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Abstract

We present work in progress on the dynamical analysis of a multi-agent model that allows for temporally distributed
asymmetric interactions between agents. The model essentially defines a coupled map lattice in which interactions between
local variables obey a random Gaussian law and are transmitted through a gamma pattern of delays. The asymptotic dynamics
of the model is investigated employing a dynamic mean field approach. The predictions of the mean field equations are
checked numerically through simulations of a finite system of interacting units.
© 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

In recent years, interest in statistical mechanics models of interactions has grown in many scientific disciplines.
Such models include Ising lattices (e.g.[1]), spin-glasses[2], and percolation models[3]. In the social sciences and
particularly in economics, several authors have suggested the use of similar model approaches to problems of asset
management (e.g.[4]), technological change (e.g.[5]), the diffusion of standards (e.g.[6]), discrete choice theory
and econometrics (e.g.[7–9]). In the natural and the life sciences, neural networks is a typical example of statistical
mechanical models with widespread use (e.g.[10,11]).

Motivated by the increasing interest in models with interaction, in this paper we study the dynamics of a generic
model of behavior in a multi-agent system, where interactions are allowed to be random asymmetric and temporally
distributed according to a gamma delay kernel. As such, the model is related to the spin-glass type. We call this
model gamma TRRNN (temporal random recurrent neural network). The dynamics of RRNN (random recurrent
neural network) models in the absence of time delays have been studied by several authors (e.g.[12–21]). The need
to model temporal patterns in the transmission of interactions is suggested in several situations (e.g. Manski[22]
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in an endogenous social interactions setting; Iannacone[23] and Rosser[24, pp. 45–46]in a consumer demand
setting; Amit[10] in neural networks and brain research settings).

The first aim of the paper is the investigation of the asymptotic average behavior of a multi-agent system
described by a gamma temporal structure. Of particular interest is the bifurcation diagram for the control pa-
rameters of the model that describes the system dynamics. Second, we are interested in examining the finite
system size properties of the model. While the mean field equations (MFEs) provide information on the bifur-
cations of the fixed points of the system, and the resulting number of attractors, finite system size simulations
can give further insight into the nature of the attractors. They also provide a check of the validity of the mean
field theory predictions, and a qualitative assessment of the finite-size effects on system dynamics. These can
be of interest in practical situations, where the population is finite, or when it consists of a finite group of ho-
mogenous sub-populations interacting under the specified model form (e.g. Geman[25] considers such a case).
Third, we wish to examine if the delay structure alters qualitatively the system dynamics with respect to the
non-temporal RRNN. The latter case has been studied by Cessac et al.[19], and our line of investigation follows their
approach.

The rest of the paper is organized as follows: inSection 2we formulate the gamma TRRNN model.Section 3
presents the MFEs and the assumptions underlying their derivation.Section 4discusses the bifurcation structure of
the MFEs.Section 5presents the finite system size simulations and results. Finally, inSection 6we conclude with
a summary of the findings and suggestions for further work.

2. Model formulation

We consider a fully connected system ofN agents whose behavior at time periodt with respect to a binary
actionA ∈ {0,1} is described by a state vector{xi(t)}Ni=1, xi(t) ∈ [0, 1]. This continuous formulation of the
individual states reflects the presence of a “latent” variable which triggers a binary action when a threshold value
is exceeded. In a social-science context, an individual state variable may be viewed as anattitudeor opinion, while
in a neural networks context it is theoutputof a neuron. Alternatively, it can be seen as the probability of deciding
to perform the action{A = 1}. The dynamics is in discrete-time, governed by the system ofN coupled logistic
recurrences

xi(t + 1) = S(hi(t)), (1)

where

hi(t) =
N∑
j=1

T∑
τ=0

Jij (τ)xj(t − τ)− θi(t) (2)

is known aspotential, and

S(y) = 1

2
(1 + tanh(gy)) = 1

1 + exp(−2gy)
. (3)

A discussion of the derivation of such a logistic model form, and its interpretation in a social-science choice-
theoretic context can be found in[8,26]. In model(1), Jij (τ) is the weight of the state,xj(t − τ) of agentj at time
t − τ on the current state,xi(t − τ) of agenti. The argumentτ, in the weighting coefficients,Jij (τ), reflects the
temporal pattern of the interactions among the agents of the system.T ∈ [0,∞) is the maximum delay time, and
θi(t) is the external field (or stimulus) on agenti. In Eq. (3), g is a parameter reflecting the degree of randomness in
the system, which we callgain.
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Fig. 1. The gamma delay kernel for scale parameter valuesa = 1,2 and shape parameter valuesr = 0,1.

