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Chemical space as a source for new drugs

Jean-Louis Reymond,* Ruud van Deursen, Lorenz C. Blum and Lars Ruddigkeit

Received 1st March 2010, Accepted 23rd March 2010

First published as an Advance Article on the web 28th April 2010

DOI: 10.1039/c0md00020e
The chemical space is the ensemble of all possible molecules, which is believed to contain at least 1060

organic molecules below 500 Da of possible interest for drug discovery. This review summarizes the

development of the chemical space concept from enumerating acyclic hydrocarbons in the 1800’s to the

recent assembly of the chemical universe database GDB. Chemical space travel algorithms can be used

to explore defined regions of chemical space by generating focused virtual libraries. Maps of the

chemical space are produced from property spaces visualized by principal component analysis or by

self-organizing maps, and from structural analyses such as the scaffold-tree or the MQN-system.

Virtual screening of virtual chemical space followed by synthesis and testing of the best hits leads to the

discovery of new drug molecules.
1. Introduction

Drug discovery was historically based on serendipity, more

precisely on the chance discovery of activities in certain classes of

compounds as they came under investigation. As the molecular

understanding of disease and drug action has progressed, a very

broad knowledge base has accumulated that can be exploited to

perform rationally guided searches for active compounds in silico

using virtual screening.1–6 Methods include the application of

QSAR models,7 similarity measures to known reference drugs for

molecular topology8 and three-dimensional structure (shape

alignment),9–12 and modeling binding interactions to protein

active sites (docking).13–17 Scoring functions are first developed
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by reproducing existing sets of bioactivity data, and then applied

to rank compounds available from commercial or in-house

collections. The highest scoring compounds are collected to form

a focused library which is subjected to actual testing in vitro.

One can also use scoring functions to rank compounds from

virtual libraries prior to their synthesis, with the aim of exploring

yet unknown chemical space and accessing new compound

classes. This review focuses on this strategy and summarizes

approaches to generate virtual libraries, to visualize the chemical

space by producing maps, and to perform de novo drug

discovery by virtual screening of virtual libraries followed by

synthesis and testing of the best hits. Such exploration of yet

unknown chemical space might help to solve the problem of the

high attrition rates in drug development by giving more

compounds to choose from at the hit prioritization level, which

should increase the chances of success at later stages.18,19

Exploring a broader range of structures by virtual screening
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might also allow to address the problem of target promiscuity

that is apparent in many drugs and allow the design of safer

drugs.20,21
2. From molecule enumeration to chemical space

Synthetic chemistry is about making covalent bonds between

atoms. The combinatorial possibilities of this simple concept

have fascinated chemists from the early days of organic chem-

istry.22 Initial inquiries focused on calculating the total number

of possible molecules of a given type. For instance Cayley and

Schiff both independently considered in 1875 the problem of

calculating the number of possible acyclic hydrocarbon

isomers.23,24 The question was correctly solved in 1931 by Henze

and Blair,25 predicting for example that there are 366 319 isomers

with formula C20H42, a result which is easily confirmed using the

GENG program26 for generating the corresponding graphs.

While these early considerations focused on counting only, the

idea of actually enumerating and representing molecular struc-

tures in a computer was addressed in the 1960’s by Lederberg and

Djerassi, who invented DENDRAL, a program designed to help

structure elucidation by mass spectrometry.27–29 DENDRAL

produced all possible organic molecules with a given elemental

formula. It was possible to exclude undesirable functional groups

from a ‘‘badlist’’ and enforce functional groups specified in

a ‘‘goodlist’’ to restrict the output. Provided enough such

constraints, the list of structures would automatically be reduced

to a handful of possibilities. This project gave rise to the topic of

computer-assisted structure elucidation (CASE), which

addresses automatic structure assignment from analytical data

such as MS and NMR spectra and uses various structure

generators30,31 as a key component.32–36

Enumeration by synthesis replaced virtual enumeration with

the advent of combinatorial chemistry in the early 1990’s. The

key triggers were the inventions of (1) solid-supported split-and-

mix synthesis,37–39 and (2) surface synthesis of two-dimensional

arrays on glass or paper support.40,41 These methods allowed the

simultaneous synthesis of thousands to millions of compounds as

physically segregated and identifiable products. Solid-supported

combinatorial chemistry was pursued first for iterative

syntheses of oligomers such as peptides,37–39 peptoids42 and
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oligonucleotides,43 and later extended to include a broad arsenal

of synthetic reactions leading to compounds of ever increasing

complexity, in particular in the elegant diversity-oriented

syntheses of Schreiber and coworkers.44,45 Latest advances in

combinatorial chemistry include improvements in library

decoding46 and screening methods,47 and the preparation of

libraries of billions of compounds using DNA-encoded chem-

istry.48 The concept of combinatorial chemistry also led to

automated parallel synthesis, which is used to systematically

enlarge compound collections in pharmaceutical companies and

at commercial providers.49 Databases of many of these

compounds are publicly available in which the structures are

written as SMILES,50–52 or related formats such as InChI.53

Examples include catalogs from commercial providers and

public databases such as ZINC,54a BindingDB,54b Chembl54c or

PubChem.55

The availability of collections of millions of compounds for

drug discovery has suggested the concept of chemical space for

describing the ensemble of all the molecules.56–58 The chemical

space metaphor offers a more inspiring imagery than the older

‘‘needle in a haystack’’ paradigm in the context activity screening,

and has been broadly embraced by the medicinal chemistry

community to talk about drug discovery. All the known mole-

cules form the ‘‘available chemical space’’. There also exists

a much larger space containing all the chemically possible

molecules, which we call the chemical universe. Although

chemical space is not uniquely defined, one generally considers

that structurally related molecules form close groups, and that

drug discovery can be guided geographically in chemical space.

