
Technical lessons learned turning the agile dials to eleven!

 Paul King Craig Smith
 ASERT Suncorp
 paulk@asert.com.au craig.smith@suncorp.com.au

Abstract

This report outlines technical lessons learnt
by about 20 of Australia’s most experienced
agile specialists over several years across
several projects within an organization which
aggressively applied the agile practices with
much success. In these projects the agile dials
were cranked to eleven to achieve very high
levels of quality. Most of the specialists involved
believe that they produced the highest quality
software of their careers with some of the
highest productivity they have ever experienced.

1. Introduction

Agile methodologies such as Extreme Programming

[1,5,22,23] help developers productively deliver high-
quality features to their customers on an on-going
basis. Most agile practitioners would agree that using
more of the agile practices on their projects is likely to
raise the quality of the developed software but there
would be diverse opinion about which of the practices
are the most important and also on the return on
investment for some of the practices.

This paper discusses the experiences of a team that
tried to commit fully to all of the practices but also
tried to maintain or increase the short-term productivity
expected by similar teams within the organization. The
team brought together some of Australia’s most
experienced agile specialists who have now worked
closely across numerous projects. This paper draws
upon experiences from numerous projects; however
most of the lessons learnt originated from one major
project called EasyDoc. That project was a document
generation and delivery system primarily coded using
Java but also used numerous dynamic languages and
various open source libraries. The system was required
to integrate with several vendor systems; it
incorporated web applications for administration
purposes, and it integrated with numerous calling
applications and third parties using web services.

2. Setting the Dials to Ten

The initial goals of the team included:
• 100% code coverage from unit tests
• All production code paired and test-driven
• Minimal design up front but an appreciation for

when such design made sense
• Customer focused outcomes
• Full continuous integration
• Daily pair rotation
• Continuous improvement through retrospectives
• High levels of automation (including an

installer that loaded and configured the
approximately 20 tools developers used onto a
freshly installed operating system)

We also set in place some light-weight metrics
monitoring various project metrics. While it is difficult
to accurately compare the metrics from this project
with other projects Figure 1 certainly illustrates that
velocity of the team remained constant over a long
period of time even though code size and complexity
continually increased over time.

Figure 1 - Burnup chart

With these goals in place, we then set out to crank

the agile dials even further.

3. Quality Metrics

Duplication

An on-going problem in some earlier projects in the
organization was the amount of source code
duplication. When a bug was found, it often meant
changing code in several places with great confusion
when not all places were fixed. To combat this, we
used the Simian duplication detection tool [18] with a
threshold of 4 lines. If any 4 consecutive lines in any
production or test source file were duplicated, the build
would break and we would refactor out the duplication.

The team was divided on whether this threshold was
set too high. It certainly forced the team to be highly
disciplined and after some teething troubles didn’t
impact our code or productivity to any significant
extent. In hindsight, I suspect we could slightly raise
this threshold without introducing too much
unintended duplication.

One area which we have explored doing differently
is applying this threshold to our acceptance tests. The
developers on the team now naturally refactor any
duplication in the acceptance tests into helper or library
methods. However, we have found that sometimes
intended duplication is preferable when explaining
acceptance tests to the customer or business analysts.
They don’t always naturally think about the system
with such refactoring in place.

Method and Class Complexity

Cyclomatic complexity was set to much lower than

normal levels effectively prohibiting for instance
nested looping statements or nested conditions or
nested try catch blocks. This was mostly a worthwhile
exercise but we did need to introduce a mechanism for
excluding this check in a very small number of cases
where a class inherently served a very special purpose
that could not be coded in any other way using Java.

Method and Class Size

Common agile thinking is that large methods and

large classes are hard to understand and refactor. Why
not then strive for very small methods and very small
classes? How small? Well, 7 lines will allow you to
have a try … catch … finally block plus one other
line. We tried that and 8 lines and eventually raised the
value just a little further.

