
TCP Servers: Offloading TCP Processing in Internet Servers. Design,
Implementation, and Performance

Murali Rangarajan, Aniruddha Bohra, Kalpana Banerjee, Enrique V. Carrera, Ricardo Bianchini
Department of Computer Science

Rutgers University, Piscataway, NJ 08854-8019�
muralir, bohra, kalpanab, vinicio, ricardob��� cs.rutgers.edu

Liviu Iftode
Department of Computer Science

University of Maryland, College Park, MD 20742
iftode� cs.umd.edu

Abstract

TCP Server is a system architecture aiming to of-
fload network processing from the host(s) running an
Internet server. The basic idea is to execute the TCP/IP
processing on a dedicated processor, node, or device
(the TCP server) using low-overhead, non-intrusive
communication between it and the host(s) running the
server application.

In this paper, we propose, implement, and eval-
uate the TCP Server architecture to offload TCP/IP
processing in two different scenarios (1) using dedi-
cated network processors on a symmetric multiproces-
sor (SMP) server and (2) using dedicated nodes on a
cluster-based server built around a memory-mapped
communication interconnect such as VIA.

Based on our experience and results, we draw sev-
eral conclusions: (i) offloading TCP/IP processing
is beneficial to overall system performance when the
server is overloaded (performance gains of upto 30%
were achieved in the scenarios we studied) (ii) TCP
servers demand substantial computing resources for
complete offloading. Complete TCP/IP offloading to
intelligent devices requires the device to be computa-
tionally powerful to outperform traditional architec-
tures. (iii) the type of workload plays a significant
role in the efficiency of TCP servers. Depending on
the application workload, either the host processor or
the TCP Server can become the bottleneck. Hence,
a scheme to balance the load between the host and
the TCP Server would be beneficial to server perfor-

mance.

1 Introduction

With increasing processing power, the two main
performance bottlenecks in web servers are the stor-
age and network subsystems. A significant reduction
of the impact of disk I/O on performance is possible
by caching, combined with server clustering and re-
quest distribution techniques like LARD [28] which
results in removing disk accesses from the critical path
of request processing. However, the same is not true
for the network subsystem, where every outgoing data
byte has to go through the same processing path in the
protocol stack down to the network device. In a tradi-
tional system architecture, performance improvements
for network processing can only come from optimiza-
tions in the protocol processing path [1, 12, 16, 23, 21].

As a result, increasing service demands on today’s
network servers can no longer be satisfied by con-
ventional TCP/IP protocol processing without signif-
icant performance or scalability degradation. When
factoring out disk I/O through caching, TCP/IP pro-
tocol processing can become the dominant overhead
compared to application processing and other system
overheads [22, 37]. Furthermore, with gigabit-per-
second networking technologies, protocol and network
interrupt processing overheads can quickly saturate
the host processor with increasing network processing
loads, thus limiting the potential gain in network band-
width [4].

Two non-conventional architectures have been pro-
posed to alleviate the overheads involved in TCP/IP
networking: (i) offloading some of the TCP/IP pro-
cessing to intelligent network interface cards (I-NIC)
capable of speeding up the common path of the proto-
col [3, 8, 10, 14, 18, 36] and(ii) replacing the expen-
sive TCP/IP processing with a lightweight, more effi-
cient transport protocol [8, 11], using user-level and
memory-to-memory communication based on stan-
dards such as VIA [13] and Infiniband [17]. The first
approach attempts to alleviate the overheads associ-
ated with conventional host-based network process-
ing and the second approach attempts to achieve better
server performance within the data center by exploit-
ing the characteristics of the underlying SAN. Other
work has been done on confining execution of the
TCP/IP protocol, system calls, and network interrupts
to a dedicated processor of a multiprocessor server, but
limited results have been reported [26].

Our work aims to understand the design, implemen-
tation, and performance of server architectures that
rely on TCP/IP offloading for client-server commu-
nication. Our approach consists of decoupling the
TCP/IP protocol stack processing from the server host,
and executing it on a dedicated processor/node. We
call this aTCP Serverarchitecture. The performance
of the TCP Serversolution depends on two factors:
(i) the efficiency of the communication between the
host and the TCP server and(ii) the network pro-
gramming interface provided to the server applica-
tion. With respect to the communication efficiency,
TCP servers can dramatically benefit from using low-
overhead, non-intrusive, memory-mapped communi-
cation and new I/O switch technologies [17, 32]. With
respect to the network API, to fully exploit the per-
formance potential of the TCP-server and avoid data
copying, the server application must use and toler-
ate asynchronous socket communication. In Mem-
Net [31], we introduced the Memory-Mapped Net-
working API which enables applications to offload
the TCP/IP processing to TCP Servers efficiently over
memory-mapped interconnects. A similar technique is
used by the Direct Access File System (DAFS) stan-
dard which exploits memory-mapped communication
in accessing a remote file server [19].

In this paper, we propose, implement, and evaluate
the TCP Server architecture in two different scenar-
ios. The first scenario consists of using one or more
dedicated processors to perform TCP processing in a
Symmetric Multiprocessor (SMP) server. In this case,

the non-intrusive communication between the host and
the dedicated processor(s) is achieved using shared
memory, incurring minimal overhead. We evaluate
the server performance as a function of the number of
processors dedicated for network processing and the
amount of processing offloaded to them. Finally, we
study the tradeoffs between polling and interrupts for
event notification in this environment.

In our second scenario, we offload the network pro-
cessing to dedicated node(s) in a cluster-based server.
The TCP server connects to the nodes running the
server application through memory-mapped commu-
nication over a high-speed interconnect. We present
and evaluate the design space of TCP offloading over
memory-mapped communication using a user-level
TCP server implementation over VIA. We present
the performance gain for server applications using
the MemNet API thus enabling a separation of the
gains achieved from TCP/IP offloading, zero-copy im-
plementation and asynchronous processing. Offload-
ing the network processing to dedicated components
has benefits that go beyond just performance, and in-
creases modularity and ease of management of the
server system.

