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ABSTRACT

In this paper, fully connected recurrent neural net-

works are investigated for blind separation of sources.

For these networks, a new class of unsupervised on-line

learning algorithms are proposed. These algorithms

are the generalization of the Hebbian/anti-Hebbian

rule. They are not only biologically plausible but also

theoretically sound. An important property of these

algorithms is that the performance of the networks is

independent of the mixing matrix and the scaling fac-

tor of the input sources. This property is veri�ed by

analyses and simulations.

I. Introduction

The problem of multi-channel blind separation of

sources such as the \cocktail-party" problem arises in

diverse �elds in neural computation (including hearing

and olfactory systems) and in applied science (includ-

ing radar, speech processing and digital communica-

tion). The problem is how to separate signal sources

from the sensor output in which the sources are mixed

in an unknown channel, a multiple-input multiple-

output linear system. The problem is to recover the

original waveforms of the sources. In the \cocktail-

party" problem, a person who wants to listen to a

single speaker or locate a sound source must �lter out

noise and interferences such as other people's voice and

echoes. An under water sonar system has to solve a

similar problem in order to recognize a target.

The area of blind separation is closely related to

the modeling and signal processing problems in neu-

roscience. Animals and human beings have remark-

able capabilities to localize sounds and to recognize

speeches. They can also recognize di�erent odors in

a complicated environment by their olfactory systems.

However, the detailed functional behavior of the ol-

factory system is still an open problem [7, 8]. It has

been a challenge for both theoreticians and engineers

to design some neural networks and associated adap-

tive learning algorithms to separate and localize un-

known odor sources from mixing odors.

One interesting and challenging application of the

blind separation of sources is the analysis of electro-

encephalographic (EEG) data. The problem is to sepa-

rate and localize meaningful sources in the brain based

on EEG data. This problem is mathematically under-

determined. However, an appropriately selected adap-

tive learning algorithm is able to extract independent

sources from highly correlated EEG signals. Some pre-

liminary but promising results have been reported in

[12].

Most of the approaches to the blind separation of

sources are based on the concept of Independent Com-

ponent Analysis (ICA) which is an extension or gen-

eralization of Principal Component Analysis (PCA)

[2, 4, 14]. Based on this concept and assumed that

the source signals s

i

(t) are statistically independent,

the source separation can be achieved successful when

the output signals of the separation network (the in-

verse system) become independent. It should be noted

here that the assumption of the independence on the

sources is su�cient but not necessary. Comon(1994)[4]

de�nes ICA in terms of a contrast function which es-

sentially measures the degree of independence among

the outputs. The contrast function is de�ned as

the Kullback-Leibler divergence between the joint and

marginal distributions of the outputs. To evaluate the

contrast function, either Gram-Charlier expansion [1]

or Edgeworth expansion [4] can be used. One method

is to use high order statistics (HOS) to implement the

ICA. One disadvantage of this method is that it is

usually computationally very intensive and may be in-

accurate when the cumulants which are higher than

4-th order are neglected. It seems the HOS approach

is not plausible for biological systems since it violates

two fundamental principals: locality and simplicity.

Our goal is to develop a class of e�cient on-line

adaptive learning algorithms which can be easily hard-



wired on neural networks and can automatically search

for synaptic weights.

II. Basic Model and Learning Algorithm

Let us consider n unknown source signals: s

i

(t); i =

1; � � � ; n. The model for the sensor output is

x(t) = As(t)

where A is an unknown non-singular mixing matrix,

s(t) = (s

1

(t); � � � ; s

n

(t))

T

;

x(t) = (x

1

(t); � � � ; x

n

(t))

T

and (:)

T

denotes the transpose of a vector.

To recover the unknown sources, we use the follow-

ing linear recurrent neural network which takes the

sensor output as its input:

�

i

dy

i

dt

+ y

i

= x

i

(t)�

n

X

i=1

bw

ij

(t)y

j

(1)

where �

i

are time constants and bw

ij

are synaptic

weights. The model (1) can be put into the follow-

ing compact form:

�

dy

dt

+ y = x(t)�

c

W(t)y

where

� = diag(�

1

; � � � ; �

n

) and

y(t) = (y

1

(t); � � � ; y

n

(t))

T

.

