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Abstract. State-of-the-art solvers for mixed integer programming (MIP) prob-
lems are highly parameterized, and finding parameter settings that achieve high
performance for specific types of MIP instances is challenging. We study the appli-
cation of an automated algorithm configuration procedure to different MIP solvers,
instance types and optimization objectives. We show that this fully-automated
process yields substantial improvements to the performance of three MIP solvers:
CPLEX, GUROBI, and LPSOLVE. Although our method can be used “out of the
box” without any domain knowledge specific to MIP, we show that it nevertheless
outperforms the only special-purpose automated tuning tool for MIP of which we
are aware, which is part of CPLEX.

1 Introduction
Current state-of-the-art mixed integer programming (MIP) solvers are highly parameter-
ized. These parameters give users control over a wide range of design choices, including:
which preprocessing techniques to apply; what balance to strike between branching
and cutting; which types of cuts to apply; and the details of the underlying linear (or
quadratic) programming solver. Solver developers typically take great care to identify
default parameter settings that are robust and achieve good performance across a variety
of problem types. However, the best combinations of parameter settings differ across
problem types, which is of course the reason that such design choices are exposed as
parameters. Thus, when a user is interested only in good performance for a given family
of problem instances, as is the case in many application situations, it is often possible to
substantially outperform the default configuration of the solver.

When the number of parameters is large, finding a solver configuration that leads to
good empirical performance is a challenging optimization problem. (For example, this is
the case for CPLEX: in version 12, its 221-page parameter reference manual describes
135 parameters that affect the search process.) MIP solvers exist precisely because
humans are not good at solving high-dimensional optimization problems. Nevertheless,
parameter optimization is usually performed manually. Doing so is tedious and laborious,
requires considerable expertise, and often leads to results far from optimal.

There has been recent interest in automating the process of parameter optimization
for MIP. The idea is to require the user only to specify a set of problem instances of
interest and a performance metric, and then to trade machine time for human time
to automatically identify a parameter configuration that achieves good performance.
Notably, IBM ILOG CPLEX—the most widely used commercial MIP solver—introduced
an automated tuning tool in version 11. In our own recent work, we proposed methods
for the automated configuration of complex, black-box algorithms [22, 21, 20, 17].
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While we mostly focused on solvers for propositional satisfiability (based on both local
and tree search), we also conducted preliminary experiments that showed the promise
of our methods for MIP. Specifically, we studied the configuration of CPLEX 10.1.1,
considering 5 types of MIP instances [21].

The main contribution of this paper is a thorough study of the applicability of our
black-box techniques to the MIP domain. We go beyond all previous work by configuring
three different MIP solvers (GUROBI, LPSOLVE, and the more recent CPLEX versions
11.2 & 12.1), by considering a wider range of instance distributions, by considering
multiple configuration objectives (notably, performing the first study on automatically
minimizing the optimality gap), and by comparing our method to CPLEX’s automated
configuration tool (new in version 11). Our results show that our approach consistently
sped up all three MIP solvers and also clearly outperformed the CPLEX tuning tool. For
example, for a set of real-life instances from computational sustainability, our approach
sped up CPLEX by a factor of 23 while the tuning tool returned the CPLEX defaults. For
GUROBI, speedups were consistent but small (up to a factor of 3), and for LPSOLVE they
reached a factor up to 153.

The remainder of this paper is organized as follows. In the next section, we describe
automated algorithm configuration, including existing tools and applications. Then,
we describe the MIP solvers we configure (Section 3) and discuss the setup of our
experiments (Section 4). Next, we report results for optimizing both the runtime of the
MIP solvers (Section 5) and the optimality gap they achieve within a fixed time (Section
6). We then compare our approach to the CPLEX tuning tool (Section 7) and conclude
with some general observations and an outlook on future work (Section 8).

2 Automated Algorithm Configuration
Whether manual or automated, effective algorithm configuration is central to the develop-
ment of state-of-the-art algorithms. This is particularly true when dealing withNP-hard
problems, where the runtimes of weak and strong algorithms regularly differ by orders of
magnitude on the same problem instances. Existing theoretical techniques are typically
not powerful enough to determine whether one parameter configuration will outperform
another, and therefore algorithm designers have to rely on empirical approaches.

