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We investigate a new type of finite copying parallel rewriting system, i.e., grammars with

linked nonterminals, which extend the generative capacity of context-free grammars.

They can be thought of as having sentential forms where some instances of a nonter-

minal may be linked. The context-free-like productions replace a nonterminal together

with its connected instances. New links are only established between symbols of the de-

rived subforms. A natural limitation is to bound the degree of synchronous rewriting.

We present an infinite degree hierarchy of separated language families with the prop-

erty that degree one characterizes the regular and degree two characterizes context-free

languages. Furthermore, the hierarchy is a refinement of the known hierarchy of finite

copying rewriting systems. Several closure properties known from equivalent systems are

summarized.

Keywords: Generalized context-free grammars; finite copying parallel rewriting systems;

degree hierarchy.

1. Introduction

Context-free grammars are one of the most important and most developed parts of

formal language theory. However, in many situations we are confronted with nat-

urally non-context-free languages. “The world is not context-free”: a comprehen-

sive discussion of this observation giving “seven circumstances where context-free

grammars are not enough” can be found in [5]. So there is considerable interest in

grammars based on context-free rewriting rules that extend the generative capacity

but have similar properties. Several approaches restrict the use of productions in

context-free derivations. They are considered in the framework of regulated rewrit-

ing. A detailed presentation is the monograph [5], and [6], which include further

references for the following cited related results.
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Particularly related are grammars with partially parallel substitution mode. One

development are Indian parallel grammars where a substitution step consists of the

substitution of all instances of one nonterminal according to one and the same rule.

It has turned out that the generated language family is incomparable with context-

free languages. The so-called k-grammars are parallel rewriting systems where the

degree of synchronous rewriting is bounded by some constant k. Besides the first

step in such systems exactly k nonterminals have to be rewritten during a derivation

step. The rules and nonterminals may be different. Hierarchies depending on k have

been shown for k-grammars with and without erasing productions.

The next restriction concerns the choice and the places of applications of the

productions. In scattered context grammars the context-free rewriting rules are

grouped together into matrices. The rules in a matrix must be applied simultane-

ously during one step. The nonterminals to be rewritten in the sentential form have

to appear in the ordering given by the rules in the matrices. A slight modification

where the ordering condition is relaxed yields the unordered scattered context gram-

mars. The language families of unordered grammars with and without erasing rules

are properly included in the languages generated by their ordered variants, respec-

tively. Ordered grammars with scattered context and erasing rules are characterizing

the recursively enumerable languages. There are several other developments, e.g.,

k-simple grammars where also a hierarchy depending on k is known.

Common to all of these restrictions is that the conditions for applying a pro-

duction at some time can be verified by inspecting the sentential form at the same

time. If the requirement of applying all rules in a matrix simultaneously is relaxed,

unordered scattered context grammars become unordered vector grammars. The

matrices are now called vectors, and the requirement is that once a production in

a vector has been applied, all productions must be applied during the derivation.

Thus, in general it cannot be decided whether a production can be applied or not

by inspecting just one sentential form. This can be seen as a vertical context condi-

tion. Stronger definitions are given in [15]. Unordered vector grammars have been

introduced in [4]. For a subclass without λ-productions and unit-productions it was

shown in [19] that the generated languages are belonging to the complexity class

LOGCFL. In [17] this result has been improved to arbitrary languages generated by

unordered vector grammars.

Here we investigate grammars with linked nonterminals which are a natural

extention of regular and context-free grammars. Basically, the idea is to consider

sentential forms of context-free-like grammars where some occurrences of one and

the same nonterminal may be linked. A derivation step replaces a nonterminal to-

gether with its connected instances, whereby new links are only established between

nonterminals of the derived subforms. A natural condition is the limitation of the

maximal number of nonterminals linked up, i.e., of the synchronous rewriting. This

restriction leads to grammars of a certain degree. It turned out that these rewriting

systems are equivalent [13] to parallel rewriting systems which have been called fi-

nite copying in [8, 16]. Further equivalent systems of this type are deterministic tree-
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walking transducers [1], finite copying deterministic top-down tree-to-string trans-

ducers [8], context-free string generating hypergraph-replacement grammars [11],

string based linear context-free rewriting systems [20], multiple context-free gram-

mars [21], local unordered scattered context grammars [16], multi-component tree

adjoining grammars [12], and finite copying lexical-functional grammars [18].

