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Enumeration in Chemistry

BY D. J. KLEIN, D. BABICÂ AND N. TRINAJSTICÂ

1 Introduction and Historical Overview

Overall one might break down the applications of enumeration in chemistry into

two broad areas, ®rst an early historically important one concerning isomer

enumeration, and second a variety of other enumeration problems arising in

detailed descriptions of individual substances. Thence in this section we brie¯y

recall these two broad categories of enumeration, and thereafter attempt a broad

view of chemical enumeration, and its future. Thereafter in the ensuing sections

we focus more tightly on methodology and recent results.

1.1 Early History: Isomer Enumeration. ± The classic type of chemical

enumeration concerns the enumeration of possible molecular structures. Indeed

the subject predates the understanding of molecular structures, with Humboldt1

(in 1799) enunciating the possibility of different chemical substances with the

same elemental composition. WoÈhler2 (in 1828) made history converting an

inorganic compound (ammonium cyanate) to an isomeric organic compound

(urea), thereby setting back a then popular vitalistic philosophy. Then later (in

1835) Berzelius3 coined the term isomer to describe the circumstance of multiple

substances with the same elemental composition. With the proposal of (essentially

modern) constitutional formulae (in 1864 by Crum Brown4) it was simultaneously

noted that different structural formulae associate to different chemical substances.

Indeed this was one key point in the acceptance of structural formulae (in-

dependent of geometrical embedding). For a decade various structural formulae

were generated in an individual manner, without any announced mathematical

systematics to the generation of the structures, such as perhaps is quite reasonable

for the simpler molecules. Then in 1874 Cayley published his seminal paper5

concerning the enumeration of alkanes, with Flavitsky6 having made (earlier)

independent listings. Discrepancies persisted in the enumeration, in part because

of differences in understanding of just exactly what structural formulae might be.

But following Cayley some mild activity continued, with ®nally Henze and Blair7

(around 1932) taking the subject of enumeration quite seriously, with tabulations

for alkanes and related derivatives for up to around two dozen carbon atoms, with

their results appearing in a half-dozen papers. Seemingly astoundingly large
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isomer counts of up to over 1025 arose, though again errors persisted, in this case

because of the tediousness of the involved computations, then done by hand. Then

in 1937 Polya wrote his seminal paper8 (of .100 pages) concerning enumeration

under group action. That is, Polya considered the enumeration of combinatorial

mappings from one ®nite set to another, with there being equivalences amongst

the mappings as mediated by group actions on the range set and (more especially)

on the image set. In application to the molecular structure problem, for instance,

the mappings could be that of Cl atoms and H atoms onto the six ligand positions

of hexagonal benzene, with all Cl atoms being equivalent (under any permuta-

tion), all H atoms being equivalent (under any permutation), and the six ligand

positions being associated to a permutation group corresponding to the rotation

and re¯ections of the hexagonal-symmetry ring of benzene. Polya's theory was

described in a quite general mathematical manner, and made a tremendous

impact, with his theory now being a standard staple of mathematical combina-

torics texts, which often may not mention any chemical examples, though Polya's

motivation for the theory was for the purpose of isomer enumeration. Indeed

Polya considered the enumeration of alkanes and also published a short illustrative

paper9 for consumption by chemists. As a side note it is amusing to note that a

substantial portion of Polya's formal mathematical results were anticipated in

1927 by J. Red®eld. However, Red®eld's work was long overlooked,10 presumably

because Red®eld used an unusual notation (including astrological symbols) and

did not have neat examples of application of the theory. Indeed in 1940 when

Red®eld submitted a second paper, the journal did not realize any connection with

other work and judged the area to be so uninteresting that the paper was rejected.

Only after Polya's theory had become established and applied by a number of

mathematicians was Red®eld's ®rst paper noted (around 1960), and even later was

the rejected manuscript found, and ®nally published11 in 1984, along with a brief

survey of Red®eld's life and work. Finally in 2000 a yet further more expository

manuscript of Red®eld's was published.12 In any event various elaborations and

applications of Polya's theory have continued over the years. A comprehensive

mathematical monograph13 on Applied Finite Group Actions by Kerber has

recently appeared, with its focus being not only on enumeration under group

action, but also on the generation of representatives of the enumerated combina-

toric structures. Moreover, this monograph notably uni®es various approaches to

the enumeration and generation problems, and indeed makes prominent mention

of chemical applications, such as seem to have been a prime motivating factor in

Kerber's own research. Beyond the enumeration of isomers in isomer classes,

Polya's ideas have been applied to other problems of chemical interest ± to

enumerate: sub- and super-classes of isomers; chemical rearrangement processes;

various types of quantum chemical classes of energy levels; and various inter-

action diagrams.

1.2 Further Enumerations. ± Another, somewhat separate area of chemical

enumeration concerns the counting of resonance structures for the purpose of

gauging the extent of `resonance'. Often these structures may have much the

¯avor of different isomeric structures, though the enumeration is usually taken to
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be relevant without regard to symmetry equivalences, thereby making some of the

underlying mathematical aspects simpler than for the case of isomer enumeration.

Again in the earlier work the enumeration was imagined to be done by hand.

Pauling's master-work14 on The Nature of the Chemical Bond was written with

this view. Especially for the circumstance of conjugated ð-electron networks, the

numbers could become quite large, say for benzenoids of a dozen or more rings.

Thence a more systematic approach became desirable, with a paper by Gordon

and Davison15 (in 1952) providing an early attempt to enumerate Kekule

structures for more extended ð-networks. With a burdgeoning interest in chemical

graph theory in the 1970s and thereafter, a few hundred papers enumerating

Kekule structures were written, with partial reviews being found in the books by

Cyvin and Gutman.16±18 The matter of making quantitative estimates of resonance

energy for conjugated ð-networks also came to be addressed in terms of a related

enumeration problem of conjugated circuits, following the foundational papers of

Herndon19,20 and of RandicÂ21,22 in the 1970s.

Another very broad area of chemical enumeration may be found in the area of

statistical mechanics. Thus in the 1930s Mayer23 developed an elaborate theory of

real gases, with graphs characterizing the interactions (and thence the deviations

from ideality), and their enumeration being crucial to understanding condensation.

Moreover there has now developed a whole area of lattice statistics which entails

numerous types of graph enumeration problems. Often the primary focus is on

computing associated enumerative generating functions, which themselves are

identi®able as statistical-mechanical partition functions, and various (logarithmic)

derivatives thereof giving different thermodynamic properties. Still occasionally

there has been focus on explicit enumerations such as in Fowler and Rush-

brooke's24 (1936) enumeration of dimer coverings (as can incidentally be

identi®ed with Kekule structures); in Montroll's25 (1950) enumeration of partly

self-avoiding random walks; in Wall et al.'s26 Monte Carlo estimation of counts

(and extents) of self-avoiding walks; or in Uhlenbeck and Ford's (1962) review27

of statistical mechanical graph theory and relevant enumeration procedures.

Indeed, over the last few decades there have been a few hundred papers dealing

with the self-avoiding embedding of linear chains on some regular lattice; a single

chain represents a polymer in dilute solution, while more chains represent

mixtures, and also other types of graphs to be embedded represent other con-

ceivable (branched) polymer structures (e.g. dendrimers). The logarithm of such

an enumeration represents a conformational entropy, and again different sorts of

weightings and generating functions (and derivatives thereof) are of ultimate

interest.

Enumerations also arise in the area of quantum chemistry. Electron-pairing

diagrams closely correspondent to chemical structure were early emphasized by

Rumer28 (1932), and the computation in terms of these diagrams was soon taken

up by Pauling29 (1933) who devised a quantitative scheme entailing the enumera-

tion of certain subgraphs (termed `islands') obtained by the superposition of

electronic pairing diagrams. The resulting valence-bond theory was immediately

applied by Pauling and Wheland30 (1933) and thereafter by many others. Here the

enumeration problems grow even more rapidly than in simply counting Kekule
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structures, in as much as superpositions of pairs of Kekule structures are made,

and for each superposition edge and cycle subgraphs are separately enumerated.

The ensuant computational dif®culty was presumably one of the reasons that

valence-bond theory fell into disfavor for a period of time. Now though powerful

computational procedures, essentially avoiding the graphical framework, have

come to be used in the ab initio realm.31 And in the semi-empirical realm

powerful graph-theoretic techniques have been developed to deal even with quite

large systems, such as of relevance in high-temperature superconduction where

resonating valence-bond descriptions have been proposed32 (1986) to be of

relevance. These graph-theoretic techniques typically focus not on the enumera-

tions but the computation of associated enumerative generating functions, which

turn out to give the relevant overall matrix elements. Within the molecular orbital

approach, especially with correlation, there are Feynman diagrams33 and such,

which could be enumerated, though typically at issue is their evaluation rather

than their enumeration.

There remain yet other chemical enumeration problems. There are various

types of knots or links representing knotted or linked molecules, and such may be

enumerated, though here too the interest typically goes beyond enumeration (to

generation). One may enumerate different types of spectral lines (e.g. as expected

in a molecular NMR spectrum), though typically more than the number of lines is

of interest. That is, in molecular spectroscopies much of the focus typically is on

the locations and intensities of the lines and, especially when there are enormous

numbers of lines, they may not all be resolved. In the context of various quan-

titative structure±property relationships (QSPR) and structure±activity relation-

ships (QSAR) there are enumerations of different types of subgraphs which may

be used as graph invariants in these correlations. Indeed this area ends up

bordering on the vast area of combinatorial chemistry and chemical informatics,

again where the primary focuses typically are beyond enumeration.