Areas of interest mark the biologically relevant chemical space,

which includes natural products that have co-evolved with

protein and nucleic acid binding sites in the course of the

evolution of life, and all the drugs so far crafted by homo sapiens

sapiens in his own fight for survival.

Is chemical space finite? Yes, if boundaries are defined. For

small molecule drug discovery the natural limit is the molecular

weight, which must be capped at 300–500 Da to ensure reason-

able bioavailability.59 This chemical space of drug-like molecules

has been estimated to be in excess of 1060 molecules.56,60 Our

group has pushed the concept one step further and produced

actual lists of all molecules that are possible up to a certain size
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Fig. 1 Process for generating the chemical universe database GDB-11.
following simple constraints of chemical stability and synthetic

feasibility, forming the GDB database.61–63 The database is

constructed from an exhaustive list of graphs produced by the

program GENG,26 which are transformed into molecules by

replacing graph nodes by atoms (C, N, O, F, Cl, S) and graph

edges by single, double or triple bonds following simple valency

rules, and retaining only chemically meaningful ring systems and

functional groups (Fig. 1). It should be noted that exotic yet

sometimes known molecules such as a molecule corresponding to

a non-planar graph,64 or those containing strained fused ring

systems such as cubane or prismane, are not considered in such

enumerations.

GDB has been published for the enumeration up to 11 atoms

(GDB-11, with C, N, O, F, 26.4 million cpds with 152.9 � 7.3

Da)63 and 13 atoms (GDB-13, with C, N, O, Cl and S, 980 million

cpds 179.9 � 8.3 Da),62 and completed in-house for 15 atoms

(GDB-15, 28.8 billion cpds 206.8 � 5.4 Da). GDB consists in

large part of relatively rigid molecules, with bicyclic and tricyclic

topologies being the most abundant. Most GDB-molecules are

generated at intermediate ratios of polar atoms to carbon at

clogP values between �2 and 2. These molecules fulfill Lipinski’s

criteria for oral bioavailability59 as well as lead-likeness65 and

fragment-likeness66 criteria, mostly because these criteria

primarily restrain molecular size. The GDB approach is limited

to relatively small molecules due to the combinatorial explosion.

An analysis of chemical space for larger molecules has been

recently proposed by focusing on scaffold topologies.67 This

description does not explicitly enumerate molecules but allows

understanding of structural types in broad terms and was used to

show that only a small subset of the possible scaffold topologies

occur in known molecules.68
Fig. 2 The SPACESHIP algorithm travels from A to B in the chemical

space of molecules up to 50 heavy atoms not accessible to GDB.
3. Chemical space travel

The complete enumeration of all possible molecules up to 500

Da, if summing up to at least 1060, is practically out of range. In

most cases, however, one needs only to enumerate focused

libraries featuring a small yet relevant subset of chemical space.

Generating a focused library corresponds to traveling within

a limited region of chemical space. A large part of the initial

efforts to use cheminformatics for drug discovery consisted in the

enumeration of virtual libraries to assist the design of synthetic
32 | Med. Chem. Commun., 2010, 1, 30–38
combinatorial libraries, either towards predetermined targets or

for optimal diversity.69 Several programs enumerate virtual

libraries on the basis of known synthetic reactions and building

blocks, and explore a subset of readily synthesizable structures

for virtual screening.70,71 This approach is limited in its

potential for structural innovation, but offers a very practical

framework for transition from virtual screening to wet chemistry.

One can also travel in chemical space with genetic algorithms

that combine molecule generation with a fitness function in

iterative cycles.72–74 One of the first examples was the SPROUT

algorithm of Johnson and coworkers, which grows molecules

into a targeted protein binding site by coupling building blocks

following retrosynthesis rules.75–77 SPROUT selects synthetically

feasible products that have a maximum fitness as estimated by

docking to the target protein. The same strategy is followed in

SYNOPSIS,78 which restricts itself to directly realizable reac-

tions, and in EVOLUATOR,79 which allows interactive molecule

selection as the molecule population evolves to its highest fitness.