2.1 The Algorithm Configuration Problem
An algorithm to be configured (a target algorithm) has a set of parameters, which can be
numerical (e.g., level of a real-valued threshold); ordinal (e.g., low, medium, high); cate-
gorical (e.g., choice of heuristic), Boolean (e.g., algorithm component active/inactive);
and even conditional (e.g., a threshold that affects the algorithm’s behaviour only when
its corresponding component is active). In some cases, a value for one parameter can
be incompatible with a value for another parameter; for example, some types of pre-
processing are incompatible with the use of certain data structures. Thus, some parts
of parameter configuration space are forbidden; they can be described succinctly in the
form of forbidden partial instantiations of parameters (i.e., constraints). In addition to
the parameter space, the problem is also defined by a set of instances of interest (e.g.,
100 vehicle routing problems) and the metric to be optimized (e.g., average runtime;
optimality gap). We call an instance of the problem a configuration scenario.

We focus on addressing configuration scenarios using automatic methods that we call
configuration procedures. We illustrate this process in Figure 1. Observe that we treat
algorithm configuration as a black-box optimization problem: a configuration procedure
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Fig. 1. A configuration procedure (short: configurator) executes the target algorithm with specified
parameter settings on one or more problem instances, observes algorithm performance, and uses
this information to decide which subsequent target algorithm runs to perform. A configuration
scenario includes the target algorithm to be configured and a collection of instances.

executes the target algorithm on a problem instance and receives feedback about the
algorithm’s performance without any access to the algorithm’s internal state. (Because
the CPLEX tuning tool is proprietary, we do not know whether it operates similarly.)

2.2 Configuration Procedures and Existing Applications
A variety of black-box, automated configuration procedures have been proposed in
the CP and AI literatures. There are two major families: model-based approaches that
learn a response surface over the parameter space, and model-free approaches that do
not. Much existing work is restricted to scenarios having only relatively small numbers
of numerical (often continuous) parameters, both in the model-based [8, 15, 19] and
model-free [12, 6, 1] literatures. Some relatively recent model-free approaches permit
both larger numbers of parameters and categorical domains, in particular Composer [14],
F-Race [10, 7], GGA [3], and our own ParamILS [22, 21]. As mentioned above, the
automated tuning tool introduced in CPLEX version 11 can also be seen as a special-
purpose algorithm configuration procedure; we believe it to be model free.

Blackbox configuration procedures have been applied to optimize a variety of para-
metric algorithms. Gratch and Chien [14] successfully applied the Composer system to
optimize the LR-26 algorithm for scheduling communication between a collection of
ground-based antennas and spacecraft in deep space. LR-26 is a heuristic scheduling
approach with 5 parameters whose optimization significantly improved performance.
Adenso-Diaz and Laguna [1] demonstrated that their Calibra system was able to optimize
the parameters of six unrelated metaheuristics from the literature, matching or surpass-
ing the performance achieved manually by their developers. F-Race and its extensions
have been used to optimize numerous metaheuristics, including iterated local search
for the quadratic assignment problem; ant colony optimization for the travelling sales-
person problem; and the best performing algorithm submitted to the 2003 timetabling
competition [9].

Our group has been successful in using various versions of PARAMILS to configure
algorithms for a wide variety of problem domains. The focus of that work has so been
far on the configuration of solvers for the propositional satisfiability problem (SAT); we
optimized both tree search [18] and local search solvers [23], in both cases substantially
advancing the state of the art for the types of instances studied. We also successfully
configured algorithms for the most probable explanation problem in Bayesian networks;
global continuous optimization; protein folding; and algorithm configuration itself [for
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Algorithm Parameter type # params of type # values considered Total # configs
Categorical 44 (45) 3–7

CPLEX Boolean 6 2 4.75 · 1046

11.2 (12.1) Integer 18 5–7 (1.90 · 1047)
Continuous 7 5–8
Categorical 16 3–5

GUROBI
Boolean 4 2

3.84 · 1014

Integer 3 5
Continuous 2 5

LPSOLVE
Categorical 7 3–8

1.22 · 1015

Boolean 40 2
Table 1. Target algorithms and characteristics of their parameter configuration spaces.

details, see 17]. As described above, we also conducted preliminary experiments on the
application of PARAMILS to optimizing CPLEX [21].

3 MIP Solvers
We now discuss the three MIP solvers we configured and their configuration spaces.
Table 1 gives an overview.

IBM ILOG CPLEX is the most-widely used commercial optimization tool for solv-
ing MIPs. As stated on the CPLEX website (http://www.ilog.com/products/
cplex/), currently over 1 300 corporations and government agencies use CPLEX, along
with researchers at over 1 000 universities. Nevertheless, CPLEX is massively parameter-
ized and end users often have to experiment with these parameters:

“Integer programming problems are more sensitive to specific parameter settings,
so you may need to experiment with them” (ILOG CPLEX 12.1 user manual,
page 235)

Thus, the automated configuration of CPLEX is very promising and has the potential to
directly impact a large user base.