A two-parametergamma delay kernelis assumed, due to its capacity to accommodate a variety of delay patterns
(Fig. 1),

Ka,r(τ) =
(

1

a

)1+r
τr exp(−τ/a)
Γ(r + 1)

, a > 0, r > −1 (4)

with meana(1 + r) and variancea2(1 + r), such that

Jij (τ) = Ka,r(τ)Jij , (5)

where

Jij � N
(
J̄

N
,
J2

N

)
. (6)

That is, we assume that the interaction weights are IID normal random variables, and are distributed over time
under a gamma law acting on the fixed (quenched)Jij ’s. The matrixJ = (Jij ) is called theinteraction matrixof the
system(1). The moments of the normal distribution are normalized by the system size to ensure that the sums of the
interactions are of order one, O(1), independent of the system size. In such a way, the potentials are bounded and
system size independent (i.e. they are intensive variables). Moreover,∀i, j = 1, . . . , N, Jij �= Jji , Corr(Jij , Jji ) = 0,
i.e. the interactions arefully asymmetric(e.g.[27, Chapter 1]). For simplicity, we assume that the external field is
stationary,θi(t) = θi, and IID Gaussian

θi � N(θ̄, σ2
θ ). (7)

For r > 0, the kernel corresponds to the “strong” delay case, while forr = 0 it corresponds to the “weak” delay
case (Fig. 1), following the terminology of Cushing[28].

Eqs. (1)–(7)define thegamma TRRNN model. This model defines our multi-agent system which is essentially a
couple map lattice (e.g.[42]) with time-delayed random couplings; our “agents” correspond to the local variables
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of the lattice and the interactions among them to the couplings of the local variables. The control parameter space
is (g, θ̄, σθ, J̄ , J, a, r). In the following sections we study its dynamic behavior, assuming thatJ = 1, andJ̄ = 0.
The assumptionJ = 1 is not restrictive, since a reparameterization(g → gJ, θ̄ → θ̄/J, σθ → σθ/J, J̄ → J̄/J)

leaves the model equations unchanged. Consequently, the results can be extended to any value ofJ . The restriction
J̄ = 0 is made in order to facilitate comparison with literature results: the gamma TRRNN is compared with the
RRNN model[19]. This value ofJ̄ corresponds to the situation where the probabilities for positive and negative
interactions among agents are equal. This is a case in which antagonistic or “snob” behavior(Jij < 0), and imitative
or “conformist” behavior(Jij > 0) are equally likely in the population. Moreover, forJ̄ = 0, due to the distributional
specification, it could be the case that for a pair of agents(i, j), Jij · Jji < 0.

3. Macroscopic equations

Due to the large number of degrees of freedom and the random nature of the parameters involved, theN-dimensional
dynamical system(1), N � 1, can be viewed as stochastic. In such a system, the main interest is usually in time
independent probability measures that describe the asymptotic behavior of the state variables{xi(t)}Ni=1 when
N → ∞, t → ∞. Even in the case that the analytical derivation of such measures is feasible, it involves in general
assumptions about the correlation structure of the state variables,xi(t) (e.g. [10,29–31]). In this section we will
derive MFEs that describe the dynamic behavior of macroscopic observables of the system’s state. For this purpose,
we employ a set of independence assumptions which are known in the neural networks literature as “local chaos
hypothesis” [12,25]. We extend this set of assumptions to account for the particular model form(1). Mean field
theory has been shown in many cases to be exact in the asymptotic limit when interactions are long range, or when
the system is fully connected[32, Chapter 4].

3.1. Local chaos hypothesis

The “local chaos hypothesis” states (e.g.[25]) thatfor large system size,N → ∞, the random variables{xi(t)}Ni=1
are nearly independent of each other and of the interaction strengths{Jkl}Nk,l=1. We will also assume that in the limit,

∀i = 1, . . . , N, (a) the two components of the potentials(2), θi and
∑N
j=1

∑T
τ=0Ka,r(τ)Jijxj(t−τ) are independent,

and (b) the cross-correlations between the state variables are negligible, i.e. limN→∞EN [xi(t), xj(t−τ)] = 0. Then,
under the IID Gaussian assumptions(6) and (7), the potentials are approximately IID Gaussian random variables
at each time periodt. However, the distribution of the state variables,xi(t + 1) = S(hi(t)), does not appear to have
any closed form.

We have checked numerically the validity of the above assumptions, for a variety of control parameter values.
The results, given inAppendix A, support the validity of the assumptions.