Other genetic algorithms include Skelgen,80 TOPAS,81 Flux,82,83

ADAPT,84 and the more recent multi-objective optimization

algorithms GANDI85 and MEGA.86

Chemical space travel has also been realized using formal

molecular evolution rules that are independent of synthetic

schemes, resulting in a much deeper and structurally more

innovative exploration of chemical space. In one case, Gasteiger

and coworkers reported a molecular breeding algorithm based

on the recombination of molecular fragments that was used to

generate median molecules maximizing common features of two

different starting molecules.87 The fitness function in this algo-

rithm optimized the Pareto rank relative to the Tanimoto simi-

larity coefficients of structural fingerprints to both starting

molecules. Genetic algorithms breeding random fragments were

similarly reported that assemble any target molecule by iterative

cycles,88 evolve a molecular population to maximum fitness as

defined by QSAR,89 and generate new inhibitors by cross-

breeding known ones.90

The approach is exemplified by our own version of chemical

space travel, which uses a SPACESHIP to travel between

a starting molecule A and a target molecule B by iterative cycles

of mutation and selection (Fig. 2).91 In the SPACESHIP, the
This journal is ª The Royal Society of Chemistry 2010



Fig. 3 Chemical space travel trajectories between AMPA and CNQX

represented in the 2-dimensional Tanimoto similarity space. The trajec-

tory library is colored according to the distance from CNQX to AMPA in

number of mutation steps. Binding energies as estimated by docking with

Autodock 3.0.5 to the AMPA-receptor 1FTK.pdb are indicated for start

and target and a strong-docking intermediate.
mutation generator is the engine, which is driven by exhausting

mutants containing elementary structural changes in bond and

atom types. Motion is directed by a compass, which points

towards the target B by selecting mutants with the highest

Tanimoto similarity coefficient to the target for the next step.

SPACESHIP explores chemical space for molecules up to 50

heavy atoms which is not accessible to exhaustive enumeration

by GDB. The algorithm can join any pair of molecules in a few

tens of mutations and selection cycles and generates ‘‘trajectory

libraries’’, which are filtered for chemical consistency by elimi-

nating strained rings and impossible functional groups. Trajec-

tory libraries contain up to several million intermediate

molecules between A and B that may later be used for virtual

screening. In a model study, a trajectory library of 500 000

compounds linking AMPA, an agonist of the corresponding

glutamate receptor, with CNQX,92 was ranked by high-

throughput docking. A strong enrichment of high-scoring hits

such as the b-amino acid 1 formed at intermediate distances

between AMPA and CNQX was observed in this library

compared to docking with non-selected libraries, suggesting that

the trajectory libraries explore privileged regions of chemical

space (Fig. 3).
Fig. 4 MQN-map of GDB-11 colored by (a) number of cycles, (b)

number or rotatable bonds, (c) number of hydrogen-bond acceptor

atoms, and (d) molecule categories. In (d) the category of molecules was

assigned using the following priority rule: 1. Heteroaromatic (red) > 2.

Aromatic (magenta) > 3. Fused heterocyclic (blue) > 4. Fused carbocyclic

(cyan) > 5. Heterocyclic (green) > 6. Carbocyclic (bright green) > 7.

Heteroacyclic (yellow) > 8. Carboacyclic (orange). Each point in the map

is colored according to the majority category for the compounds grouped

at that point, with grey shading (saturation in HSL scale) indicating

category purity.
4. Maps of the chemical space

The concept of chemical space implies the existence of dimen-

sions and of a map, which in their most simple implementation

should define distances between compounds.93–95 In the

perspective of drug discovery, the most important dimension

is the fitness value during virtual screening, which defines

a one-dimensional chemical space. The fitness value is derived

from a scoring function, which may be the Tanimoto similarity
This journal is ª The Royal Society of Chemistry 2010
coefficient for structural or pharmacophore fingerprints or the

shape similarity to a reference bioactive molecule, or the score of

a docking pose in a given protein binding pocket. The concept

can be extended to two or more dimensions if one considers

fitness to several targets simultaneously, as proposed by Gas-

teiger et al. and their concept of median molecules as discussed

above.87 For example, the trajectory libraries produced by the

SPACESHIP are shown above in a two dimensional space of

Tanimoto similarity to the starting molecule A and the target B,

in which the iterative cycles of mutation and selection gradually

move molecules from one to the other (Fig. 3).91

While fitness values produce a different chemical space for

every application, it is also possible to define generally valid

dimensions using descriptors, which represent structural and

physico-chemical properties of the molecules. Thousands of

descriptors have been reported in the literature, allowing prac-

tically limitless possibilities to construct chemical spaces.58,96

Maps to represent these spaces can be produced by principal

component analysis (PCA) and representation of the plane of the

first two PCs or the space of the first three PCs. In such property

space maps, compounds with related structural, physicochemical

and sometimes biological activities are generally grouped

together. Notable examples include the ChemGPS system97,98

and related approaches to classify drugs and natural prod-

ucts.99,100 The multidimensional property spaces defined by

descriptors can also be visualized using self-organizing maps,

which are grids of neurons to which similar compounds are
Med. Chem. Commun., 2010, 1, 30–38 | 33



assigned.101 SOM-maps have been used successfully to differen-

tiate various bioactivity classes.102,103 A simple structure-based

classification of the chemical universe database GDB-11 can be

obtained using a SOM trained with autocorrelation vectors of

atomic properties101 as descriptors. In this representation,

molecules are organized by their structural types.63 SOM are

limited to classifying, at most, a few million molecules due to the

computational time needed to train the map.

The periodic system, which is arguably the oldest and best

known map of a chemical space, came out of a historical

breakthrough when classification of the elements was attempted

based on the atomic weights and later the atomic number rather

than on the properties of their compounds.104 Similarly, a unified

and generally useful classification of organic molecules might

arise by using a system based purely on structural features rather

than on properties as in the examples above. Two recent
Fig. 5 MQN-city block distances for virtual screening. A. Analogs of

Diazepam by MQN-distance (2–4) and by structural fingerprint measure

(5–6). B. Enrichment curves of recovering known bioactive ligand

analogs of diazepam from ZINC using MQN-distances or Tanimoto

similarity coefficients of structural fingerprints.