After a short transience, we get a so-called adiabatic

approximation

y(t) = (I+

c

W(t))

�1

x(t) (2)

under the condition that all eigenvalues of the matrix

I +

c

W(t) have positive real parts. This condition of-

ten holds in our simulations even for ill-conditioned

mixing matrix. In order to simplify the analysis, we

take the adiabatic approximation directly as the out-

put of the network (1). This type of neural network for

signal separation has been used by many researchers

such as Jutten-Herault (1991)[9], Hop�eld (1991)[8]

and Matsuoka et al (1995)[13]. However, all these

researchers did not use self-inhibitory connections in

their models. This is also the case in the novelty �lter

described by Kohonen (1984)[10] and de-correlating

network proposed by Barlow and F�oldi�ak (1989) [6]

and F�oldi�ak (1989)[5].

In contrast to these models, our network is fully con-

nected with self-inhibitory connections. We shall show

that these self-loops play an essential role in improving

the performance of the network in separating sources.

For the model (1), we have developed the following

on-line learning algorithm:

d bw

ii

dt

= ��(t)f�

i

( bw

ii

(t) + 1) � [f(y

i

(t))

+

n

X

k=1

bw

ik

(t)f(y

k

(t))]g

i

(y

i

(t))g; (3)

for i 6= j,

d bw

ij

dt

= ��(t)f�

i

( bw

ij

(t)� [f (y

i

(t))

+

n

X

k=1

bw

ik

(t)f(y

k

(t))]g

j

(y

j

(t))g (4)

where �

i

> 0 are scaling factors (typically �

i

= 1),

�(t) > 0 is a learning rate function (usually exponen-

tially decreased to zero), and f(y) and g(y) are two

odd activation functions. Two typical choices for the

activation functions are:

1. f (y) = y

3

and g(y) = y;

2. f (y) = y and g(y) = tanh(10y).

The algorithm (4) can be put into a compact matrix

form as following:

d

c

W

dt

= ��(t)[I +

c

W][�� f(y(t))g

T

(y(t))] (5)

where

� = diag(�

1

; �

2

; � � � ; �

n

) with positive entries,

typically, � = I,

f(y) = (f(y

1

); f (y

2

); � � � ; f (y

n

))

T

,

g(y) = (g(y

1

); g(y

2

); � � � ; g(y

n

))

T

.

When an auxiliary inter-neuron layer is incorpo-

rated to generate

z(t) = f(y(t)) +

c

W(t)f (y(t));

the algorithm (5) can be implemented simply by the

following algorithm:

d

c

W

dt

= ��(t)[�+

c

W�� z(t)g

T

(y(t))]: (6)

This algorithm can be considered as a generalization

of the anti-Hebbian rule. To compute y(t), it is not

necessary to compute the inverse of the matrix I +

c

W(t) explicitly. Instead of using (2), we use the the

following recursive relation to compute y(t):

y(t) = x(t)�

c

W(t)y(t� � )



where � is a small delay. Figure 1 below illustrates the

implementation of our algorithm.
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Figure 1: A Functional block diagram of the separa-

tion network

III. Extensions of The Basic Learning

Algorithm

There are many possible extensions of the learning al-

gorithm (5). A general form of the learning algorithm

is the following:

d

c

W

dt

= ��(t)(

c

W + I)G(y(t)) (7)

where the matrixG(y) can take various forms such as:

G

1

(y) = �� f(y)g

T

(y);

G

2

(y) = �� yy

T

� f (y)g

T

(y) + g(y)f

T

(y);

G

3

(y) = �� f(y)g

T

(y)� diagfyy

T

� f(y)g

T

(y)g;

G

4

(y(t)) = ��

p

X

k=0

y(t)y

T

(t� kT ); p = 1; 2; 3:

Note the above continuous-time algorithm can be

easily transformed to a discrete-time (iterative) algo-

rithm as

c

W(k + 1) =

c

W(k)� �(k)[(

c

W(k) + I)G(y(k�t));

k = 0; 1; 2; : : : ;

where �(k) > 0 is a sequence of learning rates and �t

is a sample interval.