This paper represents the first study to evaluate the
benefits of TCP processing offloading in a comprehen-
sive manner. Previous studies and products do not
consider several important issues. First, they have
not quantified the impact of offloading on the perfor-
mance of network servers. We do so for different ar-
chitectural scenarios. Second, previous work does not
consider the role of the network programming inter-
face in server performance. We demonstrate the gains
achieved by server applications using a programming
interface which allows the applications to exploit the
benefits of the low latency communication between the
host and the TCP Server.

Based on our experience and results, we conclude
that offloading the network processing from the host
processor using aTCP Serverarchitecture can be ben-
eficial for server performance in most scenarios.

The remainder of this paper is organized as follows.
Section 2 describes our motivation for this work in de-
tail. Section 3 provides an overview of theTCP Server
architecture. Sections 4 and 5 describe the details of
each architecture including an evaluation. Finally, sec-
tion 7 presents our conclusions.

2

Figure 1. Apache Execution Time Breakdown

2 Motivation

In traditional network servers, the TCP/IP protocol
processing often dominates the cost incurred from ap-
plication processing and other system overheads. Un-
der heavy load conditions, network servers suffer from
host CPU saturation as a result of protocol processing
and frequent interruptions from asynchronous network
events. In this section, we briefly present experimen-
tal results in support of these statements, suggesting a
need to offload networking functionality from a host.

To exemplify, we have quantified the time alloted
to network processing from the execution time of an
Apache (apache-1.3.20) web server. In this experi-
ment, we used a synthetic workload of repeated re-
quests for a 16 KB file cached in memory. Figure 1
shows the execution time breakdown on a dual Pen-
tium 300MHz system with 512 MB RAM and 256 KB
L2 cache, running Linux 2.4.16. We instrumented the
Linux kernel to measure the time spent in every func-
tion inside the kernel in the execution path ofsend
andrecv system calls, as well as the time spent in
interrupt processing.

The results show that the web server spends only
20� of its execution time in user space. The TCP/IP
processing for thesend call takes 45� (including
time spent making two copies of data, one from user
space to kernel, another for cloning packets inside the
kernel for potential retransmission). Interrupt process-
ing (8�) includes the time to service NIC interrupts
and setup DMA transfers. TCP receive (7�) is the
time taken by the kernel to receive the packet, not in-
cluding the time spent by therecv system call to copy
the data into user space. Altogether, network process-
ing, which includes TCP send/receive, interrupt pro-

cessing, bottom half1 processing, and IP send/receive
take about 71� of the total execution time.

In addition to the direct effect of “stealing” proces-
sor cycles from the application, network processing
also affects the server performance indirectly. Asyn-
chronous interrupt processing and frequent context
switching contribute to the overheads due to effects
like cache and TLB pollution.

We believe that offloading TCP/IP processing from
the host processor to a dedicated processor would help
in improving server performance in two ways. First,
by freeing up precious host processor cycles for the ap-
plication. Second, by eliminating the harmful effects
of OS intrusion[25] on the application execution.

3 TCP Server Architecture

TCP Server is a system architecture for offloading
network processing from the application hosts to ded-
icated processors, nodes, or intelligent devices. This
separation aims to improve server performance by iso-
lating the application from OS intrusion, and by re-
moving the harmful effect of co-habitation of various
OS services. The performance of applications using
the TCP Server architecture heavily relies on the effi-
ciency of the communication between the host and the
TCP server, and on the efficiency of the socket pro-
gramming interface used by the server application. A
TCP server can execute the entire TCP processing or
it can split the work with the application hosts.

Figure 2 presents two architectures for network
servers: a tradtional architecture and an architecture
based on TCP Servers. The application host avoids
TCP processing by tunneling the socket I/O calls to
the TCP server using fast communication channels.
In effect, TCP tunneling transforms socket calls into
lightweight remote procedure calls. As the goal of
TCP/IP offloading is to save network processing over-
head at the host, using a faster and lighter communi-
cation channel for tunneling is essential. In the TCP
server implementations described in this paper, we use
shared memory and memory-mapped communication
for tunneling which are both non-intrusive commu-
nication solutions (with zero overhead on the remote
side).

The TCP Server architecture enables several key

1In Linux, “bottom half” denotes the “soft interrupt” part of
the interrupt processing. We distinguish it from the strictly asyn-
chronous servicing of a hardware interrupt, which schedules it for
subsequent processing.

3

KERNEL

USER

KERNEL

USER
CLIENT SERVER

KERNEL

USER

CLIENT Application HostTCP Server

FAST
COMMUNICATION

TCP/IP

TCP/IP

SERVER

a)

b)

Figure 2. TCP Server Architecture

features which can significantly impact the overall per-
formance of the server. In what follows, we will briefly
discuss these features, their impact on the application
programming interface and performance.

1. Kernel Bypassing. To achieve good perfor-
mance, the communication with the TCP server
must be done from user-space (application) di-
rectly, without involving the host OS kernel in
the common case. This can be done by estab-
lishing asocket channelbetween the application
and the TCP server for each open socket. In the
SMP server case, the socket channel is imple-
mented using shared memory queues, whereas
in a cluster-based server the channel reduces
to a memory-mapped communication channel
(VIA/IB channel).

2. Asynchronous Socket Calls. By using asyn-
chronous socket calls, the application can exploit
maximum gain from using the TCP Server archi-
tecture. First, this allows for maximum overlap-
ping between the TCP processing of the socket
call and the application execution. Second, us-
ing asynchronous calls gives the server system
scope to avoid context switches in the critical path
whenever possible.

3. Avoiding Interrupts . Since the TCP server ex-
clusively executes TCP processing, interrupts can
be easily and beneficially replaced with polling
on the TCP server. We evaluated both methods
for the SMP-based server and found that replac-
ing interrupts with polling is indeed beneficial.
However, the frequency of polling must be care-
fully controlled, as a very high rate would lead
to bus congestion and a very low rate would re-
sult in inability to handle all events. The prob-
lem is aggravated by the higher layers in the TCP
stack having unpredictable turnaround times and
by multiple network interfaces.

KERNEL

USER

CLIENT

KERNEL

Application HostTCP Server

TCP/IP

SERVER

Shared
Memory

USER

dedicated host

Figure 3. TCP Server in an SMP-based server

4. Processing Ahead. Decoupling the TCP/IP pro-
cessing from the application enables a few opti-
mizations to server processing. The TCP server
can execute certain operations ahead of time, be-
fore they are actually requested by the applica-
tion. The operations that can be eagerly per-
formed and can provide performance benefits are
theaccept andreceive system calls.