For the experiments in this paper, we used two different versions of CPLEX. We
primarily used version 11.2.1 However, when our instances were small enough (as they
were for two of our datasets), we instead used the teaching edition of CPLEX 12.1, which
is restricted to problems having at most 500 variables and 500 constraints.

We defined the parameter configuration space of CPLEX as follows. Using the CPLEX
“parameters reference manual”, we identified 75 parameters that can be modified in order
to optimize performance. We were careful to keep all parameters fixed that change the
problem formulation (e.g., parameters such as the optimality gap below which a solution
is considered optimal). The 75 parameters we selected affect all aspects of CPLEX.
There are 12 preprocessing parameters (mostly categorical); 17 MIP strategy parameters
(mostly categorical); 10 categorical parameters deciding about how aggressively to use
which types of cuts; 9 numerical MIP “limits” parameters; 10 simplex parameters (half
of them categorical); 6 barrier optimization parameters (mostly categorical); and 11

1 Unfortunately, our license renewal subscription expired before the release of CPLEX version 12,
and so we do not yet have licenses for 12.1. We intend to rerun all experiments using 12.1 for
the final version of this paper, if accepted.
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further parameters. Most parameters have an “automatic” option as one of their values.
We allowed this value but also allowed other values (all other values for categorical
parameters; and a range of values for numerical parameters). Exploiting the fact that 4
parameters are conditional on others taking certain values, these 75 parameters gave rise
to 4.75 · 1046 distinct parameter configurations.

We used two further variants of this configuration space. For mixed integer quadratically-
constrained problems (MIQCP), there were 1 new binary and 1 new categorical parameter
with 3 values. However, 3 categorical parameters with 4, 6, and 7 values were lost, and
for one categorical parameter with 4 values only 2 values remained. This led to a total
of 8.49 · 1044 possible configurations. For CPLEX 12.1, we used the same parameters
as for CPLEX 11.2, further adding a 4-valued categorical parameter controlling multi-
commodity flow (MCF) cuts. This yielded a configuration space of size 1.90 · 1047.

GUROBI is a recent commercial MIP solver;2 it is competitive with CPLEX on some
types of MIP instances [25]. We used v.2.0.1 with an unlimited free academic license.

GUROBI’s parameter configuration space is smaller than CPLEX’s. Using the online
description of GUROBI’s parameters,3 we identified 25 parameters for configuration.
These consisted of 12 mostly-categorical parameters that determine how aggressively
to use each type of cuts, 6 mostly-categorical simplex parameters, 3 MIP parameters,
and 4 other mostly-Boolean parameters. After disallowing some problematic parts of
configuration space (see Section 4.3), we considered 3.84 · 1014 distinct configurations.

LPSOLVE is one of the most prominent open-source MIP solvers. We determined 47
parameters based on the information at http://lpsolve.sourceforge.net/. These
parameters are rather different from those of GUROBI and CPLEX: 7 parameters are
categorical, and the rest are Boolean switches indicating whether various solver modules
should be employed. 14 parameters concern presolving; 9 concern pivoting; 14 concern
the Branch & Bound strategy; and 10 concern other functions. Taking into account one
conditional parameter and disallowing problematic parts of configuration space (see
Section 4.3), we considered 1.22 · 1015 distinct parameter configurations.

4 Experimental Setup
We now describe our experimental setup: benchmark sets, details of the configuration
procedure we used, and our computational environment.

4.1 Benchmark Sets
We collected a wide range of MIP benchmarks from public benchmark libraries and
other researchers, and split each of them 50:50 into disjoint training and test sets; we
detail them in the following.

MJA This set comprises 343 machine-job assignment instances encoded as mixed
integer quadratically constrained programming (MIQCP) problems [2]. We obtained
it from the Berkeley Computational Optimization Lab (BCOL).4 On average, these
instances contain 2 769 variables and 2 255 constraints (with standard deviations 2 133
and 1 592, respectively).

2
http://www.gurobi.com/

3
http://www.gurobi.com/html/doc/refman/node378.html#sec:Parameters

4
http://www.ieor.berkeley.edu/˜atamturk/bcol/, where this set is called conic.sch.
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CLS This set comprises 100 capacitated lot-sizing instances encoded as mixed integer
linear programming (MILP) problems [5]; again, we obtained it from BCOL. Each
instance contains 181 variables and 180 constraints.

