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On Two-User Gaussian Multiple Access Channels
With Finite Input Constellations

J. Harshan and B. Sundar Rajan, Senior Member, IEEE

Abstract—Constellation Constrained (CC) capacity regions of
two-user Single-Input Single-Output (SISO) Gaussian Multiple
Access Channels (GMAC) are computed for several Non-Or-
thogonal Multiple Access schemes (NO-MA) and Orthogonal
Multiple Access schemes (O-MA). For NO-MA schemes, a metric
is proposed to compute the angle(s) of rotation between the input
constellations such that the CC capacity regions are maximally
enlarged. Further, code pairs based on Trellis Coded Modulation
(TCM) are designed with PSK constellation pairs and PAM constel-
lation pairs such that any rate pair within the CC capacity region
can be approached. Such a NO-MA scheme which employs CC
capacity approaching trellis codes is referred to as Trellis Coded
Multiple Access (TCMA). Then, CC capacity regions of O-MA
schemes such as Frequency Division Multiple Access (FDMA)
and Time Division Multiple Access (TDMA) are also computed
and it is shown that, unlike the Gaussian distributed continuous
constellations case, the CC capacity regions with FDMA are strictly
contained inside the CC capacity regions with TCMA. Hence, for
finite constellations, a NO-MA scheme such as TCMA is better than
FDMA and TDMA which makes NO-MA schemes worth pursuing
in practice for two-user GMAC. Then, the idea of introducing
rotations between the input constellations is used to construct
Space-Time Block Code (STBC) pairs for two-user Multiple-Input
Single-Output (MISO) fading MAC. The proposed STBCs are
shown to have reduced Maximum Likelihood (ML) decoding
complexity and information-losslessness property. Finally, STBC
pairs with reduced sphere decoding complexity are proposed for
two-user Multiple-Input Multiple-Output (MIMO) fading MAC.

Index Terms—Constellation constrained capacity, multiple ac-
cess channels, MIMO, space-time block codes, trellis coded modu-
lation, ungerboeck partitioning.

I. INTRODUCTION AND PRELIMINARIES

C APACITY regions of two-user Gaussian Multiple Access
Channels (GMAC) (shown in Fig. 1) are well known

wherein the capacity achieving input is continuous and Gaussian
distributed [1]–[5]. Throughout the paper, Gaussian distributed
continuous constellations are referred to as Gaussian constella-
tions. Though, capacity regions of such channels provide insights
into the achievable rate pairs in an information theoretic sense,
they fail to provide information on the achievable rate pairs when
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Fig. 1. Two-user Gaussian MAC model.

we consider finitary restrictions on the input constellations and
analyze some real world practical signal constellations like QAM
and PSK signal sets. Hence, there is a need to study GMAC with
finite input constellations. Towards that direction, GMAC with
finite complex input constellations was first studied in [6] along
with the assumption of random phase offsets in the channel from
every user to the destination. In the same work, constellation
constrained (CC) sum-capacity values [7] have been computed
for PSK and QAM constellations when all the users transmit
simultaneously during the same time and in the same frequency
band. Depending on how the users transmit to the destination,
multiple access schemes can be broadly partitioned into two
groups namely, Orthogonal Multiple Access Schemes (O-MA
schemes) and Non-Orthogonal Multiple Access Schemes
(NO-MA schemes), which are defined as follows:

Definition 1: A multiple access scheme is called an O-MA
scheme if the users are separated either in the time (frequency)
domain or in the code domain;1 otherwise, it is called a NO-MA
scheme.

In [8] and [9], trellis codes have been proposed for such
NO-MA channels wherein the receiver performs joint decoding
for the symbols of all the users. Since random phase offsets
are assumed in the channel model in [6], [8], [9], the receiver
can uniquely decode the symbols of all the users even when all
the users employ identical input constellation. Subsequently,
in [10], a NO-MA scheme based -user GMAC model with
no random phase offsets in the channel has been studied and
codes based on trellis coded modulation (TCM) [11] have
been proposed. In such a model, the unique decodability
(UD) property (see Section II-A for the definition of the UD
property) at the destination is achieved by employing distinct
constellations for all the users. In particular, a constellation of
size (example: -PSK or -QAM) is chosen and it
is appropriately partitioned into groups such that every user
employs one of the groups as its input constellation. Towards

1TDMA, FDMA and CDMA are the examples for MA schemes with separa-
tion in time, frequency, and code domain respectively.
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Fig. 2. Capacity regions of two-user GMAC (for a fixed equal average power constraint) with (i) finite constellations and (ii) Gaussian constellations.

designing trellis codes, the authors of [10] only propose steps to
derive the labeling on the edges of the trellises of each user but
do not derive explicit labeling rules on the individual trellises.
Note that all the schemes proposed in [6], [8]–[10] belong to
the class of NO-MA schemes.

In this paper, two-user GMAC with finite complex input con-
stellations is studied without the assumption of random phase
offsets in the channel (we show that random phase offsets in
the channel lead to loss in the CC sum-capacity). Unlike the
works of [6], [8]–[10], we compute the CC capacity regions of
two-user GMAC when NO-MA schemes and O-MA schemes
are employed. We show that NO-MA schemes offer larger CC
capacity regions than the O-MA schemes such as Time-Divi-
sion Multiple Access (TDMA) and Frequency Division Mul-
tiple Access (FDMA). For NO-MA schemes, we first investi-
gate the impact of rotations between the constellations of the
users on the CC capacity regions. Subsequently, we propose
TCM based trellis codes to approach any rate pair (for example,
the points R, Q shown in Fig. 2) within the CC capacity region.
Throughout this paper, a NO-MA scheme which employs ca-
pacity approaching trellis codes is referred to as trellis coded
multiple access (TCMA). We also use the terms constellation
and signal set interchangeably.

Further, we extend the idea of introducing rotation between
the constellations of the two users to construct Space-Time
Block Code (STBC) pairs with low ML decoding complexity
for two-user MIMO (Multiple-Input Multiple-Output) fading
MAC. We focus on constructing STBC pairs that reduce the
ML decoding complexity only. For a background on designing
STBC pairs based on the dominant error region, we refer
the readers to [12]. Algebraic STBCs for MIMO-MAC can
be found in [13]. We are not aware of any prior work which
explicitly address the design of STBC pairs with low ML
decoding complexity for MIMO-MAC. Note that STBCs with
minimum ML decoding complexity have been well studied
in the literature for co-located MIMO channels [14]–[17] and
distributed MIMO channels [18]. The contributions and the
organization of this paper may be summarized as below:

• Computing constellation constrained capacity regions: For
two-user GMAC, when the two users employ a NO-MA

scheme with identical input constellations, it has been
pointed in [6] that an appropriate rotation between the
input constellations can guarantee the UD property (see
Definition 3) at the receiver. For such a setup, in this paper,
we identify that the primary problem is to compute the
angle(s) of rotation between the constellations such that
the CC capacity region is maximally enlarged. A metric to
compute the angle(s) of rotation is proposed which provides
maximum enlargement of the CC capacity region (Theorem
1) at high signal to noise ratio (SNR) values. Through simu-
lations, such angles of rotation are presented for some well
known constellations such as -PSK, -QAM etc. for
some values of at some fixed SNR values (see Table I).

• Designing CC capacity approaching trellis codes with PSK
constellations: For two-user GMAC, code pairs based on
TCM are designed with PSK constellation pairs to approach
any rate pair within the CC capacity region. In particular,
for each and , if User- employs a trellis labeled
with the symbols of the signal set , it is clear that the des-
tination views the sum trellis, (see Definition 4) la-
beled with the symbols of the sum constellation, (see
Section II-A) in an equivalent SISO (Single-Input Single-
Output) AWGN channel. For a SISO AWGN channel, it is
well known that, Ungerboeck labeling on the trellis maxi-
mizes the guaranteed minimum squared Euclidean distance
in the trellis, and hence, such a labeling scheme has become
a systematic method of generating trellis codes to approach
rates close to the CC capacity [11]. However, when TCM
based trellis codes are designed for two-user GMAC, it is
not clear if the two users can distributively achieve Unger-
boeck labeling on the sum trellis through the trellises and

. In other words, it is not known whether Ungerboeck la-
beling on and using and respectively induces
an Ungerboeck labeling on using . For the class
of symmetric PSK signal sets, when the relative angle is

( and are the cardinalities of the signal sets of
User-1 and User-2 respectively. Without loss of generality,
we assume ), it is analytically proved that, Unger-
boeck labeling on the trellis of each user induces an Unger-
boeck labeling on which in-turn maximizes the guar-
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TABLE I
TWO-TUPLES ��� �� FOR � -PSK AND � -QAM CONSTELLATIONS FOR SOME � : �-� . �-MULTIPLICITY OF �

anteed minimum squared Euclidean distance of (see
Section IV.C). Hence, such a labeling scheme can be used
as a systematic method of generating trellis code pairs for
two-user GMAC to approach any rate pair within the CC
capacity region (Section IV).

• Designing CC capacity approaching trellis codes with
PAM signal sets: We design trellis code pairs with -PAM
signal set pairs also (see Section V). For such signal sets, it
is shown that the relative angle of rotation that maximally
enlarges the CC capacity region is for all values of

and SNR. Note that the above structure on -PAM
constellation pairs keep the two users orthogonal to each
other, and hence, the ML decoding complexity is signif-
icantly reduced when trellis codes with -PAM signal
sets are employed. Therefore, trellis codes designed for
SISO AWGN channel with -PAM constellations are
applicable in this set-up. Through simulations, it is shown
that, for any given SNR, the CC sum-capacity of 4-PAM
signal sets (when used with a relative rotation of ) and
QPSK signal sets (with appropriate angles of rotation)
are almost the same, and hence, unlike in a SISO AWGN
channel, there is no loss in the CC sum-capacity by using
4-PAM constellations over QPSK signal sets in two-user
GMAC (Section V).