5. Direct Communication with File Server. In a
multi-tier architecture that uses remote file sys-
tems for data storage, a TCP server can be in-
structed to perform direct communication with
the file server. This means that certain files which
the application does not want to cache in the host
memory can be transferred directly from the file
server to the TCP server. This transfer can be
done securely if the host OS passes the socket
channel (as a capability) to the file server which
in turn uses it to write the file data onto the socket.
This is particularly appealing for cluster-based
servers over VIA if both DAFS servers and TCP
servers are used, since both understand VI chan-
nels.

4 TCP Server Implementations

In this section, we present the implementation of the
TCP Server architecture in two different scenarios:

� In a symmetric multiprocessor(SMP) server, the
TCP server is implemented by dedicating a subset
of the processors for in-kernel TCP processing.

� In a cluster-based server, the TCP server is im-
plemented by dedicating a subset of nodes to
TCP processing. A fast, low-overhead memory-
mapped communication architecture such as VIA
or Infiniband is used for intra-server communica-
tion.

4.1 TCP Server in SMP-based Servers

We partition the set of processors in an SMP-based
server intohostanddedicatedprocessors as shown in

4

Figure 3. Thededicatedprocessors are used exclu-
sively by the TCP server for TCP/IP processing. The
communication between the application and the TCP
server is through queues in shared memory.

System Operation: Network generated interrupts
are routed exclusively to thededicatedprocessors. The
TCP server executes a tight loop in the kernel context
on each dedicated processor. On a socket send, the
data to be sent is copied from the application to a ker-
nel buffer. This buffer is part of the shared memory
queue, from where the TCP server dequeues the of-
floading request and carries out the bottom half of the
send processing, which also includes the IP send pro-
cessing and setting up a DMA to the NIC.

The receive events, which are asynchronous, are
routed to the TCP server, which does the entire bottom
half processing from servicing a hardware interrupt, to
IP receive and the bottom half TCP receive, where the
protocol stack queues the data in the socket buffers.
On a receive call from the application on the host pro-
cessor, these buffers are copied to the user space.

Offloading TCP/IP functionality: We identify
four distinct components of TCP/IP functionality that
can be offloaded to dedicated processors:(i) the inter-
rupt and bottom half (software interrupt) processing,
(ii) the asynchronous receive processing (after the bot-
tom half),(iii) the TCP/IP send functionality executed
in the context of the process (after a system call), and
(iv) the portion of the TCP/IP send processingafter
copying the data to kernel buffers.

In most scenarios,(i), (ii) cannot be offloaded in-
dependent of each other without incurring excessive
overhead. In the offloading choices available for(iii)
and (iv), we can offload(iv) without changing the
socket API semantics. While(iv) alone has some per-
formance benefit, it does not alleviate the copy to the
kernel buffers being done at the application proces-
sor. The offloading of(iii) subsumes that of(iv), but
requires a co-operating application to call an asyn-
chronoussendwhich returns immediately but the ap-
plication cannot re-use the buffer until thesend is
done, i.e. TCP server has copied data to the kernel
buffers. We discuss each of the design choices and the
issues involved in implementing them, in the following
sections.

Offloading interrupts and receive processing:
Receive processing is asynchronous and executes in
the context of an external interrupt. The network pro-
cessors assume responsibility of receive processing af-
ter receiving the interrupt. This includes the interrupt

KERNEL

USER

CLIENT

KERNEL

USER
Application HostTCP Server

SAN

TCP/IP

SERVER

Figure 4. TCP Server in cluster-based servers

handling, bottom half functionality, IP, and TCP re-
ceive processing where the system copies the received
data into the receive buffers of the socket. The effect
of dedicating processors for receive processing is not
limited to isolating the host from interrupts generated
for TCP/IP processing.

Polling on the network interface has been suggested
as an alternative mechanism to alleviate this prob-
lem [20, 22]. The inefficiency of polling has often been
cited as a reason not to use it exclusively(instead of the
interrupt mechanism) [5, 20, 22]. Our model, where
network processing is limited to the dedicated proces-
sors, allows us to poll on the network interface fre-
quently without slowing other tasks down. We study
polling in the dedicated processor as an alternative way
to handle the events at the network interface.

Offloading TCP send processing:TCP send re-
quests are issued by the application. The OS copies
the send buffer to kernel buffers, to prevent it from be-
ing overwritten before being sent out. A second copy
is needed to allow TCP to retransmit the data in case
of an error.

We propose two mechanisms to offload the TCP
send processing to the dedicated processors. First, we
provide a mechanism to offload the TCP send process-
ing without any support from the application. In this
case, we offload the send processing to the dedicated
processor after the copy to the kernel buffers has been
made in the context of the application. Second, we
provide a send mechanism to avoid copying in the ap-
plication processor TCP/IP stack including the copy
to the dedicated processor, with co-operation from the
application. In this case, the server asynchronously no-
tifies the application about the completion of the send,
after the data has been copied to or acknowledged at
the TCP server. The system assumes that applications
using asynchronous send, check for completion of the
send before reusing the buffer.

4.2 TCP Server in Cluster-based Servers

In a cluster-based server, the application host and
the TCP server are connected by a VIA-based SAN as

5

Kernel

User

Application HostTCP Server

SAN

Kernel

User

CLIENT

Kernel

User

TCP/IP

Kernel

UserSAN

Kernel

User

Kernel

User

TCP/IP

Kernel

User
SAN

Kernel

User

Kernel

User

TCP/IP

SERVER

Application Host

Application Host

TCP Server

TCP Server

Figure 5. TCP Server Design Alternatives

shown in Figure 4. The TCP Server acts as the network
endpoint for the outside world. Network data is tun-
neled between the application host and the TCP Server
across the SAN using VI channels. The socket call
interface is implemented as a user-level communica-
tion library on the application host. This library man-
ages and maintains VIs on the host. With this library,
a socket call is tunneled across the SAN to the TCP
server. On the TCP Server, asocket providermod-
ule interprets the call and performs the corresponding
socket operation.