MIK This set of 120 MILP-encoded mixed-integer knapsack instances [4] was also ob-
tained from BCOL. On average, these instances contain 384 variables and 151 constraints
(with standard deviations 309 and 127, respectively).

Regions200 This set comprises 2 000 instances of the combinatorial auction winner
determination problem, encoded as MILP instances. They were generated using the
regions generator from the Combinatorial Auction Test Suite [24], with the goods
parameter set to 200 and the bids parameter set to 1 000. On average, the resulting MILP
instances contain 1 002 variables and 385 inequalities (with standard deviations 1.7 and
3.4, respectively).

Regions70 This set contains 2 000 instances similar to those in Regions200 but much
smaller; we created this set specifically to be used with the size-restricted teaching
edition of CPLEX 12.1. On average, the resulting MILP instances contain 352 variables
and 135 inequalities (with standard deviations 1.7 and 2.1, respectively).

COR-LAT This set contains 2 000 real-life MILP instances used for the construction
of a wildlife corridor for grizzly bears in the Northern Rockies region [13, the instances
were provided by Bistra Dilkina]. All instances had 466 variables; on average they had
486 constraints (with standard deviation 25.2).

MASS This set contains 100 integer programming instances modelling multi-activity
shift scheduling [11]. On average, the resulting MILP instances contain 81 994 variables
and 24 637 inequalities (with standard deviations 9 725 and 5 391, respectively)

4.2 Configuration Procedure
As our configuration procedure we used FOCUSEDILS version 2.4 [21]. This instantia-
tion of the PARAMILS framework aggressively rejects poor configurations and focuses
its efforts on the evaluation of good configurations by performing additional runs using
them. It also supports adaptive capping, a technique for speeding up configuration tasks
in which runtime is minimized. Specifically, when running PARAMILS, the user specifies
a so-called captime κ, the maximal amount of time after which PARAMILS will termi-
nate each run of the target algorithm. Adaptive capping dynamically sets the captime for
individual target algorithm runs, thus permitting substantial savings in computation time.

As in our previous work, for each configuration task we perform 10 runs of FOCUSED-
ILS and use the result of the run with best training performance. This is sound since no
knowledge of the test set is required in order to make the selection; the only drawback
is a 10-fold slowdown of the overall procedure. If none of the 10 FOCUSEDILS runs
encounters a successful algorithm run, then our procedure returns the algorithm default.

4.3 Avoiding Problematic Parts of Parameter Configuration Space
Occasionally, we encountered problems running GUROBI and LPSOLVE with certain
combinations of parameters on particular problem instances. These problems included
segmentation faults as well as several more subtle failure modes in which incorrect results
could be returned by a solver. To deal with them, we took the following measures in
our experimental protocol. (CPLEX did not show these problems on any of the instances
studied here.)
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First, we established reference solutions for all MIP instances using CPLEX 11.2 and
GUROBI, both run with their default parameter configurations for up to one CPU hour
per instance. (In some cases, neither of the two solvers could find a solution within this
time, in which case we skipped the following verification stage.) We then conducted
preliminary experiments (not reported here) to identify partial parameter configurations
for which the solvers produced incorrect results as compared to these reference solutions,
or a segmentation fault. Any such partial configuration was then removed from the
configuration space considered in our experiments using PARAMILS’s mechanism of
forbidden partial parameter instantiations.

Furthermore, in our later experiments, whenever a target algorithm run started by
PARAMILS disagreed with the respective reference solution, or when the MIP solver
produced a segmentation fault, we considered the empirical cost of that run to be
∞, thereby driving the local search process underlying PARAMILS away from the
problematic parameter configuration. This allowed PARAMILS to gracefully handle
target algorithm failures that we had not observed in our preliminary experiments.
Whenever a target algorithm run reported to have failed due to an internal error (such as
‘out of memory’), we counted it as having timed out with its specified captime.

4.4 Computational Environment

We carried out the configuration of LPSOLVE on the 840-node Westgrid Glacier clus-
ter, each with two 3.06 GHz Intel Xeon 32-bit processors and 2–4GB RAM, running
OpenSuSE Linux 10.1. All other configuration experiments, as well as all evaluation
was performed on a cluster of 55 dual 3.2GHz Intel Xeon PCs with 2MB cache and 2GB
RAM, running OpenSuSE Linux 10.1; runtimes were measured as CPU time on these
reference machines. We measured the computational requirements of CPLEX 11.2 with
an external CPU timer since it sometimes returned erratic (often negative) runtimes.