34 | Med. Chem. Commun., 2010, 1, 30–38
approaches have proposed structure-based classification

concepts for organic molecules that lead to a mapping of the

chemical space.

In the first case, Schuffenhauer et al. reported a so-called

scaffold-tree classification by gradually deconstructing molecules

in successive steps of functional groups and cycle removals

following a simple set of priority rules.105 The analysis defines

linkages called brachiation between related molecules. Most

remarkably, the scaffold-tree reveals natural families of bioactive

scaffolds when annotated with known bioactivities, suggesting

new activities for known scaffolds and new scaffolds for known

activities.106 For example, analysis of the brachiating structure

for inhibitors of the pyruvate kinase led to the identification of

three activators (AC50 # 10 mM) and six inhibitors (IC50 #

10 mM) from databases of known compounds.107

In the second case, we have reported a classification of organic

molecules based on molecular quantum numbers (MQNs).108 A

set of 42 MQNs are defined as counts for elementary constituents

of molecules such as atoms, bonds, polar groups, and topological

features. MQNs reflect purely structural elements rather than

calculated properties as described earlier. The analysis produces

a very straightforward map of chemical space when the 42 MQN-

dimensions are projected in the PC1/PC2 plane using a non-

normalized PCA. For example the MQN-map of the GDB-11

database groups molecules in islands containing molecules with

increasing numbers of rings and decreasing number of rotatable

bonds. In each island, the north end contains polar molecules

and the south end apolar molecules (Fig. 4a–c). Molecules are

also well separated into different categories in such maps

(Fig. 4d), as was previously observed in a SOM-classification of

the database.63 Distances between molecules in MQN-space can

be calculated by using a city-block distance, which is the sum of

the absolute differences between MQN values of each molecule.

MQN-space groups structurally related molecules, as illustrated

for the closest MQN-neighbors of diazepam 2–4 found in ZINC,

while compounds with high structural similarity as measured by

structural fingerprints such as 5 and 6 are more distant (Fig. 5A).

MQN-distance classification provides a simple and efficient

enrichment scheme for virtual screening of ZINC (Fig. 5B).
5. Drug discovery from virtual libraries

Over the last few years, many reports have shown that virtual

screening actually works, which means that the focused libraries

assembled on the basis of scoring functions display a significant

percentage of active compounds (up to 50% hit rate) and thus

allow the discovery of initial lead compounds much faster and at

much lower cost than by blind high-throughput screening (0–

0.1% hit rate). This strategy includes the bulk of structure-based

drug discovery programs ongoing in medicinal chemistry labo-

ratories worldwide, in particular all prioritization programs

applied to in-house and commercial databases to guide retrieval

and purchase. In the spirit of this review we focus on cases in

which large libraries of yet unknown virtual molecules were

subjected to virtual screening to identify potentially active

compounds prior to their synthesis.

The chemical space travel algorithms discussed above have

successfully been implemented in a number of case studies.103

SYNOPSIS was validated by successfully guiding a focused
This journal is ª The Royal Society of Chemistry 2010



Fig. 6 Examples of bioactive molecules identified from virtual libraries

prior to synthesis.

Fig. 7 A. Structural formulae of virtual hits 11–16 identified from GDB-

11. B. Binding modes within the NMDA-glycine site (1PB7.pdb) for

glycine (green), virtual hit 11 (blue), virtual hit 12 (magenta) and virtual

hit 13 (orange).
library of 200 possible HIV inhibitors featuring mostly hetero-

aromatic amides, of which 18 were successfully synthesized and

led to 10 non-toxic inhibitors that show significant activity, such

as compound 7 (IC50 ¼ 80 mM) (Fig. 6).78 EVOLUATOR has

been used to identify compound 8 as an inhibitor that is active on

both the a1- and a1-adrenergic receptors and shows a displace-

ment of >50% at a concentration of 10 mM in the radioligand

binding assay.79 Skelgen has been used to discover estrogen

inhibitors. From the 17 synthesized structures, 5 show inhibition

in mM range, such as 9 (IC50 ¼ 0.34 mM).80 Flux was applied for

the identification of inhibitors for the disruption of the interac-

tion between the Tat-Peptide and TAR RNA, which is part of

the human immunodeficiency virus (HIV-1), such as 10 (IC50 ¼
500 mM).109

In the above examples, molecule generation is coupled to

fitness selection, and the database of generated structures is never

discussed or explicitly exposed. This strategy eludes the questions

of completeness, i.e. have all the possibilities been examined? and

of intellectual property protection, i.e. are the generated mole-

cules lost to the public domain? In the case of the chemical

universe databases GDB, completeness is addressed because the

database is exhaustive, implying that the best possible molecules

should be found in the database for any given target provided

that a perfect virtual screen is available. Interestingly, the

molecules exposed in GDB are not lost to the public domain.

Indeed, although GDB-molecules are in principle possible

because they contain chemically stable structural elements such

as functional groups and ring systems, they are by no means

trivial to synthesize. A claim to a structure from GDB will

therefore only be possible and valid once the compound has

actually been made in the laboratory. Note that this may not

necessarily apply if extremely focused GDB-subsets containing

molecules that are entirely trivial to make were exposed.