Design Alternatives: Figure 5 shows the various
design alternatives to implement the TCP server. In
the first two alternatives, thesocket providermodule
is implemented in user space on the TCP server. In
the first alternative,socket provideruses the standard
Linux socket implementation to implement socket op-
erations. With this approach, we still pay the complete
cost of socket operations but on the TCP Server instead
of the host. The second alternative avoids the copy be-
tween user-space and kernel-space by sharing the data
buffers between the user-spacesocket providerand the
kernel. The third alternative avoids the copy between
user-space and the kernel by using an in-kernelsocket
provider. We used the first alternative for the proto-
type described in this paper. We are currently working
on an optimized implementation based on the second
and third alternatives.

Programming Interface: Server applications use
the MemNet API [31] to access the networking sub-
system in our prototype.

The MemNet API allows applications to perform

sends and receives both synchronously and asyn-
chronously. The send/receive primitives provided
by the MemNet API (sync send, sync recv,
async send and async recv) allow data to be
transferred directly to and from application buffers. In
order to achieve this, the application needs to regis-
ter its communication buffers with the system. The
register mem andderegister mem primitives
enable the application to register and deregister mem-
ory with the system.

The sync send/sync recv primitives return
to the application only after the send/receive op-
eration is offloaded to the TCP Server. The
async send/async recv primitives immediately
return job descriptors to the application. The job de-
scriptors can be used by the application to check the
completion status of asynchronous operations. The
application has the option of using thejob wait or
job done primitives to wait or poll respectively, for
completion of the asynchronous operation specified in
the job descriptor. To guarantee correctness, the sys-
tem assumes that applications do not overwrite buffers
specified as part of an asynchronous operation, before
the operation completes.

Prototype Details: Each socket used by the ap-
plication is mapped to a VI channel and has a cor-
responding socket endpoint on the TCP Server. The
system associates with each VI channel, a registered
memory region which is used internally by the sys-
tem. Since the mapping of a socket to a VI and its
associated memory regions is maintained for the life-
time of the socket, these memory regions can be used
by the system to perform RDMA transfers of control
information and data between the application and the
TCP Server. These memory regions include the send
and receive buffers associated with each socket. An
RDMA-based signalling scheme is used for flow con-
trol between the application and the TCP Server, for
using the socket send and receive buffers.

As creating VIs and connecting them are expensive
operations, the socket library on the application host
creates a pool of VIs and requests connections on them
from the TCP Server, at the time of initialization. The
TCP Server is implemented as a multi-threaded user-
level process running on the network-dedicated node.
The main thread of the TCP Server accepts or rejects
VI connection requests from the host depending on its
existing load. On accepting a VI connection request,
the main thread then hands over this VI connection to
a worker thread which is then responsible for handling

6

all data transfers on that VI.

Thesocket provideruses the standard Linux socket
implementation in our prototype. This guarantees re-
liable transmission of data once a socket send is per-
formed on the TCP Server. To guarantee correct op-
eration, buffers used in send should not be overwritten
until the entire buffer is sent to the TCP Server. In
sync send, control returns to the application only
after the entire buffer is sent using the TCP/IP Socket
Provider. Inasync send, control returns to the ap-
plication as soon as the send is posted on the VI chan-
nel corresponding to the socket. The application has to
avoid overwriting buffers used in asynchronous sends
until the operation completes.

Optimizations: Our prototype also includes two
optimizations to improve the performance of server
applications.

� Eager Receiveis an optimization to the network
receive processing. The TCP Server eagerly per-
forms receive operations on behalf of the host and
when the application issues a receive call, data is
transferred from the TCP Server to the applica-
tion host. The TCP Server posts receive eagerly
for a number of bytes, and continues with further
eager receive processing depending on the rate of
data consumed by the host. Thesocket provider
uses thepoll system call to verify if any data
is ready to be read from that socket before issu-
ing an eager recv. Thesocket providerkeeps the
received data on the TCP Server and transfers it
directly into the application buffers when the ap-
plication invokes a receive.

� Eager Accept is an optimization to the connec-
tion processing. A dedicated thread of thesocket
provider eagerly accepts connections upto a pre-
determined maximum. When the application is-
sues anaccept, one of the previously accepted
connections is returned. We expect this optimiza-
tion to reduce the processing time for theac-
cept primitive.

5 TCP Server Evaluation

In this section, we present an evaluation of the per-
formance impact of the TCP Server architecture for
both SMP-based and cluster-based servers.

5.1 Evaluation of SMP-based Server Architec-
tures

In this section we present the evaluation of the TCP
offloading approach in an SMP-based TCP server ar-
chitecture. In our prototype, we modified the Linux-���
	��
���

networking stack to separate thelower half of
both send(TCP send after copying in the kernel, IP
send and device access routines), and receive process-
ing(Interrupt service routines, software interrupt han-
dlers, IP receive and copying to the socket buffer) from
the upper half(system call interface, copying to and
from the kernel buffers) of the kernel. We execute the
lower half on the TCP server, which is a subset of pro-
cessors in an SMP system. The upper half executes
on the host processors. The TCP server processors
are dedicated to network processing and do not exe-
cute any user level code. We isolate the asynchronous
events(interrupts) from the host processors by routing
them to the TCP server nodes using the IO/APIC in-
terrupt routing mechanism.

We evaluate several alternative TCP Server imple-
mentations for the SMP system. We vary the number
of processors dedicated to the network processing, the
amount of processing offloaded to the dedicated pro-
cessors, and the event notification mechanism for the
system.

We use interrupts and polling as the alternative
event notification mechanisms. For both polling and
interrupts, we vary the amount of processing offloaded
to the dedicated processors,(i) The dedicated proces-
sors do not participate in any send processing, and(ii)
The lower half of the send processing is also offloaded
to the dedicated processors. In this case, the host pro-
cessor is responsible for user-level processing and for
transfer of data between user space and kernel space.
While in the first case, the TCP server is primarily re-
sponsible for asynchronous event handling, in the sec-
ond case, the TCP server also participates in the net-
work send processing . This gives us four different
configurations as combinations of the alternatives.

We study the performance of a server system for
each of the above implementations, comparing them
against the unmodified uniprocessor and multiproces-
sor kernels. We also study the effect of the number of
dedicated network processors on the performance of
the server system.

