

7.4. Limitations

Some weaknesses of the proposed approaches still re-
main and may limit their use in the following aspects:

• More time and effort are required to capture QAT in-
formation when the number of candidates is large.
However, the information collected in the QAT
Framework [47] can be reused to aid future selection.

• The work has not been validated through use on new
projects. The validation has to date been post-hoc,
by comparison with completed industry projects.

• To overcome the scalability issues of AHP [8], QATs
have been divided into smaller clusters. However, the
relationship between QATs in different clusters is not
yet fully justified. For example, object oriented pro-
gramming, defensive programming, structured pro-
gramming, and programming languages were grouped
into two different clusters (PQR Treatment at De-
sign Time and Suitable Programming Languages) but
nonetheless they are closely related.

• Since the candidate QATs are compared based on
three perspectives, more time is required when the
number of candidates is large. Some constraints may
need to be added to shortlist the number of candi-
dates (e.g. only to consider QATs for which the team
has a sufficient level of expertise or only to consider
QATs that are recommended for the SWSIL).

• The method only supports selection of QATs for an in-
dividual quality attribute. The tradeoffs among mul-
tiple quality attributes in QAT selection is not yet in
scope of this QAT Selection Method.

• The method lacks mechanisms to select a balanced
combination of inspection, modelling and testing
QATs, to avoid over-reliance on human based QATs.

18



7.5. Threats to validity

This section discusses threats to construct, internal and
external validity for the case study. Countermeasures
against threats to validity were taken and are described.

Construct validity threats concern whether the opera-
tional measures that are studied really represent what the
researchers have in mind and what is investigated accord-
ing to the research questions [55]. For example, the con-
structs discussed in the interview may be misinterpreted
by the interviewed persons. To limit these threats, a pre-
sentation was given before the participants filled in the
questionnaire, to reduce the likelihood of misinterpreting
the questions. Additionally, a questionnaire guide and
training documents were provided to assist the partici-
pants in understanding the proposed work and question-
naire. The researchers were present when the participants
answered the questionnaire, so participants could ask ques-
tions if they were not clear about any issue. Threats to
construct validity are also partly countered by using es-
tablished constructs from risk management theory and the
literature.

Internal validity threats concern the causal relations
that may affect the outcome of this study [55]. To im-
prove the precision of this case study, data and method
triangulation was achieved in different ways. A combi-
nation of qualitative and quantitative methods was ap-
plied to collect and analyse data. The questionnaire and
interview were two main data collection methods. The
follow-up reports were sent to participants to clarify the
issues identified through questionnaire analysis. Two re-
searchers conducted the interview together, the interview
was audio recorded, and later transcribed. Additionally,
two researchers had classified a list of QATs independently
based on risk-management based categorisation scheme.
The categories assigned to each QAT were compared and
finalised in a joint meeting. Participants were not aware
of the case study objectives even if it was clear to them
our intention to validate the QAT Selection method.

External validity threats concern the generalisation of
the findings [55]. Although only one case study was
conducted to validate the QAT Selection Method, three
projects were selected to replicate and cross-validate the
results of the evaluation. Only one organisation was se-
lected to conduct the case study but literature-based eval-
uation was conducted in an earlier study to validate the
feasibility of the QAT Selection Method. Although this
case study only validated the proposed work using safety
quality, the QAT Selection Method is intended to be to
be able to be applied to other quality attributes. The ear-
lier literature-based study [3] fit other quality QATs to the
framework.

8. Conclusion

This research aims to better understand how to select
techniques to manage product quality risks throughout

software development lifecycle. Risk management theory
was applied to categorise and compare the QATs for ar-
bitrary quality attributes. A QAT Selection Method was
proposed to help development teams compare and choose
QATs based on three perspectives: product-quality-risk
management, process integration and cost/benefit. For
the PQR management perspective, risk management the-
ory was used to compare the candidate QATs based on
their intended used in addressing PQRs. For the process
integration perspective, QATs are incorporated into soft-
ware lifecycle phases that can be applied to help develop-
ment teams choose QATs with different impact in manag-
ing PQRs, across the lifecycle. For the cost/benefit per-
spective, Analytic Hierarchy Process (AHP) [8] was used
to compare and evaluate the candidate QATs.

The QAT Selection Method was evaluated in a case
study. For the case study, three previously-completed
projects from an organisation that develop safety-related
systems were selected. The case study was run with three
industry experts, each representing a project. In the case
study, the QAT Selection Method was applied to retroac-
tively choose QATs for the projects. The applicability
of the QAT Selection Method was supported because the
QATs selected by the method were broadly comparable
with the QATs that had actually been selected. The
QAT Selection Method also provides a more systematic ap-
proach to choose QATs than selection of QATs by experts
and can provide explicit justification for the selection.