5 Minimization of Runtime Required to Prove Optimality

In our first set of experiments, we studied the extent to which automated configuration
can improve the time performance of CPLEX 11.2, GUROBI, and LPSOLVE for solving the
seven types of instances discussed in Section 4.1. This led to 3 ·6+1 = 19 configuration
scenarios (the MJA instances are quadratically constrained and could only be solved
with CPLEX).

For most configuration scenarios, we allowed a total configuration time budget of
2 CPU days for each of our 10 PARAMILS runs, with a captime of κ = 300 seconds
for each MIP solver run. In order to save computation time, we only used 5 CPU hours
and a per-run captime of κ = 30 seconds for configuring CPLEX and GUROBI on the
easiest benchmark sets (CATS100, MIK, and MJA). In order to penalize timeouts, during
configuration we used the penalized average runtime criterion [dubbed “PAR-10” in 21],
counting each timeout as 10 · κ. For evaluation, we report timeouts separately.

For each configuration scenario, we compared the performance of the parameter
configuration identified using PARAMILS against the default configuration, using a test
set of instances disjoint from the training set used during configuration. We note that
this default configuration is typically determined using substantial time and effort; for
example, the CPLEX 12.1 user manual states (on p. 478):
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Algorithm Scenarios
% test inst. solved in 24h mean runtime for solved [s] Speedup
default PARAMILS default PARAMILS factor

MJA 100% 100% 2.61 1.52 1.71×
MIK 100% 100% 3.97 1.36 2.92×

CATS100 100% 100% 1.54 0.35 4.43×
CPLEX CATS200 100% 100% 57.5 10.0 5.75×

CLS 100% 100% 70.5 8.26 8.54×
MASS 100% 100% 477 247 1.94×

COR-LAT 100% 100% 300 12.9 23.3×
MIK 100% 100% 2.70 2.17 1.24×

CATS100 100% 100% 2.08 1.04 2.01×

GUROBI
CATS200 100% 100% 56.6 36.4 1.56×

CLS 100% 100% 58.9 47.2 1.25×
MASS 100% 100% 493 281 1.75×

COR-LAT 99% 99% 92.1 30.4 3.03×
MIK 37% 37% 21 670 21 670 1×

CATS100 100% 100% 9.52 1.71 5.56×

LPSOLVE
CATS200 88% 100% 19 000 124 153×

CLS 14% 58% 39 300 1440 27.4×
MASS 17% 17% 8 661 8 661 1×

COR-LAT 50% 92% 7 916 229 34.6×

Table 2. Results for minimizing the runtime to find an optimal solution and prove its optimality.
All results are for test sets disjoint from the training sets used for the automated configuration. We
give the number of timeouts after 24 CPU hours as well as the mean runtime for those instances
that were solved; bold-faced entries indicate better performance of the configurations found by
PARAMILS than for the default configuration. Each configuration experiment used 10 PARAMILS
runs of 2 CPU days each.

“A great deal of algorithmic development effort has been devoted to establishing
default ILOG CPLEX parameter settings that achieve good performance on a
wide variety of MIP models.”

Table 2 describes our configuration results. For each of the benchmark sets, PARAM-
ILS improved CPLEX’s performance. Specifically, we achieved speedups ranging from
1.7-fold to 23-fold. For GUROBI, the speedups were again consistent but less pronounced:
1.24-fold to 3-fold. For the open-source solver LPSOLVE, the speedups were most
substantial, but there were also 2 cases in which PARAMILS did not improve over
LPSOLVE’s default, namely the MIK and MASS benchmarks. This occurred because,
within the 300-second captime we used during configuration, none of the thousands of
LPSOLVE runs performed by PARAMILS solved a single benchmark instance for either
of the two benchmark sets. It is interesting to observe that LPSOLVE exhibited such poor
performance for the MIK benchmark, which was one of the easiest benchmark sets for
both of the commercial solvers.

Figure 2 shows the speedups for 4 configuration scenarios. Figures 2 (a) to (c) show
the scenario with the largest speedup for each of the solvers. In all cases, PARAMILS’
configurations scaled better to hard instances than the algorithm defaults, which in some
cases timed out on the hardest instances. PARAMILS’ worst performance was for the
2 LPSOLVE scenarios, for which it simply returned the default configuration; in Figure
2(d), we instead plot results for the more interesting second-worst case, the configuration
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(d) GUROBI, MIK
Fig. 2. Results for configuration of MIP solvers to reduce the time for finding an optimal solution
and proving its optimality.

of GUROBI on MIK. Observe that here, performance was actually rather good for most
instances, and that the poor speedup in test performance was due to a single hard test
instance. Better generalization performance would be achieved if more training instances
were available.