• Non-orthogonal multiple access versus orthogonal mul-
tiple access schemes for two-user GMAC: We also compute
the CC capacity regions of two-user GMAC when O-MA
schemes such as TDMA and FDMA are employed for fi-
nite bandwidth. Unlike the behavior of Gaussian constel-
lations (as shown in Fig. 15), it is shown that the CC ca-
pacity region with FDMA is strictly contained inside the
CC capacity region with TCMA, essentially showing that
TCMA is better than FDMA for finite constellations (see
Figs. 16, 17 and 18). In particular, we show that the gap
between the CC capacity regions with TCMA and FDMA
is a function of the bandwidth Hertz and the average
power constraint Watts. It is shown that, (i) for a fixed

, the gap between the CC capacity regions with FDMA
and TCMA increases with the increase in (see Figs. 16,
17 and 18 for a fixed and varying ), and (ii) for a fixed

, the gap between the CC capacity regions with FDMA
and TCMA decreases with the increase in (see Figs. 16
and 19 for a fixed and varying ) (Section VI).

• Low ML decoding complexity codes for two-user MISO-
MAC: We extend the idea of introducing rotation between
the PAM constellations in two-user GMAC to construct

STBC pairs for two-user MISO fading MAC (Section VII).
In particular, we introduce the notion of information-loss-
lessness (IL) property and propose a class of STBC pairs
that has reduced ML decoding complexity and the IL prop-
erty. To the best of our knowledge, this is the first work that
(i) introduces the notion of IL property to MISO-MAC and
(ii) propose STBC pairs with reduced ML decoding com-
plexity as well as the IL property. We also compute the
CC ergodic sum-capacity [19] of the proposed STBCs in a
MISO fading MAC and compare them with the CC ergodic
sum-capacity of VBLAST schemes for a fixed rate (in bits
per channel use). It is shown that, in addition to the advan-
tage of having reduced ML decoding complexity, the pro-
posed STBC pairs have CC ergodic sum-capacity values
comparable with VBLAST schemes.

• Reduced sphere decoding complexity codes for two-user
MIMO-MAC: Finally, we propose STBC pairs for two-user
MIMO fading MAC with antennas at both the users
and antennas at the destination such that the sphere de-
coding [20], [21] complexity is reduced. When both the
users employ identical STBCs from linear complex de-
signs [22], a class of complex designs which results in a
special class of lattice generators called row-column (RC)
monomial lattice generators are identified (Definition 8
in Section VII-C). Employing Q-R decomposition on RC
monomial lattice generators, we identify the positions of
the zeros in the R matrix such that the worst-case sphere de-
coding complexity (WSDC) and/or the average sphere de-
coding complexity (ASDC) are reduced (Definition 9 and
Definition 10). We explicitly construct STBCs which re-
duce the ASDC. The rate of the proposed STBCs in com-
plex symbols per channel use per user is at most . We
also show that STBCs from the class of Complex Orthog-
onal designs (other than the Alamouti design) only reduce
the WSDC (but not the ASDC). (Section VII-C4).

Section VIII constitutes conclusion and some directions for
possible future work.

Notations: Throughout the paper, boldface letters and capital
boldface letters are used to represent vectors and matrices,
respectively. For a complex matrix , the matrices

and denote, respectively, the con-
jugate, transpose, conjugate transpose, determinant, real part
and imaginary part of . For any matrix , the symbol
denotes the -th column of and denotes the element
in the -th row and the -th column of . The tensor product of
the matrix with itself times is represented by . For a
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random variable which takes value from the set , we assume
some ordering of its elements and use to represent the -th
element of , i.e., represents a realization of the random
variable . The set of all integers, the real numbers, and the
complex numbers are, respectively, denoted by , and
and is used to represent . For , the Euclidean
distance between and is denoted by whereas the line
segment connecting and is denoted by . Cardinality
of the set is denoted by . Absolute value of a complex
number is denoted by and denotes the expectation
of the random variable . A circularly symmetric complex
Gaussian random vector, with mean and covariance matrix

is denoted by . The inner product of two
vectors is denoted by . The set of all real
diagonal matrices is denoted by . For any complex vector

is given by .

II. TWO-USER GMAC: SIGNAL MODEL AND CONSTELLATION

CONSTRAINED CAPACITY REGIONS

The model of two-user Gaussian MAC shown in Fig. 1 con-
sists of two users that need to convey information to a single
destination. It is assumed that User-1 and User-2 communicate
to the destination at the same time and in the same frequency
band (the two users employ a NO-MA scheme). Symbol level
synchronization is assumed at the destination. The two users are
equipped with constellations and of size and re-
spectively such that for , we have . Let
be the average power constraint for each user. When User-1 and
User-2 transmit symbols and simultaneously, the
destination receives a symbol given by

(1)

such that is the variance of the AWGN in each dimension.
Throughout the paper, unless specified otherwise, we assume
equal average power constraint for the two users.

Definition 2: (Constellation constrained capacity) [7] The
mutual information between the input and the output of a
Gaussian channel is referred to as the Constellation Con-
strained (CC) capacity of the channel whenever (i) the input
constellation is finite in size and (ii) the symbols from the input
constellation are chosen with uniform distribution.

We compute the CC capacity values: for
User-2 and for User-12 (assuming uniform
distribution on the input constellations) [23]. By symmetry,

and can similarly be com-
puted. Towards computing , we treat
as the additive noise. From [1], is given by

(2)

where and are respectively given by

and (3)

(4)

such that denotes the probability density function (p.d.f) of
, given by

where is given in (5), shown at the
bottom of the page. To compute , we need to compute

for each index . The term
is as given in (6), shown at the bottom of the page, where

2The term ��� � �� denotes the mutual information between the variables �

and � whereas the term ��� � ���� denotes the mutual information between the
variables � and � conditioned on the knowledge of the variable �.

(5)

(6)

(7)

(8)
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Using (4) and (3) in (2), the CC capacity is given
in (7), shown at the bottom of the previous page, where the ex-
pectation is with respect the distribution of . Similarly, the CC
capacity can be computed to be in (8),
shown at the bottom of the previous page.

Using (7) and (8), the CC sum-capacity is +
which can be proved to satisfy the fol-

lowing equality:

(9)

Hence, the CC sum-capacity is equal to the CC capacity of the
virtual AWGN channel seen by the destination with the input
variable . Therefore, the achievable sum rate is
upper-bounded by . However, for each
user, the rate of transmission is maximized when the destination
has the knowledge of the symbols transmitted by the other users.
As a result, the CC capacity region of two-user GMAC is, as
given by [1]

and

(10)

In the following subsection, we discuss the impact of
choosing uniquely decodable constellation pairs on the CC
capacity regions of two-user GMAC.

A. Uniquely Decodable Constellation Pairs for GMAC

In this subsection, we assume for simplicity. Given
two constellations and , we denote the sum constellation
of and by defined as

. The adder channel in the two-user GMAC (as
shown in Fig. 1) can be viewed as a mapping given by

where .

Definition 3: (Uniquely decodable constellation pair) A con-
stellation pair is said to be uniquely decodable if the
mapping is one-one.

Example for a UD constellation pair is and
. An example for a non-UD constellation pair is

given by . Note that if and have more
than one element common, then the pair is necessarily
non-UD. However, not having more than one common signal
point is not sufficient for a pair to be UD, as exemplified by the
pair and where
is a complex cube root of unity.

It is clear that uncoded NO-MA communication with non-UD
constellation pair results in ambiguity while performing joint
decoding for the symbols of both the users at the destination.
In order to circumvent this ambiguity, the two users can jointly
construct code pairs (codes constructed by adding
redundancy across time) over the non-UD constellation pair
so that the codewords of both users can be uniquely decoded.
However, there will be a loss in the rate of transmission (in
other words, there will be an expansion in the bandwidth) by
adopting such schemes. Therefore, for band-limited GMAC,
coding across time is not desirable to achieve the UD property,
and hence, the use of UD constellations is essential.

B. Capacity Maximizing Constellation Pairs From Rotations

For GMAC with , it is clear that if one of the users
employ an appropriate rotated version of the constellation used
by the other, then the UD property can be attained. Moving one
step further, we consider the problem of finding the optimal
angle(s) of rotation between the constellation pairs such that the
CC capacity region is maximally enlarged for a given value of

. Henceforth, we refer the ratio, as SNR.
For a given constellation , let denote the set of symbols

obtained by rotating all the symbols of by degrees. From
(9) and (10), the CC capacity region is determined by the mutual
information values
and (or ). Note that, the terms

(11)

(12)

(13)

(14)
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and are functions of
the distance distribution (DD) of and respectively. Since,
we start with a known , and , the DD of and

are the same. Hence, and
are independent of . However, from (7), the term

is a function of the DD of . Note that the
DD of changes with , and hence, the term
is a function of .

For an arbitrary constellation pair , let
for some . Also, let and be the constellations employed
by User-1 and User-2, respectively, such that and de-
note the corresponding input symbols, wherein .
On the similar lines of the discussion in the preceding para-
graph, the term is a function of . As a result,

is maximized by choosing the angle of rotation
as in (11), shown at the bottom of the previous page. Note

that is an expectation of a nonlinear function of
the random variable , and hence, the closed form expression of

is not available. Therefore, in general, computing
is not straightforward. However, for high SNR values, the

following theorem provides a metric (which is independent of
the variable ) to choose such that is maximized
which in-turn maximally enlarges the CC capacity region.

Theorem 1: For a given constellation pair , let
for a variable . At high SNR values, the optimum angle

of rotation required to maximize is approximated
closely by where

where is given by (12), shown at the bottom of the pre-
vious page.

Proof: Since and are fixed, we have the following
equality:

where is given in (13), shown at the bottom of
the previous page. Since the denominator term inside the loga-
rithm of is independent of , we have

where is given in (14), shown at the bottom
of the previous page. Note that the individual terms
of are of the form for
random variable . Applying Jensen’s inequality:

on and replacing each term of the form by
, we have

(15)

(16)

(17)

(18)
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where is given by (12). Note that unlike
, the term is independent of the variable . In the rest

of the proof, we show that at high SNR values, the following
approximation holds good:

Note that the term can be written as in (15) and
(16), shown at the bottom of the previous page, where

and such that is given by

Removing the terms independent of in (16), we have

where is given in (17), shown at thebottomof the
previous page. At high SNR values, we have the approximation

where is given by (18), shown at the bottom of
the previous page. At high SNR values, each term
in (18) is small, and hence, we use the approximation

to obtain (20), shown at
the bottom of the page. Solving expectation in (20), we get (21),
shown at the bottom of the page. Once again, applying the ap-
proximation in (21),
we get (22), shown at the bottom of the page, which is denoted
by .

