
1

Developing the Web100 Based
Network Diagnostic Tool (NDT)

By
Richard A Carlson
RACarlson@anl.gov

Argonne National Laboratory∗ – Electronics and Telecommunications Division

Abstract
Finding and fixing a network performance or configuration problem is a difficult and
complex task. It requires time, energy, and expertise to track down problems and it is
difficult for users to know whom to contact when the source and destination computers
are located in different administrative domains. This paper describes a novel new way
of performing the basic diagnostic function needed to identify that a problem exists and if
that problem is in the source computer, the destination computer, or the network
infrastructure. Once a problem is identified, users will have detailed data that can be
used by their network administrator to find a solution.

Introduction
The number one question network operators hear today is “my application is slow,
what’s wrong with the network?” To answer this question, the general solution is to
install some specialized packet sniffing hardware/software, spend lots of time gathering
data, and then find someone with the engineering expertise required to analyze the
application’s traffic. This complexity means that most performance problems, as
opposed to connectivity problems, remain an unsolved mystery.

To address this problem, we have developed a novel new Network Diagnostic Tool
(NDT) that uses a Web100 [WEB100] based approach to perform this basic investigative
function. The basic premise is that by combining the Web100 data with measured TCP
throughput data we can identify:

1. when normal network congestion limits throughput
2. when a network link is set to half duplex
3. what the bottleneck link is (Dial-up to 10 Gigabit Ethernet)
4. that a duplex mismatch condition exists
5. that a faulty cable or NIC is corrupting packets

This paper describes a set of experiments that test and validate this Web100 based
approach to performance troubleshooting. We have successfully identified and
documented ‘network signatures’ for the 5 conditions outlined above.

A command line version of the web based NDT has also been developed. The
command line version is based on a modified version of the widely available NLANR
Iperf [IPERF] tool. This command line version allows network administrators to
repeatedly schedule tests to be run automatically to continuously monitor a specific
network path. This paper will focus on the web based NDT, recognizing that the
modified Iperf will perform the same diagnostic functions.

∗ This work was supported [in part] by the Office Science, U.S. Department of Energy under
Contract W-31-109-ENG-38

2

The initial work was done on a local network testbed. This testbed was created by
connecting 13 PC’s running RedHat 7.2 Linux with a web100 modified 2.4.9 kernel to a
Cisco Catalyst 5500 switch. Each PC was equipped with an Intel 450 MHz PIII
processor, 128 Mbytes of RAM, a 4 GB harddrive, and a 3Com 3c905B 10/100 Network
Interface Card. The Catalyst 5500 switch was configured with 2 vlans with each PC
connected to one of them. A Cisco 7505 router was use to interconnect the multiple
vlans and to provide access to the testbed from external machines.

One example of the how useful this approach is. During the base level testing it was
noted that one of the PC’s in the testbed had noticeably lower throughput than the other
twelve PC’s (84 Mbps vs. 94 Mbps). Taken in isolation this throughput value (84 Mbps)
would seem to indicate that the network is operating properly, but taken as one value in
the set of thirteen, it stands out as an obvious hidden problem. An investigation
revealed that the Cat-5 drop cable that connects this PC to the switch was bad, causing
enough errors to impact throughput. This fault would have been extremely difficult to
find without the benefit of the additional diagnostic data provided by the Web100 KIS
variables.

Following these initial tests, the web based NDT program was deployed on a globally
accessible server located at the author’s home institution. The initial ‘network
signatures’ were refined to take into account the greater variety of hosts. This NDT has
been operational for approximately 9 months. Figure 1 shows the utilization growth for
this public server. Figure 2 shows the utilization by Internet top level domains (TLD’s).

The rest of this paper describes how the NDT operates and the specific detection
algorithms used to identify the 5 major network conditions described above. This will be
followed by a comparison between this Web100 diagnostic approach and other
traditional measurement approaches. Finally the future direction for the NDT
development will be briefly discussed.