The following sections discuss the implications of this
work for research and practice, identify the limitations and
propose future research.

8.1. Implications for Research

Software quality is determined during the software de-
velopment process, but prior research on software process
modelling and tailoring had not provided an explanation
of how different software processes target specific software
qualities. QATs are widely used in practice and play an
important role in targeting specific product qualities, but
prior research had not explained how QATs fit into soft-
ware process models. This research provides an improved
understanding about the relationship between QATs, soft-
ware process and product quality, through a risk manage-
ment perspective.

• The research provides a new way of thinking about
how specific product quality attributes can be tar-
geted, by identifying, analysing, evaluating, control-
ling, and monitoring potential risks to product quality
that can arise during software development.

• The classification of QATs in a product-quality-risk
management lifecycle provides a new basis for under-
standing how QATs fit into the traditional software
development lifecycle process.

• The QAT Selection Method provide a basis to sup-
port future research in process tailoring, where a key

19



tailoring objective is product quality, not just project
or organisational context.

8.2. Implications for Practice

The QAT information captured and presented using the
QAT Framework [47] is motivated by the intention to help
practitioners to understand how QATs help to achieve the
product quality requirements and how selected QATs can
be incorporated into their process models. This research
shows how QATs can be selected based on their impact
in managing PQRs. The QAT Selection Method offers a
more systematic approach for software development teams
to compare candidate QATs and choose QATs that best
fit their product quality requirements and project context.
The QAT Selection Method does not replace experts in
decision-making for QAT selection. It rather helps them
to:

• Make informed decisions for the selected QATs
through quantitative evaluation of candidate QATs
using AHP [8]. The method also provides an explicit
way to rationalise and justify these decisions.

• Examine and evaluate all candidates and explore
the tradeoffs between available candidate QATs
based on risk-management, process integration and
cost/benefit perspectives.

• Determine a combination of QATs that covers the
PQR management lifecycle throughout the software
development lifecycle.

8.3. Future Work

There are many opportunities to extend this research
and overcome some of its limitations. The first area of fu-
ture work is to widen and deepen the empirical evaluation
of the QAT Selection Method. This work is intended to
be able to cover any quality attribute, and so the QAT Se-
lection Method should be applied and evaluated for other
quality attributes.

The work could be extended by the development of re-
lated methods and tools. Further work is required to de-
velop a comprehensive process tailoring method to support
integration of QATs into process models. The current cat-
alogue of QATs is stored in Microsoft word documents. A
repository tool could be developed to facilitate the main-
tenance and dissemination of QAT information.

Currently, the work only supports selection of QATs
for individual quality attributes. Further work would
be required to be able to simultaneously select and in-
tegrate QATs into software processes for multiple quality
attributes. AHP [8] is used to evaluate the tradeoffs among
QATs against cost/benefit criteria. The use of candidate
multi-criteria decision analysis methods could be explored
to improve the efficiency in selection.

The process of managing PQRs is similar to the generic
risk management process. Future work would be required

to better integrate the process of managing PQRs to target
specific product quality requirements throughout software
development lifecycle process. Also, the QAT Selection
Method can be improved to support selection of a balanced
set of human-based, formal methods and informal QATs
across the lifecycle.

Acknowledgments

NICTA is funded by the Australian Government as rep-
resented by the Department of Broadband, Communica-
tions and the Digital Economy and the Australian Re-
search Council through the ICT Centre of Excellence pro-
gram.

References

[1] L. Zhu, R. Jeffery, M. Staples, M. Huo, T. T. Tran, Ef-
fects of Architecture and Technical Development Process on
Micro-process, in: International Conference of Software Process
(ICSP), 49–60, 2007.

[2] L. Zhu, T. T. Tran, M. Staples, R. Jeffery, Technical Software
Development Process in the XML Domain, in: International
Conference of Software Process (ICSP), 246–255, 2009.

[3] Y. K. Chiam, L. Zhu, M. Staples, Quality Attribute Techniques
Framework, in: 16th European Conference (EuroSPI), 173–184,
2009.

[4] V. R. Basili, H. D. Rombach, Tailoring the software process to
project goals and environments, in: Proceedings of the 9th In-
ternational Conference on Software Engineering, 345–357, 1987.