Now, we consider the term , given in (23),
shownat the bottomof the page, and prove the followingequality:

(19)

Once the above equality is proved, the statement of this the-
orem also gets proved since is a scaled ver-
sion of [as shown in (24), at the bottom of the page].
Towards proving the equality in (19), note that at high SNR
values, is small for all values of . For those values of
which provide the UD property, we have

(20)

(21)

(22)

(23)

(24)



1306 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 3, MARCH 2011

. However, for those values of which do not provide
the UD property, we have

for some . And, at high SNR, for all
. Due to these reasons, the values of

which do not provide the UD property do not minimize
as well as . As a result, the

optimal value of must belong to the set of angles which
provide the UD property. For such values of , we have

and hence, the equality in (19) holds. Therefore, for high SNR
values, instead of finding which minimizes ,
we propose to find which minimizes , a tight upper
bound on .

From Theorem 1, it is clear that solving (12) is easier than
solving (11) since is independent of the term . However,
note that for moderate and smaller values of SNR, the values of

obtained by solving (12) need not maximize
since the bound in (Section II-B) is not tight.

C. Optimal Rotations for Some Known Constellations

In this subsection, we find angle(s) of rotation, (in degrees)
that minimizes for a given constellation and for a given
SNR value such that . For the simulation results, we
assume . The values of are obtained by varying the
relative angle of rotation from 0 to 180 in steps of 0.0625 de-
grees. In Table I, the values of are presented for some well
known constellations such as -QAM, -PSK for
and . Against every signal set, a two-tuple is presented
where the variable denotes and the variable represents
the multiplicity of since, for some SNR values, there could
be more than one value of that minimizes (Example
: QPSK at dB, 16-PSK at dB). In gen-
eral, if is calculated by varying the angle of rotation with dif-
ferent intervals, then the value of and the multiplicity of
may change. When there are multiple values of for a signal
set, only one of them is provided in the table. Among the sev-
eral angles available at high SNR values, the ones presented for
BPSK reduces the complexity at the transmitters compared to
the rest of the angles. This is because, for angles other than 90
degrees, each user should use more than one dimension which
results in higher complexity. However, for complex signal sets,
we present the one with the least value (Example: for QPSK at

dB and dB).
1) CC Capacity Regions of GMAC With : In

Fig. 3, the CC capacity regions using BPSK constellation pair
with optimal rotation and without rotation are given at

dB and dB. Capacity regions of GMAC are also given
in Fig. 3 at dB and 2 dB. The plot shows that, for a given
SNR value, CC capacity region of the BPSK constellation pair
is contained inside the capacity region. Note that, with rotation,
both users can transmit at rates equal to SISO AWGN channel
capacity with BPSK constellation simultaneously. This is be-
cause degrees (at all SNR values) makes and
orthogonal. Hence, both users can achieve the rates close to

Fig. 3. CC capacity regions of BPSK constellation pair with optimal rotation
and without rotation at ��� � �� and � dB.

Fig. 4. CC capacity regions of QPSK constellation pair with optimal rotation
and without rotation at ��� � �� �� � and � dB.

and respectively at
all SNR values. From Table I, note that there are several an-
gles apart from 90 degrees which minimizes albeit they
do not provide orthogonality to the users. The reason being that
for BPSK constellation, the SNR values of 10 dB and higher are
enough to make the additive noise at the destination negligible,
and hence, a nonzero angle of rotation (not necessarily 90 de-
grees) is sufficient for both the users to communicate 1 bit each.
In general, multiple optimal angles exist for any constellation at
values of SNR beyond which the CC sum-capacity saturates.

2) CC Capacity Regions of GMAC With : CC
capacity regions for QPSK constellation pair is shown with op-
timal rotation and without rotation at different SNR values in
Fig. 4. It is to be observed that rotation provides enlarged CC
capacity region from the SNR value of 2 dB onwards. How-
ever, at dB, CC capacity regions with optimal ro-
tation and without rotation coincide. The percentage increase
in ranges from 4.3 percent at 2 dB to 100 per-
cent for large SNR values. At SNR = 6 dB, capacity region of
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Fig. 5. ��� � �� for BPSK constellation pair with (i) random offsets and (ii)
without random offsets.

Fig. 6. ��� � �� for QPSK constellation pair with (i) random offsets and (ii)
without random offsets.

GMAC is also provided and it can be observed that the capacity
region contains the CC capacity region of GMAC with QPSK
constellation.

D. CC Capacity Region With Random Phase-Offsets

In this subsection, CC capacity regions of GMAC which are
computed using the channel model in (1) are compared with
those of GMAC when random phase offsets are introduced in
the channel. The GMAC model with random offsets has been
considered in [6], wherein the CC capacity of the resulting sum
constellation has been computed in an AWGN channel. For such
a setup, it is clear that the problem of designing UD constella-
tion pairs is completely avoided. However, there will be a loss in
the CC sum-capacity since the relative angle between the con-
stellations is a random variable which can also take values other
than . Since is the only term which is variant to
rotations, we have plotted at different SNR values
with and without random offsets for BPSK and QPSK constel-
lation pairs in Figs. 5 and 6 respectively. For the case with no

random offsets, values of presented in Table I are used to plot
.

III. TRELLIS CODED MODULATION (TCM) FOR TWO-USER

GMAC: SIGNAL MODEL AND PROBLEM STATEMENT

In this section, we design code pairs based on TCM to
achieve sum rates close to the CC sum-capacity (given in (10))
of GMAC.

For each , let User- be equipped with a convolu-
tional encoder with input bits and output bits.
Throughout the section, we consider convolutional codes which
add only 1-bit redundancy. Let the output bits of take
values from a complex signal set such that .
Henceforth, the set of codewords generated from and
are represented by trellises and respectively. The sum
trellis, for the trellis pair is given in the following
definition:

Definition 4: (Sum trellis) Let and represent two
trellises with stages having the state complexity profiles

and respectively.
Let and respectively denote the edge sets originating
from the state of and the state of in the -th stage
where and . Let the edge sets
and be labeled with the symbols of the sets and
respectively. For the above trellis pair, the sum trellis, is
a stage trellis such that

• The state complexity profile is

where a particular state in the -th stage is denoted by
such that and .

• The edge set originating from the state in the -th
stage is given by . In particular, if

and edges originate from state and state
of and in the -th stage respectively, then
edges originate from the state in the -th stage.

• The edges of the set are labeled with the symbols of
the set .

Example 1: For the trellis pair (shown in Fig. 9) labeled with
elements of and (shown in Fig. 7), the sum trellis is
as shown in Fig. 10 which is labeled with the elements of
(shown in Fig. 8).

We assume that the destination performs joint decoding of the
symbols of User-1 and User-2 by decoding for a sequence over

on the sum trellis, . For the trellis pair and
the constellation pair , the destination views an equiva-
lent SISO AWGN channel with a virtual source equipped with
the trellis, labeled with the elements of . For a SISO
AWGN channel, if the source is equipped with a trellis, and a
constellation , the following Ungerboeck design rules [11] are
well known:

• All the symbols of should occur with equal frequency
and with some amount of regularity.

• Transitions originating from the same state (or joining the
same state) must be labeled with subsets of whose min-
imum Euclidean distance is maximized.
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Fig. 7. Constellations used by User-1 and User-2.

Fig. 8. Sum constellation, � for the signal sets presented in Fig. 7.

Fig. 9. Two state trellises of User-1 �� � and User-2 �� �.

Due to the existence of an equivalent AWGN channel in the
GMAC set-up, the sum trellis, has to be labeled with the

Fig. 10. Sum trellis, � of trellises � and � presented in Fig. 9.

elements of satisfying the above design rules. However,
such a labeling rule can be obtained on only through the
pairs and . Hence, we propose labeling rules
on and using and respectively such that is
labeled with the elements of as per Ungerboeck rules. The
problem statement has been explained below.

Since the number of input bits to is , there are edges
diverging from (or converging to; henceforth, we only refer to
diverging edges) each state of . Also, as there is only one bit
redundancy added by the encoder, and as , the
edges diverging from each state have to be labeled with the el-
ements of a subset of of size . Therefore, for each
has to be partitioned in to two sets and and the diverging
edges from each state of have to be labeled with the ele-
ments of either or . From the definition of sum trellis,
there are edges diverging from each state of and
these edges get labeled with the elements of one of the following
sets:

To satisfy Ungerboeck design rules, the transitions originating
from the same state of must be assigned symbols that are
separated by largest minimum distance.

Problem Statement: Therefore, the problem addressed is to
find a partitioning of into two sets and of equal cardi-
nality such that the minimum Euclidean distance, of each
one of the sets in is maximized. However, since values of
the sets in can potentially be different, we find a partitioning
such that the minimum of the values of the sets in is
maximized.

IV. DESIGNING TCM SCHEMES WITH PSK CONSTELLATIONS

The set partitioning problem described above is applicable to
arbitrary constellations and . Also, from Subsection II-B, a
relative angle of rotation, has to be introduced to obtain the UD
property. As a result, the solution to the set partitioning problem
also depends on . In this section, we present the solution to the
above problem for the class of PSK signal sets with arbitrary
values of and but, for the specific value of
[24]. In other words, we propose labeling rules on the trellis
codes to approach any rate pair (for example, the points R, Q
shown in Fig. 2) within the CC capacity region of PSK signal
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sets with equal power constraint for the two users. In particular,
we propose a solution to the problem of designing labeling rules
when and are symmetric PSK signal sets of cardinality

and respectively where and for
some . Without loss of generality, we assume
and . Let denote the ratio (note that ).
To obtain the UD property at the receiver and to enlarge the CC
capacity region, we employ a rotated version of .