In the end, methods were limited to approximately
10 lines and classes to about 80 lines (we used slightly
different metrics for test and production code). This
(like the complexity settings) forced us to refactor any
significantly complex class and because of our TDD
approach and our 100% code coverage target, meant

we had to create the accompanying unit tests. We made
several observations resulting from having such
stringent metrics in place:

• Due to code simplicity, it was always easy to
understand what any individual class or method did.
• Our code base sometimes tended towards
Ravioli style code [2]. This meant that while any
class or method was easy to understand, the number
of classes had increased dramatically and it was
now sometimes hard to understand what all the
classes did and where certain functionality was
situated within the source files. Having great IDE
support made this problem manageable.
A lesson we learnt was that it is best to try to

minimize across all the various dimensions of size and
complexity rather than just trying to minimize on any
one individual axis. As a gross simplification of this
concept, if you have 50 lines of business logic within a
class, you are better off with about 7 methods each
containing about 7 lines rather than two 25-line
methods or twenty five 2-line methods.

We used our own metrics plugin [17] which enabled
us to have exactly the same metrics rules in place and
‘live’ within the IDE as we did within our CI build. We
will have more to say about these metrics in section 8.

4. Dealing with Boundaries

One of the more talked about features of the Java

language is its support for checked exceptions. This
feature allows class designers to force users of their
class to handle any abnormal conditions which arise
during execution of a class’ methods. While this is
debatably a very powerful feature when used correctly
[6: Praxis 16-27] [3: Items 39-47], it does create
additional work for agile teams if low-level libraries
make extensive use of this mechanism.

Firstly, the production code must contain boiler-
plate exception handling logic. This logic takes time to
write and can obscure the main intent of the non error
handling business logic, making it harder to read.
Secondly, for agile teams striving for 100% code
coverage, more work is required to test the added logic
even though the approaches to doing so are well
understood [4: Section 2.8] [8: p.89] [9: pp.25-31].

Fortunately, a fairly straight-forward approach to
dealing with checked exceptions is frequently used.
The delegation pattern [11] is used to encapsulate each
checked exception in a runtime exception [12: Section
4.2.4]. This pattern is applied to each method of each
class in the offending library. The resulting class files
are frequently called boundary classes or edge classes
[19] and should contain no logic but the exception
wrapping logic. These classes are excluded from the

code coverage analysis but should be visually
inspected.

As an example of this technique, consider using
Java’s File class and suppose we only were interested
in using the getCanonicalPath method. We might
create a boundary class as follows:

public class FileBoundary {
 private File delegate;

 public String getCanonicalPath() {
 try {
 return delegate
 .getCanonicalPath();
 } catch (IOException e) {
 throw new RuntimeException(e);
 }
 }
}

To crank up the dials, we tried a number of

approaches:
• At first we used an IDE plugin to auto create

boundary classes given the original file. This
applied the pattern to all public methods. We
could remove some of the methods if we didn’t
need them.

• We also explored using the Groovy language
[21,24] as it integrates very smoothly with Java
and automatically converts checked exceptions to
runtime exceptions. At the time though, the IDE
support for Groovy wasn’t as good as it is now.

• We settled on using autoboundaries. With this
approach, we simply created an interface
containing the methods of interest and used a
naming convention to associate it with the class
we wished to wrap. We then wrote a custom
instance provider for Spring [15] (the IOC
container in use at the time) which automatically
created a dynamic proxy class matching the
original File class with all of the appropriate
exception handling logic.