3.2. Mean field equations

The assumptions we made allow the derivation of equations for the moments of thexi(t)’s distribution. Details
are given inAppendix B. The equation for thenth order moment of the distribution of{xi(t)}Ni=1 becomes

m(n)(t + 1)=
∫ +∞

−∞
G


S


u

√√√√ T∑
τ=0

Ka,r(τ)J2m(2)(t − τ)+ σ2
θ +

T∑
τ=0

Ka,r(τ)J̄m
(1)(t − τ)− θ̄





n

du, (8)

whereG = (1/√2π)exp(−u2/2) is the Gaussian measure, andS(·) is given by(3). It can be seen that the mean field
dynamics is determined by the first two moments of the distribution. In the present study we restrict our interest to
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the behavior of the first moment,m(1)(t), the average state of the system. Its dynamics is closely linked with those
of the second moment through their coupling, and it turns out that they exhibit similar features (e.g. bifurcation
structure). Thus, in our analysis, we employ the equations for the first two moments only, which we term MFE.
Eq. (8)are similar in form to the dynamic MFEs of Crisanti and Sompolinski[17], and to those of Cessac et al.
[19]. They are valid for any point in the parameter space(g, θ̄, σθ, J̄ , J, a, r).

Eq. (8)describes a stochastic process. This process is the evolution path of an ensemble ofN-dimensional systems
(1). The averaging in these moment equations is over the ensemble (i.e. draws of interaction matrices, and external
fields). Due to this fact, the MFE are expected to exhibit simpler dynamics than individualN-dimensional systems.
As our numerical simulations show (seeSection 4), the MFE dynamics is predominantly regular; i.e. possesses only
fixed points. More complex MFE dynamics (e.g. periodic, quasiperiodic, or strange attractors), if present, could
correspond to the case that the support of the distribution of thexi’s would not be an invariant set; as such it would
be a union of disconnected non-invariant sets, with possible fractal structure (e.g.[33,34]). Fixed points for the first
two moment equations, may correspond to more complex attractors for the system(1). Such attractors could be
detected only through numerical simulations of theN-dimensional system.

4. Bifurcations of the MFEs

In this section we study the asymptotic solutions of the MFE(8). In particular, we provide two classes of bifurcation
diagrams which summarize the asymptotic dynamics of the ensemble in the control parameter space. The first class
depicts the variation of the first moment,m(1)(∞), against one of the control variables, all other things being held
constant. The second class shows the type of bifurcation occurring inm(1)(∞) against two control variables. It is
parameterized by a third control variable. The diagrams of the first class correspond to distinct regions of the second
class’ diagrams. Finally, we examine the effects of the parameterσθ and the delays on the bifurcation structure.

We simulate the MFE by drawing several initial conditions, form(1), m(2), and iterating(8) for a number of time
steps (typically 2000) in order to reach an asymptotic state. The sampling of the parameter space is performed in
the following manner:a ∈ {1,2,3,4}, r ∈ {0,1}, g ∈ [0,15], θ̄ ∈ [0,1], andσθ ∈ [0,1]. The parameterg varies
with step size 0.25,̄θ andσθ with step sizes 0.025, respectively. Close to bifurcation points we sample the parameter
space more densely by decreasing the step sizes.

The dynamics converges to fixed point attractors. In a few cases we observed periodic points, or even irregular
motions of small amplitude (typically of O(10−3)) near critical points, and for larger values ofσθ. We have not yet
established their significance, and further investigation is required to rule out that they are numerical artifacts. If
they are genuine features, we conjecture that their presence is due to the time delays.

We find that the bifurcation behavior of the MFE is qualitatively similar to that of the RRNN case: the observed
bifurcations are of saddle-node type and their appearance divides the(θ̄, g) plane into four regions where the MFE
exhibits distinct dynamics (Figs. 2 and 3). The two critical lines(α), (δ), indicate the minimumg value required
(for fixed θ̄) for the onset of a saddle-node bifurcation. In region I, there is only one stable fixed point solution. A
typical bifurcation diagram of them(1)(∞) corresponding to(θ̄, g) parameters in this region is given inFig. 4a. In
region II there are two stable fixed points. A diagram form(1)(∞) in this parameter region is given inFig. 4b. As
parameter̄θ increases (for appropriate values ofg), line (α) is crossed, and a saddle-node bifurcation generates a
second stable fixed point located beneath the initial one. In region III, bounded by the two vertical lines(β), (γ) in
the case of the RRNN model, there are again two stable fixed points, generated by the sequence of one saddle-node
bifurcation, and its inverse. The second bifurcation occurs when line(δ) is crossed within region III. These two
bifurcations collapse at the cusp point (note that due to the finite step size this sequence is not fully depicted). A
bifurcation diagram for this case is shown inFig. 4c. As θ̄ increases further, we enter again into region II, where
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Fig. 2. Critical lines for the onset of saddle-node bifurcations and the corresponding regions of the MFE dynamics in the(θ̄, g) parameter space,
parameterized byσθ , for the RRNN model. The effect ofσθ is similar for the gamma TRRNN model.

two fixed points coexist, but the corresponding diagrams (Fig. 4d) are now reversed (with respect to those before
the entry into region III). Finally, when line(δ) is crossed, we enter the monostable region IV, where only the lower
fixed point ofFig. 4d survives (Fig. 4e).