A. Structure of the Sum Constellation of Two PSK
Constellations

Let and represent two symmetric PSK signal sets of
cardinality and respectively such that the signal set is
rotated by an angle . Let and denote the points

and of and respectively for
and . The sum constellation of

and can be written as given in (25), shown at the bottom
of the page, where

and

such that for any .
The phase components of the points and

are given by and

respectively. For a fixed , the set of points
of the form and

lie on a circle of radius and let that circle
be denoted by . Therefore, takes the structure of
concentric asymmetric PSK signal sets. As a special case,
takes the structure of concentric symmetric PSK signal sets
when [25]. As an example, see Fig. 12 which shows

when is a QPSK signal set and is a 8-PSK signal
set. The set containing the radii of the circles is given by

Henceforth, throughout the section, denotes the radius
of the circle . Since the radius of each circle is a cosine
function, the elements of satisfies the following relation:

For the elements of , we have the following proposition.

Proposition 1: The sequence from
to is an increasing sequence.

Proof: Using standard trigonometric identities, the term
is given by . Since

, the sequence is an increasing
sequence as increases from 0 to .

Using the phase information of each point in , the fol-
lowing observations can be made:

1) For a fixed , the angular separation between the two
points and on

is for all . Similarly, for
a fixed , the angular separation between the two points

and
on is for all .

2) For a fixed , the angular separation between the point,
on and the point

on is for all
.

3) For a fixed , the angular separation between the point
on and the point

on is for all
.

4) For a fixed , the angular separation between the point
on and the point

on is for all
.

B. Structure of the Sets in Induced by Ungerboeck
Partitioning on and

In this subsection, first, we partition both and into two
groups (due to one bit redundancy added by the two encoders)
using Ungerboeck rules and then, exploiting the structure of

, we compute the minimum Euclidean distance, of
each one of the sets in . For each , let be partitioned
into two sets of equal size using Ungerboeck rules which results
in two sets denoted by and such that of and
is maximized. Since the number of sets resulting from the parti-
tion is two, the minimum angular separation, between the
points in each set is . The two groups of are of the form

and

Similarly, the two groups of are of the form

and

It is clear that the four sets and
form a partition of . The partition induced on

due to the partition of and has been depicted in
Fig. 11. Henceforth, the set and its minimum Euclidean
distance are denoted by and respectively
and . In the next subsection, the structure of is studied
and value is calculated. The values of the rest of the
sets in can be calculated on the similar lines.

and (25)
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Fig. 11. Set partitioning of � induced by the set partitioning of � and � .

Fig. 12. The structure of � when � � ���� and � � �-PSK when
� � .

1) Calculation of of : The elements of
[as given in (26), shown at the bottom of the page] are of the
form and
where takes even value while and
take odd values. When is odd, note that is odd and

is even, and hence, will have points
of the form and no points of the form

on . Similarly, when is even,
will have points of the form

and no points of the form on .
Since takes only even values, using observation 1) in the

previous subsection, between the points of on any
circle is . Hence, the points of are maximally separated
on every circle. The following two propositions help in finding
the value of .

Proposition 2: For all to and
satisfy the inequality

Proof: For , let denote the line segment
joining and . Note that the three complex points

and and (26)
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and form the three vertices of an isosceles triangle
in . Since we have

Therefore, the four points
and form the vertices of an isosceles
trapezoid such that is par-
allel to . Also, note that

is the length of the diagonal of
the trapezoid . Since the angle between the line segments

and is obtuse, we
have .

Proposition 3: For satisfy the inequality

Proof: We prove the inequality

The two terms across the inequality can be written as a ratio as

(27)

Since , we have to prove that

. Note that

and whenever . The inequality
holds when . This completes the proof.

Using the above two propositions, the value of the set
is presented in the following lemma:

Lemma 1: The minimum Euclidean distance of is

(28)

Proof: Since the points of are maximally separated
on every circle (with ) and is the innermost

circle,
is a contender for . For this to be true, all other intradis-

tances in the set must be larger than or equal to . In particular,
we have to show that the distances between the points on any two
consecutive circles must be larger than . In that direction, the
first observation is the equality, . From
Proposition 1, for all . Hence,

the points on and (irrespective of their angular separa-
tion) are separated by a distance larger than for all to

. Further, we must prove that a point on and a point
on are separated by a distance larger than for all
to . In that direction, it can be shown that between
a point on and a point on is one of the values from the
set, depending on the value
of for all to . Using Proposition 2, we have

Furthermore, using the above inequality with the inequality in
Proposition 3, we have

(29)

Note that the above inequality holds only when . How-
ever, when , we have . There-

fore, will be the radius of the inner-
most circle wherein the minimum angular separation is .
Hence, Proposition 3 is not applicable when . Since

, the inequality in (29) can be extended to

Hence, . With this,
we have proved that a point on and a point on are
separated by a distance larger than for all to .
This completes the proof.

The values of the rest of the sets in can be calculated
on the similar lines. The following lemma provides the
values of and .

Lemma 2: The minimum Euclidean distances of
and are given by

(30)

Proof: The proof is on the similar lines of the proof for
Lemma 1.

C. Optimality of Ungerboeck Partitioning for PSK
Constellations

In the preceding subsection, values of each one of the
sets of induced by Ungerboeck partition on and have
been computed (from (28) and (30), since all the values
are the same, we refer to them as ). In this subsection, we
show that a non-Ungerboeck partition on either or results
in a set such that the of at least one of the sets in is
lesser than .

Theorem 2: For , Ungerboeck partitioning on and
into two sets is optimal in maximizing the minimum of the

values of the sets in .
Proof: Let and be the two sets (of equal cardinality)

resulting from a partition of for . If either or is
not Ungerboeck partitioned, then it is to be shown that, of
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at least one of the sets in the set is
lesser than . Here, we prove the above result when is not
Ungerboeck partitioned. On the similar lines, the above result
can be proved when is not Ungerboeck partitioned as well.
We show that between any two points in one of sets in
is smaller than on the circle . It is assumed that there

are exactly points on in each set of . Otherwise,

at least one set contains more than points on , and
hence, between a pair of points in that set will be lesser
than . Therefore, the sub-optimality of the partition can be
proved. Without loss of generality, we assume that

for some such that . Note that the
elements of are of the form or .
Since is odd and is an (even, odd) pair,

can be of the form and can be of the
form or vice-verse. Without loss of generality,
we assume that is of the form and

is of the form for some . Note that,
the points and
belong to one of the sets in and have an angular separation of

. This implies that there exists a pair of

points on such that between them is lesser than
. This completes the proof.

For PSK signal sets, when , the optimal partitioning
on and is not known. However, we present an example
(see Example 2) wherein for a particular value of , a non-
Ungerboeck partition on and results in a set such that
the minimum of the of all the sets in is larger than that
induced by Ungerboeck partition.

Example 2: Consider , a uniform 8-PSK signal set and
with . With the partition of and as

and

it can be checked that the minimum of the values of all the
sets in is 0.2319. However, with Ungerboeck partition, the
corresponding value is 0.1774.

D. On the Choice of the Cardinality of PSK Constellations

Using the results presented in the preceding subsection, we
illustrate how to choose the cardinality of PSK signal sets to
achieve any rate pair (assuming ) within the
sector O-A-B shown in Fig. 2. We do not consider achieving
rate pairs outside the sector O-A-B since such points can be
moved either horizontally or vertically (or both) into the sector
O-A-B which in-turn either increases the rate for both users or
increases the rate for one of the users by keeping the rate for the
other intact. For a given equal power constraint, to approach a
rate pair (note that the rate pair should be within
the CC capacity region of PSK signal sets for some

and ), we choose sufficiently large values of and
such that:

1) and satisfies the following approximation:

and

2) the CC capacity region with -PSK and -PSK signal
sets encloses the point .

For the above choice of , if the number of input bits
for user- is , and Ungerboeck labeling is employed
on the trellis (with larger number of states) of each user, then
the rate pair can be approached. Therefore, with suffi-
ciently large values of and satisfying the conditions 1)
and 2), any pair, within the CC capacity region can be
approached.

V. DESIGNING TCM SCHEMES WITH PAM CONSTELLATIONS

In the previous section, a systematic method of labeling the
trellis pair has been obtained when PSK signal sets are
employed by the two users. In this section, we present TCM
schemes when -PAM signal sets are used by the two users.
For this set-up, using the metric presented in Theorem 1, it can
be verified that the optimal angle of rotation is for all
and for all SNR values. Recall that, when -PSK signal sets
are employed, takes the structure of concentric PSK signal
sets. However, when -PAM signal sets are used, is a reg-
ular -QAM (since ). In this set-up, for a chosen trellis
pair, the destination sees the corresponding sum trellis la-
beled with symbols from a -QAM signal set. Since the two
users transmit along the in-phase and the quadrature compo-
nents respectively, decoding for the symbols of one user is in-
dependent of the other. Hence, the destination can decode for
a sequence over -PAM constellation on the individual trel-
lises and instead of decoding for a sequence over
QAM constellation on . Therefore, all TCM based trellis
codes with -PAM constellations existing for SISO AWGN
channel are applicable in the two-user GMAC setup. With this,
the decoding complexity at the destination is significantly re-
duced as the state complexity profile of the trellis over which
the decoder works is (when decoding for
User-i) instead of . In general,
when a complex signal set is used by either one of the users, the
destination has to necessarily decode for a sequence over
on which has high decoding complexity.

1) On the CC Sum-Capacity With PAM Signal Sets: From the
above discussion, it is clear that for two-user GMAC, single-
dimensional signal sets can be preferred over complex signal
sets for reducing the ML decoding complexity. However, it is
not clear if there is any loss in the CC sum-capacity by using
single-dimensional signal sets. In Fig. 13, we plot the CC sum-
capacity as a function of SNR for two scenarios; (i) when QPSK
signal sets are used with angles of rotation as given in Table I
and (ii) when 4-PAM signal sets are used with . For both
the scenarios, average power per symbol per user is made the
same. As shown in the plot, there is a marginal difference in the
CC sum-capacity between the two schemes and in particular,
at high SNR the sum-capacity of the former scheme is higher
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Fig. 13. CC sum-capacity of QPSK signal set pair and 4-PAM signal set pair
with optimal rotations.