Figure 1 – NDT Utilization growth by external clients

Mon th ly Usage
April 2002 - January 2003

0
1000
2000
3000
4000

Apr
il

M
ay

Ju
ne Ju

ly

Aug
us

t

Sep
te

m
be

r

Octo
be

r

Nov
em

be
r

Dec
em

be
r

Ja
nu

ar
y

Month

N
um

be
r

of
 te

st
s

Hits

3

NDT operation
The Web100 project provides a Linux kernel instrument set (KIS) patch to capture
numerous TCP kernel variables (e.g., Round Trip Time (RTT), Congestion Window
(CWND))1. These variables are then accessible from user applications via a set of user
library functions. Thus the KIS patch captures TCP variables in real time and the user
library allows retrieval of this information at a later period in time.

The NDT is a Web-based client-server tool that was developed to quickly and easily
identify desktop computer and network infrastructure problems. It uses 3 major
components, described below, to generate and capture TCP traffic and the associated
KIS variables. It then analyzes the captured data to determine what limited the
connection throughput.

The first component is a simple web server application that accepts incoming
connections and returns a simple web page with an imbedded Java applet. This
application then returns to a listen state ready to receive new connection.

The second component is a server application that performs bi-directional throughput
tests between the server and the client. The exact test routine is described below. This
application accesses KIS variables using the user library routines and returns this data
to the client for analysis.

The third component is a Java applet that is automatically downloaded to the client’s
desktop computer. This applet communicates with the server’s throughput application to
perform the bi-directional throughput tests. It then combines the test results with the
Web100 data to print out a series of detailed diagnostic messages. It also provided the
user with a simple point and click interface to their email client, allowing the results to be
sent to the appropriate administrator.

After the applet has been downloaded the program waits for the user to click the start
button on the web page. At this point the applet contacts the server application and

1 Appendix A contains a complete listing of the kernel variables retrieved and used by the NDT

Figure 2 – NDT Utilization b y Top L evel Domains

NDT usage b y Top L evel Domain Name
Ap ril 2002 - Feb ruary 2003

arpa
0%

net
38%

ccTLD
9%

com
27%

gov
5%

edu
8%

mil
0%

org
0%

noDNS
13%

4

requests a new test begin. The server application forks a child process to handle the
test and returns to a listen state. If a test is already in progress the child process fails
and the client is notified that a test cannot begin yet. The user must click the start
button again to request a new test.

Assuming that no other test is in progress, the child process initializes successfully and
the server puts two (2) new TCP sockets into the listen state. The server then notifies
the client that testing can begin. The client starts by opening and closing a connection
on one (1) of the listening sockets. This test performs a simple NAT detection test by
having the server return the socket peer data associated with this connection. More
work on middlebox detection will be incorporated in future releases.

After this test completes the server informs the client that it can begin a data streaming
throughput test. The client opens a new connection to one (1) of the listening server
sockets and streams data to the server for ten (10) seconds. At the completion of this
test, the server and client save the test results. At this point it is possible to retrieve
some KIS variable data from the server. Unfortunately, the data collected at this time
has not proved to be very useful. The problem is not that the data is missing, but that a
receiving TCP does not record interesting data. For example, a receiving TCP does not
calculate an RTT value for the connection. The receiver side KIS variables are still
being reviewed to determine if useful data can be extracted for diagnostic purposes.

After this throughput test completes, the server informs the client to begin a second
throughput test. The client connects to the second listening socket and the server
streams data to the client for ten (10) second. At the completion of this test, the KIS
variables for this connection are retrieved and transmitted back to the client. The server
process then runs through the detection algorithms, described below, and writes the
results out to a log file. This log was used to generate the figures and tables presented
in this paper.

Finally the client applet runs though the same detection algorithms and presents the
results to the user. These results are broken down into 4 presentation screens that
allow the user to pick and choose the amount of information they wish to view.