We evaluate these systems on two hardware con-
figurations(i) a ����� MHz Intel Pentium-based 2-way
SMP system with� ��� MB DRAM and

� � � KB L2

7

Figure 6. Throughput for a simple web server on a
2-Way SMP system using HTTP/1.0.

cache and(ii) a ����� MHz Intel Xeon-based 4-way
SMP system with

�
GB DRAM,

�
MB L2 cache. Both

configurations used a 3Com 996-BT gigabit Ethernet
adapter.

Our experiments reveal that dedicating processors
to asynchronous event handling improves the perfor-
mace of a typical web server upto 30%. Using polling
instead of interrupts as the asynchronous event noti-
fication mechanism also improves the performance of
the system. Our results also indicate that the number
of dedicated processors required depends on the appli-
cation workload. We describe the results for the 2-way
case in Section 5.1.1 and the 4-way case in Section 5.2.

5.1.1 Experimental results for 2-way SMP

We studied the performance of a simple multithreaded
web server on a 2-way SMP system running different
configurations of TCP servers described above. We
used a synthetic trace(Synthetic) in which 16-KByte
files are requested in a way that the files are unlikely
to be found in the L2 hardware cache. The charac-
teristics of the trace are shown in Table 1. We used
httperf [24] as the client benchmarking tool to generate
the required workloads. We varied the rate of requests
and measured the rate of succesful HTTP replies as the
throughput of the web server. We used both HTTP 1.0
and 1.1 protocols to measure server performance with
this synthetic workload.

With the 2-way SMP machines, since we are limited
by the number of processors, we can evaluate only two
of the three dimensions of our design space. We evalu-
ate the impact of different dedicated processor set sizes
in Section 5.2 using 4-way SMP machines.

Figure 6 shows the throughput for the simple web
server for different kernel configurations using the
HTTP/

��� � protocol and Figure 7 shows the throughput

Figure 7. Throughput for a simple web server on a
2-Way SMP system using HTTP 1.1

using HTTP/
���
�

protocol. For the HTTP/
���
�

protocol,
we send requests for six files on every open connection
in bursts of three.

In both cases, we see that offloading TCP process-
ing to dedicated processors improves the performance
of the system. In the case of HTTP/1.0, we see that the
performance of the server increased by upto

��� � us-
ing the TCP Server implementation. Even in the case
of a more efficient protocol(HTTP/1.1), with features
aimed at reducing networking overheads for applica-
tion servers, we see that our system is able to provide
significant improvement (about 15%). In both cases,
we can see that the offloading of send processing helps
but only to a limited extent, the major performance
benefit is due to the removal of asynchronous network
events from the host processor. This behaviour is due
to the dedicated processor saturating before the host
processor and becoming the bottleneck in the system.
We show a more detailed analysis of this pattern in
Section 5.2.

5.2 Experimental Results for 4-way SMP

We used Apache
��� � ��� � web server as a sample

server application for the 4-way SMP configurations.
We used the default configuration for Apache which
had a pre-forked set of five server processes and the
maximum number of processes in the pool was lim-
ited to

� ��� .
We used sclients [6] as the client program to gen-

erate the requests for the server. The clients request
files according to a trace at the maximum rate a server
can sustain. We used three traces to drive our exper-
iments: Forth, Rutgers, and Synthetic. Forth is from
the FORTH Institute in Greece. Rutgers contains the
accesses made to the main server at the Department of
Computer Science at Rutgers University in the first 25

8

Logs # filesAvg file size# requestsAvg req size
Forth 11931 19.3 KB 400335 8.8 KB
Rutgers 18370 27.3 KB 498646 19.0 KB
Synthetic 128 16.0 KB 500000 16.0 KB

Table 1. Main characteristics of WWW server traces

Figure 8. Throughput for Apache on a 4-Way SMP
Server

days of March 2000. Synthetic is a synthetic trace in
which 16-KByte files are requested in such a way that
the files are unlikely to be found in the L2 hardware
caches. Table 1 describes the main characteristics of
these traces.

In Figure 8, we show the throughput obtained by
the SMP server running on different kernel configura-
tions. We plot the performance using the three traces
for ten different configurations. Our first configura-
tion is the uniprocessor systemUniproc. In the second
configuration,Quad, the server runs on all four pro-
cessors which also do network processing. We present
results for this configuration as a basis for comparison.
The next four configurations assume different splits of
the network processing.Dedicated 1 procand Ded-
icated 2 procuse one and two dedicated processors,
respectively, for receive processing and network inter-
rupts. InDedicated 1 proc (send+recv)andDedicated
2 proc (send+recv), the processing of both send and
receive operations is performed on the dedicated pro-
cessor(s). The remaining configurations replace inter-
rupts with polling as the mechanism for network event
notification on the dedicated processors.

The first interesting observation we can make from
this figure is that the different traces lead to similar per-
formance trends, even though their average requested
file sizes and hardware cache behaviors are different.
Another interesting observation is that dedicating two
processors to network processing is always better than
dedicating only one. Offloading the send process-

Figure 9. CPU usage for Apache on a 4-Way SMP
Server

ing and polling, in particular, are only really bene-
ficial when two processors are dedicated to the net-
work processing. Overall, we can see that offloading
the network processing can achieve improvemtents in
throughput of up to 25-30% in the cases of Rutgers and
Synthetic with two dedicated processors and polling.
This result demonstrates that this TCP server architec-
ture can indeed provide significant performance gains.

Figure 9 explains these high-level results. The fig-
ure depicts the average CPU utilization of the applica-
tion and network processors for the different configu-
rations we study using the Synthetic trace. Each bar is
broken into user, system, and idle times.

The figure shows that, when only one processor is
dedicated to the network processing, the network pro-
cessor becomes a bottleneck and, consequently, the ap-
plication processor is not fully utilized and has idle
time. Since the network processor is already a bottle-
neck, it is clear that loading it further with send oper-
ations will only degrade performance. With two ded-
icated network processors, there is enough processing
power to handle the network processing, and the appli-
cation processor becomes the bottleneck. In this case,
offloading the send operations to the network proces-
sors is beneficial, as shown in the figure. (Note: Our
polling configurations with two network processors do
not show any idle time for the network processors. The
reason is that we categorize their blocked time as sys-
tem time, rather than idle time.) Overall, these results
clearly indicate that the best system would be one in
which the division of labor between the network and
application processors is more flexible, allowing for
some measure of load balancing. We are currently
working on a system that performs such load balanc-
ing.