Fig. 14. CC sum-capacity of the QPSK/BPSK signal set pair and the 4-PAM/
BPSK signal set pair with optimal rotation.

than the later. Therefore, 4-PAM signal sets provide reduced
decoding complexity with almost the same CC sum-capacity as
that of QPSK signal sets. Similar plots have been obtained in
Fig. 14 for the following scenario: (i) when User-1 and User-2
uses QPSK and BPSK signal set respectively (with appropriate
angle of rotation) and (ii) when User-1 uses 4-PAM signal set,
User-2 uses BPSK with .

In a SISO AWGN channel, it is well known that, single-di-
mensional signal sets incur some loss in the CC capacity
when compared to well packed complex signal sets having the
same average power and equal number of points. However, for
GMAC, the CC capacity of individual signal sets, and
are of little importance, since for an input constellation pair

, the destination sees an equivalent AWGN channel
with the corresponding as its input (neither nor ).
Hence, in order to maximize the CC sum-capacity, the con-
stellation pair has to be chosen such that CC capacity
of is maximized. Since we have shown that, for a given

Fig. 15. Achievable rate pairs (in bits per second) for TDMA and FDMA for a
total bandwidth of� Hertz.

SNR, the sum-capacity of 4-PAM constellation pair is close to
that of a QPSK constellation pair, we conjecture that for any

-PAM constellation pairs (with ) do not incur
significant loss in the sum-capacity when compared to -PSK
and -QAM constellation pairs.

VI. COMPARING THE CC CAPACITY REGIONS OF O-MA
AND NO-MA SCHEMES

In the preceding sections, code pairs based on TCM [11] are
proposed such that any rate pair within the CC capacity region
can be approached. Such a NO-MA scheme which employs ca-
pacity approaching trellis codes is referred to as trellis coded
multiple access (TCMA). Henceforth, throughout this section,
CC capacity regions obtained in Section II are referred to as CC
capacity regions with TCMA since TCMA can approach any rate
pair within the CC capacity region.

For two-user GMAC with Gaussian distributed continuous
input constellations, it is well known that successive interfer-
ence cancellation decoder can achieve any point on the capacity
region, provided the codebooks contain infinite length code-
words [1], [26]. It is also known that TDMA and FDMA, two
of the widely known O-MA techniques do not achieve all the
points on the capacity region. In particular, if FDMA is used
such that the bandwidth allocated to each user is proportional
to its transmit power, then one of the points on the maximum
sum rate line of the capacity region can be achieved [1]. The
set of achievable rate pairs using TDMA and FDMA are pro-
vided in Fig. 15 along with the capacity region wherein the total
bandwidth (for both the users) is Hertz, the power constraint
for each user is Watts and the power spectral density of the
AWGN is .

In this section, we compute the CC capacity regions of
two-user GMAC when O-MA schemes such as TDMA and
FDMA are employed for finite bandwidth. Since FDMA (with
Gaussian constellations) achieves one of the sum-capacity
points with single-user decoding complexity, it is stated in [1]
that “the improvement in the capacity due to multiple access
ideas such as the one achieved by the successive interference
decoder (a NO-MA scheme) may not be sufficient to warrant
the increased complexity” (see line 11–14, page 548, Section
15.3.6 of Chapter 15 in [1]). In this section, we point out that
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Fig. 16. CC Capacity regions (in bits/sec) for various multiple access schemes
with QPSK signal sets when � � � dB, � = 1, and� � � Hertz.

the above comment in [1] does not hold good for GMAC with
finite constellations which is the case in practical scenarios. In
particular, unlike the behavior of Gaussian constellations (as
shown in Fig. 15), it is shown that the CC capacity region with
FDMA is strictly contained inside the CC capacity region with
TCMA, essentially showing that TCMA is better than FDMA
for finite constellations (see Figs. 16, 17, and 18). Note that this
result is not apparent unless CC capacity regions with FDMA
and TCMA are plotted.

The result presented in this section is another example to
illustrate the differences in the capacity behavior when the
input constellations are constrained to have finite cardinality.
An earlier example is in Section II, wherein a relative angle of
rotation between the input constellations is shown to enlarge
the CC capacity region with TCMA.3 Note that such a capacity
enlargement is not applicable for Gaussian constellations.

A. Signal Model

The model of the two-user GMAC considered in this section
is similar to the one presented in Section II. Hence, we point out
only the changes in the signal model with respect to the one in
Section II. For the NO-MA scheme, it is assumed that User-1
and User-2 communicate to the destination at the same time
and in the same frequency band of Hertz. To take bandwidth
into consideration, the variance of the additive noise is given by

. When User-1 and User-2 transmit symbols
and simultaneously, the destination receives the symbol

given by

(33)

where is the power spectral density of the AWGN in each
dimension. We assume equal average power constraint for the
two users.

3Note that the CC capacity region for two-user GMAC is referred to as the
CC capacity region with TCMA since TCMA can approach any rate pair on the
CC capacity region.

Fig. 17. CC Capacity regions (in bits/sec) for various multiple access schemes
with QPSK signal sets when � � � dB, � � �, and� � � Hertz.

Fig. 18. CC Capacity regions (in bits/sec) for various multiple access schemes
with QPSK signal sets when � � � dB, � � �, and� � � Hertz.

Applying the CC capacity regions obtained in Section II to
the channel model in (33), the set of CC capacity values (in bits
per channel use) that define the boundary of the CC capacity
region are

and

(34)

where the expressions for
are given in (31) and (32), respectively, shown at the bottom of
the next page. The term can be cal-
culated as + . Since the
terms and are functions of
the bandwidth ; henceforth, we denote them as

and respectively. Also, since every
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channel use consumes seconds, the rate pairs (in bits per
second) that define the CC capacity region are given by

and

(35)

B. Unconstrained Capacity Regions of Two-User GMAC

In this subsection, we revisit the capacity region of two-user
Gaussian MAC (henceforth, referred as unconstrained capacity
region). In the channel model described in Subsection VI.A, the
input constellations are finite in size and the symbols take values
with uniform distribution. However, if the input constellations
are continuous and distributed as , then
the unconstrained capacity region in bits per second is given by

and

(36)

Now, we recall the set of achievable rate pairs when the two
users employ FDMA and TDMA. When the two users employ
FDMA, let and be the nonover-
lapping bandwidth occupied by User-1 and User-2 respectively
where . For such a scheme, the maximum achievable
rates (in bits per second) for the two users are given by

and

(37)

Therefore, the maximum achievable sum rate when is
given by

(38)

which is equal to the sum-capacity of the two-user GMAC given
in (36). Hence, for Gaussian constellations, FDMA can achieve

one of the points on the maximum sum rate line of the uncon-
strained capacity region.

In TDMA, the two users use the same bandwidth of W Hertz
but transmit over different time durations. If User-1 uses the
channel for seconds and User-2 uses the channel for
seconds for some , then the maximum achiev-
able rates (in bits per second) for two users are given by

and . There-
fore, the maximum achievable sum rate is

In Fig. 15, the set of achievable rate pairs for FDMA and TDMA
are provided along with the capacity region for a bandwidth of

Hertz. On the similar lines of the discussion in this subsec-
tion, in the following subsection, we discuss the CC capacity
region with FDMA and TDMA.

C. CC Capacity Regions With FDMA and TDMA

Let and be the disjoint band of
frequencies occupied by User-1 and User-2 respectively where

. Hence, for each , User- views a SISO
AWGN channel to the destination with the input constellation

and bandwidth . Therefore, the CC capacity values (in
bits per second) for the two users are given by

and

Note that with , the CC sum-capacity with FDMA is
given by

If we assume identical signal sets for the two users, then the CC
sum-capacity (denoted by ) is given by

(39)

(31)

(32)
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Fig. 19. CC Capacity regions (in bits/sec) for various multiple access schemes
with QPSK signal sets when � � � dB, � � �, and� � � Hertz.

Fig. 20. CC Capacity regions (in bits/sec) for various multiple access schemes
with QPSK signal sets when � � � dB, � � �, and� � � Hertz.

wherein without loss of generality, we have used the variable
for both the users. Let the CC sum-capacity with TCMA given
in (10) be denoted by

(40)

Comparing (39) and (40), it is not straightforward to comment
whether, the CC sum-capacity offered by FDMA is equal to or
different from the CC sum-capacity with TCMA. In Figs. 16, 17
and 18, CC capacity regions with TCMA, and FDMA are pre-
sented for QPSK signal sets when bandwidth Hertz.
Similarly, in Figs. 19, 20 and 21, CC capacity regions with
TCMA, and FDMA are presented for QPSK signal sets when
bandwidth Hertz. From the above figures, it is clear
that the gap between the CC capacity regions with TCMA and
FDMA is a function of the bandwidth Hertz and the average
power constraint Watts. In particular, (i) for a fixed , the gap
between the CC capacity regions with FDMA and TCMA in-
creases with the increase in (see Figs. 16, 17 and 18 for a fixed

Fig. 21. CC Capacity regions (in bits/sec) for various multiple access schemes
with QPSK signal sets when � � � dB, � � �, and� � � Hertz.

and varying ), and (ii) for a fixed , the gap between the
CC capacity regions with FDMA and TCMA decreases with the
increase in (see Figs. 16 and 19 for a fixed and varying ).

For calculating the CC capacity region with TCMA, a rela-
tive angle of rotation chosen from Table I is used between the
signal sets. The plots show that the CC capacity region with
FDMA is strictly enclosed within the CC capacity region with
TCMA. Note that, for a given value of , the difference be-
tween the regions with FDMA and TCMA becomes significant
for larger values of . In particular, the plots show the following
inequality,

Note that the difference between and
depends on for a given value of and .

We calculate the percentage increase in the CC sum-capacity
from to (denoted as )
given by

In Table II, we provide the values of for different values of
when (i) , (ii) , and (iii) the input constellations
are QPSK signal sets. For calculating the values of

, relative angles of rotation presented in Table I are
used between the signal sets. The values of

and have also been plotted as a func-
tion of in Fig. 22.