As proof of concept for the use of GDB in drug discovery, we

have investigated the case of the glycine binding site of the

NMDA-receptor, an important neurotransmitter receptor

implicated in various neurological diseases.110 Docking GDB-

molecules to the binding site defined in the crystal structure of its

glycine complex showed that known ligands such as D-alanine,

D-serine, or glycine itself, are indeed among the best (top 1.03%)

docking compounds. In one implementation,110 we selected
This journal is ª The Royal Society of Chemistry 2010
a GDB-subset of 15 061 structures using a Bayesian classifier

trained with known NMDA-receptor ligands, and carried out

high-throughput docking of the corresponding 69 367 stereo-

isomers generated using CORINA.111 Synthesis and testing of

a selection of 23 compounds among the 712 compounds docking

better than glycine led to the identification of simple dipeptides

such as 11–12 as a new class of NMDA-glycine site inhibitors, as

well as the D-alanine analog 13 (Fig. 7). Lead optimization was

performed by attaching hydrophobic alkyl groups to the

terminal amino group, providing the N-ethyl b-alanine dipeptide

14 as optimal ligand. The preference of the NMDA-glycine site

for amino acids was confirmed when we docked a random

selection of 8000 (31 121 stereoisomers) molecules from GDB,

which featured non-cyclic amino acids similar to the previously

identified ligands in the best docking hits.112 This non-directed

screening campaign pointed to the yet unknown diketopiper-

azines 15 and 16 as possible new types of ligands for the receptor.

Indeed synthesis and testing showed that compound 15 was

a weak inhibitor of the glycine site, while 16 was inactive. Further
Med. Chem. Commun., 2010, 1, 30–38 | 35



discovery programs ongoing in our laboratory have largely

confirmed that high-throughput docking of GDB-derived

molecules followed by synthesis and testing provides a reliable

entry into new ligands.
6. Conclusion and outlook

When considering the immensity of chemical space as revealed by

exhaustive analyses such as GDB, one must conclude that

organic chemistry has not even begun. The unexplored molecular

diversity is so large that it is tempting to declare it useless or

irrelevant.113 However reassuring, this view is probably mistaken.

On the contrary, chemistry should be driven into the unknown

chemical space by the pressing need for innovation in small

molecule drug discovery.
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Inform. Comp. Sci., 1996, 36, 221–227.

36 C. Steinbeck, Recent developments in automated structure
elucidation of natural products, Nat. Prod. Rep., 2004, 21, 512–8.

37 A. Furka, F. Sebestyen, M. Asgedom and G. Dibo, General method
for rapid synthesis of multicomponent peptide mixtures, Int. J. Pept.
Protein Res., 1991, 37, 487–93.

38 R. A. Houghten, C. Pinilla, S. E. Blondelle, J. R. Appel,
C. T. Dooley and J. H. Cuervo, Generation and use of synthetic
peptide combinatorial libraries for basic research and drug
discovery, Nature, 1991, 354, 84–6.
This journal is ª The Royal Society of Chemistry 2010



39 K. S. Lam, S. E. Salmon, E. M. Hersh, V. J. Hruby,
W. M. Kazmierski and R. J. Knapp, A new type of synthetic
peptide library for identifying ligand-binding activity, Nature,
1991, 354, 82–4.

40 S. P. Fodor, J. L. Read, M. C. Pirrung, L. Stryer, A. T. Lu and
D. Solas, Light-directed, spatially addressable parallel chemical
synthesis, Science, 1991, 251, 767–73.

41 R. Frank, SPOT-Synthesis - An Easy Technique for the Positionally
Adressable, Parallel Chemical Synthesis on a Membrane Support,
Tetrahedron, 1992, 48, 9217–9232.

42 R. N. Zuckermann and T. Kodadek, Peptoids as potential
therapeutics, Curr. Opin. Mol. Ther., 2009, 11, 299–307.

43 S. L. Beaucage and R. P. Iyer, Advances in the Synthesis of
Oligonucleotides by the Phosphoramidite Approach, Tetrahedron,
1992, 48, 2223–2311.

44 S. L. Schreiber, Target-oriented and diversity-oriented organic
synthesis in drug discovery, Science, 2000, 287, 1964–9.

45 T. E. Nielsen and S. L. Schreiber, Towards the optimal screening
collection: a synthesis strategy, Angew. Chem., Int. Ed., 2008, 47,
48–56.

46 J. Kofoed and J. L. Reymond, A general method for designing
combinatorial peptide libraries decodable by amino acid analysis,
J. Comb. Chem., 2007, 9, 1046–52.

47 N. l. Maillard, T. Darbre and J.-L. Reymond, Identification of
Catalytic Peptide Dendrimers by Off-Bead in Silica High-
Throughput Screening of Combinatorial Libraries, J. Comb.
Chem., 2009, 11, 667–675.

48 S. Melkko, C. E. Dumelin, J. Scheuermann and D. Neri, Lead
discovery by DNA-encoded chemical libraries, Drug Discovery
Today, 2007, 12, 465–71.

49 P. J. Edwards, Current parallel chemistry principles and practice:
application to the discovery of biologically active molecules, Curr.
Opin. Drug Discov. Devel., 2009, 12, 899–914.