6 Minimization of Optimality Gap
Sometimes, we may be interested in optimizing a performance measure other than
runtime. For example, constraints on the time available for solving a given MIP instance
might preclude running the solver to completion, and in such cases, we may be interested
in minimizing the optimality gap (also known as MIP gap) achieved within a fixed
amount of time, T .

To investigate the efficacy of our automated configuration approach in this context,
we applied it to CPLEX 11.2, GUROBI and LPSOLVE on the 5 benchmark distributions
with the longest average runtimes, with the objective of minimizing the average relative
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Scenario Algorithm
% feasible solutions found mean gap when feasible
default PARAMILS default PARAMILS

MIK 100% 100% 0.05% 0.01%
CLS 100% 100% 0.29% 0.19%

CPLEX Regions200 100% 100% 3.19% 0.87%
COR-LAT 72% 90% 2.92% 4.46%

MASS 10% 26% 0.33% 4.71%
MIK 100% 100% 0.02% 0.01%
CLS 100% 100% 0.53% 0.44%

GUROBI Regions200 100% 100% 3.11% 2.37%
COR-LAT 83% 91% 2.72% 2.05%

MASS 32% 32% 76.4% 52.2%
MIK 100% 100% 652% 14.3%
CLS 100% 100% 29.6% 7.39%

LPSOLVE Regions200 100% 100% 11.0% 6.30%
COR-LAT 36% 87% 2.49% 1.86%

MASS 0% 0% - -
Table 3. Results for configuration of MIP solvers to reduce the relative optimality gap reached
within 10 CPU seconds. For each combination of solver and benchmark, we performed 10
independent PARAMILS runs of 5 hours each on the respective training benchmark set, selected
the run with the best training performance, and reported results on the respective test sets. We give
the number of test instances for which no feasible solution was found within 10 seconds, the mean
relative gap for the remaining test instances, and the reduction factor (gap using default/gap using
optimized configuration) on the test set. Bold face indicates the better configuration (recall that our
lexicographic objective function cares first about the number of instances with feasible solutions,
and then considers the mean gap among feasible instances only to break ties).

optimality gap achieved within T = 10 CPU seconds. To deal with runs that did not find
feasible solutions, we optimized a lexicographic objective function, which counts the
fraction of instances for which feasible solutions were found and breaks ties based on
the mean relative gap for those instances. For each of the 15 configuration scenarios, we
performed 10 PARAMILS runs, each with a time budget of 5 CPU hours.

Table 3 shows the results of this experiment. For all but one of the 15 configuration
scenarios, the automatically-found parameter configurations performed substantially
better than the algorithm defaults. In 4 cases, feasible solutions were found for more
instances, and in 10 of the 11 remaining scenarios, the relative gaps were smaller, often
(namely, in 5 out of the 10 cases) by a factor of at least 2.

For the one configuration scenario where we did not achieve an improvement, LP-
SOLVE on MASS, the default configuration of LPSOLVE could not find a feasible solution
for any of the training instances, and the same turned out to be the case for the thousands
of configurations considered by PARAMILS. This provides further evidence that the
MASS instances may simply be too hard for LPSOLVE.

More detailed examination of these results (data not shown) reveals that for some
scenarios (e.g., for LPSOLVE on MIK), the relative gap shrank for all test (and training)
instances. There were also cases (e.g., for CPLEX on Regions200 and for GUROBI on
CLS), where substantially more instances were solved to optimality (using a standard
tolerance of 0.01%).
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7 Comparison to CPLEX Tuning Tool
The CPLEX tuning tool is a built-in CPLEX function available in versions 11 and above.5

It allows the user to minimize CPLEX’s runtime on a given set of instances. As in our
approach, the user also specifies a per-run captime, the default for which is κ = 10 000
seconds, and an overall time budget. The user can further decide whether to minimize
mean or maximal runtime across the set of instances. (We note that these two criteria
are more similar than they might appear since the mean is usually dominated by the
runtimes of the hardest instances.) By default, the objective for tuning is minimal mean
runtime and the time budget is set to infinity, allowing the CPLEX tuning tool to perform
all the runs it deems necessary.

Since CPLEX is proprietary, we do not know the inner workings of the tuning tool;
however, we can make some inferences from its outputs. In our experiments, it always
started by running the default parameter configuration on each instance in the benchmark
set. Then, it tested a set of named parameter configurations, such as ‘no cuts’, ‘easy’,
and ‘more gomory cuts’. The set of configurations tested depended on the benchmark
set given.