From Table II, it is clear that increases as increase.
An intuitive reasoning for such a behavior is as follows: The
term is the CC capacity of a 16
point constellation (sum constellation of two appropriately
rotated QPSK signal sets) with an average power of
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TABLE II
PERCENTAGE INCREASE IN THE SUM-CAPACITY FROM FDMA TO TCMA FOR QPSK SIGNAL SETS

Fig. 22. CC sum-capacity in bits per second per Hertz where ��� � �

whereas is the CC capacity of a 4
point constellation (QPSK signal set) with the same average
power of . Note that, asymptotically (for large values of ),

and satu-
rate to 2 bits and 4 bits, respectively. Therefore, at moderate
values of , as increases, the term
increases at a slower rate to saturate to 2 bits. However,

increases at a faster rate as its
saturation is at 4 bits. A similar reasoning holds good for con-
stellations with arbitrary size. However, the difference in the
CC sum-capacity may differ depending on the constellations
size.

In the rest of this subsection, we obtain the CC capacity pairs
when the two users employ TDMA. If User-1 uses the channel
for seconds and User-2 uses the channel for seconds
for some , then the CC capacity values (in bits per
second) for the two users are given by

and

Assuming identical constellations for the two users, the CC
sum-capacity with TDMA is given by

The set of CC capacity pairs when the two users employ TDMA
are shown in Figs. 16, 17 and 18 which shows that TCMA is
better than TDMA for finite constellations as well. We highlight
that, along with the substantial improvement in the CC capacity,
low complexity trellis codes proposed for TCMA in Section V
makes TCMA worth pursuing in practice for two-user GMAC.

Fig. 23. Two-user MIMO-MAC model.

VII. SPACE-TIME BLOCK CODES (STBCS) WITH LOW-ML
DECODING COMPLEXITY FOR TWO-USER MIMO-MAC

In Section V, it is shown that when PAM signal sets are em-
ployed in two-user GMAC with , then the ML decoding
complexity is reduced with marginal loss in the CC sum-ca-
pacity when compared to other 2-D signal sets. In this sec-
tion, we extend the idea of introducing rotation between the
PAM constellations to two-user MISO (Multiple-Input Single-
Output) flat fading, quasi-static MAC. In particular, we pro-
pose STBC pairs having the information-losslessness (IL) prop-
erty and minimum ML decoding complexity [27]. Note that the
IL property is defined assuming the input constellations to be
continuous and Gaussian distributed. Hence, we first study the
IL property and subsequently study the CC ergodic sum-ca-
pacity of the proposed STBCs. In the later part of this sec-
tion, we also propose STBC pairs with reduced sphere decoding
complexity for MIMO-MAC. In the following subsection, we
first describe the MIMO-MAC model and then consider the
MISO-MAC model as its special case.

A. Channel Model of Two-User MIMO-MAC

The two-user MIMO-MAC as shown in Fig. 23 consists of
two users each equipped with antennas and a destination
equipped with antennas. The MIMO channels from User-1
to the destination and from User-2 to the destination are respec-
tively denoted by and where

to and to
. The two MIMO channels are assumed to be flat fading and

quasi-static with a coherence time of at least channel uses.
We assume that each user communicates its information to the
destination using an STBC. Let and represent STBCs of
dimension employed by User-1 and User-2 respectively.
If and are the codeword matrices chosen for
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transmission from User-1 and User-2 simultaneously, then the
received matrix at the destination is of the form

(41)

where is the additive noise at the destination such
that each component of is distributed as . In this
model, we assume equal average power constraint for both the
users. Assuming for
all to and to , the average receive signal to
noise ratio (SNR) at the destination is . We assume the perfect
knowledge of both and at the destination for every
codeword use.

1) Two-User MISO-MAC Model: In this subsection, we con-
sider a MIMO-MAC model with , i.e., a MISO-MAC
model. For such a channel, if is the vector trans-
mitted by User- , then the received complex symbol at the des-
tination for every channel use is given by (41) where
is the additive noise at the destination distributed as
and for each . Such a two-user MISO-MAC
model is referred to as -MIMO-MAC.

For the MISO-MAC model, we assume the perfect knowl-
edge of the phase components of at the -th user
which we refer to as CSIT-P. The -MIMO-MAC
with the assumption of CSIT-P is referred to as the

-MIMO-MAC where highlights the assumption
of CSIT-P in the channel model. Note that, we do not assume
the complete knowledge of at the transmitters, in which
case, optimal power allocation techniques can be applied to
improve the system performance. Since CSIT-P is known, each
transmit antenna can compensate for the rotation introduced by
the channel, and hence, the channel equation in (41) becomes

(42)

where .
Henceforth, for simplicity, -MIMO-MAC is de-

noted as -MISO-MAC. With equal average power constraint
for the two users, it is well known that the sum-capacity of a

-MIMO-MAC is equal to the capacity of a
point to point co-located MISO channel (with CSIR) which is
given in (43) (see Section 6 in [28] for the result)

(43)

where the expectation is over the random variables
.

Lemma 3: If denotes the sum-capacity of
-MISO-MAC with CSIR, then

Proof: The above result can be proved on the similar lines
of the proof for Theorem 1 in Section 4.1 in [28]. With the as-
sumption of CSIT-P, the vector transmitted by User- for every

channel use is where is the
diagonal unitary matrix (a function of ) which compen-

sates for the phase introduced by the channel. From Theorem
1 in Section 4.1 in [28], must be a circularly symmetric
complex Gaussian vector to maximize the mutual information.
Since the diagonal elements of are unit norm elements
and their phase components are uniformly distributed, it follows
that, if is a circularly symmetric complex Gaussian vector,
then is also a circularly symmetric complex Gaussian vector.
Therefore, .

The sum-capacity of -MISO-MAC (which is given by
) is computed by assuming that independent

vectors are transmitted every channel use from both the users.
However, when an STBC pair is employed ( is used
by User-1 and is used by User-2), the vectors transmitted at
every channel use need not be independent. Let the dimensions
of the STBC used by the two users be (where denotes
the number of complex channel uses). We assume that STBCs
for both the users have the same dimensions. If the
matrices transmitted by User-1 and User-2 are and
respectively, then the received vector is of the form
as given by (42) where denotes the
complex additive noise vector. If the STBCs used are
of rate complex symbols per channel use, then there are
independent complex variables for each user describing the
corresponding matrix. Let the vector containing variables
of and be denoted by and
respectively. Totally, there are independent variables
denoted by where . If and
are such that (42) can be written as

(44)

where , then the average mutual information of
the channel is given by [28]

where is the covariance matrix of . Therefore, after intro-
ducing the STBC pair , the average mutual information,

between the vectors and for every channel
use is

where the factor takes care of the rate loss due to coding
across time. It is clear that the above value cannot be more than

. Similar to the definition of information-lossless
STBCs for co-located MIMO channels [29], information-loss-
less STBC pairs are defined below for -MISO-MAC.

Definition 5: (Information lossless STBC pair) For an STBC
pair used for -MISO-MAC, if the maximum average
mutual information (maximized over all covariance matrices,

with the average power constraint),
is equal to the sum-capacity of -MISO-MAC, then the pair

is called an information-lossless STBC pair.
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In this paper, we propose a class of STBC pairs derived from
Real Orthogonal Designs (RODs) for -MISO-MAC. For de-
riving certain properties of the codes that are to be proposed, the
following definition on single-dimensional real MISO channels
is important.

Definition 6: (Single-dimensional real MISO channels) Let
the channel equation of a co-located MISO fading channel with

transmit antennas be represented as where

is the received symbol at the destination, is the additive
white Gaussian noise, is the channel vector, is the
average receive SNR and is the input vector. The above
MISO channel is referred as a single-dimensional real MISO
channel whenever and .

Theorem 3: STBCs from the rate-1 ROD (which also in-
cludes rate-1 rectangular ROD) are information-lossless for a
single-dimensional MISO channel for all values of .

Proof: With the assumption of CSIT-P, each transmit an-
tenna compensates for the rotation introduced by the channel.
Let represent the ROD for antennas in the real
variables . Note that the number of channel uses
is equal to the number of real variables since is a rate-1 ROD.
Also, has the following column vector representation

where is the set of column vector represen-
tation matrices of and . The MISO
channel equation with the above design is,

where is the average receive SNR and . It
is assumed that the average power per real symbol of the design
is unity. The above channel equation can also be written as

where with denoting the channel from
the -th antenna to the destination. If , the
average mutual information of the above channel is

Since ’s are unitary and
such that , we have , and hence,
the average mutual information of a single-dimensional MISO
channel with the ROD, is

which is equal to the capacity of a single-dimensional MISO
channel. Hence, STBCs from the rate-1 ROD are information-
lossless.

In the following subsection, we propose STBC pairs
for -MISO-MAC such that the ML-decoding complexity at
the destination is minimum. The STBC pair is specified
by presenting a complex design pair and a complex
signal set pair such that and are generated by
making the complex variables of and take values from

and respectively. In particular, we employ identical complex
designs for both the users.

B. STBC Pairs From Real Orthogonal Designs for
-MISO-MAC

In this subsection, we propose a new class of STBC pairs from
RODs wherein each user is interference free from the other. In
the proposed scheme, User-1 employs a rate-1 ROD for
antennas and User-2 employs an identical ROD . The vari-
ables of take values from a -PAM signal set whereas the
variables of take values from a signal set which is 90 de-
grees rotated version of signal set used for . In general, both
users can use PAM signal sets with different cardinalities. Since
rate-1 RODs exist for all values of [15], the proposed scheme
is applicable for a -MISO-MAC for any .

Example 3: For a 4-MISO-MAC, the designs, and are
as given in (45) and (46) where the variables
can take values from and the variables

can take values from .

and (45)

(46)

In the proposed scheme, since ’s are real vectors and
the two designs take values from orthogonal signal sets, the
two users are interference free from each other. With this, the

-MISO-MAC channel splits into two parallel single-user
MISO channels (one for each user) such that the MISO channel
from (i) User-1 to the destination is given by

(47)

and (ii) the channel from User-2 to the destination is given by

(48)

Now, we proceed to study the capacity of the proposed scheme
for different values of .