4.1. Effect of the external field heterogeneity,σθ

Our analysis provides insights about the effects of the heterogeneity parameterσθ on the bifurcation structure of
the MFE. These effects are qualitatively the same for both the gamma TRRNN and the RRNN models. They are
depicted inFig. 2, which was derived for the latter model. The results are as follows:

(a) Increasingσθ shrinks the bistability region II and shifts it to the right, towards higher values ofθ̄.
(b) The range on thēθ-axis for which the two critical lines practically coexist (region III) also shrinks, and the

critical lines become steeper.
(c) For largeσθ, region III collapses to a point, the cusp point. There, hysteresis loops have been observed for the

gamma TRRNN model (seeFig. 4f).
(d) The critical lines(α) and(δ) are shifted towards larger values ofg with increasingσθ.
(e) For constantσθ, the value ofg (against̄θ) for the transition from region I→II decreases, while for the transition

II→IV increases, respectively.

In Fig. 2, the arrows indicate the direction of the shift of the critical lines whenσθ increases.

4.2. Effect of the delays

The presence of the kernel results to a shift of the critical lines(α) and(δ), as shown inFig. 3. For the “weak”
delay case(r = 0), the shift is towards the right side of theθ̄-axis, while for the “strong” case(r = 1) it is towards
the left side. The results are as follows:
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Fig. 3. Critical lines for the onset of saddle-node bifurcations and the corresponding regions of the MFE dynamics in the(θ̄, g) parameter space,
parameterized byα, for the gamma TRRNN model. (a) The “weak” delay case,r = 0, and (b) the “strong” delay case,r = 1. In both diagrams
σθ = 0.

(a) “Weak” delays:
(a) The bistability region (II) shrinks upwards and towards the left side of theθ̄-axis when the delay strength
a increases. This is due to a shift of the critical line(δ) to the left.

(b) The width of region III shrinks asa increases.
(c) The cusp point occurs at slightly higher values ofg asa increases.

(b) “Strong” delays:
(a) The bistability region (II) widens and shifts upwards and towards the right side of theθ̄-axis, when the

delay strengtha increases.
(b) The width of region III increases marginally asa increases.



C.J. Emmanouilides et al. / Physica D 181 (2003) 102–120 109

Fig. 4. Typical bifurcation diagrams of the observable,m(1)(∞), againstg for the gamma TRRNN model. The arrows indicate the direction of
shift of the bifurcation diagrams whenσθ increases.

(c) The cusp point moves slightly downwards asa increases.

The arrows inFig. 3 indicate the direction of the shift of the critical line(δ) whena increases.

5. Finite system size simulations

The aim of this section is to explore the finite system size dynamics, their agreement with the MFE predictions,
and the possible effects of the delays. In particular, we want to compare the gamma TRRNN and RRNN models. To
achieve this aim, we iterate theN-dimensional system(1), forN = 50, for selected points of the parameter space.



110 C.J. Emmanouilides et al. / Physica D 181 (2003) 102–120

Then, we perform a dynamical systems’ analysis of the results. Additional simulations are performed for system
sizesN = 75, and 100. Due to computational burden these results are less extensive.

The simulation strategy is the following: we examine four pairs of kernel parameters, fora = 1,2 andr = 0,1.
For each pair, we sample the parameter space(g, θ̄) by lettingg to vary over the interval [1,15] with step size 0.5,
θ̄ to vary over [0,0.5] with step 0.05. We letσθ = 0. At each point of the parameter space we draw at random
M realizations(M = 100). A realization consists of an interaction matrix, a vector of external fields, and initial
conditions for the individual state variables{xi(t0)}Ni=1. Each realization is indexed byk = 1, . . . ,M. We iterate
theN-dimensional system(1) for a sufficient number of time steps, until convergence is reached. The number
of steps is set toTs = 5000. At each time step,t = 1, . . . , Ts, we calculate the average activity of the system,
m
(k)
N (t) = (1/N)∑N

i=1 x
(k)
i (t), which is the observable of interest, and corresponds to the first order moment of the

MFE (8). We term the vector{m(k)N (t)}Tst=1 an orbit. In the subsequent analysis we keep the part of the orbit after the
transient.

5.1. Steady states—attractors

To classify the attractors of the system, we use theTakens’ phase space reconstruction method[35] for the
observed time series,mN(t). This time series is embedded in an appropriate phase space. The dimensionality of this
space is found by using the method offalse neighbors(for details, see[36]). In such a way we determine the number
and type of (possibly co-existing) attractors at each point of the control parameter space. There are three classes
of attractors: fixed points, periodic points, and irregular (including quasiperiodic attractors, strange attractors, and
high dimensional chaotic attractors—seeSection 5.1.2).