The first screen is the main applet page. This screen shows the basic throughput test
results, and a summary statement of what the path’s bottleneck link is. If a major
configuration error, duplex-mismatch or hardware faults, is detected this information is
reported instead of the bottleneck link type.

The second page appears when the user clicks the Statistics button. This action
brings up a new window that contains additional connection information. The throughput
values are repeated followed by a summary of what the 5 detection algorithms reported.
This is followed by the packet size, RTT, and packet loss rate data. The connection
(sender buffer, receiver buffer, or network congestion) state data is then presented to let
the user know where the connection is spending its time. The bandwidth*delay product
is also calculated at this time and the user is notified if an increase in buffer size would
likely improve the throughput.

The third page appears when the user clicks the More Details button. This action
brings up a new window that contains a listing of all the KIS variables captured by the

5

server process. The variable name and its associated value are displayed. This is
followed by the connection throughput limits based on the Mathis [MM97] formula and
the bandwidth*delay product for the sender, receiver and congestion window buffer
sizes.

The Report Problem button is designed to make it easy to forward test results to a
network administrator. Clicking on this button will bring up the users email program. A
new email message will be created and test data will automatically be input into the body
of the message. The network administrator’s email address is supplied by the server
html page allowing this data to be customized by the NDT administrator.

Network administrators from Universities, National and international Research and
Education, National Laboratories and corporations interested in understanding how their
local networks are operating are encouraged to install their own NDT server. The first
step in bringing up an NDT server is to build a Linux based PC with an appropriate, Fast
or Gigabit Ethernet, network interface card (NIC). Next download and install the
Web100 kernel and user library tar files from the Web100 web site2. Then download and
install the NDT source files from the ANL anonymous FTP server3. Configure the NDT
administrator’s email address in the tcpbw100.html file and use the start.www shell
script to bring up the server side applications.

We now describe the 5 detection algorithms used by the NDT.

Duplex Mismatch
Duplex mismatch conditions cause major problems for Internet users and network
administrators. According to a NASA study [CL01] nearly 60% of the network trouble
tickets were generated because of a duplex mismatch condition. Finding an easy and
reliable way to identify this condition is an important part of this project.

At first glance, it would seem obvious that this condition could be detected by the low
measured throughput. Our tests indicate that this is not the case. Low or asymmetric
throughput results can be caused by many factors. A common example of asymmetric
throughput is the common cable modem configuration. It is common to see transmit and
receive throughput values differ by an order of magnitude when clients are connected to
a normally operating cable modem.

In addition our test results showed that desktop clients that were connected to a
standard 10 Mbps Ethernet link were unable to measure abnormal throughput values
when the server is connected to a 100 Mbps Fast Ethernet link. As shown in Table 1,
the client measured nearly 7 Mbps independent of the server’s duplex settings. Thus in
most cases clients connected to Ethernet links would not see or report a problem, while
clients or other servers connected to Fast Ethernet links would see poor performance.
Without a lot of detailed knowledge of what all the network paths looked like the network
administrator would be hard pressed to understand why some users were complaining
and others weren’t.

Table 1 shows why duplex mismatch faults are so difficult to find. In case 1, the client
was attached to the network via a 10 Mbps half-duplex connection while the NDT link

2 http://www.web100.org
3 ftp://achilles.ctd.anl.gov:/pub/web100/web100-tools.tar.gz

6

had a duplex mismatch with the server NIC set to 100 Mbps full-duplex and the switch
port set to 100 Mbps half-duplex. In case 2 the client’s connection is identical but the
duplex mismatch condition is reversed with the server NIC now at 100 Mbps half-duplex
and the switch full-duplex. In case 3 and 4, the client is still on a 10 Mbps half-duplex
link while the NDT NIC and switch port agree on speed and duplex settings 100 Mbps
full-duplex or half-duplex respectively. In all cases the measured throughput remained
constant.