The choice of the matrix G(y) may depend on

many factors, e.g., distribution of sources, convergence

speed, and the complexity of implementations. The

idea behind using function f(y) and g(y) is to can-

cel the higher order (nonlinear) correlations or cross-

cumulants. Let us take an expectation of both side

of equation (7). If the synaptic weights <

c

W(t)> ap-

proaches a constant matrix, then the term <G(y)>

approaches to zero as t approaches to in�nity, i.e.,

the nonlinear correlations with respect to the function

f(y) and g(y) decrease to zero.

Although the algorithm (7) works well in simula-

tions, the theory for this algorithm is not mature. It

is not an easy task to derive it rigorously. In [1],

we use the Kullback-Leibler divergence between the

joint and marginal distributions of the outputs to mea-

sure dependency among the output signals. We de-

rived a learning algorithm for the feedforward network

by minimizing the Kullback-Leibler divergence. The

Gram-Charlier expansion is applied in evaluating the

Kullback-Leibler divergence. If the natural gradient of

the divergence is used to minimize the divergence, the

learning algorithm is the following:

dW

dt

= �(t)G(y)W: (8)

where the function G(y) is in the following special

form:

G(y) = I� f (y)y

T

;

f (y) =

3

4

y

11

+

25

4

y

9

�

14

3

y

7

�

47

4

y

5

+

29

4

y

3

:

From (8), we can easily obtain the algorithm (7) by

using a transform W = (

c

W + I)

�1

.

It is still an open question why the algorithm (7)

works in simulations for other types of functions such

as G

i

(y), i = 1;2; 3; 4.

IV. Equivariant Property and Performance

Factor

A major advantage of the algorithm (7) is that the per-

formance of the proposed algorithm does not depend

at all on the mixing matrix and the scaling factor of

the input sources. To get this property, we put the

algorithm (7) into the following form:

(

c

W + I)

�1

d

c

W

dt

= ��(t)G(y(t))

Hence

d(

c

W + I)

�1

dt

(

c

W + I) = �(t)G(y(t)):

Therefore,

d(

c

W + I)

�1

dt

= �(t)G(y(t))(

c

W + I)

�1

:

Multiplying the above equation by the mixing ma-

trix A from right on each side of the equation, we have

dP

dt

= �(t)G(y(t))P; (9)



where P = (

c

W + I)

�1

A. The matrix P(t) will be

called the performance matrix of the learning equa-

tion (7). During the learning process the performance

matrix tends to a generalized permutation matrix in

which each column and each row has one and only one

dominant element. To evaluate the performance of the

separation algorithm, we de�ne the performance fac-

tor associated to the matrix P(t) = (p

ij

) 2 R

n�n

as

following:

E

1

=

n

X

i=1

(

n

X

j=1

jp

ij

j

max

k

jp

ik

j

�1)+

n

X

j=1

(

n

X

i=1

jp

ij

j

max

k

jp

kj

j

�1)

The performance of the separation network is fully

determined by the equation (9). Since it does not de-

pend on the mixing matrix A directly, we can assume

G(y(t)) = G(P(t)s(t)) where the source signals s(t)

have a normalized distribution. This is a very good

property especially when the problem is ill-posed or

ill-conditioned. It should be noted that our algorithms

has the same \equivariant" property as the algorithms

developed by Cardoso and Laheld in [2, 11] for feed-

forward networks.

Another advantage of the algorithm (7) is that the

operational range of

c

W is bounded. Usually,

�1 � bw

ij

� 1

hold even for an ill-conditioned mixing matrix. When

the synaptic weights are small the system (1) is stable.

V. Simulations

Two simulation examples are given to demonstrate the

performance of the algorithm (7). The simulation re-

sults are shown in Figures 2-6 located at the end of

this paper.