5.1.1. Distribution of attractors
In this section we study the distributions of the observed attractors for different values of the control parameters.

Such distributions describe the most probable dynamics, and provide insights about the bifurcation structure of the
system due to the change of the parameters. In particular, when more than one co-existing attractors are present, the
probability of their occurrence is directly related to the size of their basins.

As intuition suggests, the dynamics of the average state,m
(1)
N (t), of a finite system is consistent with the dynamics

of the individual states,{xi(t)}Ni=1; fixed points dynamics form(1)N (t) is the outcome of fixed point dynamics of
the individual states. Periodic motions result as a mixture of fixed points and periodic dynamics of the individual
states. Irregular dynamics is the average of the predominantly irregular individual state dynamics, that generally
co-exist with few individual fixed points and periodic motions.Fig. 5 illustrates these intuitive results for three
typical examples of irregular dynamics.

First, we compare the simplest gamma TRRNN model (fora = 1, r = 0) with the RRNN. Then, we compare the
three different gamma TRRNN models corresponding to the respective pairs of kernel parameters, with the simplest
one, i.e. we examine the effects of the delay structure.

(a) Comparison between the RRNN and the gamma TRRNN model witha = 1, r = 0: In Fig. 6 the distributions
of the three categories are given for the two models. The results are as follows:
(a) Fixed points: Fixed points are the only type of dynamics observed for both models wheng < 3. The

frequency of appearance of fixed point attractors is higher in the gamma TRRNN model than in the RRNN,
for θ̄ < 0.4, and for any value of the gain parameter,g. In the first model, when̄θ < 0.4, fixed points
persist for all values ofg, while in the second they disappear. Forθ̄ ≥ 0.4 almost all the attractors are fixed
points, for both models, independent ofg. The frequency declines with increasingg for both models, but
the decline is faster for the RRNN model.
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Fig. 5. Examples of irregular dynamics for three finite systems of sizeN = 50. The left panels correspond to the dynamics ofm
(1)
N (t), and the

right ones to the dynamics of representative individual statesxi(t), i ∈ {1, . . . , N} in each system. As expected, the individual state dynamics is
consistent with the dynamics of the average state.
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Fig. 6. Attractors of the RRNN and the gamma TRRNN models (left and right panels, respectively) in the(g, θ̄) parameter space forN = 50,
σθ = 0.

(b) Periodic motions: The frequency of appearance of periodic points in the gamma TRRNN model is near zero
for all θ̄ wheng ≤ 6, while for largerg it is generally increasing. When̄θ ≥ 0.4 periodic orbits disappear,
while for θ̄ < 0.4 the frequency is higher for smaller values ofθ̄, for almost all values of the gain parameter.
For the RRNN model, the situation is different: forθ̄ > 0.3 periodic orbits disappear, but forθ̄ ≤ 0.3 most
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periodic orbits occur forg < 7.5, while their frequency decreases forg ≥ 7.5 and becomes practically
zero.

(c) Irregular motions: These motions are more frequently encountered in the RRNN model. For this model,
whenθ̄ ≤ 0.2, their frequency increases withg, at a rate that is almost independent ofθ̄. It then reaches a
plateau for some value ofg that is smaller for larger values ofθ̄. For θ̄ ∈ [0.3,0.4), their frequency declines
rapidly, and when̄θ > 0.4 they disappear. For the gamma TRRNN the pattern is similar.

(b) Effects of the delays: For simplicity of presentation we do not provide the detailed results of this analysis. We
give only the qualitative findings for each pair of kernel parameters for each class of dynamics, as compared to
those of the simplest casea = 1, r = 0.
(a) “Strong” delay with parametersa = 1, r = 1: The frequency of fixed points has the same qualitative

characteristics (i.e. pattern of change with the parameters(θ̄, g)) with those of the simplest case. Their
values are similar for any value ofθ̄ andg. Periodic orbits are less frequent (less than 6% for anyθ̄ and
g). The frequency of the irregular motions is slightly higher on average. It appears that the periodic orbits
destabilize and become irregular through more frequent Hopf bifurcations.

(b) “Weak” delay with parametersa = 2, r = 0: The fixed points appear more frequently than in the simplest
case. Periodic orbits are less frequent (less than 3% for anyθ̄ andg). Irregular attractors are also less
frequent. In this case the dynamics is more regular.

(c) “Strong” delay with parametersa = 2, r = 1: In this case, the periodic orbits completely disappear. The
frequency of irregular attractors is generally increasing withg for constant̄θ, while at the valuēθ = 0.2 it
initially increases up tog = 9, and then decreases. This strange behavior has not been observed for other
kernel parameter values, and deserves further investigation, since it may indicate some structural change in
the system’s properties. The dynamics is more regular than any other pair of kernel parameters.