9

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
0

50

100

150

200

250

300

350

400

450

500

Send Size (bytes)

La
te

nc
y

(u
s)

Sync_send
Async_send
Reg TCP_send

Figure 10. Cost ofsend

5.3 Cluster-based TCP Server Evaluation

In this section, we evaluate the TCP Server archi-
tecture for clusters. We developed a prototype using
PCs connected by a VIA-based SAN. We used two 300
MHz Pentium II PCs, one each for the application host
and the TCP server, that communicate over 32-bit 33
MHz Emulex cLAN interfaces and an 8-port Emulex
switch. The TCP Server was installed with a 3Com
996B-T Gigabit Ethernet adapter. Both the host and
the TCP server run Linux-2.4.16.

In our prototype, each socket call at the host is tun-
neled through VI channels to the TCP Server. In Fig-
ure 10, we compare the latency perceived by applica-
tions for synchronous and asynchronous sends in our
prototype with the latency of send in a traditional sys-
tem (Reg TCPsend), for a stream socket. We chose
the send primitive as the send plays an important role
in server applications like web servers.

The cost ofasync send (����� s) is close to the
cost of posting a send on the VI channel. However,
thesync send is expensive since it includes the cost
of tunneling over the SAN and the cost of a tradi-
tional socket send at the TCP Server.async send
allows applications to hide the latency of the send by
returning to the application immediately after the send
is posted on the VI channel. The reduced latency of
our asynchronous send implementations show scope
for improvement in performance for server applica-
tions using these implementations.

5.3.1 Web Server Performance

We evaluate the cluster-based TCP Server architec-
ture by analyzing the performance of a simple multi-
threaded web server. We compare the performance
of the web server using the traditional socket API

Figure 11. Web server throughput with HTTP/1.0
using cluster-based TCP Server

in our prototype (TCPSSock) and using the primi-
tives provided by the MemNet API (TCPSSyncand
TCPSAsync) which require buffers used in commu-
nication to be pre-registered. InTCP Sync, the web
server implementation uses thesync send primitive
and inTCP ASync, it uses theasync send primitive.
We also present the performance of the web server us-
ing a standalone Linux host-based socket implementa-
tion (Reg TCP) for comparison.

Workload : The workload used for HTTP/1.0 con-
sists of requests for 16-KByte static files, making sure
that the requested file is not available in the L2 hard-
ware cache. We used httperf [24] as the client bench-
marking tool to generate the required workloads. We
used a standalone PC with an unmodified Linux socket
implementation for the client. We present the per-
formance analysis for this synthetic workload using
HTTP/1.0 and HTTP/1.1.

Throughput with HTTP/1.0 : Figure 11 shows the
throughput of the web server as a function of the of-
fered load in requests/second. All systems are able
to satisfy the offered load at low request rates. At
high request rates, we see a difference in performance
when Reg TCPsaturates at an offered load of 700
requests/second. The web server shows an improve-
ment of 15% in performance withTCPSSockoverReg
TCP. Using the synchronous primitives (TCPSSync),
the web server is able to achieve a performance im-
provement of 22%.TCPSAsyncshows a performance
gain of about 30% with the web server using asyn-
chronous primitives likeasync send. TCPSSync
shows a gain in performance due to offloading of net-
work sends to the TCP Server.TCPSAsyncin addi-
tion, allows a better pipelining of network sends and
helps the application overlap the latency of offload-

10

Figure 12. CPU usage for web server using
HTTP/1.0

ing the send primitive over the SAN with computa-
tion at the host.TCPSAsyncEaccincludes theEager
Acceptoptimization in addition toTCPSAsync. This
provided no additional gain since it is not the connec-
tion time, but the actual request processing time that
dominates the network processing.

We also observed that theEager Receiveoptimiza-
tion (not presented) does not contribute to any perfor-
mance gain. In theEager Receiveimplementation, the
TCP Server uses thepoll system call to verify if data
has arrived on a given socket. This leads to a slight
performance degradation at high request rates by tak-
ing up some CPU time when the TCP Server is already
saturated.

In Figure 12, we present the CPU utilization on
the application host (and TCP Server) for various sys-
tems, for the load at whichReg TCPsaturates. At this
load, the host CPU saturates forReg TCPwhereas the
TCPSSync (Host)andTCPSAsync (Host)have about
40% idle time. WithTCPSSock, since the web server
uses only the traditional socket based API, it does not
pre-register buffers used in communication. As a re-
sult, copies take up CPU time and reduce the idle
time in TCPSSock (Host)to 29%. ForTCPSSock,
TCPSSyncandTCPSAsync, we also present the CPU
utilization on the TCP Server (TCPSSock (TCPS)
TCPSSync (TCPS) and TCPSAsync (TCPS)) to show
that the entire TCP/IP processing overhead has been
shifted to the TCP Server in these systems. We have
also observed that at higher loads, the network pro-
cessing at the TCP Server proves to be the bottle-
neck and eventually saturates the processor on the TCP
Server. It is interesting to note that the host pro-
cessor incurs high system time overhead(about 50%)
even after offloading TCP/IP processing to the TCP
Server. We observed that on our system, a simple ping-

Figure 13. Web server throughput with HTTP/1.1

pong utility(tvia) provided with the VIA implementa-
tion from Emulex has a system time overhead of 30%
when using 16KB packets on a single VIA connection.
Taking into account the file system overhead (roughly
10%) for the web server, we can account for the system
time overhead on the host processor. We are currently
trying to understand the system time overhead arising
from the VIA implementation to see how this can be
avoided.

Throughput with HTTP/1.1 : HTTP/1.1 includes
features to alleviate some of the TCP/IP processing
overheads. The use of persistent connections en-
ables reuse of a TCP connection for multiple requests
and amortizes the cost of connection setup and tear-
down over several requests. HTTP/1.1 also allows for
pipelining of requests on a connection. The workload
used is the same as that used for HTTP/1.0. How-
ever, multiple requests (six) were sent over each socket
connection, in bursts of three. Figure 13 shows the
web server throughput in this case. The performance
gain achieved byTCPSSync is about 12%, and by
TCPSAsyncis 20%, over that ofReg TCP. These per-
formance gains, are lower than those achieved with
HTTP/1.0. However, they show that our system is
able to provide substantial gains over that of a tradi-
tional networking system, even while using HTTP/1.1
features aimed at reducing networking overheads for
application servers.