Example 1: Consider the following three unknown

sources:

s

1

(t) = n(t)

s

2

(t) = 10

�3

cos(400t+ 10 sin(90t))

s

3

(t) = 10

�4

sign[cos(550t)� 5 sin(99t))]

where n(t) is a Gaussian noise with variance �

2

= 1.

These three sources are mixed by a mixing matrix

A =

2

4

0:20 �0:61 0:62

0:91 �0:89 �0:33

0:59 0:76 0:60

3

5

Choose f(y) = y

3

, g(y) = y, and �(t) =

1000 exp(�15t) as the learning rate function in the

algorithm (5). The dynamics of both x(t) and y(t)

are shown in Figure 2. The �rst three signals de-

noted by X1, X2 and X3 represent mixing (sensor)

signals: x

1

(t), x

2

(t) and x

3

(t). The last three signals

denoted by O1, O2 and O3 represent the output sig-

nals: y

1

(t), y

2

(t), and y

3

(t). When the algorithm is

convergent, the performance matrix P(t) becomes a

generalized permutation matrix in which each column

has one and only one dominant element. We de�ne

the performance factor as the summation of the all

absolute values of the elements in P(t) except those

dominant elements.

The performance factor for the algorithm (7) and

the evolution of the synaptic weights bw

ij

are shown in

Figure 3.

A feedforward network is proposed in [3] and [2] for

blind separation. The following algorithm is proposed

in [3] to �nd the de-mixing matrix W:

dW

dt

= �(t)[I� f (y(t))g

T

(y(t))]W: (10)

Choose the same activation function as those in our

recurrent network. The performance factor for the al-

gorithm (10) and the evolution of the weights w

ij

are

shown in Figure 4.

Comparing Figure 3 with Figure 4, we have the fol-

lowing observations:

1. The performance factor for our recurrent net-

work is generally smaller than the one for the

feedforward network.

2. Although the separation times of the two net-

works are comparable, the operational range for

the synaptic weights bw

ij

in the recurrent net-

work is much smaller than the one for the synap-

tic weights w

ij

in the feedforward network.

Example 2: Let the three unknown sources be the

following:

s

1

(t) = n(t)

s

2

(t) = 10

�9

sin(900t) � sin(60t)

s

3

(t) = 10

�6

sin(234t):

Assume the noise n(t) and the mixing matrix are the

same as those in Example 1.

Choose f(y) = y, g(y) = tanh(10y), and a con-

stant learning rate �(t) = 100. The simulation result

is shown in Figure 5. The performance factor and the

evolution of the synaptic weights bw

ij

are shown in Fig-

ure 6.

VI. Conclusions

We have developed a general learning algorithm to

train a recurrent network for blind separation of

sources. Like the feedforward network, the recurrent

network also has equivariant property, i.e., the perfor-

mance of these networks is independent of the mixing

matrix and the scaling factor of the input sources. In



contrast to the feedforward network, the recurrent net-

work needs a much smaller operational range for the

synaptic weights. Therefore, in the implementation

of the separation networks, the hardware requirement

for the recurrent network is less than the one for the

feedforward network.

Although the general algorithm (7) can be justi�ed

for some special forms of the function G(y), it is still

an open problem to derive the algorithm rigorously for

other forms of G(y) working well in simulations.

The recurrent network model proposed in this paper

can be extended to a model in which each output is a

mixture of delayed sources. For this model with delays,

we can use an algorithm similar to the algorithm (7)

for blind source separation when the delays are known.
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Figures:

(Note: Plots for Figure2-6 are in a separate tared

�le called noltaFigs.tar )

Figure 2: The mixed signals versus the separated sig-

nals in Example 1

Figure 3: The performance factor and the evolution of

the synaptic weights bw

ij

in Example 1

Figure 4: The performance factor and the evolution

of the synaptic weights w

ij

for the algorithm with the

feedforward network in Example 1



Figure 5: The mixed signals versus the separated sig-

nals in Example 2

Figure 6: The performance factor and the dynamics

of the synaptic weight bw

ij

in Example 2