50 J. Braun, R. Gugisch, A. Kerber, R. Laue, M. Meringer and
C. Rucker, MOLGEN-CID–A canonizer for molecules and graphs
accessible through the Internet, J. Chem. Inform. Comp. Sci., 2004,
44, 542–8.

51 D. Weininger, Smiles, a Chemical Language and Information-
System.1. Introduction to Methodology and Encoding Rules, J.
Chem. Inform. Comp. Sci., 1988, 28, 31–36.

52 D. Weininger, A. Weininger and J. L. Weininger, Smiles.2.
Algorithm for Generation of Unique Smiles Notation, J. Chem.
Inform. Comp. Sci., 1989, 29, 97–101.

53 S. R. Heller, S. E. Stein and D. V. Tchekhovskoi, InChI: Open
access/open source and the IUPAC international chemical
identifier, Abstracts of Papers of the American Chemical Society,
2005, 230, 60–CINF.

54 (a) J. J. Irwin and B. K. Shoichet, ZINC - A free database of
commercially available compounds for virtual screening,
J. Chem. Inf. Model., 2005, 45, 177–182; (b) T. Liu, Y. Lin,
X. Wen, R. N. Jorrisen and M. K. Gilson, BindingDB:
a web-accessible database of experimentally determined protein-
ligand binding affinities, Nucleic Acids Res., 2007, 35, D198–
D201; (c) J. Overington, J. Comput. Aided Mol. Des., 2009,
23, 195–198.

55 E. E. Bolton, PubChem: Integrated Platform of Small Molecules
and Biological Activities, Annu. Rep. Comput. Chem., 2008, 4,
217–241.

56 R. S. Bohacek, C. McMartin and W. C. Guida, The art and practice
of structure-based drug design: a molecular modeling perspective,
Med. Res. Rev., 1996, 16, 3–50.

57 C. M. Dobson, Chemical space and biology, Nature, 2004, 432,
824–8.

58 I. Vogt and J. Bajorath, Design and exploration of target-selective
chemical space representations, J. Chem. Inf. Model., 2008, 48,
1389–95.

59 C. A. Lipinski, F. Lombardo, B. W. Dominy and P. J. Feeney,
Experimental and computational approaches to estimate solubility
and permeability in drug discovery and development settings, Adv.
Drug Delivery Rev., 1997, 23, 3–25.

60 P. Ertl, Cheminformatics analysis of organic substituents:
identification of the most common substituents, calculation of
substituent properties, and automatic identification of drug-like
bioisosteric groups, Journal of Chemical Information and Computer
Sciences, 2003, 43, 374–380.
This journal is ª The Royal Society of Chemistry 2010
61 T. Fink, H. Bruggesser and J. L. Reymond, Virtual exploration of
the small-molecule chemical universe below 160 Daltons, Angew.
Chem., Int. Ed., 2005, 44, 1504–8.

62 L. C. Blum and J. L. Reymond, 970 million druglike small molecules
for virtual screening in the chemical universe database GDB-13,
J. Am. Chem. Soc., 2009, 131, 8732–3.

63 T. Fink and J. L. Reymond, Virtual exploration of the chemical
universe up to 11 atoms of C, N, O, F: assembly of 26.4 million
structures (110.9 million stereoisomers) and analysis for new ring
systems, stereochemistry, physicochemical properties, compound
classes, and drug discovery, J. Chem. Inf. Model., 2007, 47, 342–53.

64 S. A. Benner, J. E. Maggio and H. E. Simmons, Rearrangement of
a geometrically restricted triepoxide to the first topologically
nonplanar molecule: a reaction path elucidated by using oxygen
isotope effects on carbon-13 chemical shifts, J. Am. Chem. Soc.,
1981, 103, 1581–1582.

65 S. J. Teague, A. M. Davis, P. D. Leeson and T. Oprea, The Design of
Leadlike Combinatorial Libraries, Angew. Chem., Int. Ed., 1999, 38,
3743–3748.

66 M. Congreve, R. Carr, C. Murray and H. Jhoti, A rule of three for
fragment-based lead discovery?, Drug Discovery Today, 2003, 8,
876–877.

67 S. N. Pollock, E. A. Coutsias, M. J. Wester and T. I. Oprea, Scaffold
topologies. 1. Exhaustive enumeration up to eight rings, J. Chem.
Inf. Model., 2008, 48, 1304–10.

68 M. J. Wester, S. N. Pollock, E. A. Coutsias, T. K. Allu, S. Muresan
and T. I. Oprea, Scaffold topologies. 2. Analysis of chemical
databases, J. Chem. Inf. Model., 2008, 48, 1311–24.

69 A. R. Leach and M. M. Hann, The in silico world of virtual libraries,
Drug Discovery Today, 2000, 5, 326–336.

70 X. Q. Lewell, D. B. Judd, S. P. Watson and M. M. Hann, RECAP–
retrosynthetic combinatorial analysis procedure: a powerful new
technique for identifying privileged molecular fragments with
useful applications in combinatorial chemistry, J. Chem. Inform.
Comp. Sci., 1998, 38, 511–22.

71 H. Patel, M. J. Bodkin, B. Chen and V. J. Gillet, Knowledge-based
approach to de novo design using reaction vectors, J. Chem. Inf.
Model., 2009, 49, 1163–84.