1.3 Why Enumerate?. ± Clearly enumeration has played an important role in the

history of chemistry. But does it still? Are the noted enumerations just historical

anachronisms? Is enumeration irrelevant for modern interests in quantitative

descriptions of different substances? Indeed in all the areas we have noted, one

may indeed argue that enumeration is but a ®rst step towards a more

comprehensive characterization and undertaking. Combinatorial formulae often

merely identify two different enumerations to have equal values, with one of the

enumerations being the easier to perform. We may note for instance that isomer

enumeration in Polya theory identi®es this enumeration to that of the enumeration

of certain equivalence classes of functions. With the counts for two different sets

of objects being equal, there often is a natural bijection (i.e. a one-to-one

correspondence) between the two sets, so that the objects of one set may be used

to represent (or even name) those of the other. Thence for the case of chemical

isomers again, the mathematical set of objects offers a nomenclature for the

isomers. Conversely too, granted a nomenclature, a possibility for enumeration is

offered: one seeks to enumerate the names (which presumably exhibit some

systematic structure). In some sense then a sensible nomenclature and enumera-
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tions can be seen as intimately mutually inter-related. But with systematic

labelling (i.e. nomenclature) one may anticipate that characterization of the

enumerated elements might be systematically made also. In such a case a

combinatorial chemistry of (even enormous) virtual libraries of chemical sub-

stances might be ef®ciently handled.

In a number of contexts it seems that transformed enumerations are actually of

more central interest. In particular rather than the numbers #N of some objects of

a size N , interest may focus on an associated generating function

F(x) �
X

N

#N x N

with x a real variable. In statistical mechanical enumerations such an F(x) may be

a partition function with x being a simple function of the ration of temperature

and an interaction strength. For instance, for the Ising model on a lattice network,

in a standard combinatorial approach (e.g. as explained in ref. 34) the counts #N

may be identi®ed to the number of (not generally connected) subgraphs of N

edges such that every vertex is of even degree, whence x � tanh(J=kT ), with J

the (nearest-neighbor) interaction strength, T the absolute temperature, and k

Boltzmann's constant. Indeed in such statistical mechanical frameworks, while

F(x) might be the partition function of focus, the numbers #N might be

interpretable as the partition functions in some sort of suitable microcanonical-

like ensemble. More generally there can be more than one size characteristic and

thence more than one variable. Derivatives of the partition function then lead to

various thermodynamic quantities (energies, pressures, speci®c heats, etc.). In

closer correspondence with isomer enumeration, the enumeration of conforma-

tions is the underlying foundation of polymer statistics, with F(x) an associated

statistical-mechanical partition function. For suitable enumerations the generating

function F(x) may be identi®ed as an overlap for a many-body cluster-expanded

wave-function, and derivatives of F(x) then giving different matrix elements,

including that of the Hamiltonian; see, e.g., ref. 35. In any event enumeration or

transformed enumerations underlie quite modern problems.

Generally enumeration may be seen as a beginning wedge into a much wider

context of questions and problems. Commonly the motive for enumeration might

be ef®cient means by which to view whole ensembles, the properties of the

ensemble, and perhaps properties of selected subcategories. Ultimately enumera-

tion becomes hard to distinguish from combinatorics in general. Thence enumera-

tion has and will remain fundamental to many aspects of chemistry.

2 Enumeration Methods

Methods of enumeration may be sought to be divided into different broad

categories. The classical case of enumeration of isomers offers some formal

challenge in order to account properly for the different sorts of classi®cations

under various symmetries. Many other types of enumerations offer challenges in
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extension to large systems, perhaps in®nite (representing ¯uids or solids). In this

section enumeration methodologies are broadly discussed, with some attention to

speci®c examples. Section 3 goes on to describe recent work.

2.1 Enumeration under Group Equivalences. ± The enumeration of isomer

structures provides the classic example here. Consider a skeleton on which

various ligands are to be substituted. Then different substitution patterns may be

judged to be equivalent if one may be changed into the other under a symmetry

transformation of the skeleton. These transformations may be viewed as permuta-

tions on the substitution sites of the skeleton, and include transformations

corresponding to skeletal point-group symmetries, and possibly also permutations

corresponding to non-rigidities in the molecular skeleton. Thus for an ethane

skeleton with six substituent sites, the symmetry group (typically) includes the

possibility of pseudo-rotation of the two ends relative to one another. Whether

permutations corresponding to improper rotations (re¯ections, inversions etc. ± if

the skeleton exhibits such) are included or not depends on whether one wishes to

distinguish chiral isomers or not. Thence the interest is in enumeration of

equivalence classes (each generally containing different numbers of substitution

patterns). Most generally there is a symmetry associated to the ligands also: for

instance, one can imagine the number of ligand structures to match the number of

skeletal substitution sites, but with different subsets of the ligand structures being

identical, and so exhibiting a symmetry under interchange of the two. One may

imagine that the permutation group for the ligands is naught but a product of

symmetric groups Sn(i) over the ith set n(i) of ni equivalent ligands. For example

one may be interested in placing one H-atom, two F-atoms and three Cl-atoms

onto the ethane skeleton, with a symmetry group taken as Sf1g 3 Sf2,3g 3 Sf4,5,6g.
Generally the ligands may themselves exhibit a type of skeletal symmetry ± for

instance for bidentate ligands, they may or may not be symmetric under

interchange of the two ends of the ligand, and in interchanging two equivalent

bidentate ligands, one needs to simultaneously interchange both ends. For

instance, for an octahedral coordination complex with two Cl ligands and two

(bidentate) ethylenediamine ligands, the symmetry group of the ligands would be

(Sf1,2g 3 Sf3,4g 3 Sf5,6g)fI , (35)(46)g

(where I is the identity and we use the on-line notation for a permutation, e.g. so

that (abc)(de) indicates a permutation carrying index c! b, b! a, a! c,

d ! e and e! d). In general there need not be too much formal mathematical

distinction between skeleton and ligand sets ± both may consist of disjoint pieces

with equivalences between separate pieces, and within any one piece there may

be multiple points of attachment with internal symmetries entailing permutation

of the attachment point labels. With disjoint pieces there may be chirality

changing permutations which rather than changing any one piece into itself

instead change one into another, and in addition would act on all pieces (whether

skeletal or ligand pieces) simultaneously. One general approach would take the

skeleton to be the atoms and the ligands to be the bonds to be used to
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interconnect the atoms. Anyway, given two sets S and L (a skeleton and ligand

set) along with symmetries for both, the classical chemical isomer problem is to

enumerate the equivalence classes of substitution or addition patterns under the

equivalence mediated by the symmetry groups.

The isomer enumeration problem as formulated here is a little different and a

little more general than is usually considered. Often (as with Polya8,9) the ligands'

internal structure is dismissed; they are presumed to be unidentate, and different

types of ligands are identi®ed to different colors. Then instead of corre-

spondences, one may speak in terms of mappings from the skeletal set of sites to

the colors, whence a particular value (a color) may be taken several times. The

approach indicated here seems to allow a greater generality of view, though not

all the formal problems are so neatly solved to date. Even with unstructured

ligands there are re®nements and decorations to the basic problem so formulated.

One may subclassify isomers according to the different symmetries of the

substitution pattern; see, e.g., refs. 36 and 37. (Often this substitution-pattern

symmetry is that of an intersection between skeletal and ligand symmetries.) One

may subclassify isomers according to different substructures in the substituent

pattern. For example, in dealing with alkane isomers, a subclassi®cation according

to longest subchain (i.e. graph diameter) might be considered,38 or subclassi®ca-

tion according to number of primary, secondary, tertiary and quaternary carbons

might be entertained. In the fundamental isomer enumeration problem with

skeleton and ligands respectively being atoms and bonds, `isomers' consisting of

disconnected pieces can arise, so that it is relevant to make a subclassi®cation

into connectedness classes (i.e. according to the degree of interconnection).

Another related type of chemical problem would be to enumerate the number of

rearrangement processes conceivable for moving ligands around on a given

skeleton. In this problem the ligands are viewed as `passive', so that both the sets

S and L are viewed as skeletal structures, and the considered rearrangement

processes are the equivalence classes of permutations, which are viewed as

moving whatever ligand is initially present at a skeletal site to another site. With

both skeletons in such a process being the same (connected) structure, the

equivalence classes are what has been termed a polytopal rearrangement, such as

has been considered,39,40 or for rearrangements on a trigonal bipyramidal skeleton

(or an octahedral skeleton, or other polyhedral skeleton). With the two skeletons

different, and potentially disconnected, one faces a rearrangement enumeration

problem for general chemical reactions.

Evidently the enumeration problem of equivalence classes under group action

is quite general, with Polya's foundational work8,9 marking a turning point in the

consideration of the problem. Thus perhaps it is reasonable to brie¯y describe

Polya's work, where we have a skeleton with a set S of attachment or substitution

sites and a set L of ligands viewed as colors (to be applied to the sites of

attachment). The sites of S are acted upon permutatively by the elements of a

symmetry group G for the skeleton. The application of the colors (or ligands) of

L are viewed to correspond to a mapping f from S into L, with different

mappings f and g being equivalent if there is a permutation ð 2 G such that

g � f ð (i.e. the result of application of g is equal to the result of application of
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ð followed by the application of f to this intermediate result, or also equivalently,

g is the functional composition of ð with f ). Then an equivalence class of these

mappings corresponds to an isomer, and the number of different classes are to be

enumerated. The numbers of sites of a given color (under such a mapping)

correspond to the numbers of different sites occupied by the corresponding ligand,

so that we seek equivalence-class counts #(n) with n a vector whose áth

component ná gives the number of sites of color á. Polya's solution for this is in

terms of a polynomial (called the cycle index) associated with the group G,

Z[G; z] � jGjÿ1
X
ð2G

Y
i

zci(ð)
i

(1)

where jGj is the order of the group, and ci(ð) is the number of cycles of size i in

the disjoint cycle decomposition of ð 2 G. The variables zi are expressed in terms

of a set of color-correspondent dummy variables tá thus:

zi �
X
á2L

ti

á

Then Polya's renowned Haupt Satz gives the various #(n) as the coef®cients ofQ
á2L t ná

á in Z[G; z]. For example, for the ethylene skeleton (with the 4 H-atoms

marking the substitution positions), as

one has G � D2 � fI , (13)(24), (12)(34), (14)(23)g and Z[D2; z] � 4ÿ1fz1
4�

3z2
2g. Then with three possible ligands (say H, F and Cl) one ®nds

Z[D2; z] � f(tH � tF � tCl)
4 � 3(tH

2 � tF
2 � tCl

2)2g=4

� tH
4 � tF

4 � tCl
4 � tH

3 tF � tH
3 tCl � tF

3 tH � tF
3 tCl � tCl

3 tH � tCl
3 tF

� 3tH
2 tF

2 � 3tF
2 tCl

2 � 3tCl
2 tH

2 � 3tH
2 tF tCl � 3tH tF

2 tCl � 3tH tF tCl
2

The isomer counts are in this case readily obtainable even without knowledge of

Polya theory, but the method extends to rather much more complicated skeletons.