A general conclusion that can be drawn, is that the presence of delays results to a predominace of fixed point
dynamics, and that the periodic orbits practically disappear. The latter fact indicates a lower probability of flip
bifurcations in the gamma TRRNN model.

5.1.2. Route to chaos
Observed irregular motions are of three types: quasiperiodic, low dimensional chaotic (strange attractors), and

higher dimensional chaotic. Low dimensional chaotic orbits have fractal structure and are embedded in phase spaces
with dimensionality from 3 to 5. Higher dimensional chaos behaves more like an IID stochastic process, and typically
exists in dimensions larger than or equal to 7. These attractors have passed the BDS test[37], and other criteria for
the IID property. The dimensionality of both types of chaotic motions increases slightly with increasing system size.

Examining the destabilization of fixed points through a sequence of bifurcations, we are able to determine the
route to chaos. We found this route to be predominantly the quasiperiodic one[38]. Cascades of Hopf bifurcations
appear, as the value ofg increases, in agreement with Cessac et al.[19], for the RRNN model. For smaller system
sizes, the onset of the quasiperiodic route can be through an initial pitchfork or flip bifurcations instead of a Hopf.

Additional to the study of the bifurcation sequence we studied the increase in complexity of the chaotic attractors.
We calculated the Lyapunov exponents employing two well-known methods[39,40]. The Lyapunov exponents
consistently increase with increasingg (Fig. 7). We present results forθ̄ = 0,σθ = 0, and for all four pairs of kernel
parameters. More detailed results for other values ofθ̄ andσθ will be presented elsewhere. In the finite system size
simulations, we observed several chaotic orbits for each valueg > 5 used. This is due to the fact that the number of
initial conditions we used (M = 100) is greater than the possible number of observable attractors. Every data point
in Fig. 7depicts the calculated maximal Lyapunov exponent corresponding to each one of these chaotic orbits. The
line is a local regression fit (e.g.[41]) to the data points.
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Fig. 7. Estimated maximal Lyapunov exponents for the chaotic attractors of the gamma TRRNN model (all four pairs of kernel parameters), for
θ̄ = 0, andσθ = 0.

5.2. Agreement with the MFE

The number of attractors of the system(1) for large system size, and a given point of the control parameter space
is predicted by the MFE to be either one or two (seeSection 4). We checked whether this is the case for finite-size
systems, by drawing an ensemble of 30 fixed networks (i.e. draws of interaction matrices and external fields). Then,
we iterated them until convergence, for a set of initial conditions for the individual state variables at each sampled
point of the control parameter space.

We found that forN = 50, the observed number of attractors in the four regions of the MFE bifurcation diagrams
(Figs. 2 and 3) is in agreement with the MFE predictions. However, sometimes two attractors are found in locations
of these diagrams where one attractor is expected, e.g. a fixed point (or a periodic point) co-existing with a more
complex attractor (quasiperiodic or strange attractor). When we increase the system size toN = 100, such effects
disappear, and the agreement with the MFE predictions is full. Thus, we may attribute these effects to the finite
system size.

The magnitude of the observablem(1)(∞), and the values ofg where the two types of saddle-node bifurcations
occur (lines(α), (δ) in Figs. 2 and 3), are also generally in good agreement with the MFE predictions.

6. Concluding comments

We examined the asymptotic average dynamics of the gamma TRRNN model, and derived bifurcation diagrams
for the control parameters. We found that the effect of the heteregoneity parameter,σθ, is a shrinkage of the region
in the(θ̄, g) plane in which bistability appears. The effects of the delays on the structure of the bifurcation diagrams
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was also assessed. We did not find any qualitative difference in the asymptotic dynamics between the RRNN and
gamma TRRNN models. The finite system size simulations showed that in general there is agreement between the
MFE predictions about the number of co-existing attractors, the magnitude of the observablem(1)(∞), and the
critical values of the parameters for the onset of bifurcations.

For a range of the control parameters, we classified the attractors of the finite system, and we examined the route
to chaos, which is the quasiperiodic one, as in the RRNN case. Lyapunov exponents were calculated for the chaotic
attractors of the gamma TRRNN models. The finite system size dynamics of the gamma TRRNN model were found
to be more regular than those of the simpler RRNN model. It was observed that periodic orbits are destroyed when
the delay depth increases (fora ≥ 2 andr = 1), indicating that the onset of the quasiperiodic route to chaos is
through Hopf bifurcations only, even for small system sizes. A peculiar feature was observed fora ≥ 2, r = 1; the
increase in the complexity of motions shows a non-monotonous variation with the gain parameter,g, near a value
of the average external field,θ̄. This feature that is not present in the RRNN model, deserves further investigation.
Further research is needed in order to examine the system dynamics in other regions of the control parameter space,
and thus to derive a more complete picture of the model’s properties. Of particular interest is the study of the case
J̄ > 0, which is relevant in several social-science situations.