Another related approach is to limit the number of nonterminals which may

simultaneously appear in a sentential form. These grammars of finite index have

extensively be investigated. E.g., for matrix grammars with context-free rules an

infinite hierarchy has been shown [5]. But by means of different closure proper-

ties, these grammars and grammars with linked nonterminals generate different

languages.

The idea of linking nonterminals is motivated by the following observation. Some

word a1 · · · an can be seen as a set of couples {(a1, 1), . . . , (an, n)} bringing together

letters and positions. If one letter appears at several positions, we could write

(a, i1, . . . , ip) instead of (a, i1), . . . , (a, ip). So, the tuples can be seen as in some

sense generalized or linked nonterminals that are to be rewritten in a context-free

fashion. A formal definition of this notion is given in the next section. In Section 3

it will be shown that there exists an infinite degree hierarchy of separated language

families. The hierarchy has the considerable property that degree one characterizes

the regular and degree two characterizes the context-free languages. So we obtain

an in some sense unified generalization of both families. Furthermore, the hierarchy

is a refinement of the known hierarchy of finite copying rewriting systems. From the

known equivalent systems we obtain that all families belong to the complexity class

LOGCFL which is in P and in the context-sensitive languages. Furthermore, closure

properties are summarized.

2. Grammars with Linked Nonterminals

We denote the positive integers {1, 2, ...} by N and the set N∪{0} by N0. The empty

word is denoted by λ. For the length of w we write |w|. We use ⊆ for inclusions

and ⊂ for strict inclusions.

Due to the basic motivation and the underlying idea we have terminal and

nonterminal symbols, but we do not regard links between terminals. More formally,

let N and T be two finite sets and w ∈ (N ∪ T )∗. In order to express the links

between symbols from N in w, we use a set of tuples whose components identify

the corresponding positions. So, (a1 · · · an, C) is a word with linked symbols from N

if and only if a1 · · · an ∈ (N ∪ T )∗ and C is a subset of the tuples which partition

{1, . . . , n} such that for each tuple (i1, . . . , iq) ∈ C there is some X ∈ N such that

ai1 = · · · = aiq
= X. The set of all links obeying these restrictions for a given

word w is denoted by CN (w). Now we are prepared to define grammars based on

this concept.

Definition 1. A grammar with linked nonterminals is a system 〈N,T, S, P 〉, where

1. N is the finite set of nonterminals,
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2. T is the finite set of terminals,

3. S ∈ N is the axiom (starting symbol),

4. P is the finite set of productions each of one of the forms (S → w,C)

where w ∈ (N \ {S} ∪ T )∗, C ∈ CN (w), or (X → w1, . . . , wp, C) where

X ∈ N , p ∈ N, wj ∈ (N \ {S}∪T )∗ for 1 ≤ j ≤ p, C ∈ CN (w1 · · ·wp) such

that all (i1, . . . , iq) ∈ C satisfy q ≤ p.

Since the starting symbol does not appear on the right-hand side of any

production, productions of the form (S → w,C) are only possible during the

first derivation step. They establish possibly some links. Productions of the form

(X → w1, . . . , wp, C) mean that the instances of a p-fold linked symbol X are

rewritten by w1, . . . , wp. Since C ∈ CN (w1 · · ·wp) new links are only possible be-

tween nonterminals in the derived subforms. The condition q ≤ p implies that –

besides the first derivation step – the maximal number of nonterminals in a link

cannot grow. Thus, a production of the form (X → w1, . . . , wp, C) is applicable to

u = (u1 · · ·um,D), uj ∈ N ∪ T, 1 ≤ j ≤ m, D ∈ CN (u1 · · ·um)

if there exists (i1, . . . , ip) ∈ D such that ui1 = · · · = uip
= X. The application yields

v = (v1 · · · vn, E), where

v1 · · · vn = u1 · · ·ui1−1w1ui1+1 · · ·ui2−1w2ui2+1 · · ·wpuip+1 · · ·um

and E contains exactly the links derived from C and D \ {(i1, . . . , ip)} by adjusting

the symbol positions accordingly (cf. Example 2). As usual we write u ⇒ v if u

directly derives v, and ⇒∗ for the reflexive and transitive closure of ⇒.

The language generated by such a grammar G is

L(G) =
{
w | w ∈ T ∗, (S, ∅) ⇒∗ (w, ∅)

}

The condition that a link is always between one and the same nonterminal

makes life easier but is not really a restriction or even a limitation. Since derivations

are in a context-free-like fashion, a grammar without this property can always be

transformed to an equivalent one obeying the condition. The only thing to do is

to rename uniquely linked up nonterminals that appear on the left-hand side of a

production.