72 P. Willett, Genetic algorithms in molecular recognition and design,
Trends Biotechnol., 1995, 13, 516–21.

73 G. Schneider and U. Fechner, Computer-based de novo design of
drug-like molecules, Nat. Rev. Drug Discovery, 2005, 4, 649–63.

74 J. Gasteiger, De novo design and synthetic accessibility, J. Comput.-
Aided Mol. Des., 2007, 21, 307–309.

75 V. J. Gillet, W. Newell, P. Mata, G. Myatt, S. Sike, Z. Zsoldos and
A. P. Johnson, Sprout - Recent Developments in the De-Novo
Design of Molecules, J. Chem. Inform. Comp. Sci., 1994, 34,
207–217.

76 V. J. Gillet, G. Myatt, Z. Zsoldos and A. P. Johnson, SPROUT,
HIPPO and CAESA: Tools for de novo structure generation and
estimation of synthetic accessibility, Perspect. Drug Discovery Des.,
1995, 3, 34–50.

77 P. Mata, V. J. Gillet, A. P. Johnson, J. Lampreia, G. J. Myatt, S. Sike
and A. L. Stebbings, Sprout - 3d Structure Generation Using
Templates, J. Chem. Inform. Comp. Sci., 1995, 35, 479–493.

78 H. M. Vinkers, M. R. de Jonge, F. F. Daeyaert, J. Heeres,
L. M. Koymans, J. H. van Lenthe, P. J. Lewi, H. Timmerman,
K. van Aken and P. A. Janssen, SYNOPSIS: SYNthesize and
OPtimize System in Silico, J. Med. Chem., 2003, 46, 2765–73.

79 E. W. Lameijer, J. N. Kok, T. Back and A. P. Ijzerman, The
molecule evoluator. An interactive evolutionary algorithm for the
design of drug-like molecules, J. Chem. Inf. Model., 2006, 46, 545–52.

80 S. Firth-Clark, H. M. Willems, A. Williams and W. Harris,
Generation and selection of novel estrogen receptor ligands using
the de novo structure-based design tool, SkelGen, J. Chem. Inf.
Model., 2006, 46, 642–7.

81 G. Schneider, M. L. Lee, M. Stahl and P. Schneider, De novo design
of molecular architectures by evolutionary assembly of drug-derived
building blocks, J. Comput.-Aided Mol. Des., 2000, 14, 487–94.

82 U. Fechner and G. Schneider, Flux (1): a virtual synthesis scheme for
fragment-based de novo design, J. Chem. Inf. Model., 2006, 46,
699–707.

83 U. Fechner and G. Schneider, Flux (2): comparison of molecular
mutation and crossover operators for ligand-based de novo design,
J. Chem. Inf. Model., 2007, 47, 656–67.
Med. Chem. Commun., 2010, 1, 30–38 | 37



84 S. C. Pegg, J. J. Haresco and I. D. Kuntz, A genetic algorithm for
structure-based de novo design, J. Comput.-Aided Mol. Des., 2001,
15, 911–33.

85 F. Dey and A. Caflisch, Fragment-Based de Novo Ligand Design by
Multiobjective Evolutionary Optimization, J. Chem. Inf. Model.,
2008, 48, 679–690.

86 C. A. Nicolaou, J. Apostolakis and C. S. Pattichis, De novo drug
design using multiobjective evolutionary graphs, J. Chem. Inf.
Model., 2009, 49, 295–307.

87 N. Brown, B. McKay, F. Gilardoni and J. Gasteiger, A graph-based
genetic algorithm and its application to the multiobjective evolution
of median molecules, J. Chem. Inform. Comp. Sci., 2004, 44,
1079–1087.

88 A. Globus, J. Lawton and T. Wipke, Automatic molecular design
using evolutionary techniques, Nanotechnology, 1999, 10, 290–299.

89 D. Douguet, E. Thoreau and G. Grassy, A genetic algorithm for the
automated generation of small organic molecules: Drug design using
an evolutionary algorithm, J. Comput.-Aided Mol. Des., 2000, 14,
449–466.

90 A. C. Pierce, G. Rao and G. W. Bemis, BREED: Generating novel
inhibitors through hybridization of known ligands. Application to
CDK2, P38, and HIV protease, J. Med. Chem., 2004, 47, 2768–2775.

91 R. van Deursen and J. L. Reymond, Chemical Space Travel,
ChemMedChem, 2007, 2, 636–640.

92 H. Brauner-Osborne, J. Egebjerg, E. O. Nielsen, U. Madsen and
P. Krogsgaard-Larsen, Ligands for glutamate receptors: design
and therapeutic prospects, J. Med. Chem., 2000, 43, 2609–45.

93 J. Bajorath, Selected concepts and investigations in compound
classification, molecular descriptor analysis, and virtual screening,
J. Chem. Inform. Comp. Sci., 2001, 41, 233–45.

94 J. W. Godden and J. Bajorath, A distance function for retrieval of
active molecules from complex chemical space representations,
J. Chem. Inf. Model., 2006, 46, 1094–7.

95 Y. A. Ivanenkov, N. P. Savchuk, S. Ekins and K. V. Balakin,
Computational mapping tools for drug discovery, Drug Discovery
Today, 2009, 14, 767–75.