MaxSsthresh TransRwin TransCwnd TransSender Throughput Description
31856 1 11 11 6.97 10/HD --> H:100/FD; S:100/HD
31856 1 12 12 6.96 10/HD --> H:100/HD; S:100/FD

0 1 6 6 6.98 10/HD --> 100/FD
0 1 7 7 6.98 10/HD --> 100/HD

Table 1 - Duplex mismatch condition

An examination of the data collected by the NDT produced a reliable indicator for this
mismatch condition. The logical AND of the following 4 conditions will identify this fault
condition:

1. The connection spends over 90% of its time in the congestion window limited
state. The KIS identifies 3 unique connection limited states. These are
sender buffer full, receiver buffer full, and congestion window limit. The KIS
records the amount of time the connection spends in each of these states.

2. The estimated bandwidth over this link is less than 2 Mbps. The estimated
bandwidth is proportional to RTT and inversely proportional to packet loss
[MM97]. This value is calculated using the measured RTT, MSS, and packet
loss rates.

3. There are more than 2 packets being retransmitted every second of the test.
This value is calculated using the measured number of retransmissions and
the total test time.

4. The connection experienced a transition into the TCP slow-start state.
.
The above detection algorithm will determine when a desktop client link contains a
duplex mismatch condition. However there is another case where a client is attached to
an office hub/switch and this office hub/switch is then attached to a building switch. This
building switch is then attached to a router port for connection to the campus network.
Testing showed that the above algorithm failed to detect a duplex mismatch condition in
the office hub/switch to building switch up-link. To detect this fault condition logically
AND the results of these 4 tests:

1. The measured client to server throughput rate exceeded 50 Mbps. The
measured rate is the total number of bits divided by the test time.

2. The measured server to client throughput rate is less than 5 Mbps.
3. The connection spent more than 90% of the time in the receiver window

limited state.
4. There is less that 1% packet loss over the life of the connection.

Hardware Fault
Once it is determined that a duplex mismatch condition does not exist, it is possible to
determine if a hardware fault was impacting application throughput. Most Fast Ethernet
networks utilize Cat-5 class copper wires to interconnect hosts, switches, and routers. A
damaged cable or connector can cause intermittent problems that can be difficult to

7

identify. In addition though rare, host network interface adapters fail and packets are
corrupted.

Since throughput is not a good indicator that a problem exists, the KIS variables were
examined to determine which ones could be used to identify this problem. An analysis
showed that this condition can be identified by logically AND the results of these 4 tests:

1. The connection is loosing more than 15 packets per second. This value is
calculated by dividing the number of packet loss events by the total test time.

2. The connection spent over 60% of the time in the congestion window limited
state.

3. The packet loss rate is less than 1% of the packets transmitted. This value is
calculated by dividing the total number of packets transmitted by the number
of retransmitted packets. While the connection is loosing a large number of
packets per second (test 1) the total number of packets transferred during the
test is extremely small so the percentage of retransmitted packets is also
small value of packet loss rate.

4. The connection entered the TCP slow-start state.

Faulty Bandwidth Estimation
As was noted above, we calculate an estimated bandwidth using the Mathis formula
described in [MM97]. Our link detection algorithms rely on this formula being correct. If
this assumption is false then we will be unable to correctly identify what type of network
link technology was used to build this path. Thus if the estimated bandwidth is less than
the measured throughput or assumption is false and we disable the link detection
algorithms.

Network Link Speed
After determining that no major faults exist, we are left with the difficult task of
determining what type of networks links (e.g., DSL/Cable, Fast Ethernet) are used to
build the network path between the client and NDT server. At the current time we
examine the entire end-to-end path to determine the bottleneck link type. Future
enhancements will determine where in the path this bottleneck link is, but for now we
simply report what the bottleneck link type is.

This task is difficult because we have no history on which to base our decisions. A low
throughput result could be the result of a slow link type (i.e., cable modem), a highly
congested shared high speed link (i.e., Fast Ethernet), or a large bandwidth*delay
product due to a long RTT between the client and NDT server. It is important that the
end user and the network administrator can differentiate between these different
conditions. It helps the user by setting realistic expectations, a cable modem will not
allow high throughput rates. It also helps network administrators by identifying slow or
congested links in the network infrastructure.