[5] J. Bowers, J. May, E. Melander, M. Baarman, A. Ayoob, Tai-
loring XP for Large System Mission Critical Software Develop-
ment, in: Second XP Universe and First Agile Universe Confer-
ence, 100–111, 2002.

[6] O. Pedreira, M. Piattini, M. R. Luaces, N. R. Brisaboa, A Sys-
tematic Review of Software Process Tailoring, ACM SIGSOFT
Software Engineering Notes 32 (3) (2007) 1–6.

[7] X. Ferre, N. Juristo, A. M. Moreno, Framework for Integrat-
ing Usability Practices into the Software Process, in: Interna-
tional Conference on Product-Focused Software Development
and Process Improvement (PROFES), 202–215, 2005.

[8] T. L. Saaty, The Analytical Hierarchy Process, McGraw-Hill,
1980.

[9] Y. K. Chiam, L. Zhu, M. Staples, Systematic Selection of Qual-
ity Attribute Techniques, in: International Conference on Prod-
uct Focused Software (PROFES), 59–62, 2010.

[10] J. Holt, Current practice in software engineering: a survey,
Computing & Control Engineering Journal 8 (4) (1997) 167–
172.

[11] K. E. Emam, A. Birk, Validating the ISO/IEC 15504 Measure
of Software Requirements Analysis Process Capability, IEEE
Transactions on Software Engineering 26 (6) (2000) 541–566.

[12] C. Jones, Software Assessments, Benchmarks, and Best Prac-
tices, Addison-Wesley, 2000.

[13] R. L. Glass, Matching Methodology to Problem Domain, Com-
munications Of The ACM 47 (5) (2004) 19–21.

[14] L. Jiang, A Framework for the Requirements Engineering Pro-
cess Development, Ph.D. thesis, Department of Electrical and
Computer Engineering, University of Calgary, Canada, 2005.

[15] D. Damian, J. Chisan, An Empirical Study of the Complex Re-
lationships between Requirements Engineering Processes and
Other Processes that Lead to Payoffs in Productivity, Quality,
and Risk Management, IEEE Transactions on Software Engi-
neering 32 (7) (2006) 433–453.

[16] IEC 61508-3, Functional safety or electri-
cal/electronic/programmable electronic safety-related systems
- Part 3: Software requirements, 1998.

20



[17] IEC 62279, Railway Applications Communications, Signalling
and Processing Systems Software for Railway Control and Pro-
tection Systems., 2002.

[18] Zurich Risk Engineering, Which Hazard Analysis? - A Selection
Guide, 1998.

[19] W. Bridges, Selection of Hazard Evaluation Techniques,
http://www.piii.com/ downloads/Selection of Hazard Evalua-
tion Techniques.pdf, 2004.

[20] M. Lyons, Towards a framework to select techniques for error
prediction: Supporting novice users in the healthcare sector,
Applied Ergonomics 40 (3) (2009) 379–395.

[21] W. E. Perry, A Structured Approach to Systems Testing,
Prentice-Hall, 1983.

[22] S. Vegas, V. Basili, A Characterisation Schema for Software
Testing Techniques, Empirical Software Engineering 10 (4)
(2005) 437–466.

[23] L. Jiang, A. Eberlein, B. H. Far, Combining Requirements En-
gineering Techniques - Theory and Case Study, in: IEEE In-
ternational Conference and Workshops on the Engineering of
Computer-Based Systems (ECBS), 105–112, 2005.

[24] M. Svahnberg, C. Wohlin, L. Lundberg, M. Mattsson, A
Quality-Driven Decision-Support Method for Identifying Soft-
ware Architecture Candidates, International Journal of Soft-
ware Engineering and Knowledge Management 13 (5) (2003)
547–573.

[25] T. Al-Naeem, I. Gorton, M. A. Babar, F. Rabhi, B. Benatal-
lah, A quality-driven systematic approach for architecting dis-
tributed software applications, in: International Conference on
Software engineering (ICSE), 244–253, 2005.

[26] L. Zhu, A. Aurum, I. Gorton, R. Jeffery, Tradeoff and Sensitiv-
ity Analysis in Software Architecture Evaluation Using Analytic
Hierarchy Process, Software Quality Journal 13 (4) (2005) 357–
375.

[27] EWICS TC7 Software Sub-group, Techniques for Verification
and Validation of Safety-related Software, Computers and Stan-
dards 4 (2) (1985) 101–112.

[28] M. A. Babar, L. Zhu, R. Jeffery, A Framework for Classifying
and Comparing Software Architecture Evaluation Methods, in:
Australian Software Engineering Conference (ASWEC), 309–
318, 2004.