96 P. Kolb and A. Caflisch, Automatic and efficient decomposition of
two-dimensional structures of small molecules for fragment-based
high-throughput docking, J. Med. Chem., 2006, 49, 7384–92.

97 T. I. Oprea and J. Gottfries, Chemography: The art of navigating in
chemical space, J. Comb. Chem., 2001, 3, 157–166.

98 J. Rosen, J. Gottfries, S. Muresan, A. Backlund and T. I. Oprea,
Novel chemical space exploration via natural products, J. Med.
Chem., 2009, 52, 1953–62.

99 J. L. Medina-Franco, K. Martinez-Mayorga, A. Bender,
R. M. Marin, M. A. Giulianotti, C. Pinilla and R. A. Houghten,
Characterization of activity landscapes using 2D and 3D similarity
methods: consensus activity cliffs, J. Chem. Inf. Model., 2009, 49,
477–91.

100 N. Singh, R. Guha, M. A. Giulianotti, C. Pinilla, R. A. Houghten
and J. L. Medina-Franco, Chemoinformatic analysis of
combinatorial libraries, drugs, natural products, and molecular
38 | Med. Chem. Commun., 2010, 1, 30–38
libraries small molecule repository, J. Chem. Inf. Model., 2009, 49,
1010–24.

101 H. Bauknecht, A. Zell, H. Bayer, P. Levi, M. Wagener,
J. Sadowski and J. Gasteiger, Locating biologically active
compounds in medium-sized heterogeneous datasets by
topological autocorrelation vectors: Dopamine and
benzodiazepine agonists, J. Chem. Inform. Comp. Sci., 1996, 36,
1205–1213.

102 M. Schmuker and G. Schneider, Processing and classification of
chemical data inspired by insect olfaction, Proc. Natl. Acad. Sci.
U. S. A., 2007, 104, 20285–9.

103 G. Schneider, M. Hartenfeller, M. Reutlinger, Y. Tanrikulu,
E. Proschak and P. Schneider, Voyages to the (un)known:
adaptive design of bioactive compounds, Trends Biotechnol., 2009,
27, 18–26.

104 S. G. Wang and W. H. Schwarz, Icon of chemistry: the periodic
system of chemical elements in the new century, Angew. Chem.,
Int. Ed. Engl., 2009, 48, 3404–3415.

105 A. Schuffenhauer, P. Ertl, S. Roggo, S. Wetzel, M. A. Kock and
H. Waldmann, The scaffold tree - Visualization of the scaffold
universe by hierarchical scaffold classification, J. Chem. Inf.
Model., 2007, 47, 47–58.

106 S. Wetzel, K. Klein, S. Renner, D. Rauh, T. I. Oprea, P. Mutzel and
H. Waldmann, Interactive exploration of chemical space with
Scaffold Hunter, Nat. Chem. Biol., 2009, 5, 581–3.

107 S. Renner, W. A. van Otterlo, M. Dominguez Seoane,
S. Mocklinghoff, B. Hofmann, S. Wetzel, A. Schuffenhauer,
P. Ertl, T. I. Oprea, D. Steinhilber, L. Brunsveld, D. Rauh and
H. Waldmann, Bioactivity-guided mapping and navigation of
chemical space, Nat. Chem. Biol., 2009, 5, 585–92.

108 K. T. Nguyen, L. C. Blum, R. van Deursen and J. L. Reymond,
Classification of Organic Molecules by Molecular Quantum
Numbers, ChemMedChem, 2009, 4, 1803–1805.

109 A. Schuller, M. Suhartono, U. Fechner, Y. Tanrikulu, S. Breitung,
U. Scheffer, M. W. Gobel and G. Schneider, The concept of
template-based de novo design from drug-derived molecular
fragments and its application to TAR RNA, J. Comput.-Aided
Mol. Des., 2008, 22, 59–68.

110 K. T. Nguyen, S. Syed, S. Urwyler, S. Bertrand and J. L. Reymond,
Discovery of NMDA glycine site inhibitors from the chemical
universe database GDB, ChemMedChem, 2008, 3, 1520–4.

111 J. Sadowski and J. Gasteiger, From Atoms and Bonds to
3-Dimensional Atomic Coordinates - Automatic Model Builders,
Chem. Rev., 1993, 93, 2567–2581.

112 K. T. Nguyen, E. Luethi, S. Syed, S. Urwyler, S. Bertrand,
D. Bertrand and J. L. Reymond, 3-(Aminomethyl)piperazine-2,5-
dione as a novel NMDA glycine site inhibitor from the chemical
universe database GDB, Bioorg. Med. Chem. Lett., 2009, 19,
3832–5.

113 J. Hert, J. J. Irwin, C. Laggner, M. J. Keiser and B. K. Shoichet,
Quantifying biogenic bias in screening libraries, Nat. Chem. Biol.,
2009, 5, 479–83.
This journal is ª The Royal Society of Chemistry 2010


	Chemical space as a source for new drugs
	Chemical space as a source for new drugs
	Chemical space as a source for new drugs
	Chemical space as a source for new drugs
	Chemical space as a source for new drugs
	Chemical space as a source for new drugs
	Chemical space as a source for new drugs
	Chemical space as a source for new drugs