Appendix A. Numerical test of the “local chaos hypothesis”

This appendix illustrates the numerical checking of the “local chaos hypothesis” ofSection 3. The validity of the
assumptions was checked through the corresponding correlation coefficients. More specifically, we draw many sets
of interaction strengths{Jij }Ni,j=1 and initial conditions for the state variables,{xi(0)}Ni=1 for varying system sizes

N ∈ [5,150],1 and several points in the control parameter space(g, θ̄, σθ, J̄ , α, r). Then, for each such draw, we
iterate the system ofEq. (1)for sufficiently long time steps. The details of the subsequent steps follow.

(a) AssumptionlimN→∞CN [Jij , xj(t − τ)] = 0. For a system of sizeN and a particular point in the control
parameter space, the calculation of the correlations between state variables and interaction strengths is done
in the following manner. At a time steptd , which may correspond to an equilibrium or a transient state of
the dynamics, we pick the values of a single state variablexi(td) and one of the interaction strengthsJij . The

aim is to form a large sample (with sizeM) of pairs of state variables{x(r)i (td)}Mr=1, and interaction strengths

{J(r)ij }Mr=1. If these two variables are uncorrelated, then the property holds for all pairs of interaction strengths
and state variables. For a point in the control parameter space, the dynamics, depending on the draw of initial
conditions and interaction strengths, can be simple (e.g. fixed points) or more complex (e.g. strange attractors).
Whenever draws lead to more complex attractors, we select these draws to form our sample of state variables
and interaction strengths. Then, we calculate the absolute correlation coefficients

|Ĉ(M)N (Jij , xi(td))| =

∣∣∣∣∑M
r=1(x

(r)
i (td)− x(r)i (td))(J(r)ij − J(r)ij )

∣∣∣∣√∑M
r=1(x

(r)
i (td)− x(r)i (td))2

∑M
r=1(J

(r)
ij − J(r)ij )

2

. (A.1)

In our study we usedtd = 500,M = 500. The numerical results provide support of the assumption
limN→∞CN [Jij , xj(t − τ)] = 0. Indeed, inFig. 8 we see that the correlations decline with system size.
This pattern was observed in all the points of the control parameter space where we performed numerical
calculations.

1 Simulations for system sizes aboveN > 150 become exponentially demanding in computational resources.
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Fig. 8. Correlations between interaction strengths,Jij , and state variables,xj(t − τ) against system size,N, for a = 1, r = 0, θ̄ = 0, σθ = 0.
Averaging overM = 500 systems.

(b) AssumptionlimN→∞CN [xi(t − τ), xj(t − τ′)] = 0. For a system of sizeN and a particular point in the control
parameter space, we calculate the cross-correlations between the state variables as follows. We select a block
of units i, j with sized ≤ N, i, j = 1, . . . , d. Then for each selected draw,r = 1, . . . ,M, we take a window
of sizen of the system’s iterated dynamics. In this window, and for a number of lagsl that are determined by
the delay kernel shape,l = 0, . . . ,max{τ : Ka,r(τ) > 0}, we pick the lagged state variable valuesx(r,N)i (t − l).
In such a way we sampleM timesd time series of lengthn. Then we calculate the absolute average block
cross-correlations

|R̂(d,N,M)ij (l)| = 1

M

M∑
r=1

|R̂(r,N)ij (l)|, (A.2)

where

R̂
(r,N)
ij (l) =

Ĉ
(r,N)
ij (l)√

Ĉ
(r,N)
ii (0)Ĉ(r,N)jj (0)

, (A.3)

with cross-covariances

Ĉ
(r,N)
ij (l) = 1

n

n∑
t=l+1

(x
(r,N)
i (t − l)− x̄(r,N)i )(x

(r,N)
j (t − l)− x̄(r,N)j ). (A.4)

Our calculations where done with valuesd = 5,M = 500, andn = 500. Again, the numerical results provide
support for the assumption limN→∞CN [xi(t − τ), xj(t − τ′)] = 0. In Fig. 9 we see that the zero lag block
cross-correlations decline with system size, and inFig. 10we see a similar pattern for the non-zero lag case.
Similar patterns were observed in other points of the control parameter space.
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Fig. 9. Zero lag (τ = 0) block cross-correlations against system size,N, for a = 1, r = 0, θ̄ = 0, σθ = 0. Averaging is overM = 500 systems
and block sized = 5.