If one were to wish not to distinguish cis and trans structures, then the group

would be extended to D2 [ (12)D2.

But beyond this type of case in the preceding paragraph, Polya's work is now

much elaborated, reformulated, and extended in numerous fashions, with a recent

book13 by A. Kerber providing a general mathematical discussion. Though quite

comprehensive, Kerber's book may appear mathematically dense to many. On a

more chemical side there is the book41 by Polya and Read, which is a reprinted

translation of Polya's (.100-page) original quite lucid article, along with a survey
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(by Read) of the literature up through the mid-1980s. The 1991 book by Fujita37

reviews his own elaborated formulation, especially as regards the subclassi®cation

with regard to substitution-pattern symmetry. The book42 by TrinajsticÂ et al.

describes the isomer enumeration methodology for substitutional isomers on a

®xed skeleton, and it treats especially nicely the case of (acyclic) alkanes, with

extensive numerical tabulations. The recent book43 by S. El-Basil surveys the

general theory focusing on the circumstance of symmetry subclassi®cation,

proceeding in a slow yet quite detailed palatable manner. The overall mathema-

tical area is often referred to as Polya theory though much was independently

alternatively formulated by Red®eld,10±12 and again there have been other

numerous elaborations, reformulations, and extensions.

2.2 Linear Recursive Methods ± Kekule Structure Counting. ± A rather

general class of enumeration problems can be done in a recursive manner, which

becomes most especially simpli®ed when the recursion is the same at each stage,

corresponding to different local regions of the structure. Thus such approaches

are rather readily applicable to the treatment of polymers, crystalline solids, or

perhaps other structures of high point-group symmetry. The well-known rotational

isomeric model of polymer statistics (e.g. as in ref. 44) entails such linear-

recursions for a variety of properties, such as mean square radius of gyration.

Onsager's famed solution45 of the two-dimensional Ising model (on the square

lattice) can be viewed as the evaluation via a linear recursive technique of a

generating function for the enumeration of suitable subgraphs of the lattice ± and

in this case the exact solution appears quite non-trivial. The enumeration of

Kekule structures in conjugated polymers, or in other highly symmetric mole-

cules, such as buckminsterfullerene, provides another example of a linear

recursive quantity. More generally there are other possible enumerations, e.g. of

different subgraph types which may be used as graph invariants in various

quantitative structure±property relationships (QSPR) and structure±activity rela-

tionships (QSAR). Beyond this, the general subgraph enumeration has other

applications, as to statistical mechanics, say as involved with the different Mayer

diagrams,23 or with an enumerative generating function simply being a statistical

mechanical partition function. Correlated electronic-structure wave-functions also

give rise to a similar generating function problem.35 Again in the bulk of these

subgraph enumeration problems equivalence under group action does not play a

role and the dif®culties dealt with in Polya enumeration theory do not arise, while

entirely different problems connected with the subgraph relation arise. Often the

subgraph enumeration problem can be solved (at least formally, and perhaps

practically) in terms of linear recursions. This broad class of recursive enumera-

tion problems appears to be quite ubiquitous, and in principle soluble by standard

linear-algebraic techniques.

As a concrete example, linear recursions have been extensively developed for

the case of enumerating Kekule structures. A (molecular) graph might be denoted

G, and a subgraph identi®ed as a Kekule structure k if it has the same number of

vertices every one of which has exactly one incident edge in k. For instance, for

naphthalene (Figure 1) one ®nds three Kekule structures each in correspondence
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with one of the possible (neighbor) ð-bonding patterns. The greater the number

K(G) of such Kekule structures, the greater the resonance stabilization (other

things being equal ± and in particular for molecular sizes being equal). It seems

that the earliest15,24 and now quite extensively considered16,17 systematic method

for Kekule structure enumeration is based on a recursion to smaller graphs. Let e

be any edge of graph G, let G ÿ e be the graph obtained from G by deleting e,

and let G 	 e denote the graph obtained by deleting e and all edges incident to e.

Then there is a simple recursion

K(G) � K(G ÿ e)� K(G 	 e) (2)

which may be readily implemented in a computer program. But also it may be

advantageously manipulated in different ways for different special types of

graphs. It is noteworthy that if the recursion is iterated with a choice for a

sequence of edges so as to disconnect the resultant graphs into disconnected

fragments, then the fragments are separately treatable. For polymer graphs it can

be used15±17,24,46±48 to yield recursions on Kekule-structure counts for chains of

different lengths, and perhaps the bulk of Cyvin and co-workers' books16±18 is

given over to the development of quite explicit formulas as a function of length

for a fair number of different particular polymer strips. Even for non-regular

polymer graphs and especially catacondensed species there are elegant results,

e.g. described in Chapter 6 of ref. 17. This latter scheme of Gordon and Davison15

has a neat pictorial presentation which might be illustrated for a catacondensed

polyhex chain:

· ®rst, given the displayed graph, one begins to write in a sequence of numbers

in the hexagons starting from one end, with a 2 in the ®rst hexagon and a 1

adjacent to it (in a 0th hexagon);

· second, each number in subsequent hexagons then is the sum of that

immediately preceding and the 1st preceding number around a `kink' in the

chain; and

· ®nally the number appearing in the last hexagon is K(G).

For the example shown in Figure 2, K(G) � 25. A natural extension to branched

catacondensed species is also known.49

There is another neat scheme (based on the linear recursion) applicable for

hand computation on polyhex benzenoids of up to a dozen or so hexagonal rings.

This John±Sachs scheme is based on a one-to-one correspondence between

Kekule structures and sets of mutually self-avoiding directed walks on the graph,

and indeed this correspondence was (in a special context) utilized50 in a statistical

mechanical context in modelling collections of partly disordered polymer chains.

Figure 1 Kekule structures of naphthalene
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The correspondence between a Kekule structure and a set of three mutually self-

avoiding directed walks (from peak to valley) is illustrated in Figure 3, where the

diagonal-oriented double bonds and (bold-face) vertical single bonds are the steps

of the walks. Granted this correspondence, John and Sachs51 developed a neat

algorithm to give the Kekule-structure count as the determinant of a small matrix

W whose elements count the number of possible directed walks from a position

on one side of the polyhex graph G to each position on the other side (inde-

pendently of any other such walks). Also see ref. 52. For example the path

enumerations from either peak to either valley of the benzenoid structure below

are readily obtained as indicated in Figure 4, and then there follows a Kekule-

structure count as shown in eqn. (3):

Figure 2 The Gordon±Davison scheme15 for enumeration of Kekule structures in

catacondensed benzenoids

Figure 3 A set of disjoint paths connecting peaks (P) with valleys (V) in a polyhex. The

Kekule structure in correspondence with these paths is also indicated

Figure 4 A `Pascal-triangle' scheme52 for enumeration of paths joining the peak with the

valleys
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K(G) � det(W ) � det
5 4

4 6

� �
� 14 (3)

The consideration of the sets of mutually self-avoiding walkers has a wider impact

in revealing a fundamental invariant (the number of walkers) which turns out to

be important in transfer-matrix solutions, as applied to polymer graphs extending

even to the two-dimensional limit53,54 (as discussed in the next subsection).

Also this invariant, which may also be described as an order, has physical

implications.55,56

Overall the general recursion of eqn. (2) is applicable beyond the case of

Kekule structures here elaborated for illustration. The related so-called conju-

gated-circuit method20,21,57,58 turns out to have quite neat (related) linear re-

cursions.46,47 Generally many sub-graph enumeration problems turn out to be of a

linear recursive nature.

2.3 Transfer Matrix Methods. ± The linear recursions of the preceding

subsection can be alternatively framed in an especially elegant form for polymer

graphs, of a rather general type, though here we focus on those polymers which

are regular, with the same monomer unit repeated. The Kekule-structure count K L

for a polymer chain of length L monomers can59,60 quite generally be cast into the

form of a trace

K L � tr(rr . T L) (4)

where T is a transfer matrix characteristic of the monomer unit and rr is a matrix

which encodes the character of the boundary conditions, i.e. of the polymer chain

ends. Basically one may view T to give the various ways Kekule structures can

propagate from one pattern at the boundary of one monomer unit to another

pattern at the subsequent boundary of the next monomer unit. For instance, for a

polyphene chain, e.g. of 14 hexagons in length, as shown in Figure 5, the chain

may be divided into monomer cells of the form shown in Figure 6.

There are just two patterns for the placement of double bonds at the boundary

Figure 5 The polyphene chain

Figure 6 The monomer repeating in the polyphene chain from Figure 5. Note that the

monomer is not only repeated, but also ¯ipped upside-down
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of a unit cell, these two patterns (consistent with types of ends indicated above)

being as shown in Figure 7. Of these two patterns, the ®rst may be propagated in

two possible manners to the succeeding boundary, while the second may be

propagated in but one manner. Thence, for this case, we have the transfer matrix

T � 1 1

1 0

� �

For narrow chains of say a couple hexagons width there are but a few such

patterns, so that T is of a small size (say no more than 4 3 4), and upon

diagonalization of T one then easily raises T to the requisite power and a quite

neat expression results for arbitrary length L. As strip width w increases (as

measured in terms of the number of bonds crossing a monomer boundary), the

size of T increases exponentially with w, but the technique is still readily

applicable for widths w up to � 12.

A relation to linear recursions such as of Subsection 2.2 may be indicated.