To accomplish this task, the NDT starts with the assumption that the end-to-end path is
a series of 100 Mbps full-duplex Fast Ethernet links. The NDT then uses several link
detection algorithms to validate or disprove this assumption. This approach has show
good results when the clients are located near the NDT server (i.e., small RTT values)4.
Three separate link detection tests (described below) are run to disprove the base
assumption.

4 As note below, new link detection algorithms are being developed to overcome this deficiency.

8

Our first task is to determine if the path contains a 10 Mbps Ethernet bottleneck link. A
normally operating Ethernet link can be identified by the logical AND of the following 6
tests:

1. The measured client to server throughput is less than 9.5 Mbps. This value is
calculated by dividing the number of bits transferred over the total test time.

2. The measured client to server throughput is greater than 3 Mbps.
3. The measured server to client throughput is less than 9.5 Mbps.
4. The packet loss rate is less that 1%.
5. Less than 35% of the packets are reordered by the network. Packet

reordering is calculated by subtracting the number of retransmission from the
number of duplicate acks received. The total number of packets sent is then
divided by this result5.

6. The estimated bandwidth is greater than the measured throughput.

Our next task is to determine if the path contains an IEEE 802.11b wireless link. A
normally operating wireless link can be identified by the logical AND of the following 6
tests:

1. The connection never spends any time in the send buffer limited state. This
is one of the connection limited states recorded by the KIS variables.

2. The measured client to server throughput is less than 5 Mbps.
3. The estimated bandwidth is greater than 50 Mbps.
4. The connection transitions between the receiver buffer limited state and the

network congestion limited state an even number of times. In addition to
tracking how much time a connection spends in the 3 limiting states, it also
tracks how many times a connection transitions between these states.

5. The connection is receiver buffer limited over 90% of the time. Even though
the connection transitions between the 2 stated noted in test 4, it spends the
majority of it’s time in the receive buffer limited state.

6. The estimated bandwidth is greater than the measured throughput.

Our last task is to determine if the path is limited by a Digital Subscriber Line (DSL) or
cable model link. A normally operating DSL/cable modem link can be identified by the
logical AND of the following 3 tests:

1. The connection never enters the Send buffer limited state.
2. The measured client to server throughput is less than 2 Mbps.
3. The estimated bandwidth is greater than the measured throughput.

Full or Half Duplex link
The next task is to determine if a half-duplex link exists in the end-to-end path. Half-
duplex links decrease throughput by 20 – 30% due to their need to enforce the link idle
time described in the IEEE 802.3 CSMA/CD protocol. As noted above, the KIS variables
track three state conditions for the TCP connection. The NDT uses the state transition
counters to identify a half-duplex condition.

A Fast Ethernet half-duplex link can be identified by connection that toggles rapidly
between the sender buffer limited and receiver buffer limited states. In tests on an un-
congested path, these values exceeded 100 transitions per second. However, even

5 In the authors’ experience, a large number of reordered packets indicate a 100 Mbps PCMCIA
NIC in a laptop computer.

9

though the connection toggled into and out of the sender buffer limited state numerous
times, it did not remain in this state for long periods of time. Over 95% of the time was
spent in the receiver buffer limited state. The NDT identifies half-duplex conditions by a
logical AND of the following 4 tests:

1. The connection is receiver buffer limited over 95% of the time.
2. The connection transitioned into the receiver buffer limited state over 30

times per second.
3. The connection transitioned into the send buffer limited state over 30 times

per second.
4. The link detection algorithm reported the bottleneck link is Fast Ethernet.