1) Capacity of a -MISO-MAC With RODs: Note that the
channels in (47) and (48) are single-dimensional real MISO
channels with . Hence, the average
receive SNR in each dimension is . Since the rate-1 ROD for
antennas is information-lossless for a single-dimensional real
MISO channel (Theorem 3), the capacity for User- is

Therefore, the sum-capacity of the proposed scheme is given by

(49)

which is equal to the capacity of a MIMO channel for an
average SNR value of . Without loss of generality, we have
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Fig. 24. Ergodic sum-capacity of � -MISO-MAC with RODs in comparison
with ��� �� � �� for � � �� � and �.

used as the channel vector. However, the sum-capacity
of -MISO-MAC is given in (43) which is equal to the ca-
pacity of a MIMO channel for an average SNR value
of . By comparing (49) with , it is clear that the
proposed scheme is not information-lossless for a -MISO-
MAC. Through simulations, in Fig. 24, the sum-capacity of the
proposed scheme is compared with for

and respectively at different SNR values.
Note that when and , the proposed scheme is informa-
tion-lossy by a small margin and the difference in the capacity
keeps diminishing as increases (see Fig. 24 for ). In
particular, using strong law of large numbers, for large values of

, we have

and hence, the proposed designs are information-lossless for
large values of . The above discussion can be summarized
in the following theorem:

Theorem 4: For large values of , STBC pairs from rate-1
RODs are information-lossless for a -MISO-MAC.

2) Minimum Decoding Complexity: Apart from having the
information-losslessness property for large values of , the
proposed codes also have the single-symbol ML decodable
property. From (47) and (48), the ML-decoding metrics for
User-1 and User-2 are respectively given by

and

Since and are RODs, for each user, every symbol can
be decoded independent of the rest of the symbols. For more
details on decoding the class of STBCs from RODs, we refer
the reader to [14], [15]. To the best of our knowledge, this is the
first work that addresses the design of STBC pairs with single-
symbol decodable property for two-user MISO-MAC.

Fig. 25. CC ergodic sum-capacity of STBC pairs from ROD and VBLAST
schemes for 2 bpcu and 4 bpcu.

3) On the Diversity Order of STBCs From RODs in
a -MISO-MAC: Since the columns of RODs are or-
thogonal, the channel equation in (47) can be written as

where consists of

information symbols of User-1 and is a scaled unitary
matrix. Multiplying from the left, the above equation
becomes (note that the matrix

is a diagonal matrix). As a result, the equivalent
channel seen by each symbol of User-1 is Gamma distributed
(with degrees of freedom ), and hence, STBC from RODs
provide diversity order of for User-1. Similarly, diversity
order of is obtained for User-2 as well.

4) CC Ergodic Sum-Capacity of STBC Pairs From RODs in a
-MISO-MAC: On the similar lines of the work in Section II,

we present the CC ergodic sum-capacity of the STBCs from
RODs. We also present the CC ergodic sum-capacity of the
VBLAST scheme wherein independent uncoded symbols are
transmitted from all the antennas simultaneously. For a fixed
rate (in bits per channel use), CC ergodic sum-capacity of the
STBCs from RODs is compared with that of VBLAST scheme
in Fig. 25. From Fig. 25, it is clear that, in addition to the advan-
tage of having minimum ML decoding complexity, the STBC
pairs from RODs have comparable CC ergodic sum-capacity
values with VBLAST schemes.

C. Space-Time Block Codes With Low Sphere Decoding
Complexity for Two-User MIMO-MAC

In the preceding section, STBC pairs were proposed with
minimum ML decoding complexity for two-user MISO-MAC
with the assumption of CSIT-P. However, when CSIT-P is not
available, the proposed STBCs are not applicable. Hence, in this
subsection, we propose STBC pairs for two-user MIMO fading
MAC where (i) the two users have antennas, (ii) the desti-
nation has antennas, and (ii) the destination has the perfect
knowledge of CSI [30]. In this setup, the two users do not have
CSI (not even CSIT-P). In particular, the proposed STBC pairs

have reduced sphere decoding [20], [21] complexity.
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The STBC pair is specified by presenting a complex de-
sign pair and a complex signal set pair such
that and are generated by making the complex variables
of and take values from the signal sets and re-
spectively. We only consider the class of linear designs for
and [22]. Identical designs are employed for both the users
and the complex variables of the design for User-1 and User-2
are denoted by and re-
spectively where denotes the number of complex variables in
the design. Since the design is linear, it can be represented as

where

is the set of column vector representation matrices [15]
of and and,

. If STBCs from the above two designs
are employed in two-user MIMO-MAC, the vector received at
the -th antenna of the destination is of the form

Throughout the subsection, it is assumed that the destination
performs sphere decoding for the symbols of User-1 and
User-2 jointly. Therefore, the complex variables of the two
designs need to take values from a lattice constellation, and
hence, square -QAM signal set is used as the underlying
constellation. Also, the channel equation has to be rewritten
in a particular form in the real variables which is amenable
for sphere decoding. Towards that direction, using the column
vector representations of and , for each to

can be written in terms of its real and imaginary
components as

(50)

where the matrices and
are as given in (51) and (52), respectively, shown at the bottom
of the page, with denoting the channel from the -th an-

tenna of User-1 to the -th antenna of the destination and,
denoting the channel from the -th antenna of User-2 to the -th
antenna of the destination. Equation (50) can be written as

where . Juxtaposing for
all to one below the other, the channel equation is
given by

(53)

where

and

...
...

(54)

The matrix can be used as the lattice generator for carrying
out sphere decoding algorithm. Since the variables of the two
designs take values from an identical square -QAM constel-
lation, each component of takes value from the corresponding

-PAM signal set. For to have rank , the inequality
must hold. Hence, throughout this subsection, we

assume . Viewing as a real linear design in the
variables and , it can be
written using the column vector representation as

where

and is the set of column
vector representation matrices of . Since the design employed
for both the users is the same, the set of column vector repre-
sentation matrices for the first columns of and the last
columns of are the same.

Definition 7: (Column (Row) monomial matrix) A matrix
is said to be column (row) monomial, if there is at most one
nonzero entry in every column (row) of it.

We design a special class of complex designs such that the
resulting has the following properties:

• (p.1). The entries in the first columns of are of the
form .

(51)

(52)
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• (p.2). The entries in the last columns of are of the
form .

• (p.3). Every column of has all the variables ap-
pearing exactly once.

The above three properties imply that for each to
is both row and column monomial. The class of lattice gener-
ators with the above set of conditions are referred to as row-
column monomial lattice generators which are formally defined
as follows:

Definition 8: (Row-column monomial lattice generator) A
lattice generator is said to be row-column monomial (RC
monomial) if the column vector representation matrices of
are both row and column monomial.

Note that the property (p.3) implies that the norms of the first
columns of are the same. Similarly, the norms of the last
columns of are the same.

1) Structure on for Reduction in the Decoding Com-
plexity: Applying Q-R decomposition on and multiplying

on both the sides of the channel equation in (53), we have

(55)

where and
. Since we have assumed , only

the first 4k rows of have nonzero entries, and hence, is
essentially a vector and is essentially a square matrix
(neglecting the last rows) given by

with such that and are
upper triangular matrices. The ML decoding metric is given by

(56)

The following proposition shows that none of the entries in
the sub-matrix can be zero when identical STBCs are em-
ployed in the two-user MIMO-MAC set-up.

Proposition 4: When identical STBCs are employed in two-
user MIMO-MAC, it is not possible to have zero entries in the
matrix .

Proof: The matrix arising out of the Q-R decomposition
of is of the form

...
...

. . .
...

(57)

where denotes the -th column of , the vector
with

(58)

Note that for and is
given by

Also, note that the variables in the first columns of do not
appear in the last columns of . In particular, is a vector
in the variables whereas is a vector in the

variables . Hence, . Therefore,
for any STBC employed in two-user MIMO-MAC, the matrix

cannot have zero entries unless there exists at least one pair
of columns (say and ) in the first columns of which
are orthogonal.

From the above proposition, constructing STBCs which give
rise to both and is the best thing that
can be done towards constructing STBCs with reduced sphere
decoding complexity (SDC). Hence, we study STBCs which
results in (through (54)) such that the Q-R decomposition of

gives rise to the matrix with (i) and
(ii) (such classes of STBCs are formally
defined in the following definitions).

Definition 9: (Average Sphere Decoding Complexity) For
two-user MIMO-MAC, an STBC is said to have reduced av-
erage SDC (ASDC), if the corresponding matrix is such that
both .

Definition 10: (Worst-case Sphere Decoding Complexity) For
two-user MIMO-MAC, an STBC is said to have reduced worst-
case SDC (WSDC), if the corresponding matrix is such that
only (but ).

In the next subsubsection, we quantify the reduction in the
SDC when both and are diagonal matrices.

2) Reduction in the Decoding Complexity When
: For the decoder given by (56), we quantify

the reduction in the SDC when . Note that
for point to point co-located MIMO channels, SDC has been
reduced in [31], [32] and [33] by making certain entries of

matrix take zero values. In our setup, since is upper
triangular, the metric in (56) can be split as

where

and

Note that each component of takes value from -PAM,
and hence, the vector totally takes distinct values. For a
particular choice of , say , the metric for decoding
is

(59)

where

and
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Since , for each = 1 to , the -th real variable of
can be decoded independent of the other real variables as

where denotes the nearest integer quantizer operation
whose complexity is independent of the size of the constella-
tion. Therefore, the worst-case decoding complexity is reduced
from to . Note that, the worst-case complexity
of the decoder remains to be irrespective of whether

or otherwise. However, when , the ASDC
is reduced as follows: When , in choosing a particular
value for independent sorting operations are needed
where each sorting operation involves sorting of integers
based on a constraint function. However, in the worst-case,
if is not diagonal (with all the upper diagonal entries of

being nonzero), then there needs to be a single sorting
operation of vectors of length based on a constraint
function. Thus, with , there is a reduction in the
sorting complexity which is significant especially when is
large.

3) Necessary and Sufficient Conditions on Such That
: In this subsubsection, a set of necessary and

sufficient conditions on the matrix set is
provided such that both and are diagonal matrices.
The following definition is important towards proving the
necessary and sufficient conditions.