Example 2. The grammar 〈{A,S}, {a, b, c}, S, P 〉 with

P = { (S → AA, {(1, 2)}), (A → aAb, cA, {(2, 5)}), (A → ab, c, ∅}) }

generates the language {anbncn | n ∈ N}. The derivation for n = 4 is

(S, ∅) ⇒ (AA, {(1, 2)}) ⇒ (aAbcA, {(2, 5)})

⇒ (aaAbbccA, {(3, 8)}) ⇒ (aaaAbbbcccA, {(4, 11)})

⇒ (aaaabbbbcccc, ∅)

More figurative the derivation together with the current links may be represented as:

S ⇒ AA ⇒ aAbcA ⇒ aaAbbccA ⇒ · · ·
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Similarly, a grammar for the language {ww | w ∈ {a, b}+} can be constructed.

A natural condition is the limitation of the maximal number of linked up non-

terminals. This restriction leads to grammars of a certain degree.

Definition 3. Let m ∈ N be a constant. A grammar with linked nonterminals

1. is of degree 2m, if for its productions (S → w,C) all (i1, . . . , iq) ∈ C satisfy

q ≤ m (i.e., the maximal number of nonterminals in a link is bounded

by m).

2. It is even of degree 2m − 1, if in addition for its productions (S → w,C)

resp. (X → w1, . . . , wm, C) a link (i1, . . . , im) ∈ C implies im = |w| resp.

im = |w1 · · ·wm| (i.e., im is the position of the rightmost symbol on the

right-hand side).

Roughly speaking, the degree of a grammar determines the maximal number

of subwords that may be lengthened during one derivation step in a linked fashion

(a nonterminal may have left and right neighboring subwords). For odd degrees

the rightmost linked nonterminal is forced to have only left neighbors if the num-

ber of symbols in that link is maximal. This is in some sense a generalization of

right-linearity. In general, for a grammar of degree k the maximal number k of non-

terminals in one link can be derived during the first transition step. In subsequent

steps this number cannot be increased. In case of even degrees there may occur

more than one link with k nonterminals. In case of odd degrees for maximal links

it is requested that the rightmost symbol on the right-hand side of a production

belongs to the link. This implies that there may occur at most one maximal link

in any sentential form. But nevertheless, there may occur other links which are not

maximal.

For example, the language {anbncn | n ∈ N} in Example 2 is generated by a

grammar of degree three. The construction can be adapted such that for any k ∈ N

the language Lk = {an
1 · · · an

k | n ∈ N} over the alphabet {a1, . . . , ak} is generated

by a grammar of degree k.

The family of all languages which can be generated by grammars with linked

nonterminals is denoted by L (SN). If the productions are restricted to degree k,

we use the notion L (k-SN).

Corollary 4. Let k ∈ N be a constant, then Lk ∈ L (k-SN).

3. Generative Capacity

Taking a closer look at the definitions leads to the observation that in case of

degree two on the right-hand sides of the productions there is always a single word.

Moreover, the maximal number of nonterminals in a link is one. This means that

there are no useful links at all and, hence, the grammar is a context-free one.

The situation in case of degree one is more restrictive. If a nonterminal appears

on the right-hand side of some production, then it has to be the rightmost symbol

since again the maximal number of symbols linked together is one. This implies
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that there is at most one nonterminal on each right-hand side. Together it follows

that the grammar is right-linear. We denote the regular languages by L (REG) and

the context-free languages by L (CF).

Corollary 5. L (1-SN) = L (REG) and L (2-SN) = L (CF).

The corollary relates the generative capacity of degree one and two to the regular

and context-free languages, respectively. A fundamental result concerning arbitrary

degrees is immediately derived from the definition and a well-known result about

context-free languages. It has also been shown in terms of equivalent finite copying

parallel rewriting systems (e.g. [7]).

Lemma 6. Each of the languages in L (SN) or L (k-SN) for some k ∈ N is semi-

linear.

Proof. Let G be some grammar under consideration. The right-hand sides of its

productions can be rearranged such that linked symbols are placed joint together.

In general, the resulting grammar G′ generates a different language, but L(G) and

L(G′) are letter-equivalent. Since the linked nonterminals of G′ appear joint together,

they can be replaced by just one single nonterminal, respectively, without changing

the generated language. Now we have a context-free grammar G′′ such that L(G′′)

and L(G) are letter-equivalent. In [14] it has been shown that every context-free

language is semi-linear. Trivially, letter-equivalence preserves semi-linearity.