Table 2 shows the results of the NDT half-duplex detection algorithm. In case 1, the
path between the client and NDT server is build from full-duplex Fast Ethernet links.
Note that throughput value reaches 94% of the link capacity, and the connection is
receiver buffer limited. In case 2, the client was changed to a half-duplex condition.
Note that the throughput drops to 70% of the link capacity and the connection rapidly
transitions between the receiver buffer limited and send buffer limited states, while the
connection spends the majority of the time in the receiver buffer limited state. In case 3
the NDT server was changed to a half-duplex condition and the client was returned to a
full-duplex condition. The same half-duplex signature remains.

TransRwin TransCwnd TransSender Rwin %time Throughput Description
1 6 6 99.77 94.06 100/FD --> 100/FD

3909 7 3915 98.49 68.66 100/HD --> 100/FD
3945 6 3950 98.48 69.80 100/FD --> 100/HD

Table 2 - Half Duplex link detection

Congestion
Finally the NDT looks for signs of congestion. It is obvious that a Fast Ethernet link
shared by ten TCP streams will provide each stream with approximately 10 Mbps of
throughput. However, a single TCP stream on an un-congested link may also report a
10 Mbps throughput due to a TCP sender/receiver buffer limit. The NDT congestion
detection algorithm identifies when network congestion is the limiting factor. The NDT
reports congestion by a logical AND of the following 4 tests:

1. The packet loss rate is less than 1%. A properly operating TCP stream will
see very little packet loss even under congestion. This is due to the
congestion control algorithms that cause TCP to lower the congesting window
which limits the amount of data the sender can inject into the network.

2. The connection is network congestion limited more than 20% of the time.
3. A duplex-mismatch condition has not been detected.
4. The connection entered the TCP slow-start state.

As can be seen from the above descriptions, there is some dependency between the
various NDT detection algorithms. Thus, a single test will not be able to tell if more than
one (1) fault condition exists in the network path. Repetitive tests must be done to
discover when multiple misconfiguration conditions exist. This strategy means that
serious problems (e.g., duplex mismatch) are identified and reported before less serious
ones (e.g., normal congestion). It is important to realize that these are stateless tests,
in that current data is not compared to data gathered in previous tests. This condition
makes the analysis a little harder, but it covers the general case where previous data is
unavailable.

10

Comparison to other work
This work differs from other measurement projects Pinger [WM98], Surveyor [MZ99],
NIMI [VP98]. Those projects seek to gather and save network measurement data that
can be used by network engineers and administrators to discover network operating
conditions and long term trends. This work seeks to allow end users to identify network
performance that effect their individual applications.

While this work can identify if the network infrastructure is operating properly, it can not
identify where in the path a faulty or slow link exists. To discover this type of information
a path measuring tools like pathchar [VJ97], pchar, or clink [AD99] must be used. The
analysis performed by this tool can be used to identify paths that need this detailed
investigation.

Conclusion
This paper shows that many important network configuration and performance issues
can be discovered through the examination of some important TCP kernel variables.
The Web100 project has provided KIS patches to the Linux 2.4.9, 2.4.16, and 2.4.19
kernels that captures these variables for later analysis. It has also provided a user
library to export these KIS variables to user applications.

A novel new Network Diagnostic Tool (NDT) was developed to exploit these KIS
variables. The NDT runs a series of short, 10 second, throughput tests between a Java
applet loaded onto a client and the NDT server. The measured results are combined
with calculated values derived from the KIS variables to determine if the throughput
bottleneck is in the NDT server, the client computer or the network infrastructure.

The NDT has meet with great success. Several U.S. universities have notified the
author that they have installed and are using the NDT to diagnose campus network
problems. The author has also been informed that national and international research
and educational network administrators have found the tool useful in their environments.
The author is currently working to deploy more NDT servers at ‘interesting’ locations
throughout the Internet.

Efforts are also underway to improve the NDT detection algorithms. The author is
currently experimenting with packet pair arrival timings to improve the link detection
algorithms. These timing rates will be combined with KIS variables to determine what
type of bottleneck link exists in the network path. In addition the number of detected link
types is being increased to detect higher speed, OC-12 and higher, link technologies.