Denote the characteristic polynomial of an n 3 n transfer matrix T by

p(x) � det(xI ÿ T) � ÿ
Xn

i�0

aix
nÿi (5)

Then (by the Hamilton±Cayley theorem) one has

T n �
Xn

i�1

aiT
nÿi (6)

whence one can make a substitution (when L > n)

Figure 7 Propagation patterns of the two ways of connecting adjacent monomers in the

polyphene chain from Figure 5. The patterns in the left column propagate into

those in the right column as indicated by arrows (note that these are ¯ipped

upside-down and that the patterns in the left column switched their positions in

the right column)

68 Chemical Modelling: Applications and Theory, Volume 2



K L�1 � tr(rr . T L�1ÿn . T n) �
Xn

i�1

ai tr(rr . T Lÿi�1) �
Xn

i�1

ai K Lÿi�1 (7)

But in fact this is just a linear recursion as in the preceding subsection. For our

example polyphene structure one evidently obtains K L�1 � K L � K Lÿ1. Notably

the recursion is largely independent of the chain ends, which then make their

in¯uence with the initial values upon which the recursion is based.

A further means by which to deal with linear recursions and transfer-matrix

approaches is by way of generating functions. One introduces generating functions

with stage-L counts appearing as coef®cients of a dummy variable z raised to the

power L. For example, for Kekule structure counting,

F(z) �
X
L>0

K L
. z L (8)

Then, granted that the transfer matrix satis®es its own characteristic polynomial,

one obtains a linear relation for the generating function. For example, for the

polyphene chain, where the characteristic polynomial is x2 ÿ xÿ 1, so that

T 2 � T � I (where I is the identity matrix), we obtain

F(z) � K0 � K1
. z�

X
L>2

(K Lÿ1 � K Lÿ2) . z L

� K0 � K1
. z� (z� z2) . F(z)ÿ K0

. z (9)

Thence one obtains the generating function as a rational polynomial, here

F(z) � [K0 � (K1 ÿ K0) . z]=(1ÿ zÿ z2) (10)

and this can then be expanded in powers of the dummy variable to obtain explicit

expressions for the desired coef®cients.

The intimate contact with conjugated circuits theory also may be indicated.

This theory concerns a formulation for the resonance energy of molecular

structures G which support at least one (fully paired) Kekule structure. Within a

Kekule structure k on G, a conjugated n-circuit is de®ned to be a cycle (in G)

which exhibits alternating pairing in k around the cycle. Then the resonance

energy is

Eres(G) �
X

n

ãn@ n K(G)=K(G) (11)

where the sum is over not too large size n of (even-n) cycles in G, the ãn are

parameters, and @ n K(G) is the number of conjugated n-circuits as summed over

all Kekule structures k of G. For regular polymers there is a modi®cation to the

transfer-matrix method for KL so as to also determine the @ n KL, and this is well

described elsewhere.61 But also something especially `pretty' happens, granted the
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recursion relation for Kekule structure counts of the form in eqn. (7). With the

de®nition of a (squared) polynomial

q(x) � [ p(x)]2 � ÿ
X2 n

i�0

bix
2 nÿi (12)

and denotation of the conjugated n-circuit count for a length-L chain as @ n KL,

one ®nds these conjugated circuit counts satisfy a recursion

@ n K L�1 �
X2 n

i�1

bi@ n K Lÿi�1 (13)

For example polyphene, q(x) � (x2 ÿ xÿ 1)2 and

@ n K L�1 � 2 . @ n K L � @ n K Lÿ1 ÿ 2 . @ n K Lÿ2 ÿ @ n K Lÿ3 (14)

Notably the coef®cients bi are independent of n (e.g. so that the numerator in the

resonance energy expression obeys the same recursion). The distinction of the

different conjugated n-circuit counts comes in the initial conditions.

Again all this methodology extends to quite general enumerations. It applies for

the Ising model (which may be viewed in essence to be an enumeration of even-

degree subgraphs of the parent lattice graph), and it applies to many other

statistical mechanical lattice models, as early emphasized by E. Montroll.62 Indeed

Onsager's famous solution45 to the square-planar-lattice Ising model is essentially

just a solution of the transfer-matrix eigenproblem, which turns out to be

challenging for the extended lattice, because of the dimension of the matrix

approaching in®nity. In any event the methodology extends to a great variety of

graph-theoretic enumerations on polymer graphs.

2.4 Exhaustive Generation (Brute Force) Methods. ± Enumeration by explicit

generation of all objects being counted is commonly done only when the counts

are small or when no better method is (yet) available. The latter situation usually

occurs when the underlying structures (which are being counted or on which the

counting is being performed) are so irregular that no ef®cient recursive or group-

theoretical methods are applicable. The examples are counting of fullerene

isomers,63 fullerene caps,64 benzenoid isomers,42,65±67 all connected subgraphs of a

general graph68,69 etc. Usually with such brute-force methods the only shortcut is

provided by the divide-and-conquer strategy, which however still relies on

exhaustive generation on the parts obtained by division. A frequent dif®culty in

these methods, e.g. when applied to generation of isomers, is an isomorphism of

the generated objects, whence this requires additional efforts for diminishing

redundancy of the generation algorithm and for recognition of isomorphic objects.

In general, though such divide-and-conquer strategies are quite computer

intensive, they still have signi®cant advantages over more straightforward ap-

proaches. Both sorts of approaches often require computer time increasing
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exponentially with system size, though with the divide-and-conquer approach the

exponential dependence may be in terms of the subsystem sizes, and thence

immensely more ef®cient at a given size. They typically have a bound on system

size which is then only weakly dependent on the computation power available, so

that little improvement (in system size) occurs with new generations of

computers.

2.5 Other Methods. ± An occasional sort of approach is to change one

enumeration problem into another. For instance, rather than enumerating Kekule

structures, one can consider superpositions of pairs of the structures. These

superpositions are still spanning subgraphs, now with components which either

are isolated edges or even cycles. The number of such superposition graphs is just

the square of the number of Kekule structures, if each cycle in the superposition

graphs is identi®ed with a factor of 2 somehow (so that if such a cycle arises

from the superposition of Kekule structures ka and kb, then it in essence also

arises from the superposition of kb and ka, in the reverse order). But in fact such

superposition graphs are neatly identi®ed to permutations on G, with the two

directions around a cycle rather naturally giving the desired factor of 2 for each

cycle. And sums over all the permutations arise in taking the permanent of the

adjacency matrix A, the permanent of a matrix being like the determinant, but

without the parity of the permutations entering into the sum. Thus

per(A) � [K(G)]2 (15)

as was noted sometime ago by Percus.70 Permanents are generally dif®cult to

compute, whereas determinants are much more convenient, but have a phase

problem associated with the parity of the permutations. That is, the determinant

of A adds or subtracts superposition graphs, so that one might naturally wonder

whether this could be recti®ed if one were to adjust the signs on the elements of

the adjacency matrix. And notably Kasteleyn71 has found a neat way to solve this

phase problem so long as G is planar (in a graph-theoretic sense). This powerful

scheme results in a signed adjacency matrix S(G) with rows and columns that are

labelled by the sites of G and with elements that are all 0 except those Sab � �1

with a and b being adjacent sites in G. Then

det(S(G)) � �[K(G)]2 (16)

The signs are such that: ®rst, S(G) is antisymmetric; second, if for an embedding

of G in the plane one follows the edges of S around any even face (i.e. minimal

ring) of this embedding, then the number of times a minus sign is encountered is

odd. That is, if one proceeds around a ring of sites i1, i2, . . ., in then

Si1 i2
. Si2 i3

. . . . . Si nÿ1 i n
. Si n i1 � ÿ1 (17)

Kasteleyn71 describes how this odd orientation is readily achievable for any planar

graph. For instance, if one inserts arrows on edges of G so that an arrow from a
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to b indicates Sab � �1 while Sba � ÿ1, then an example of one such odd

orientation is shown in Figure 8.

For the special case of polyhex benzenoid structures, the determinantal formula

for K(G) holds except that A(G) appears in place of S(G), as was earlier noted

by Dewar and Longuet-Higgins.72 Also there is a modi®cation73 of Kasteleyn's

scheme by which to deal ef®ciently with the conjugated-circuit-count problem:

one inverts the matrix S(G) and computes determinants for submatrices

associated with each cycle for which conjugated-circuit counts are sought. That

is, the mean conjugated circuit count for a particular cycle C of a graph G is

given as

hCiG � det[(Sÿ1)C] (18)

where M C indicates just the submatrix of M for the rows and columns associated

to the sites in C. The method has been applied74 to several thousands of fullerenes

(many with more than a million Kekule structures), and also75 to a couple of

dozen different planar carbon network graphs, most with some ®ve- and seven-

membered rings.

Really very few signi®cantly different other schemes for computation of Kekule

structures or conjugated-circuit counts seem to have been explored to any extent,

presumably because the preceding schemes have been so successful. Dewar and

Longuet-Higgins72 and Herndon76 describe an enumeration method based on the

identi®cation of non-bonding MOs for radical fragments of the graph under

consideration. RandicÂ77 has considered a Monte Carlo scheme, but the range of

sizes of benzenoids originally intended for this treatment are really quite easily

treated exactly by the John±Sachs scheme. Still the Monte Carlo scheme is more

evidently extendable to the treatment of the higher-level VB-theoretic models.

There are some other less common schemes, e.g. as in ref. 78. Various special

recursions are discussed in ref. 17.

Moreover, the general idea of mapping one kind of enumeration to another

seems to be of fairly general occurrence, though its manifestation typically seems

to be quite different in different circumstances. Often there seems to be a

correspondence between Ising-model enumerations and Kekule-structure enu-

merations. For instance, as follows from our brief note in subsection 1.3, for the

hexagonal lattice H the Ising model solution can be viewed as involving

enumerations of subgraphs with every vertex having degree 0 or 2. Then one can

identify Kekule structures on a corresponding lattice H� where each vertex of H

Figure 8 An example of Kasteleyn's71 odd orientation of a planar polycycle
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is replaced by three vertices in H� as indicated in Figure 9. Then each Ising-type

graph on H corresponds to a unique Kekule structure on H� as is indicated in

Figure 10.