Greater gains are not possible with this workload
because the TCP Server node becomes the bottleneck
at high loads. In fact, this explains why our optimiza-
tions of Eager ReceiveandEager Accept, do not im-
prove throughput beyond that ofTCPSAsync. These
optimizations are intended to improve the performance
of the host application at the cost of more process-
ing at the TCP server node. However, speeding up

11

the host does not really help overall performance be-
cause, at some point, the performance becomes lim-
ited by the TCP server node. This problem can be
alleviated in three different ways: by adaptively bal-
ancing the load between the application host and TCP
Server (either statically or dynamically), by using a
faster TCP server, or by using multiple TCP servers
per application node. We are currently investigating
these approaches.

6 Related Work

OS mechanisms and policies specifically tailored
for servers have been proposed in [7, 12, 29]. How-
ever, they do not study the effect of separating the
application processing from network processing or
shielding the application from OS intrusion.

An important factor in the performance of a server
is its ability to handle extremely high volume of re-
ceive requests. Under such conditions, the system en-
ters areceive livelock, as described by Mogul and Ra-
makrishna [22]. Several researchers suggest the use of
polling on the system to prevent receive livelock and
for high performance [34, 20]. Aron and Druschel in
[5] use the soft timer mechanism to poll on the network
interface. The idea is extended in Piglet [26], where
the application is isolated from the asynchronous event
handling using a dedicated polling processor in a mul-
tiprocessor.

In the Communication Services Platform
(CSP) [33] project, the authors suggest a system
architecture for scalable cluster-based servers, using
dedicated network nodes and a VIA-based SAN to
tunnel TCP/IP packets inside the cluster. CSP was an
architecture aimed to offload the network processing
to dedicated nodes. However, their results are very
preliminary and their goal was limited to using
dedicated nodes for network processing in a multi-tier
data center architecture.

Intelligent network interfaces [27] have been stud-
ied, but mostly for cluster interconnects in distributed
shared memory [15] or distributed file systems [4].
Recently released network interface cards have been
equipped with hardware support to offload the TCP/IP
protocol processing from the host [2, 3, 10, 14, 18, 36].
Some of these cards also provide support to offload
networking protocol processing for network attached
storage devices including iSCSI, from software on the
host processor to dedicated hardware on the adapter.
Modeling and simulation were used in [9] to ana-

lyze a range of scenarios, from providing conventional
servers with high I/O bandwidth, to modifying servers
to exploit user-level I/O and direct device-to-device
communication, and offloading file system and net-
working functions from the host to intelligent devices.

QPIP [8] is an attempt to provide a lightweight pro-
tocol for applications which offloads network process-
ing to the Network Interface Card (NIC). However,
they implement only a subset of TCP/IP on the NIC.
QPIP suggests an alternative interface to the traditional
sockets API but does not define a programming inter-
face that can be exploited by applications to achieve
better performance. Moreover, performance evalua-
tion presented in [8] was limited to communication be-
tween QP-aware applications at both endpoints over a
SAN.

Sockets Direct Protocol (SDP) [30] originally de-
veloped by Microsoft to support server-clustering ap-
plications over VI architecture, has been adopted as
part of the InfiniBand specification. The SDP interface
makes use of InfiniBand capabilities and acceleration,
while emulating a standard socket interface for appli-
cations.

Voltaire has proposed a TCP Termination Architec-
ture [35] with the goals of solving the bandwidth and
CPU bottlenecks which occur when other solutions
such as IP Tunneling or bridging are used to connect
InfiniBand Fabrics to TCP/IP networks.

Direct Access Transport (DAT) [11] is an initiative
to exploit features like RDMA, available in intercon-
nect technologies like VIA [13] and Infiniband to pro-
vide a transport which includes remote memory se-
mantics. However, the objective of DAT is to expose
the benefits of remote memory semantics only to intra-
server communication.

We propose and evaluate the TCP Server architec-
ture to offload TCP/IP processing in different scenar-
ios for network servers. We extend this line of research
and explore the separation of functionality in a system.
We study the impact of separation of functionality not
only for a bus-based multiprocessor system, but also
for a switch-based cluster of dedicated processors. Un-
like Piglet or CSP, we study the effect of such separa-
tion of functionality for the server systems under real
server application workloads.

7 Conclusions

In this paper, we introduced a network server archi-
tecture based on offloading network processing to ded-

12

icated TCP servers. We have implemented and evalu-
ated TCP Servers in two different architectural scenar-
ios: using a dedicated network processor in a symmet-
ric multiprocessor (SMP) server and using a dedicated
node on a cluster-based server built around a memory-
mapped communication interconnect. Using our eval-
uations, we have quantified the impact of TCP/IP of-
floading on the performance of network servers.

Based on our experience and results, we draw sev-
eral conclusions: (i) offloading TCP/IP processing is
beneficial to overall system performance when the
server is overloaded (performance gains of upto 30%
were achieved in the scenarios we studied) (ii) TCP
servers demand substantial computing resources for
complete offloading. For a complete TCP/IP offload-
ing to intelligent devices, the device has to be compu-
tationally powerful to outperform traditional architec-
tures. (iii) the type of workload plays a significant role
in the efficiency of TCP servers. We observed that, de-
pending on the application workload, either the host
processor or the TCP Server can become the bottle-
neck. Hence, a scheme to balance the load between
the host and the TCP Server would be beneficial for
server performance.

We are in the process of performing more experi-
ments with each architecture, implementing dynamic
load balancing between processors of different classes
and implementing an optimized TCP Server for the
cluster-based scenario.

References

[1] M. B. Abbott and L. L. Peterson. Increasing network
throughput by integrating protocol layers.IEEE/ACM
Transactions on Networking, 1(5):600–610, 1993.

[2] Adaptec ASA-7211 and ANA-7711.
http://www.adaptec.com.