For the File example discussed above, our
autoboundary interface would look similar to:

package autoboundary.java.io;

public interface File {
 String getCanonicalPath();
}

We found this approach to be very effective. We

had no need to worry about impacts on coverage and
we were saved from the need to explicitly create any
boundary classes. The interface file itself also
documented very clearly which parts of the external
library were being used.
5. Easing the mocking burden

Another area which impacted team productivity
given our goal of 100% code coverage was writing
mock-based tests. Traditional approaches to writing
such tests are well known [4,7,26,22]. As an example,
consider the following test written using a traditional
JMock2 style:

public class DocumentJMockTest {
 Integer count = 4;
 String line = "a dummy line";
 Mockery context = new Mockery();
 DocumentPropertiesImpl docProps;
 DocumentReader reader;
 WordCounter counter;

 @Before
 public void before() {
 reader =
 context.mock(DocumentReader.class);
 counter =
 context.mock(WordCounter.class);
 docProps = new DocumentPropertiesImpl(
 reader, counter);
 }

 @Test
 public void countsWordsInOneLine() {
 context.checking(new Expectations() {{
 one(reader).hasMoreLines();
 will(returnValue(true));
 one(reader).readLine();
 will(returnValue(line));
 one(counter).count(line);
 will(returnValue(count));
 one(reader).hasMoreLines();
 will(returnValue(false));
 ignoring(reader).close();
 }});
 assertEquals(count,
 docProps.countWords());
 context.assertIsSatisfied();
 }
 …

The code here isn’t too complex but there is a little
bit of work to do setting up our mocks and test
constants. For larger tests, this can be a more
significant burden and it also reduced our ability to
heavily automate creation of the test code. We will see
later that by almost totally removing creation of
dummy test constants and auxiliary mocks, we can
almost fully automate mock creation for many of our
classes.

We also looked at using Groovy tests but tool
support for Groovy at the time was not as good as is
currently available, so that approach was ruled out. The
interesting part of those tests (the DSL for specifying
the behavior of the mock) looked like this:

// Groovy
class DocumentGroovyTest {
 def count = 3

 @Test void countsWordsInLine() {

 // set up counter mock … not shown …
 // set up reader mock …
 mock.demand.with {
 hasMoreLines { true }
 readLine { "a dummy line" }
 hasMoreLines { false }
 close {}
 }
 reader = mock.proxyDelegateInstance()

 def docProps = new
 DocumentPropertiesImpl(reader,
 counter)
 assert docProps.countWords() == count
 …

This allowed us to create more succinct tests with a
much more DSL flavor but still involved more boiler
plate code than we desired. We eventually moved to an
approach where the testing infrastructure provided
additional “magic” values to our test classes using
various conventions. We mainly used naming
conventions similar to those shown here:

String uniqueSurname;
Letter dummyLetter;
Mailer wiredMailer;
Summer mockSummer;
Sender stubSender;

When our test framework ran our tests, any field of
our test class which followed these naming
conventions and had a null value was automatically
filled in. The prefix unique allowed us to use random
values, dummy allowed us to provide a given known
value with a well-defined instance creation framework
including nested dependant (child) objects, wired
would allow a bean to be provided as specified by an
IOC wiring strategy and mock and stub created mocks
and stubs respectively. We’ll have more to say about
dummy and random values in Section 6.

Before now looking at where this at first strange
approach leads us, we should point out that some of
these ideas are now in the Boost [19] and Instinct [14]
open source projects which can use naming
conventions or annotations to distinguish cases, e.g. for
the case above, an Instinct version looks like:

@RunWith(InstinctRunner.class)
public class DocumentWithOneLineRemaining {
 @Subject(auto=false) private
 DocumentPropertiesImpl docProps;
 @Mock private DocumentReader reader;
 @Mock private WordCounter counter;
 @Stub private String fileName;
 @Stub private Integer count;
 @Stub private String line;

 @BeforeSpecification
 public void before() {
 docProps = new DocumentPropertiesImpl(
 reader, counter);
 }

 @Specification
 public void countsWordsInLine() {
 expect.that(new Expectations() {{
 one(reader).hasMoreLines();
 will(returnValue(true));
 one(reader).readLine();
 will(returnValue(line));
 one(counter).count(line);
 will(returnValue(count));
 one(reader).hasMoreLines();
 will(returnValue(false));
 ignoring(reader).close();
 }});
 expect.that(docProps.countWords())
 .isEqualTo(count);
}