Thus Ising-type graph enumeration on H is equivalent to Kekule-structure

enumeration on H�, and indeed such correspondences have sometimes been

used.79 But again correspondences between different types of enumerations seem

to be quite frequent. The correspondence of Kekule structures to sets of mutually

self-avoiding walks as noted in passing in Section 2.2 in connection with the

John±Sachs method of enumeration provides yet another example of such a

correspondence.

3 Current Results

Here we survey with some critical commentary recent enumerative work from

1999 through May 2001. We divide up the discussion into different broad

categories, separating off the work on fullerene isomer problems from other

isomer work, in part because of the activity in dealing with fullerenes, and in part

because, to deal best with fullerenes, Polya theory has played a lesser role.

3.1 Isomers: Enumeration and Generation. ± During the last two years there

seems to have been a degree of activity in the area of isomer characterization,

more so with articles devoted to methodology development. There have been

Figure 9 Hexagonal lattice H and the correspondent lattice H �. The subgraph of H
with only even degree vertices corresponds to a unique Kekule structure (perfect

matching) in H � as indicated in Figure 10

Figure 10 The correspondence between vertices with degrees 2 and 0, in subgraphs of H,

and Kekule structure patterns in H �
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some focusing on isomer enumeration methods. A few of them are classical

enumerations for a simple ®xed skeleton, with a selection of univalent ligands to

be there attached. Lam,80 following up on earlier similar work,81 enumerates the

numbers of isomers of alkyl-substituted cyclopropanes ± the symmetry is not too

high and as a consequence the development may be made without reference to the

powerful Polya-theoretic mathematical machinery.

Knopfmacher and Warlimont,82 following earlier work,83 use much more

esoteric mathematical machinery (concerning semi-groups of polynomial-like

structures) to develop methods to determine the asymptotic (large-N) form of

isomer counts for N-atom alkanes. Polya41 in fact developed asymptotic results,

but Knopfmacher and Warlimont are interested in extensions, particularly to

obtain asymptotics for the numbers of `generalized isomers', viewed as sets of

molecules such that different sets as a whole have the same elemental composi-

tion. Their main result is a theorem on the asymptotic number of ways in which a

mixture of molecules may be realized when the total number of particular kind of

atoms is ®xed, and the asymptotic results for ordinary single-molecule isomers is

already known. Examples of application to mixtures of alkanes, alkenes, substi-

tuted alkanes and achiral alkanes and alkanols are given.

Baraldi and Vanossi,84 also following up on earlier formal work,85 use (in a

fairly conventional manner) the general Polya-theoretic machinery to enumerate

substitutional isomers for several cyclic or polyhedral skeletons. They conclude

with enumerations for icosahedral-symmetry skeletons, both for an icosahedron

and for a truncated icosahedron, such as have become of some degree of

popularity (as in ref. 86) over the last decade or so because of the `elegantly

beautiful' truncated-icosahedral structure of buckminsterfullerene.

J. Szucs87 (re®ning earlier work of Kirby and Pollak88) generates elegant near-

analytic number-theoretic enumeration formulae for bucky-tori structural isomers

(such structures being viewable as ®nite graphite fragments with cyclic boundary

conditions), with special emphasis on asymptotics. Though one can imagine

carbon tori with ®ve- and seven-membered rings included (perhaps to contribute89

to curvature strain relief ), it has been argued90 that the experimentally observed91

(quite large) carbon tori do not have such non-benzenoid rings (at least arranged

in any systematic fashion). For molecular polyhedral skeletons, it is well-known

that there are naught but one or two topologically reasonable embeddings (with

the two arising if the polyhedron is intrinsically chiral). But if for bucky-tori the

topological embedding in 3-space is attended to (beyond just the molecular

graph), then the same graph may be embedded in different topological manners.

For example, a rectangular graphitic sheet may be rolled up in one direction or

the other ®rst, as indicated in Figure 11, though either way it is done, the same

bonds become connected at the adjoining boundaries (and thence the same graph

results). But more than this, even for a ®xed order of rolling, one can after the

®rst joining still twist the resultant open tube at the boundary before joining the

last boundary, as indicated by the cyclic arrow in the Figure. If the twist is

through a multiple of 2ð radians, the same graph again results, though the

embeddings are generally topologically distinct. Thence the theoretical number of

such topologically distinct embeddings grows to in®nity (with different multiples
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of 2ð), but steric hindrance restricts those which might be plausibly realized, and

the labelling of such topological equivalence classes is complete.92

Over the last decade and more S. Fujita has been singularly active in the

development of isomer-enumeration methodology and its application. This effort

has continued with a variety of further articles. One topic addressed has been93±97

that involving isomer enumeration with non-rigid skeletons. Examples are given

involving skeletons such as that of tetramethylallene or of dimethylacetylene, with

the methyl groups able to undergo internal rotation, while the H-atoms in these

methyl groups provide the points of substitution. This involves taking a permuta-

tion group expanded over that corresponding to the classical point group, and

using this in the Polya-theoretic apparatus. That is, the group is chosen to include

permutations corresponding to the internal rotations, or inversions (as at the N-

atom of amines) or pseudo-rotations. Perhaps most of Fujita's work over the years

has concerned the theory of subsymmetry classi®cation (of the different isomers

which arise with different substitution patterns in a skeleton), and he has now

further developed98,99 this theory, and made applications93,100 of it to a number of

different circumstances. In yet another sort of circumstance Fujita addresses100±102

the enumeration of isomers when the ligands themselves may be chiral, and

illustrative applications are made. Here the crucial theoretical point is that

permutations (which represent re¯ections and other improper rotations) need to

be recognized as acting on both skeletal positions and the ligands. Further Fujita

addresses103±106 several interesting chirality characterization questions, concerning

`prochirality', `stereogenic', `prostereogenic', `holotopic', `hemitopic' etc. An-

Figure 11 Two different ways of embedding the toroidal graph into a toroidal surface
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swers are proposed in terms of Fujita's mathematical constructs, and illustrative

applications are made.

S. El-Basil107 builds from Fujita's work concerning the subclassi®cation of

substitutional isomers according to symmetry group of the substitution pattern.

He uses so-called Cayley-like diagrams as pictorial representations of the actions

of group elements on the cosets associated to the various subgroup symmetries,

and illustrative applications are made. V.R. Rosenfeld108 extends Polya theory in

two directions: to deal with sets of transformations on skeletal sites such that the

set forms just a monoid rather than a full group; and to deal with symmetry

subclassi®cation. This latter extension evidently is proposed as an alternative to

other approaches, such as Fujita's approach involving unit induced cycle indices

and mark tables, though one can also recognize the mark table in Rosenfeld's

normalizer scheme. Yet further it may be mentioned that S. El-Basil is to guest-

edit a special issue of the journal MatCh dedicated to the symmetry subclassi®ca-

tion problem for isomer classes. This should appear in 2002.

A few articles109±111 have come from a German±Austrian group (of van

Almsick, Dolhaine and HoÈnig) utilizing the classical Polya-theoretic ideas to

present substitutional isomer counts for a selection of skeletons, so as to illustrate

a general isomer-enumeration program the group has developed. Their article is

of an introductory nature insofar as Polya theory is concerned, with the main

purpose being to indicate the framework and formatting for their software. Indeed

especially one of the co-authors here (H. Dolhaine) has long pursued such a

general program, which now is available at:

http://www-orgc.tu-graz.at/hoegroup.

Special ef®ciency in generating libraries of isomer structures is addressed.

Another suite of programs due to Kerber's group may be found at:

http://www.mathe2.uni-bayreuth.de/axel/symneu.engl.html

and the background for this is discussed in Kerber's monograph.13 There are a

couple of brief articles112±114 in the chemical literature considering this approach

and the software. Both the book and the software are adapted to doing a great

variety of different things, besides enumeration also including possibilities for

generation, and especially the book gives a wealth of mathematical material,

which it seems has only meagerly been utilized to date in chemistry. Further in

connection with the journal MatCh (from where a number of our references for

this subsection come) there is an on-line address:

http://www.mathe2.uni-bayreuth.de/match/online/links,

which offers isomer enumeration in a user-friendly format (without necessary

reference to formal Polya theory) along with isomer generation (for the ®rst 1000

isomers). The general MOLGEN program to generate isomeric structures, and

some related characteristics, is illustratively brie¯y discussed in ref. 114. A formal
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theoretical development of several aspects of this program are discussed in

extended detail by GruÈner.115 It is available at:

http://www.mathe2.uni-bayreuth.de/molgen4/

Hopefully such publicly available resources should ®nd notable use by a wide

community of chemists.

Bytautas and Klein have written a set of articles with enumerations of different

acyclic hydrocarbon structures: for alkanes;116,117 for fully conjugated polyenes;118

and for all hydrocarbons119±121 regardless of the degree of unsaturation. Here the

alkane enumerations which are included in refs. 116 and 117 repeat or extend

earlier work, e.g. as reviewed in TrinajsticÂ et al.42 though in the present articles

there are additional considerations, beyond just isomer enumeration. The con-

jugated polyene enumerations considerably elaborate earlier work122 so as now to

distinguish radical and non-radical structures ± i.e. so as to pay attention to the

placement of ð-bonds. The ®rst article on all acyclic hydrocarbons develops

focuses on enumeration, developing the enumeration technology for all acyclic

hydrocarbon graphs with arbitrary numbers of double and triple bonds, dealing

with the (large-molecule) asymptotics of the isomer counts and applying the

methodology for isomers with up to 26 carbons. For this case of all acyclic

hydrocarbons, the work is developed with reference to a formula periodic table,

as indicated in Figure 12.

In this Figure the abscissa is half the number m of H-atoms, while the ordinate

is the number n of H-atoms, so that at coordinate (m, n) one ®nds CnH2 m, and the

ordinary alkanes are found on the far right diagonal, the alkenes on the next

diagonal in, both alkynes and alkadienes on the third diagonal from the right, etc.