3.1. Strictly Monotone Derivations

In order to investigate the relationships between degrees k and k + 1, in particular,

to prove an infinite hierarchy, we need a tool for proving negative results. This will

be a pumping argument. In order to prove this and other results it is helpful to

simplify an arbitrary grammar. A production (X → w1, . . . , wp, C) is said to be

strictly monotone if it inserts more symbols than it replaces, i.e., if |w1 · · ·wp| > p.

Otherwise we call a production non-increasing.

The next lemma removes non-increasing productions, possibly with the excep-

tions (S → a, ∅), for a ∈ T ∪ {λ}, if the empty word or some words of length one

have to be generated.

Lemma 7. For every grammar G of degree k ∈ N there exists an equivalent gram-

mar G′ of degree k whose only non-increasing productions are of the form (S → a, ∅),

where a ∈ T ∪ {λ}.

3.2. Hierarchy

The following pumping lemma is a useful tool for separating language families since

it allows to prove negative results. It is in some sense weaker than others since it

contains no statement about the usual ordering in which the repeated subwords

appear.



Context-Free Grammars with Linked Nonterminals 7

Lemma 8. Let G be a grammar of degree k ∈ N. Then there exists a constant n ∈ N

such that every w ∈ L(G) with |w| ≥ n may be written as x0y1x1y2 · · · ykxk, where

1 ≤ |y1y2 · · · yk| ≤ n, and for all i ∈ N there exists a word w′ ∈ L(G) such that w′

is in some order a concatenation of the (sub)words x0, . . . , xk and i times yj, for

each 1 ≤ j ≤ k.

Proof. Since G has only finitely many productions, for every long enough word w

from L(G) there exists a derivation such that some production(s) with the same left-

hand side are applied at least twice. Moreover, the second application is on symbols

derived from the first application (cf. Figure 1). Obviously, for a given grammar the

necessary word length for such a situation can be calculated. It defines the constant

n.

S ⇒∗ u0 A u1 A u2 · · ·uj−1 A uj

⇒∗ u0

v1

︷︸︸︷
y1 u1

v2

︷ ︸︸ ︷

y2 A y3 A y4 u2 · · ·uj−1

vj
︷ ︸︸ ︷

y2j−1 A y2j uj

⇒∗ u0 y1 u1 y2

v1

︷︸︸︷
y1 y3

v2

︷ ︸︸ ︷

y2 A y3 A y4 y4 u2 · · · y2j−1

vj
︷ ︸︸ ︷

y2j−1 A y2j y2j uj

⇒∗ u0 y1 u1 y2 y1 y3 y2 v′1 y3 v′2 y4 y4 u2 · · · y2j−1 y2j−1 v′3 y2j y2j uj

Fig. 1. Example of a derivation scheme of Lemma 8.

Assume for a moment the degree of G is even. Then for the core derivation we

have

S ⇒ · · · ⇒ u0Au1Au2 · · ·uj−1Auj ⇒ · · · ⇒ u0v1u1v2u2 · · ·uj−1vjuj ⇒ · · · ⇒ w,

where A ∈ N , 1 ≤ j ≤ k
2
, u0, . . . , uj ∈ T ∗, and v1 · · · vj contains a j-fold linked A

and some terminal symbols. Without loss of generality we may assume that ui are

terminal words and vi are terminal words with the exception of the linked A, since

the derivation of other nonterminals can be finished without affecting the A.

The word v1 is derived from the first of the linked A, v2 from the second and so

on. Since v1 · · · vj contain a j-fold linked A, there must exist derivations in which

this loop appears arbitrary times. In order to determine the pumped portions of w,

we have to consider the positions of the A in the words v1, . . . , vj .
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We define subwords ym, 1 ≤ m ≤ 2j, of v1 · · · vj as follows. From left to right a ym

starts either at the beginning of a word vl or immediately after a nonterminal A.

A ym ends either at the end of a word vl or immediately before a nonterminal A.

Clearly, some of the ym may be empty. But due to the fact that we may assume

strictly monotone productions, at least one of the ym is not empty.

Next we define the subwords xl which are not pumped. These are the already

derived subwords u0, . . . , uj and, in addition, the terminal subwords v′

1, . . . , v
′

j to

which the j-fold linked A is finally derived. They are numbered from left to right

according to their appearance. Again, some of the x0, . . . , x2j may be empty.