Appendix A. List of the current KIS variables collected and used by the NDT.

Variable Name Description
AckPktsIn Ack Packets In
AckPktsOut Ack Packets Out
BytesRetrans Retransmitted Bytes
CongestionSignals Total Congestion Signals.

11

CountRTT Count of RTT Samples included in SumRTT
CurrentCwnd Current Congestion Window
CurrentMSS Current Maximum Segment Size
CurrentRTO Current Retransmission Timer
CurrentRwinRcvd Current receiver window
CurrentRwinSent Current receiver window out
CurrentSsthresh Current Slowstart Threshold
DSACKDups Duplicate Data DSACK Reports
DataBytesIn Data Bytes received
DataBytesOut Data Bytes sent
DataPktsIn Total Data Packets received
DataPktsOut Total Data Packets sent
DupAcksIn Number of Duplicate Acks Received
FastRetran Fast Retransmits
MaxCwnd Maximum Congestion Window
MaxMSS Maximum MSS
MaxRTO Maximum Retransmission Timer
MaxRTT Maximum RTT
MaxRwinRcvd maximum receiver window
MaxRwinSent maximum receiver window out
MaxSsthresh Maximum Slowstart Threshold
MinMSS Minimum MSS
MinRTO Minimum Retransmission Timer
MinRTT Minimum RTT
MinRwinRcvd minimum receiver window
MinRwinSent minimum receiver window out
PktsIn Total Packets received
PktsOut Total Packets sent
PktsRetrans Packets With Retransmitted Data
Rcvbuf Available receiver buffer memory
SACKEnabled SACK Enabled
SACKsRcvd Number of SACKs Options Received
SmoothedRTT Smoothed RTT
Sndbuf Available sender buffer memory
SndLimTimeRwin Receiver Limited Time
SndLimTimeCwnd Congestion Limited Time
SndLimTimeSender Sender Limited Time
SndLimTransRwin Receiver Limited Transitions
SndLimTransCwnd Congestion Limited Transitions
SndLimTransSender Sender Limited Transitions
SndLimBytesRwin Receiver Limited Bytes
SndLimBytesCwnd Congestion Limited Bytes
SndLimBytesSender Sender Limited Bytes
SumRTT Cumulative RTT
Timeouts Number of Initial Timeouts
TimestampsEnabled Timestamps Enabled
WinScaleRcvd Requested window scale
WinScaleSent Requested Window Scale Out

12

References

WEB100 W. Huntoon; Web100 concept paper; http://www.web100.org/docs/concept_paper.php;
September 1999
IPERF A. Tirumala; J. Ferguson, Iperf, http://dast.nlanr.net/Projects/Iperf/;
MM97 M. Mathis, J. Semke, J. Mahdavi, T. Ott; "The Macroscopic Behavior of the TCP
Congestion Avoidance Algorithm"; Computer Communication Review, volume 27, number 3, pp.
67-82; July 1997.
CL02 C. de Luna; personal communication; June 2002
WM98 W. Matthews, L. Cottrell; Internet Monitoring in the HEP Community; International
Conferene on Computing in High Energy Physics 1998 (CHEP 98); September 1998
MZ99 M. Zekauskas, S. Kalidindi; Surveyor: An Infrastructure of Internet Performance
Measrements; INET99; http://www.advanced.org/surveyor/; June 1999
VP98 V. Paxson, J. Mahdavi, A. Adams, M. Mathis; An Architecture for Large-Scale Internet
Measurement; IEEE Communications 1998
VJ97 V. Jacobson; pathchar – a tool to infer characteristics of Internet paths; MSIR;
ftp://ftp.ee.lbl.gov/pathchar/msri-talk.pdf; April 1997
AD99 A. Downey; Using pathchar to Estimate Internet Link Characteristics; SIGCOMM’99;
http://rocky.wellesley.edu/downey/clink/; August 1999