Moreover, beyond the classical enumerations, these authors seek in the bulk of

their work116±121 to extend much the same mathematical methodology to compute

isomer-class averaged values for different graph invariants, including: atom-type

counts, graph diameter, Wiener number, and second moments for atom-type

Figure 12 The formula periodic table of acyclic hydrocarbons
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counts (so as to enable determination of associated standard deviations, and cross

variances, for atom-type counts). Indeed in ref. 123 results for the Wiener number

for alkanes of up to 90 carbons are computed (and asymptotic behaviors

considered, not only for all isomers but for other equivalence partitionings of

various tree structures). Yet further, the mean graph invariants are utilized along

with sub-structural cluster expansions to give estimates for isomer-class averaged

values of a few molecular properties, including: heat of formation, magnetic

susceptibility, and index of refraction. The techniques thence allow such treatment

of isomer classes even with enormous numbers of isomers, e.g. .1013 for all

acyclics119±121 and .1035 for just the alkanes.117 For the case of all acyclic

hydrocarbons the results are presented120 graphically as `property overlap plots',

such consisting of contours superimposed on the formula periodic table (of Figure

12). An example of a `property overlap plot' for the heat of formation is found in

Figure 13. In this later ®gure the lines identify constant mean-ÄHf contours and

the arrows normal to the contours indicate magnitudes of standard deviations (for

ÄHf ) at these positions, with the scale of the standard deviations set to

correspond to the scale associated to the difference between the contour lines. In

most of these papers attention is paid to asymptotics, not only for counts but also

for the mean values of the various computed graph invariants. One of the articles

on alkanes117 also illustrates a rather general method for selecting, from even a

very large isomer class, particular structures exhibiting extreme values for the

property estimates. It is proposed that the variety of extensions of standard

enumerative methodologies considered offers a potential use in screening large

classes of structures, in a sort of combinatoric chemistry.

Figure 13 The contour plot of heat of formations for acyclic hydrocarbons CnH2m. The

lines orthogonal to the contours represent standard deviations
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There has been some interest in an inverse isomer enumeration problem, of

characterizing the symmetry group of the underlying skeleton from the numbers

of isomers with different degrees of substitution. Historically this played some

role in deducing molecular structures, e.g. in seeking a 6-position skeleton for

benzene such that there are 1, 3, 3, 3, 1 and 1 chloro-benzenes with respective

numbers 1, 2, 3, 4, 5 and 6 of chlorine atoms substituted. Some rather general

results were obtained (in 1930) by Lunn and Senior,124 later (in 1985) by

HaÈsselbarth125 and now by V.V. Iliev.126±128 In particular Iliev develops a

characterization via substitutional reaction processes; with the addition of one

more substituent of a given ligand to one isomer with n of these ligands already

in place, it may happen that only certain isomers with n� 1 of these ligands

arise. For instance, chlorination of p-dichlorobenzene gives rise to only one (of

the three) trichlorobenzenes (while chlorination of o-dichlorobenzene gives rise to

two trichlorobenzenes, and m-dichlorobenzene to all three). At least in favorable

cases from the isomer counts (perhaps along with the substitutional reaction

diagram just mentioned), the symmetry of the skeleton may be determined.

Further Iliev provides explicit example applications for the skeletons of

cyclopropane128 and of ethane.127 However, in the case of benzene it has been

emphasized129 that, in considering the regular hexagon and the trigonal prism, the

problem of determining the skeleton is indeterminant, no matter the number of

different (independent monodentate) ligands one considers as substitutents, and

indeed the problem remains indeterminant even with some additional information

about reaction diagrams. That is, granted solely the isomer counts (and reaction-

diagram information), both regular hexagonal and trigonal prismatic skeletons for

benzene are acceptable.

It may be noted that there are `chemical' problems of different sorts for many

of the enumerations which have been made over the years. First, in dealing with

the alkanes there is a problem of steric hindrance which typically is entirely

ignored. For instance, for alkane-chain conformations, such as treated by Tasi

et al.130,131 and others,132 for the longer chains some of the enumerated conforma-

tions (thought of as walks on a lattice) end up walking over themselves. Moreover,

in the ®eld of `polymer statistics' (concerned not only with conformer enumera-

tion, but also mean spatial extent of these conformers) it is generally accepted

(e.g. as in ref. 133) that this leads to quantitative differences in predictions as to

the mean spatial extent of long-chain polymers (as well as a quantitative

difference in the number of allowed conformations). For branched alkanes there

are134 some conceivable structures for which there exist no self-avoiding embed-

ding on the relevant diamond lattice (even if the spatial requirements of the H-

atoms are disregarded), so that one can imagine that the Polya enumeration counts

should be reduced. Indeed this fact of steric crowding is135 crucial in under-

standing the experimentally realized termination of dendrimer growth. Another

problem arises in the treatment116 of the acyclic polyenes simply as tree structures

solely with a limitation on degree (on the H-deleted skeleton to a degree < 3), for

then many of the structures turn out to be radicaloid ± indeed, as revealed in a

`corrected' enumeration110 the great bulk of the otherwise counted polyenoids are

radicaloid, and even polyradicaloid. Yet further in computing the substitutional
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isomers of buckminsterfullerene there is a similar problem, in that many of the

enumerated structures do not support a (fully paired) Kekule structure (and thence

again are imagined to be radicaloid, and unstable). In some cases of enumeration

or generation of isomers there is a `reverse' problem, with some programs

counting different Kekule structures of a single isomer as distinct isomers. This

might be among the reasons that existing programs for generation of isomers in

some cases do not agree in the numbers of produced isomers.136 Another

circumstance concerns enumerations with bidentate ligands ± in this case for

many such bidentate species, ligation is restricted to occur at adjacent sites of the

skeleton (e.g. ethylenediamine would not ligate to trans positions in an octahedral

skeleton), while the (extended) Polya-theoretic tools do not account for this.

Evidently, even to deal systematically with just enumeration there are a number of

`chemical' problems which remain mathematically challenging. In a fair number

of articles now many such problems are only overcome in a relatively brute-force

explicitly constructional approach.

Contreras et al.137 have reported an extension of their program CAMGEC,138

which generates all isomers from a given molecular formula. The extended

version, named US-CAMGEC, is intended to generate the geometrical and

stereisomers induced by cumulative double bonds. Although quite comprehensive,

the program does not yet account for chirality of atoms in cycles. The authors

proposed an addition to Cahn±Ingold±Prelog rules, but in several comments139±142

that followed it was shown to be excessive and contradictory to the existing rules.

In a follow-up of his previous paper,143 Le Bret136 has reported a comparison of

his program Galvastructures with other existing programs for generation of

isomers. The program Galvastructures is unique in using a genetic algorithm for

the generation of isomers. Although slower than other programs, especially if all

isomers are needed, its advantage is a relatively simple algorithm on which it is

based. There were also discussed some practical dif®culties in applying the

common ®ngerprint methods for recognition of isomorphic structures, and a new

®ngerprint quantity, based on integer numbers, is proposed.

Lukovits144,145 is trying to devise an ef®cient algorithm for generation of all

trees. By using properties of the Morgan labelling,146 it is easy to generate all the,

so-called, Morgan trees. The problem is that to any given isomer corresponds

many different Morgan trees, and more so as the number of atoms increases. Thus

if one is interested only in isomers, the code becomes highly redundant. However,

each isomer has a unique Morgan tree which is used as the canonical code of the

isomer and if the generation could be limited to canonical Morgan trees only, the

redundancy would be eliminated. Lukovits seeks to formulate a set of semantic

rules by which non-canonical Morgan trees could be detected and skipped earlier

in the isomer generation. In his recent paper147 two simple codes of adjacency

matrix are formulated and discussed.

An algorithm for generation of all boundary sequences that encompass a planar

cubic map consisting of only pentagons or only hexagons was described by Deza

et al.148 The algorithm works by producing all sequences satisfying the necessary

condition on difference between the numbers of divalent and trivalent boundary

vertices. The obtained sequences are subsequently checked for consistency by
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deconstruction ± that is, by reducing the number of included rings and/or by

splitting into smaller sequences which are separately checked in the same way

unless the trivial case or some other special case is obtained. An additional, but

simpler and faster, algorithm for generating sequences that correspond to planar

polyhexes (those embedded into a regular hexagonal lattice) is also described.

Generation and enumeration of benzenoid isomers and fusenes is an ever-

lasting subject considered by many authors. Caporossi et al.149 have counted the

numbers of perifused and catafused polyhexes with up to 20 hexagons, and

symmetry subcategorization and associated counts are also provided. Chyzak

et al.66 have applied holonomic guessing for estimation of numbers of not yet

counted benzenoid isomers: those with 24 and 25 hexagons. The method relies on

the built-in procedures of Maple and Mathematica by which a reccurrence

relation for a given (presumably holonomic) sequence of numbers can be derived.

The predicted number for benzenoids with 24 hexagons agrees with the most

recent list of the numbers of benzenoid isomers and fusenes reported by

Brinkmann et al.67 The list contains exact numbers of fusenes with up to 26

hexagons and the number of benzenoids with up to 24 hexagons. Details of the

algorithm will be published separately.

An algorithm for generation and enumeration of polycyclic chains was

described by Brinkmann et al.150 Polycyclic chain is a graph composed of rings of

arbitrary size connected so that its inner dual is a path. Inner dual was also used

for condensed representation of the polycyclic chain. A table with 26 representa-

tive counts for different combinations of ring sizes and their numbers is also

given.

3.2 Fullerenes and Related Objects. ± Apart from diversity of their own

structural isomers, fullerenes bring additional variety with the derivatives

obtained, e.g. by reactions of addition. Due to an almost uniform chemical

character of all carbon atoms, the ligand atoms could be added in a wide range of

numbers and patterns. Possible characteristics of such a reaction have been

studied by Fowler et al.151 in the model addition of hydrogen onto C24 fullerene.