For the even degree case the lemma follows since j is at most k
2

and, thus, we

found subwords x0, . . . , xk and y1, . . . , yk as claimed.

In case of an odd degree, j is at most ⌈k
2
⌉. For j < ⌈k

2
⌉ the lemma has been

shown. For j = ⌈k
2
⌉ the subword uj must have been derived during the first step.

Afterwards, during the pump-loops the rightmost symbol is always the unique non-

terminal which is j-fold linked.

Therefore, y2j is always empty and at most 2j − 1 portions can be pumped.

Since k is odd, we obtain 2j − 1 = 2⌈k
2
⌉− 1 = 2k+1

2
− 1 = k, and the lemma follows

for the odd degree case, too.

We apply the pumping lemma to the languages Lk = {an
1 · · · an

k | n ∈ N} of

Example 2 and Corollary 4.

Lemma 9. Let k ∈ N be a constant, then Lk+1 does not belong to L (k-SN).

Proof. Assume Lk+1 belongs to L (k-SN). Let n be the constant of Lemma 8 and

consider the word w = an
1 · · · an

k+1
. Since we may pump at most k portions of w,

the result would not be a word in Lk+1.

The lemma immediately implies the hierarchy of grammars with linked nonter-

minals.

Theorem 10. Let k ∈ N be a constant, then L (k-SN) ⊂ L ((k + 1)-SN) and

L (k-SN) ⊂ L (SN).

Proof. The inclusions L (k-SN) ⊆ L ((k + 1)-SN) ⊆ L (SN) are for structural

reasons. The strictness follows from Lemma 8, Example 2, Corollary 4, and the

identity L (SN) =
⋃

∞

k=1
L (k-SN).

The languages Lk are witnesses for the hierarchy. On the other hand, for any

k ∈ N the language Lk belongs to the family L (SN). Thus, in some sense the

infinite hierarchy converges to L (SN):

L (1-SN) ⊂ L (2-SN) ⊂ · · · ⊂ L (k-SN) ⊂ · · · ⊂ L (SN)
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3.3. Comparison with LOGCFL

We now turn to the question where the hierarchy ends up. To this end, we can

compare L (SN) with other families. Since L (1-SN) and L (2-SN) are equal to

Chomsky families, a natural candidate for comparisons is the family of context-

sensitive languages L (CS). The inclusion L (SN) ⊆ L (CS) follows immediately

from the fact that after the first step the derivations according to a grammar of

arbitrary degree are strictly monotone. So they can be simulated by a linearly space

bounded nondeterministic Turing machine what implies context-sensitivity.

The inclusion is even strict: L (SN) ⊂ L (CS). For example the language L =

{an(bncn)+ | n ∈ N} is context-sensitive. By using the pumping lemma it is easy

to see that L cannot be generated by any grammar of any degree k ∈ N. Since L is

not semi-linear, the same result follows alternatively from Lemma 6.

In order to strengthen this inclusion, L (SN) must be compared with other lan-

guage families properly included in L (CS). An interesting candidate is LOGCFL,

the class of languages which are log-space reducible to L (CF). LOGCFL is prop-

erly contained in P and L (CS), respectively, and has several characterizations. A

collection of problems in LOGCFL can be found in [3]. The next theorem has been

shown in terms of equivalent finite copying parallel rewriting systems (e.g. [7]).

Theorem 11. L (SN) ⊂ LOGCFL

The following lemma can alternatively be used to prove the strictness of the

inclusion L (SN) ⊂ LOGCFL. In addition, it generalizes a well-known result for

context-free languages and is a useful tool for proving negative results.

Lemma 12. Every unary language belonging to L (SN) is regular.

Proof. In the proof of Lemma 6 it has been shown that every language L ∈ L (SN)

is letter-equivalent to some context-free language L′. For unary languages this im-

plies L = L′. Since every unary context-free language is regular [9], the lemma

follows.

For example, the LOGCFL-language {a2
n

| n ∈ N} does not belong to L (SN).

Finally, the lemma holds for all families L (k-SN), too.

4. Closure Properties

Several closure properties of the families L (SN) and L (k-SN) are known by equiv-

alent systems. It turned out that these properties are similar to the properties of

context-free languages. For example, the next theorem has been shown in [16] in

terms of local unordered scattered context grammars.

Theorem 13. Let k ∈ N be a constant, then L (k-SN) and L (SN) are full AFLs

closed under substitution, but not closed under intersection and complementation
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