[29] M. A. Babar, B. Kitchenham, P. Mehashwari, Assessing the
Value of Architectural Information Extracted from Patterns for
Architecting, in: Proceedings of the Empirical Assessment in
Software Engineering (EASE), 1–10, 2006.

[30] H. D. Rombach, Systematic Software Technology Transfer, in:
International Workshop on Experimental Software Engineering
Issues: Critical Assessment and Future Directions, 239–246,
1993.

[31] S. Vegas, Characterisation Schema for Selecting Software Test-
ing Techniques, Ph.D. thesis, Facultad de Informática, Univer-
sidad Politécnica de Madrid, Madrid, Spain, 2002.

[32] D. Jewell, Performance Engineering and Management Method
- A Holistic Approach to Performance Engineering, in: Perfor-
mance Modeling and Engineering, 29–55, 2008.

[33] B. Boehm, Software Risk Management: Principles and Prac-
tices, IEEE Software 8 (1991) 32–41.

[34] B. Boehm, A Spiral Model of Software Development and En-
hancement, IEEE Computer 21 (1998) 61–72.

[35] R. Charette, Software Engineering Risk Analysis and Manage-
ment, McGraw-Hill, 1989.

[36] R. Charette, Large-Scale Project Management is Risk Manage-
ment, IEEE Software 13 (1996) 110–117.

[37] Jones, P. L. and Jorgens, J. III and Taylor, A. R. Jr and Weber,
M., Risk management in the design of medical device software
systems, Biomedical Instrumentation & Technology 36 (2002)
237–266.

[38] F. M. Caffery, J. Burton, I. Richardson, Risk management ca-
pability model for the development of medical device software,
Software Quality Control 18 (2010) 81–107.

[39] NASA Aeronautics and Space Administration, NASA Software
Safety Guidebook, NASA-GB-8719.13, 2004.

[40] R. Keeney, H. Raiffa, Decisions with Multiple Objectives: Pref-
erences and Value Trade-Offs, Cambridge University Press,
1993.

[41] B. Roy, Multicriteria Methodology for Decision Aiding, Kluwer
Academic Publishers, 1996.

[42] R. Keeney, Foundations for Making Smart Decisions, IIE Solu-
tions 31 (5) (1999) 24–30.

[43] R. Fuller, C. Carlsson, Fuzzy multiple criteria decision making:
Recent developments, Fuzzy Sets and Systems 78 (2) (1996)
139–153.

[44] J. Karlsson, K. Ryan, Cost-value approach for prioritizing re-
quirements, IEEE Software 14 (5) (1997) 67–74.

[45] E. Hotman, Base Reference Analytical Hierarchy Process for
Engineering Process Selection, in: R. Khosla, R. Howlett,
L. Jain (Eds.), Knowledge-Based Intelligent Information and
Engineering Systems, vol. 3681 of Lecture Notes in Computer
Science, Springer Berlin / Heidelberg, 155–155, 2005.

[46] D. Opydo, MakeItRational, URL http://makeitrational.com,
http://makeitrational.com.

[47] Y. K. Chiam, L. Zhu, M. Staples, Quality Attribute Techniques
Framework, in: R. V. OConnor, N. Baddoo, J. Cuadrago Gal-
lego, R. Rejas Muslera, K. Smolander, R. Messnarz (Eds.),
Software Process Improvement, vol. 42 of Communications in
Computer and Information Science, Springer Berlin Heidelberg,
173–184, 2009.

[48] N. G. Leveson, Safeware: System Safety and Computers, Addi-
son Wesley, 1995.

[49] AS/NZS ISO/IEC 12207, Software Life Cycle Processes, 1997.
[50] Y. K. Chiam, Representation and Selection of Quality Attribute

Techniques for Software Development Process, Ph.D. thesis,
School of Computer Science and Engineering, University of New
South Wales, Australia, 2011.

[51] N. Storey, Safety Critical Computer Systems, Addison Wesley,
1996.

[52] J. Borcsok, S. Schaefer, Software Development for Safety-
related Systems, in: International Conference on Systems
(ICONS), 38–42, 2007.

[53] S. Vegas, Identifying the Relevant Information for Software
Testing Technique Selection, in: International Symposium on
Empirical Software Engineering (ISESE), 39–48, 2004.

[54] R. K. Yin, Case Study Research: Design and Methods, Sage
Publications, 4th edn., 2008.

[55] P. Runeson, M. Höst, Guidelines for conducting and reporting
case study research in software engineering, Empirical Software
Engineering 14 (2009) 131–164.

21