Now that we have seen that we can remove much of

the clutter and boilerplate code in our test cases, we
should consider additional implications. Let’s consider
test driving a Book class. A Book may have an Author
and an Author may have a String property called
name. If we would like a method getAuthorName on
Book then we might create a test as shown in Figure 2:

Figure 2 - IDE support to create expectations

Using special IDE plugins [17], instead of writing

traditional mock expectations, we write what we think
the production code is going to be. Then we use the
‘Convert to an expectation’ intention to convert that to
a test, similar to that shown below in Figure 3:

Figure 3 - Resulting Test

Now to make this test green, we need to write the
exact same line in our production code. We are
effectively duplicating our production code in two
places. The resulting production code will look like:

Figure 4 - Production Code

The implication of this approach is that for simple

scenarios (like this example) we can write just one of
either the test or the production code and generate the
other. We’ll have more to discuss about the
implications of this approach in Section 8.

6. Instance providers

One of the features we spoke about in Section 5 was

the ability to use dummy and random values. We
elaborate on that idea here. Consider the following
state-based unit test:

public class SummerTest extends TestCase {
 public void testSumStrings() {
 final Summer subject = new Summer();
 assertEquals("ab",
 subject.sum("a", "b"));
 assertEquals("cd",
 subject.sum("c", "d"));
 }

 public void testSumNumbers() {
 final Summer subject = new Summer();
 assertEquals(23, subject.sum(20, 3));
 assertEquals(32, subject.sum(30, 2));
 }
}

The test contains multiple String values used to
triangulate the sum methods. We also need to decide
whether such constants really belong as directly hard-
coded values, class-level constants or shared constants
across multiple tests? We can avoid these tricky
questions by not introducing such arbitrary values into
our test and instead just use random values. (Note:
some testing frameworks allow a random seed to be
provided to allow a repeatable sequence of randomly
generated values to be used.) In such cases,
triangulation occurs by running the test more than once
(or by different pairs). Hence, we can write the test as
follows:

public class SummerTest
 extends BaseTestCase {
 String uniqueStringA;
 String uniqueStringB;

 int uniqueIntA;
 int uniqueIntB;
 Summer subject;

 protected void setUpFixtures() {
 subject = new Summer();
 }

 public void testSumStrings() {
 assertEquals(
 uniqueStringA + uniqueStringB,
 subject.sum(uniqueStringA,
 uniqueStringB));
 }

 public void testSumInts() {
 assertEquals(
 uniqueIntA + uniqueIntB,
 subject.sum(uniqueIntA, uniqueIntB));
 }
}

Immediately, we can see that clutter has been
reduced in this test and hence more time has been
devoted to writing valuable production code.

We should point out at this time that triangulating
over multiple test runs will still yield 100% coverage
but only if we don’t have any branching or conditional
logic in our class under test. In such cases, we still
need to ensure that all paths are followed whether we
make use of randomness or not.

7. Autochecking

Another practice we adopted was to increase the

levels of automatic testing and checking of various
properties. At the time, other teams were debating the
merits of testing or test-driving simple getters and
setters or debating the value of testing for nulls. Given
our goal of 100% coverage, we felt we had no choice
but to test all of these things, so we altered our testing
framework to make such practices almost no work for
developers.

By virtue of the base production classes and base
test case classes that we used, as well as some simple
conventions, we obtained a lot of checking almost for
free. As an example, for every class, we automatically
checked that all production code guarded against null
values for each constructor parameter and all public
method parameters. We distinguished between various
categories of classes, e.g. Data (non-persistent POJO),
Domain (persistent POJO), Components (remotable)
and some variations such as Immutable, Serializable,
etc. For each category we performed appropriate
additional tests. As an example, we used Hibernate
[14] for our persistent domain objects, so for each
Domain class we checked that it was not final and that
it had a protected id field – both Hibernate
requirements. This concept is now also appearing in

other testing frameworks, e.g. JDave [16] has a similar
concept called contract checks:

• EqualsHashCodeContract
• SerializableContract
• CloneableContract
• EqualsComparableContract