Definition 11: ( -group partition) A -group partition of the
index set consists of disjoint subsets,

such that .

Theorem 5: The Q-R decomposition of results in a
matrix with if and only if the matrix set

satisfies the following conditions:
1) For , the matrices in the set must

be Hurwitz-Radon orthogonal, i.e.,

2) For a fixed such that , there ex-
ists a -group partition of given by

such that

and

Proof: The ‘if’ part can be proved by substituting the con-
ditions 1) and 2) (given in the statement of the theorem) in
which is straightforward. Hence, we prove the ‘only if’ part of
the theorem. Since , we have for all
such that . This implies for all
such that . Therefore, the first columns of
are necessarily orthogonal to each other, and hence,

This proves the condition 1) of the theorem (this condition re-
duces the WSDC). In the rest of the proof, the condition in 2)
is proved. The structure of the matrix is given in (60),
shown at the bottom of the page. Since , we have

for such that . This
implies

Using (58) in the above equation, we have

Since for all , we have
, and hence

As takes value from to , the above summation can
be split as

Since , each term in the second summand of the above
equation is individually zero, and hence, we have

As the first columns of are orthogonal to each other and
have equal norms, we have

...
...

. . .
...

(60)
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As , we have
and where and

, and hence

Note that for a fixed , the matrices and do not
have nonzero entries at the same position for all . Similarly,
for a fixed , the matrices and do not have nonzero
entries at the same position for all . Hence, for a given ,
there exists a -group partition
of the index set such that

and

This completes the proof.
4) Code Constructions: In this subsubsection, we present ex-

plicit constructions of STBCs which have (i) reduced ASDC and
(ii) reduced WSDC. Complex designs which results in the
matrix with (i) and (ii) only are pre-
sented. Henceforth, we denote a complex design for antennas
in variables as . First, we construct complex designs
which results in . Construction of these designs
has been divided in to four cases depending on the values of
and .

Case 1: and ( and are positive integers):
In this case, the design is constructed in the following 3 steps.

• Step (i): Let represent a 2 2 Alamouti design in com-
plex variables for each ,
given by

• Step (ii): Using , construct a matrix given
by

• Step (iii): Using is constructed as

Case 2: and : In this case, is
constructed in two steps as given below.

• Step (i): Construct as given in Case 1.
• Step (ii): .
Case 3: and : In this case, is

constructed in the following 2 steps.
• Step (i): Construct as given in Case 1.
• Step (ii): Drop the last column of .
Case 4: and : In this case,

is constructed in the following 2 steps.
• Step (i): Construct as given in Case 2.

• Step (ii): Drop the last column of .
The rate (in complex symbols per channel use) of the above

proposed designs is at most . Therefore, whenever STBCs
with minimum ASDC are desired (with both and

), there is a substantial loss in the rate of transmission
especially when . However, if reduction of WSDC
is targeted, then constructing complex designs which lead to
only is sufficient. The following theorem states that
the class of complex orthogonal designs [14], [15] (other than
Alamouti design) results in the class of RC monomial lattice
generators which in-turn lead to (but ).

Theorem 6: For , STBCs from square complex
orthogonal designs (CODs) reduce the WSDC for two-user
MIMO-MAC.

Proof: We have to show that STBCs from the class of
CODs (other than Alamouti design) results in a class of RC
monomial lattice generators which in-turn lead to but

. It is straightforward to verify that the column vector
representation matrices of arising from
CODs satisfy the sufficient condition 1) of Theorem 5. Hence,
the corresponding class of matrices satisfy . In the
rest of this paragraph, we only provide a sketch of the proof to
show that the matrices arising from CODs do
not satisfy the sufficient conditions in 2) of Theorem 5 (this is
to prove that ). Recall that a COD in complex
variables for antennas can be constructed in a recursive
fashion from a COD in variables for antennas for
all (see Section III-D in [15]). We use the recursive con-
struction technique of CODs to prove our result. First, it can be
shown that the matrices arising from the COD
for antennas do not satisfy the sufficient condition 2)
of Theorem 5. Then, from the recursive construction technique
of CODs, it can be proved that the matrices
arising CODs with larger number of antennas do not satisfy the
sufficient conditions in 2) of Theorem 5 as well. This completes
the proof.

From the above theorem, it is clear that when only the WSDC
is to be reduced, the rate of transmission can be increased from

to (i) for the case of square designs where
for positive integers and .

5) On the Diversity Order of the Proposed Codes With Re-
duced ASDC and WSDC: Throughout the section, we have as-
sumed that the destination performs sphere decoding of the sym-
bols of User-1 and User-2 by decoding for a space-time
codeword, in a virtual MIMO channel
(where denotes juxtaposing of the matrices and

). Therefore, applying the full diversity design criterion de-
rived for space-time codes in point to point coherent MIMO
channels [34] on the set of codewords of the form , the diver-
sity order for each user is provided each space-time block
code is individually fully diverse for a point to point coherent
co-located MIMO channel. Note that unlike the codes by [12],
the proposed codes do not minimize the error event wherein the
codewords of both the users are in error. However, considering
average probability of error, the proposed codes provide diver-
sity order of .
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TABLE III
DECODING COMPLEXITIES OF VARIOUS CODES IN TWO-USER MISO MAC WITH PHASE COMPENSATION FOR � � �

TABLE IV
DECODING COMPLEXITIES OF VARIOUS CODES IN TWO-USER MISO MAC WITH OPTIONAL PHASE COMPENSATION FOR � � �

Fig. 26. BER comparison of STBC pairs from RODs with the STBC pairs in
the literature with phase compensation.

D. Simulation Results

In this subsection, we compare the performance of the
proposed STBC pairs with those proposed in [12] and [13]
for (i) two-user MISO-MAC with , and (ii) two-user
MIMO-MAC with . The codes proposed in [12]
and [13] are referred to as GB code and HV code respectively.
For the error performance comparison, we present Bit Error
Rate (BER) against the average receive SNR. For the decoding
complexity comparison, we use the worst-case ML decoding
complexity as the comparison metric.

1) Comparison for MISO-MAC With : For two-
user MISO-MAC, we compare the BER and the decoding com-
plexity of the STBC pair from the 2 2 ROD with those of (i)
the Alamouti code, (ii) the GB code and, (iii) the HV code pairs.
For a fair comparison, transmission rate of 2 bits per channel
use (bpcu) per user is maintained for all the four code pairs. To
maintain 2 bpcu per user, for the class of STBC pairs from ROD,
the variables of User-1 and User-2 take values from the 4-PAM
signal sets, and
respectively. However, the variables of Alamouti code, GB code
and, HV code pairs take values from QPSK signal set. With
phase compensation at the two-users, the BER comparison and
the decoding complexity comparison are given in Fig. 26 and
Table III respectively, which shows that STBC pairs from ROD

Fig. 27. BER comparison of STBC pairs from RODs (with CSITP) with the
STBC pairs in the literature (without CSITP).

outperforms all other codes both in BER and decoding com-
plexity. In Table III, the decoding complexity comparison is
provided assuming that each user transmits bits per
channel use. From Fig. 26, note that both the Alamouti code
pair and the GB code do not provide full diversity in Rayleigh
fading channels.

The BER and the decoding complexities of the Alamouti
code, HV code, and the GB code with no phase compensation
at the two users are given in Fig. 27 and Table IV respectively.
With no phase compensation, both the Alamouti code pair and
the GB code provide full diversity, however, with increased
decoding complexity.

2) Comparison for MIMO-MAC With : For
two-user MIMO-MAC with , we compare the
BER and the decoding complexity of the Alamouti code pair
with those of (i) the GB code and (ii) the HV code pairs. Each
user employs QPSK signal set to maintain a common trans-
mission rate of 2 bpcu per user for all the three code pairs.
The BER and the decoding complexity comparison are given
in Fig. 28 and Table V respectively which shows that Alamouti
code pair outperforms both GB and HV code pairs in decoding
complexity (note that Alamouti has reduced ASDC). However,
both the GB and HV code pairs marginally outperform Alam-
outi code pair in BER.
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Fig. 28. BER comparison of STBC pairs from the Alamouti design with the
STBC pairs in the literature for 2� 2 MIMO-MAC.

TABLE V
DECODING COMPLEXITIES OF VARIOUS CODES IN TWO-USER MIMO MAC

WITH � � � � �

VIII. DISCUSSION

We have computed the CC capacity regions of two-user
GMAC and proposed TCM schemes with the class of -PSK
signal set pairs and -PAM signal set pairs. We have also
designed STBC pairs with low ML decoding complexity for
two-user MISO-MAC and MIMO-MAC. Some possible direc-
tions for future work are as follows:

• As a generalization to this work, CC capacity/capacity
regions for general multi terminal networks need to be
computed since in practice, communication takes place
only with finite input constellations. Also, design of coding
schemes achieving rate tuples close to the CC capacity of
general multi terminal networks is essential.

• The set partitioning result presented in this paper can be
generalized to the class of -QAM constellations.

• For the two-user GMAC, we assumed equal average power
constraint for both the users. If unequal average power con-
straint is considered, optimal labeling rules on the indi-
vidual trellis have to be designed depending on the ratio
of the average power constraints of the two users.

• For two-user GMAC, trellis code pairs with -PAM con-
stellation pairs significantly reduce the ML decoding com-
plexity at the destination compared to trellis code pairs
with complex constellation pairs (Section V). For -user
GMAC with , designing coding schemes with low
ML decoding complexity is an interesting direction of fu-
ture-work.

• The rate (in complex symbols per channel use) of the
proposed class of STBCs which reduces the ASDC is
at most for each user (in Section VII-C4). Using the
necessary and sufficient conditions on the column vector
representation matrices in Theorem 5, upper bounds on the

rate (in complex symbols per channel use) can be obtained
and possibly STBCs with higher rates can be constructed.

• In Section VII-C, we have studied STBCs which result in
a matrix such that and are diagonal matrices.
Construction of STBCs which results in more number of
nonzeros in the upper-diagonal entries of and is
an interesting direction for future work. Such STBCs may
have higher ASDC and/or higher WSDC but may lead to
larger rates.
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