Even with so small a fullerene molecule (the smallest one with hexagonal rings),

having also a symmetry, the number of all possible isomers is too large for a

systematic and complete study. After abandoning isomers with an odd number of

hydrogen atoms, since they imply an open shell in the remaining ð-system, the

number of isomers (including 0±24 hydrogen atoms) dropped to 352 786. If the

isomers containing odd disconnected components in the remaining conjugated ð-

system (which implies a radical character too) are separated out, the number of

isomers to be studied reduces to 63 663 which was considered as acceptable.

Nevertheless, due to an ef®cient method for calculation of electronic structure

(density functional based tight-binding method), they were able to calculate

energy and perform geometry optimization for all isomers with an even number

of hydrogen atoms. The energies of the isomers without explicit radical character

(containing no odd component in the conjugated ð-system) were distributed at the

low end of the cumulative distribution, slightly overlapping with radicaloid

species. The most stable isomers for a given number of added hydrogens were

2: Enumeration in Chemistry 81



always among those with no odd components. The analysis of the most stable

isomers when increasing the number of hydrogens indicated that the hydrogen±

carbon bond energy does not change much up to 12 hydrogens, whereafter it

decreases. It con®rmed Kroto and Walton's152 suggestion that fullerenes could

behave as superatoms, exhibiting some sort of preferred coordination that might

be interpreted as a preferred valency. In the case of C24, this number turned out to

be 12. These twelve hydrogen atoms were bonded along the unique cycle dividing

the molecule into two equivalent halves with the bare carbon atoms connected in

two hexagonal rings. To check a possible speci®c effect of hydrogen atom, used

as the model ligand, the isostructural most stable isomers with ¯uorine instead of

hydrogen were also evaluated. Again, there was a marked decrease in binding

energy at 12 added ¯uorine atoms showing thus a certain insensitivity to the

bonded species. The sequence of the most stable isomers with increasing number

of hydrogen atoms is consistent, with no rearrangement of bonded hydrogen

atoms, and thus provides a possible pathway of the addition mechanism.

A similar problem has been examined in another paper by Fowler et al.153 in

which there was studied an addition of bromine to the experimentally isolated

isomers of C60, C70, C76 and C84. As the bromine atom is much bigger than

hydrogen or ¯uorine atoms, steric interactions between bromine atoms bonded to

adjacent carbon atoms make such isomers less stable in comparison to those with

no proximal bromines. This allows one to search for the most stable isomer among

only those with no adjacent bromine atoms. The number of isomers to be checked

in more detail is thus ef®ciently reduced, especially if only the isomers with

maximum numbers of bromine atoms are examined. For example, the number of

all isomers of C60Br24 amounts to � 3 3 1014, while those with no adjacent

bromines there is only 1085. Further reduction is possible if the isomers in which

bare carbon atoms do not have a closed-shell electronic structure (as predicted by

the HuÈckel model) are also left out. In this case the number of C60Br24 isomers

reduces to a single one. The adducts of C70, C76, and C84 with the maximum

number of bromine atoms are determined to be C70Br26 (10 isomers), C76Br28 (36

isomers), C84Br32 (seven isomers and four isomers for two different C84, respec-

tively). Their energies, calculated at the semiempirical level, are also given.

An addition of bulky groups requires more space around each coordinated

carbon atom. This may be formalized by a generalized requirement that all added

groups must be separated by at least d carbon atoms. Again, for a given molecule

and distance d, there may exist many different addition patterns which may not be

easy to ®nd. Enumeration and classi®cation of such patterns, named d-codes for a

given distance d, has been undertaken in the paper by de la Vaissiere et al.154 for

classes of Platonic, Archimedean, face and medial duals of Archimedean

polyhedra, as well as for general prism, antiprism and several chemical deltahedra

corresponding to carboranes. d-Codes were generated by the program Dense

Clique, made by Hansen and Mladenovic.155 The results are presented in tables

containing the numbers and sizes of d-codes for all possible d, classi®ed by

symmetry and packing properties.

Face-regular polyhedra, considered in the paper by Brinkmann and Deza,156 are

de®ned as polyhedra with similar surroundings of equally sized rings. The similar
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surrounding means that all n-gonal rings have equal sets of n adjacent rings (with

no order implied and rings characterized only by their size), for each n. Written

by mathematicians, the paper gives several lists of face-regular polyhedra with

constant vertex degrees. The lists are characterized by the size of the maximal

ring and the vertex degree, and for some selected cases they are claimed to be

complete. Bifaced face-regular polyhedra with constant degree are fully character-

ized by four theorems. So far the chemical counterparts of regular-faced

polyhedra exist in a small number of cases but this may change in the future.

Related icosahedral-symmetry fulleroids are studied by Friedrichs and Deza.157

Fulleroids have all vertices of degree 3, but sizes of faces other than 5 (and 6) are

allowed. Those smaller polyhedral fulleroids with icosahedral symmetry and no

more than one size face other than 6 are comprehensively identi®ed. The

combinatorial structural characterization of icosahedral fullerenes is addressed by

Quinn et al.,158 and shown to be of use in constructions for large such cages.

These techniques presumably extend to the icosahedral symmetry fulleroids.

Nanotubes have been theoretically studied by many authors (much of which is

reviewed, e.g. in ref. 159). However, these studies generally have been concerned

only with in®nite nanotubes without ends. Brinkmann et al.64 have studied

nanotube caps, that is, the possible ways of ending the tubes, with fullerenic

structures. The tube is characterized by the vector (n, m) in the hexagonal lattice

connecting two hexagons that overlap each other when rolled into a tube. As there

is no unique way to determine a boundary between the tube and the cap, the

authors made their own choice by taking the hexagons lying on the two

components of the vector (n, m) as the boundary. The patches corresponding to a

given boundary were generated by the divide-and-conquer method: every patch

can be uniquely divided into two special subpatches by using a Petrie path. The

algorithm constructs all possible special subpatches which are subsequently

combined into a patch with the given boundary code. The produced patches are

uniquely coded in order to recognize and abandon isomorphic pairs. This is

performed for all combinations of n and m, with n� m < 25, and with

n� m < 30 for patches with isolated pentagons. The patches, whose number

exponentially increase with the diameter of the tube, are tabulated by the n and m

values and symmetry group. And further the types of asymptotic forms of

behaviors for different sorts of ends (regardless of whether the ends are fullerenic

or not) are characterized.160

The papers of Fowler and Rogers161 and of Fowler et al.162 do not deal with

enumeration but rather with coding. However, as enumeration is tightly interlaced

with coding these papers are also interesting to workers in the ®eld. The ®rst code

for fullerenes was devised by Fowler and Manolopoulos et al.163 It consists of a

path going spirally from one face through all other faces. Although not all

fullerenes have such a spiral, the smallest known counterexample has 380

vertices164 and so its use for smaller fullerenes seems to be safe. Particularly for

fullerenes with C5 or C6 symmetry it has been proven that such spiral exists.165 In

the present paper the authors derived the relation between the Goldberg

representation of icosahedral fullerenes and their spiral codes. This relation has

been extended also to analogous polyhedra derived from octahedron.

2: Enumeration in Chemistry 83



The study of higher genus fulleroids, particularly with translational symmetry,

has been a topic of some interest over the last decade or so. Terrones and

Terrones166 identify some particularly favorable ®nite structures of genus up to a

dozen or so. King167 also presents some combinatorial group-theoretic aspects of

the extended translationally symmetric high-genus such structures.

3.3 Counts of Resonance Structures and Related Items. ± Resonance-theoretic

based enumerations seem to have been somewhat less studied during the last two

years, though a decade or two ago there were tremendous numbers of papers. For

the case of Kekule-structure enumeration the methods we deem more powerful or

elegant have been brie¯y indicated in Sections 3.2 and 3.3. Perhaps the current

relative quietness of the ®eld indicates that now developed methods are near

optimum. Still there has been some work.

Si168 considers the count of Kekule structures of a special subset of coronoids

(which generally are benzenoid structures with a single `hole' region covering two

or more hexagons of area). Si establishes a determinantal formula like that of

Dewar and Longuet-Higgins72 for a special subset of coronoids, and notes that the

John±Sachs51,52 formula (of Section 2.3) which involves the determinant of a

much smaller matrix then also applies for these same coronoids. For more general

coronoids there is169 an extension of the John±Sachs formula, though this entails

the evaluation of two or more John±Sachs determinants, and of course the

method of Kasteleyn71 applies.

In a series of papers170±174 Dias has derived expressions for resonance-structure

counts of several classes of mono- and diradical benzenoid hydrocarbons. The

considered classes belong to polymer graphs which were extensively studied some

time ago,53,59,60,175 though the considered ends of the oligomeric chains may be

new. The recursions are apparently obtained by `examination', so that formal

derivations of them are not given. The recursions could be more formally

achieved by application of the transfer-matrix method for matching polynomials

of open polymer graphs (also called fasciagraphs),176,177 though a slight extension

is needed to obtain the ®rst or second derivative of the matching polynomial

evaluated at zero. That is, the ®rst derivative of the matching polynomial at zero

produces the number of resonance structures for monoradicals, and analogously

the k-th derivative (divided by k!) gives the resonance-structure count for k-fold

polyradicals. For the cases considered the unpaired electrons seem typically to be

localized near the chain ends judging from the more numerous valence structures,

and some qualitative chemical consequences are considered.

Cash and Herndon178 described a program for calculation of a matching

polynomial. The program is based on a successive removal of edges and

application of the well known recursion relation for the matching polynomials.

The edges are removed either in a sequence given by the user or automatically ±

based on the heuristic choice. In order to keep all ®gures of the matching

numbers, the program runs within Mathematica.

Zhang and Zhang179 have strengthened Gutman's result180 on the extremal

values of Hosoya and Merri®eld±Simons indices for hexagonal chains. These two

indices are de®ned as sums of the absolute values of coef®cients of the matching
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and independence polynomials, respectively. In the present paper it was shown

that not only their sum but each coef®cient of the two polynomials has extremal

values for linear and zigzag chains. The linear chain has minimal number of

matchings and maximal number of independent sets, and vice versa holds for the

zigzag chain.