8. Atoms, Molecules and Disposable Tests

We wrap up our experiences by describing where

our thoughts are heading. We are reasonably happy
with the level of productivity that we are getting using
our current quality metrics and testing approach but we
often create unit tests which are in some sense
disposable as discussed in Section 5. Currently we find
it beneficial to think of our fine grained classes as
atoms and our more coarsely grained classes as
molecules. By analyzing atomic classes which do not
store state and simply delegate through to other classes,
e.g. using Complexion [20], we can dispose of any
tests associated with those classes. If we are correctly
doing TDD, we should still achieve 100% code
coverage at the molecular level.

9. Acknowledgments

The authors wish to thank Suncorp management and

members of the EasyDoc and EasySuite teams and
other Suncorp staff who assisted the team or were
involved in agile and other customer-focused
initiatives within Suncorp. Thanks also to Ben Sullivan
and Jeremy Wales for commenting on a draft of this
paper.

Suncorp is one of Australia and New Zealand's largest

diversified financial services providers, supplying banking,
insurance and wealth management products to around 7
million customers through well-established and recognized
brands such as AAMI, Australian Pensioners Insurance
Agency, Shannons, Vero, Asteron and Tyndall, as well as
Suncorp and GIO. Today, Suncorp is Australia's sixth largest
bank and second largest domestic general insurance group,
with over 16,000 staff. Suncorp has representation in 450
offices, branches and agencies throughout Australia and New
Zealand.

10. References

 [1] K. Beck and C. Andres, Extreme Programming

Explained, 2nd Ed, Addison-Wesley, 2005

 [2] Ravioli Code article on the C2 (Ward’s) Wiki:

http://c2.com/cgi/wiki?RavioliCode

 [3] J. Bloch, Effective Java, Addison-Wesley, 2001

 [4] J.B. Rainsberger, JUnit Recipes, Manning, 2005

 [5] V. Subramaniam and A. Hunt, Practices of an Agile
Developer, Pragmatic Bookshelf, 2006

 [6] P. Haggar, Practical Java, Addison-Wesley, 2000

 [7] A. Hunt and D. Thomas, Pragmatic Unit Testing in

Java with JUnit, Pragmatic Bookshelf, 2003

 [8] M. Feathers, Working Effectively with Legacy Code,

Prentice Hall, 2005

 [9] C. Beust and H. Suleiman, Next Generation Java

Testing, Addison-Wesley, 2008

 [10] G. Meszaros, xUnit Test Patterns, Addison-Wesley,

2007

 [11] Wikipedia: The Delegation Pattern,

http://en.wikipedia.org/wiki/Delegation_pattern

 [12] B. Tate, M. Clark, B. Lee and P. Linskey, Bitter EJB,

Manning, 2003

 [13] The Instinct Project,

http://code.google.com/p/instinct/

 [14] The Hibernate Project, http://hibernate.org/

 [15] The Spring Framework, http://springframework.org/

 [16] The JDave Project, http://www.jdave.org/

 [17] The Agile Plugins Project,

http://code.google.com/p/agileplugins/

 [18] The Simian Code Duplication Detection tool,

http://www.redhillconsulting.com.au/products/simian

 [19] The Boost Project,

http://geekscape.org/daisy/geekscape/g2/128.html

 [20] The Complexion Project,

http://www.assembla.com/wiki/show/complexion

 [21] The Groovy Language, http://groovy.codehaus.org/

 [22] L. Koskela, Test Driven: TDD and Acceptance TDD

for Java Developers, Manning, 2007

 [23] J. Shore and S. Warden, The Art of Agile

Development, O’Reilly, 2007

 [24] D. Koenig, A. Glover, P. King and G. Laforge,

Groovy in Action, Manning, 2007

 [25] C. Smith and P. King, Agile Project Experiences –

The Story of Three Little Pigs, Agile 2008

 [26] J. Link, Unit testing in Java, How Tests Drive the

Code, Morgan Hoffman, 2003