[3] Alacritech Storage and Network Acceleration.
http://www.alacritech.com.

[4] D. C. Anderson, J. S. Chase, S. Gadde, A. J. Gallatin,
K. G. Yocum, and M. J. Feeley. Cheating the I/O bot-
tleneck: Network storage with Trapeze/Myrinet. In
Proceedings of the 1998 USENIX Technical Confer-
ence, pages 143–154, June 1998.

[5] M. Aron and P. Druschel. Soft timers: Efficient mi-
crosecond software timer support for network pro-
cessing. ACM Transactions on Computer Systems,
18(3):197–228, 2000.

[6] G. Banga and P. Druschel. Measuring the capacity
of a web server. InUSENIX Symposium on Internet
Technologies and Systems, 1997.

[7] G. Banga, P. Druschel, and J. C. Mogul. Resource
containers: A new facility for resource management

in server systems. InOperating Systems Design and
Implementation, pages 45–58, 1999.

[8] P. Buonadonna and D. Culler. Queue-Pair IP: A Hy-
brid Architecture for System Area Networks. InPro-
ceedings of the 29th Annual Symposium on Computer
Architecture, May 2002.

[9] E. V. Carrera, M. Rangarajan, R. Bianchini, and
L. Iftode. Impact of Next-Generation I/O Archi-
tectures on the Design and Performance of Network
Servers. InProc. of the Workshop on Novel Uses of
System Area Networks, SAN-1, February 2002.

[10] Cyclone Intelligent I/O. http://www.cyclone.com.
[11] The DAT Collaborative.

http://www.datcollaborative.org.
[12] P. Druschel and G. Banga. Lazy Receiver Processing

(LRP): A Network Subsystem Architecture for Server
Systems. InOperating Systems Design and Imple-
mentation, pages 261–275, 1996.

[13] D. Dunning, G. Regnier, G. McAlpine, D. Cameron,
B. Shubert, F. Berry, A. M. Merritt, E. Gronke, and
C. Dodd. The Virtual Interface Architecture.IEEE
Micro, 18(2), 1998.

[14] Emulex, Inc. http://www.emulex.com.
[15] E. W. Felten, R. D. Alpert, A. Bilas, M. A. Blumrich,

D. W. Clark, S. Damianakis, C. Dubnicki, L. Iftode,
and K. Li. Early Experience with Message-Passing on
the SHRIMP Multicomputer. InProceedings of the
23rd Annual Symposium on Computer Architecture,
May 1996.

[16] H. K. Jerry Chu. Zero-Copy TCP in Solaris. In
USENIX Annual Technical Conference, pages 253–
264, 1996.

[17] The Infiniband Trade Association.
http://www.infinibandta.org, August 2000.

[18] Intel Server Adapters. http://www.intel.com.
[19] J. Katcher and S. Kleiman. An Introduction to the

Direct Access File System, 6 2000.
[20] K. Langendoen, J. Romein, R. Bhoedjang, and H. Bal.

Integrating polling, interrupts, and thread manage-
ment. InProceedings of the 6th Symposium on the
Frontiers of Massively Parallel Computation, October
1996.

[21] M. Thadani and Y. Khalidi. An efficient zero-copy
I/O framework for UNIX, 1995.

[22] J. C. Mogul and K. K. Ramakrishnan. Eliminating
Receive Livelock in an Interrupt-driven Kernel. In
Proceedings of the USENIX 1996 annual technical
conference: January 22–26, 1996, San Diego, Cali-
fornia, USA, pages 99–111, Berkeley, CA, USA, Jan.
1996.

[23] A. B. Montz, D. Mosberger, S. W. O’Malley, L. L.
Peterson, T. A. Proebsting, and J. H. Hartman. Scout:
A communications-oriented operating system (ab-
stract). InOperating Systems Design and Implemen-
tation, page 200, 1994.

[24] D. Mosberger and T. Jin. httperf – a tool for measure-
ing web server performance, 1998.

13

[25] S. Muir and J. Smith. AsyMOS - An Asymetric Multi-
processor Operating System. InProceedings of Open
Architectures and Network Programming, San Fran-
cisco, CA, April 1998.

[26] S. Muir and J. Smith. Functional divisions in the
Piglet multiprocessor operating system. InEighth
ACM SIGOPS European Workshop, September 1998.

[27] Myricom: Creators of myrinet. http://www.myri.com.
[28] V. Pai, M. Aron, G. Banga, M. Svendsen, P. Druschel,

W. Zwaenepoel, and E. Nahum. Locality-Aware Re-
quest Distribution in Cluster-based Network Servers.
In Proceedings of the 8th International Conference on
Architectural Support for Programming Languages
and Operating Systems, 1998.

[29] V. S. Pai, P. Druschel, and W. Zwaenepoel. IO-
Lite: A unified I/O buffering and caching system.
ACM Transactions on Computer Systems, 18(1):37–
66, 2000.

[30] J. Pinkerton. SDP: Sockets Direct Protocol. InInfini-
band Developers Conference, Fall 2001.

[31] M. Rangarajan, K. Banerjee, and L. Iftode. MemNet:
Memory-Mapped Networking for Servers. Submit-
ted for publication, Rutgers University, Department of
Computer Science Technical Report, DCS-TR-481,
March 2002.

[32] RapidIO Trade Association. http://www.rapidio.org.
[33] H. V. Shah, D. B. Minturn, A. Foong, G. L. McAlpine,

and R. S. Madukkarumukumana. CSP: A Novel Sys-
tem Architecture for Scalable Internet and Communi-
cation Services. InProceedings of 3rd USENIX Sym-
posium on Internet Technologies and Systems, March
2001.

[34] J. M. Smith and C. B. S. Traw. Giving Applications
Access to Gb/s Networking.IEEE Network, 7(4):44–
52, July 1993.

[35] Voltaire TCP Termination Architecture.
http://www.voltaire.com/pdf/Breaking through
the bottleneck.pdf.

[36] Tornado for Intelligent Network Acceleration.
http://www.windriver.com.

[37] Q. Y. Yiming Hu, Ashwini Nanda. Measurement
analysis and performance improvement of the apache
web server. Technical Report 1097-0001, University
of Rhode Island, Department of Electrical and Com-
puter Engineering, October 1997.

14