PARAMILS differs from the CPLEX tuning tool in at least three crucial ways. First,
it searches in the vast space of all possible configurations, while the CPLEX tuning tool
focuses on a small set of handpicked candidates. Second, PARAMILS is a randomized
procedure that can be run for any amount of time, and that can find different solutions
when multiple copies are run in parallel; it reports better configurations as it finds
them. The CPLEX tuning tool is deterministic, and runs for a fixed amount of time
(dependent on the instance set given) unless the time budget intervenes earlier; it does
not return a configuration until it terminates. Third, because PARAMILS does not rely
on domain-specific knowledge, it can be applied out of the box to the configuration
of other MIP solvers and, indeed, arbitrary parameterized algorithms. In contrast, the
few configurations in the CPLEX tuning tool appear to have been selected based on
substantial domain insights, and the fact that different parameter configurations are
tried for different types of instances leads us to believe that it relies upon MIP-specific
instance characteristics. While in principle, this could be an advantage, in its current
form it appears to be rather restrictive.

We compared the performance of the configurations found by the CPLEX tuning
tool to that of configurations found with PARAMILS. We used the tuning tool’s default
settings to optimize mean runtime on our training sets, and tested performance on our
test sets. We ran the tool from CPLEX 11.2 on all benchmark sets, and from CPLEX
12.1 (teaching edition) for the two sets (CLS and Regions70) in which instances were
small enough to permit its use. We ran PARAMILS for the same amount of time the
CPLEX tuning tool took in each case. This time is often rather small and—in contrast
to PARAMILS—the tool cannot use additional time in order to improve performance.
We have already demonstrated substantial speedups with comparably large time budgets
for configuration in Section 5; here, we were interested in the quality of configurations
found given a shorter time budget. In particular, when the tuning tool required time t for

5 Incidentally, our first work on the configuration of CPLEX predates the CPLEX tuning tool. This
work, involving Hutter, Hoos, Leyton-Brown, and Stützle, was presented and published as a
technical report at a doctoral symposium in Sept. 2007 [16]. At that time no other mechanism
for automatically configuring CPLEX was available; CPLEX 11 was released Nov. 2007.
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a benchmark set, we ran two versions of our configuration procedures: one version using
10 parallel runs of PARAMILS, each with time budget t/10; and one version using 10
runs of PARAMILS, each with time budget t. The first version used the same total CPU
time as the CPLEX tuning tool; the second version takes the same amount of wall clock
time but runs in parallel on 10 processors.

Table 3 reports the results of the comparison. First, we note that the CPLEX tuning
tool simply returned the algorithm defaults in 5 of the 9 cases; in 1 case it crashed,
running out of memory. In the remaining 3 cases, it returned configurations that only
differed in up to three parameters from the default: ‘easy’ (perform only 1 cutting plane
pass; apply the periodic heuristic every 50 nodes; and branch based on pseudo-reduced
costs), ‘no cuts’ (perform no cuts and branch based on pseudo-reduced costs), and
‘aggressive heuristic’ (apply the periodic heuristic every 3 nodes and apply the RINS
heuristic every 20 nodes). 2 of these 3 cases were on Regions70, where the tuning tools
of both CPLEX 11.2 and CPLEX 12.1 yielded minor improvements over the default. Only
on benchmark set MASS did the tuning tool actually lead to a noticeable improvement
over the defaults.

PARAMILS outperformed the tuning tool for almost all configuration scenarios,
sometimes substantially so. Given the same total time budget as the CPLEX tuning
tool required, PARAMILS(t/10) performed better for 6 of the 9 scenarios, with a mean
runtime up to 6 times smaller. For two scenarios, it performed slightly worse and for one
(MIK) it performed worse by a factor of 1/0.37 = 2.7. For that scenario, PARAMILS
simply did not have enough time to find good configurations; it also only had time to
perform runs with 18 instances. Given the same wall-clock time budget as the tuning tool
but 10 processors, PARAMILS(t) performed better on 8 of the 9 scenarios, with a mean
runtime up to 10 times smaller. The only case where the CPLEX tuning tool performed
better (given the restricted time budget used here) was for benchmark set MASS, and
there the difference was small.