The so-called algebraic structure count is closely related to Kekule structures

but in many cases is more dif®cult to evaluate. It is de®ned as the absolute

difference of the numbers of two parities ( positive and negative) of Kekule

structures. This algebraic structure count coincides with K(G) for benzenoids,

but for more general alternants it has been advocated as a more reliable measure

of aromaticity than K(G). Closed expressions for several special classes have

been derived by Gutman et al.181±184 Recently Graovac et al.185 have formulated

a general method for polymers, and elaborated it in detail for a case with two

bonds between adjacent monomers. The method uses the fact that the

determinant of the adjacency matrix is equal to a square of the algebraic

structure count. For a given graph the determinant of the adjacency matrix can

be recursively calculated from the determinants of certain subgraphs. Systematic

application of such a recursion was ef®ciently organized by using the transfer

matrix technique. The method is illustrated by three classes of phenylenes and

two types of acenylenes.

In the paper by Dias186 electronic structures of several types of subspectral

graphs and in®nite polymer strips were considered. The common point of

enumeration and the subject of this paper are recursions for the characteristic

polynomials of one-dimensional polymer graphs. Methods for deriving character-

istic polynomial in these cases were ®rst formulated by Polansky and

Tyutyulkov187 by using cyclic symmetry and representative graphs. Later it was

formulated in terms of the transfer matrices for polymer graphs with singly

connected monomers, and for both open and closed ends as well as for any type

of the starting or ending part.188 Some of these methods seem to be rederived in

the present paper.

Lin and Fan189 have described an algorithm for ®nding all so-called `linearly

independent' and `minimal linearly independent' conjugated circuits in benzenoid

hydrocarbons. A different resolution into different-shaped conjugated circuits has

also been advocated elsewhere.190 In another paper191 Lin has used a simpler

approach to count only the few smallest conjugated circuits.

3.4 Walks, Connected Subgraphs and Vertices at a Given Distance. ± Counts

of random walks are used for characterization of graphs and for de®nition of

various molecular descriptors. These counts can be easily obtained from

adjacency matrix powers and the recursion provided by the Hamilton±Cayley

theorem. Basic mathematical properties of random walk counts were reviewed by

Gutman et al.192 In this paper the graphs with extremal walk counts were

determined, and the relations between the structure, graph spectra and walk counts

were discussed. The spectral moments (that is the numbers of self-returning

walks) of phenylenes and their line-graphs were studied by MarkovicÂ et al.193 The

authors are especially interested in expressing the lower moments by certain
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structural details, thus establishing a formal connection between the structure and

moments or related molecular descriptors. Formulae for up to the ninth moments

of phenylene line-graphs were given in terms of ®ve obvious structural details and

compared with similar formulae obtained by Estrada194 that involved different and

less obvious structural counts. A correlation between spectral moments of

phenylenes and their line graphs was pointed out.

RuÈcker and RuÈcker68 have reported an algorithm for the enumeration of all

connected subgraphs of a given graph, whose number serves as a molecular

descriptor for measuring a complexity of graphs (and molecules represented by

them). The algorithm explicitly generates all connected subgraphs by a depth-

®rst path-tracing procedure. One might try to devise an algorithm by using a

recurrence relation relating the number of connected subgraphs in a graph and

in the subgraphs (some of them being `rooted') obtained by removal of an edge.

However, such a code would be useless when one wants to know the number of

isomorphism classes of connected subgraphs, which is also used for estimation

of molecular complexity, but taking into account its symmetry. This was the

subject of the next RuÈcker and RuÈcker paper,69 in which the program for

generation of connected subgraphs was combined with calculation of few graph

invariants: numbers of vertices and edges, Balaban index, and the extremal

eigenvalues of the distance matrix. These invariants were used for (approximate)

recognition of isomorphism, so that all subgraphs with the same values of these

invariants were considered as isomorphic. The program was generalized for

edge- and vertex-colored graphs which are used for representation of hetero-

atomic molecules and those with multiple bonds. As a spin-off, there were found

new examples of graphs with the same Balaban index and of isospectral colored

graphs.

The Hosoya polynomial of a graph G is de®ned as a generating function for the

numbers of vertex pairs at varying distance expressed by the exponent of the

dummy variable. There is no general recursion to express the Hosoya polynomial

of the given graph over its subgraphs, as is possible for e.g. matching and

characteristic polynomials. Gutman et al.195 have studied several classes of

hexagonal chains and formulated (inhomogeneous) recursions for their Hosoya

polynomials. These recursions were solved by use of Mathematica. Explicit

formulas for the Hosoya polynomials were given for members of the considered

classes with the number of repeating fragments as a parameter.

3.5 Other Enumerations. ± Evaluations of permanents have been pursued by

Cash196 (such permanents being involved in several different enumerations,

including that of Kekule structures as mentioned in Section 2.5). He ®nds ef®cient

means for their evaluation for matrices of up to 80 rows and columns, at least if

the matrices have some sparsity.

Tasi et al.130,131 make an enumeration of conformers of normal-alkane chains.

Such does not require use of Polya-theoretic machinery and has been considered

several times previously132 over the years. A difference in the present enumeration

(using relatively straightforward mathematics to give a largely analytic enumera-
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tion) is that in addition to the familiar gauche and trans structures, an evidently

theoretically predicted x-conformational structure is also included.

Nitta197 considers some `polymer statistical' results for the variety of chains of

branched acyclic molecules (such as alkanes).

Tissandier et al.198 have studied all possible hydrogen bond arrangements in the

water hexamer cage. Although enumeration of hydrogen bond arrangements was

recognized as an interesting graph-theoretical problem long ago,199,200 only

recently201 has a simple procedure for generation of all arrangements been out-

lined. Yet for larger clusters a more ef®cient program might be necessary which

also could analyse the arrangements (as already attempted202) and the possibilities

for their interconversions.

Vismar and Laurenco203 consider an analysis of a molecular graph into various

types of structures. This includes the enumeration and generation of all cycles, in

addition to sets of independent cycles. As a further development Dietz et al.204

consider discrete decorations of a molecular graph so as to provide additional

information about geometric structure, say as regards cis- and trans-stuctures, or

as regards different enantiomorphs (including different distereomers). The

enumeration or generation of the associated discrete mathematical structures then

relates to the enumerations or generation of the different chemical isomers, not

mediated by ordinary graphs. In fact there are already descriptions of geometric

isomerization already implicit in Polya theory, as reviewed in Sections 2.1 and

3.1, though the (permutation-group-theoretical) representations implicit there are

generally somewhat different.

Xu and Johnson205 consider the classi®cation of molecules into equivalence

classes identi®ed by substructures associated with molecular `pseudographs'.

Here the pseudographs represent homeomorphism classes of graphs (wherein

degree-2 vertices are deleted), and again the Morgan extended neighbor idea146

is utilized.

Further there is a great deal of work involving so-called topological indices,

which might also be described as molecular graph invariants. Such indices often

are integer valued and then count something. For instance the so-called Wiener

number of a graph may be viewed as the count of the total number of steps in a

set of minimal-length paths one between each pair of distinct vertices of the

graph. Various walk counts and the Hosoya index as mentioned in Section 3.4 are

further examples of (perhaps less popular) topological indices which enumerate

something, and are often so described. The Wiener number however is usually not

described as an enumeration, but as the sum over all shortest-path distances.

There are numerous other integer-valued topological indices which can be viewed

as enumerations, including the Platt index, the Gordon±Scantlebury index, the

Zagreb group indices, centric indices, the Szeged index, the hyper-Wiener index,

etc. And further there are a fair number of topological indices which take

rational-number values but for which the numerator and denominator of the

rational number both can be viewed as enumerations. There has in fact been a fair

degree of work on such topological indices, but we have not attempted to review

it fully. It is appropriate to note though that there are recent books206±208 which

review the ®eld.
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4 Conclusion

It is seen that there is a great deal of activity in chemical enumeration. Perhaps in

the classical area of isomer enumeration there is even a surprising amount of

activity. This may be due to a recognition that it is desirable to treat whole sets of

molecules beyond just individual molecules one at a time as has been the dominant

focus in quantum chemistry and perhaps even the vast bulk of chemistry over the

last several decades. Indeed in general chemistry, and especially medicinal

chemistry, this recognition is involved in the intense interest in combinatorial

libraries. Much of this area of combinatorial chemistry is viewed to be purely

concerned with experimental methods of synthesizing large sets (i.e. ensembles) of

compounds and their ensuant testing for their properties or bio-activities. But then

perhaps the current theoretical activity is a quest for some sort of theoretical

analogue approaches to comparably deal with virtual (i.e. theoretical or computer

generated) ensembles of molecules to examine. As witnessed in Section 3.4 there

has been much successful work in developing libraries of molecular structures,

especially in Brinkmann's work. And the member structures of such libraries may be

examined structure by structure, as exempli®ed in work by Fowler and colleagues.

But beyond individual examination of each member, there are other systematic

possibilities, which are beginning to be examined and which may ultimately prove

quite useful. If a property is (approximately) expressed in terms of suf®ciently nice

graph invariants (as by e.g. cluster expansion in terms of local substructural counts),

then searching through graphs, where the graph approximant is near optimal, could

be addressed in a way that avoids structure by structure examination.

There also seems still to be much room for theoretical methodological

developments. We have noticed (e.g. as in Section 2.5) correspondences with

seemingly different types of enumerations. And thence there is a suggestion of a

general classi®cation of interconnections, with some sort of set of `canonical'

enumerations. Indeed the point of P- or NP-complete algorithms (as for

enumerations) made in the mathematical theory of computation presumably

focuses on some aspect of such correspondences, and in statistical mechanics the

idea of `universality classes' presumably relates to this also. But the mathematical

theory relates to maximum computational time for a general case (e.g. enumera-

tion for a particular type of subgraph on a general graph) and the statistical-

mechanical ideas relate to asymptotic behaviors, whereas it seems that often there

is a much more explicit correspondence between types of enumerations. Perhaps

much more of such relations will become apparent in future work.

Overall there seems to have been a degree of activity in enumeration, with

indications of a number of further developments to come.
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