Fig. 10. Block cross-correlations against system size,N, for a = 1, r = 0, θ̄ = 0, σθ = 0. Averaging is overM = 500 systems and block size
d = 5. Line (1) corresponds to lagτ = 1, (2) toτ = 5, and (3) toτ = 11.

Appendix B. Mean field equations

In this appendix we sketch the analytical derivation of the mean fieldequations (8). Under the assumptions of
Section 3, the random variableshi(t) are IID normal,

hi(t) � N(µN(t), νN(t)). (B.1)
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Denote the first two moments of the distribution of{xi(t−τ)}Ni=1 asm(1)N (t−τ) = EN [xi(t−τ)], andm(2)N (t−τ) =
EN [x2

j (t − τ)]. Then, the following relations hold for the mean and variance of the potentialshi(t):

µN(t + 1) = EN [hi(t + 1)] =
N∑
j=1

T∑
τ=0

Ka,r(τ)EN [Jij ]EN [xj(t − τ)] − EN [θi]

= NEN [Jij ]
T∑
τ=0

Ka,r(τ)EN [xj(t − τ)] − EN [θi] = J̄
T∑
τ=0

Ka,r(τ)m
(1)
N (t − τ)− θ̄, (B.2)

and

νN(t + 1) = varN [hi(t + 1)] = var


 N∑
j=1

T∑
τ=0

Ka,r(τ)Jijxj(t − τ)− θi



= var


 N∑
j=1

T∑
τ=0

Ka,r(τ)Jijxj(t − τ)

 + var[θi] + 2cov


 N∑
j=1

T∑
τ=0

Ka,r(τ)Jijxj(t − τ), θi

 . (B.3)

Employing the assumptions ofSection 3, with some algebra we get

cov


 N∑
j=1

T∑
τ=0

Ka,r(τ)Jijxj(t − τ), θi



= EN

θi

N∑
j=1

T∑
τ=0

Ka,r(τ)Jijxj(t − τ)

 − EN


 N∑
j=1

T∑
τ=0

Ka,r(τ)Jijxj(t − τ)

EN [θi]

=
N∑
j=1

T∑
τ=0

Ka,r(τ)EN [Jij ]EN [xj(t − τ)]EN [θi] −
N∑
j=1

T∑
τ=0

Ka,r(τ)EN [Jij ]EN [xj(t − τ)]EN [θi] = 0.

(B.4)

Hence,

νN(t + 1) = var


 N∑
j=1

T∑
τ=0

Ka,r(τ)Jijxj(t − τ)

 + var[θi] =

N∑
j=1

T∑
τ=0

Ka,r(τ) var[Jijxj(t − τ)] + σ2
θ

=
N∑
j=1

T∑
τ=0

Ka,r(τ)(EN [J2
ij x

2
j (t − τ)] − EN [Jijxj(t − τ)]2)+ σ2

θ

= NEN [J2
ij ]

T∑
τ=0

Ka,r(τ)EN [x2
j (t − τ)] − NEN [Jij ]

2
T∑
τ=0

Ka,r(τ)EN [xj(t − τ)]2 + σ2
θ

= N[var[Jij ] + EN [Jij ]
2]

T∑
τ=0

Ka,r(τ)m
(2)
N (t − τ)−N

(
J̄

N

)2 T∑
τ=0

Ka,r(τ)m
(1)
N (t − τ)2 + σ2

θ

= J2
T∑
τ=0

Ka,r(τ)m
(2)
N (t − τ)+

J̄

N

T∑
τ=0

Ka,r(τ)m
(2)
N (t − τ)−

J̄

N

T∑
τ=0

Ka,r(τ)m
(1)
N (t − τ)2 + σ2

θ .
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Then

νN(t + 1) = J2
T∑
τ=0

Ka,r(τ)m
(2)
N (t − τ)+

J̄

N

T∑
τ=0

Ka,r(τ)(m
(2)
N (t − τ)−m(1)N (t − τ)2)+ σ2

θ . (B.5)

Thenth order moments of any function of these normally distributed potentials,f(h(t)), integrable with respect to
the normal probability measure is

m
(n)
N (t) = EN [fn(h(t))] =

∫ ∞

−∞
fn(u)(2πνN(t))

−1/2 exp

[−(u− µN(t))2
2νN(t)

]
du, (B.6a)

and after a change of variables

m
(n)
N (t) =

∫ ∞

−∞
fn(u

√
νN(t)+ µN(t))(2π)−1/2 exp

[−u2

2

]
du (B.6b)

and for large system size,

m(n)(t) =
∫ ∞

−∞
fn(u

√
ν(t)+ µ(t))(2π)−1/2 exp

[−u2

2

]
du, (B.6c)

whereν(t) = limN→∞ νN(t), andµ(t) = limN→∞ µN(t). Utilizing these results,Eq. (8)can be then derived.
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