We examine the performance difference between the two methods on a per-instance
basis in Figure 3. Specifically, we consider the two CPLEX 12.1 scenarios and the two
CPLEX 11.2 scenarios with the largest and the smallest speedups respectively. Figures
3 (a) through (c) show the consistent speedups achieved by PARAMILS, in (b) and (c)
with a trend towards greater improvements for harder instances. Figure 3(d) shows the
only case where the tuning tool yielded a configuration with better test performance
than the one selected by PARAMILS. Note, however, that PARAMILS achieved better
performance on most instances, and that its higher mean runtime was due to a single
outlier. Furthermore, on the training instances—the only instances to which both the
CPLEX tuning tool and PARAMILS had access—PARAMILS achieved much lower mean
runtime, by a factor of 5.95. This difference was again mostly due to a single outlying
instance (the ‘× symbol on the far right in Figure 3(d)). We note that the presence of
such outliers suggests that reliable generalization on this benchmark set would occur
only given much more training data. Nevertheless, we are encouraged that PARAMILS
found a way to solve the training-set outlier (in 1 748 seconds) while the tuning tool
accepted a time-out after 10 000 seconds.

8 Conclusions and Future Work
In this study we have demonstrated that by using automated algorithm configuration, sub-
stantial performance improvements can be obtained for three widely used MIP solvers on
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Scenario
CPLEX tuning tool CPLEX mean runtime on test set [s]

Tuning Time t Name of result Default Tuned PARAMILS(t/10) PARAMILS(t)
Regions70 796 ’easy’ 0.181 0.175 0.11 (1.60×) 0.08 (2.13×)

CLS 104 673 ’defaults’ 48.4 48.4 14.4 (3.37×) 12.6 (3.84×)

Regions70 1 511 ’no cuts’ 0.18 0.17 0.19 (0.90×) 0.12 (1.43×)
CLS ≥ 47 622 Error: out of memory 70.5 70.5 11.6 (6.09×) 8.70 (8.10×)

Regions200 65 116 ’defaults’ 57.5 57.5 13.7 (4.19×) 10.4 (5.55×)
MIK 13 431 ’defaults’ 3.97 3.97 10.8 (0.37×) 2.91 (1.36×)
MJA 1 987 ’defaults’ 2.61 2.61 2.15 (1.21×) 2.22 (1.17×)

MASS 97 107 ’aggressive heuristic’ 477 428 431 (0.99×) 464 (0.92×)
COR-LAT 96 674 ’defaults’ 300 300 91.9 (3.27×) 29.1 (10.3×)

Table 4. Comparison of our approach against the CPLEX tuning tool, for CPLEX version 12.1
(upper part of the table) and version 11.2 (lower part of the table). For each benchmark set, we
give the time t required by the CPLEX tuning tool and the CPLEX name of the configuration it
judged best. We give the mean runtime of the default configuration; the configuration the tuning
tool selected; the configuration selected using 10 PARAMILS runs each allowed time t/10; and
the configuration selected using 10 PARAMILS runs each allowed time t. For the latter two,
in parentheses we give the speedup factor over the tuning tool’s performance. For CLS, the
CPLEX11.2 tuning tool ran out of memory after 47 622 s, and we chose t = 104 673 as the time
required by CPLEX 12.1’s tuning tool on the same set. Boldface indicates improved performance.

a broad range of benchmark sets, in terms of minimizing run-time for proving optimality,
and of minimizing the optimality gap. This is particularly noteworthy considering the
effort that has gone into optimizing the default configurations for commercial MIP
solvers such as CPLEX and GUROBI.

We have observed that the success of our fully automated approach depends on two
factors that also play an important role when configuring these (and other) solvers manu-
ally: the availability of sufficiently large benchmark sets and the use of suitably chosen
limits on the runtime of the solver during configuration (captimes). Not surprisingly,
when using relatively small benchmark sets, performance improvements on training
instances sometimes do not fully translate to test instances (see, e.g., LPSOLVE or CPLEX
on MASS, or GUROBI on MIK); we note that this effect can be avoided by using bigger
benchmark sets (in our experience, about 1000 instances are typically sufficient). The
choice of captimes is largely a tradeoff between the risk of poor performance for difficult
instances and the risk of wasting time during the configuration process. In the future, we
plan to investigate strategies for automating the choice of captimes during configuration.

In future work, we also plan to study why certain parameter configurations work
better than others. The algorithm configuration approach we have used here, PARAM-
ILS, can identify very good (possibly optimal) configurations, but it does not yield
information on the importance of each parameter, interactions between parameters,
or the interaction between parameters and characteristics of the problem instances at
hand. Partly to address those issues, we are actively developing an alternative algorithm
configuration approach that is based on response surface models [19, 20, 17].
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Fig. 3. Comparison of configurations returned by the CPLEX tuning tool and by our approach. For
our approach, we used 10 parallel PARAMILS runs each allowed the time budget t required by the
CPLEX tuning tool.
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