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Active Target Tracking and Cooperative
Localization for Teams of Aerial Vehicles

Fabio Morbidi, Member, IEEE, and Gian Luca Mariottini, Member, IEEE

Abstract— This paper studies the active target-tracking prob-
lem for a team of unmanned aerial vehicles equipped with
3-D range-finding sensors. We propose a gradient-based control
strategy that encompasses the three major optimum experimental
design criteria, and we use the Kalman filter for estimating the
target’s position both in a cooperative and in a noncooperative
scenario. Our control strategy is active because it moves the
vehicles along paths that minimize the uncertainty about the
location of the target. In the case that the position of the vehicles
is not perfectly known, we introduce a new and more challenging
problem, termed active cooperative localization and multitarget
tracking (ACLMT). In this problem, the aerial vehicles must
reconfigure themselves in the 3-D space in order to maximize both
the accuracy of their own position estimate and that of multiple
moving targets. For ACLMT, we derive analytical lower and upper
bounds on the targets’ and vehicles’ position uncertainty by
exploiting the monotonicity property of the Riccati differential
equation arising from the Kalman–Bucy filter. These bounds
allow us to study the impact of the sensors’ accuracy and
the targets’ dynamics on the performance of our coordination
strategy. Extensive simulation experiments illustrate the proposed
theoretical results.

Index Terms— Active sensing, cooperative localization,
Kalman filtering, mobile sensors, target tracking, unmanned
aerial vehicles.

I. INTRODUCTION

A. Problem Statement and Related Work

THIS paper deals with the deployment of a team of
unmanned aerial vehicles in the 3-D space, in order to

maximize the accuracy of the position estimate of one or
multiple moving targets (active target-tracking problem). This
problem has relevant applications in surveillance, patrolling,
military, and environmental monitoring tasks, and offers dif-
ferent levels of complexity depending on whether the position
of the agents is perfectly known or needs to be estimated
together with that of the targets (localization problem), and
on whether a collaborative or a noncooperative approach is
adopted. Since testing on real flying platforms is complex,
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expensive, and time-consuming, analytical tools are needed to
predict the performance of a newly-synthesized algorithm in
an early design stage. This paper moves toward this direction
and presents analytical results elucidating the role played
by the targets’ dynamics and the accuracy of the on-board
range-finding sensors on the (steady-state) target-tracking and
vehicle localization performances.

Multiagent systems research has recently gained a promi-
nent role in the robotics and control literature [1]–[3]. The
surge of interest in this subject has been mainly driven by the
sheer increase in autonomy, computing power, and sensing of
today’s robots. An essential capability that each autonomous
robot should possess is that of being able to efficiently measure
the surrounding environment and to promptly respond to
stimuli coming from other robots, humans, or moving targets.
Extensive research has been done in the literature on the
subject of tracking targets with static sensors [4], [5], or on
the optimal placement of fixed sensors [6]. Mobile sensor
networks are known to offer distinctive advantages over static
sensor arrays in terms of quality of sensing and estimation,
area coverage, adaptability to changing conditions (in the
environment as well as in the target’s behavior), and robust-
ness against failures. Cooperative active sensing leverages the
mobility of a robotic sensor network in order to enhance the
target tracking performances [7]–[18]; in the simplest instance
of this problem, n sensors have to fuse their local measure-
ments and move in order to attain the best position estimate
of a moving target. This mechanism is sometimes referred
to as “information-driven mobility” in the literature, and it
amounts, in practice, to minimize a certain scalar function of
the covariance matrix of the position estimates. In optimum
experimental design theory [6], [19], this function is typically
the determinant or the trace of the covariance matrix (D- and
A-optimality criteria). In the cooperative active target-tracking
literature, a large body of research has focused on agents
equipped with sensors providing range-only or range-bearing
measurements to the target, while relatively fewer works have
dealt with the more challenging bearing-only case (cf. [20]).
Moreover, most of the existing papers have limited themselves
to single targets moving in a 2-D environment, and none
of them has conducted an analytical study of the impact of
the system’s parameters on the performance of the proposed
coordination strategies.

In [7], a motion-planning algorithm has been presented
for solving the cooperative 2-D target-tracking problem using
range-bearing measurements. The control law proposed by
Chung et al. [7] is based on the gradient of the determinant
of the covariance matrix of the target’s position estimate with
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respect to each of the robot’s coordinates. The multiple-target
case is briefly treated as a possible extension, and the role of
imperfect communication between agents is also investigated,
thus elucidating the trade-offs in performance between sensing
and communication. The results in [7] have been extended
in two directions in [8]. First, by using dynamic average
consensus estimators, the controller proposed in [7] is made
distributedly implementable. Second, a new control design
procedure based on the distributed Kalman filter [21] for
estimation fusion is presented, and the case of range-only
sensors is addressed. Pursuing this line of research, the same
authors have lately proposed estimation algorithms alternative
to the Kalman filter (H∞ filters, set-valued estimators), and
studied the impact of “intelligent” evasive targets on the
tracking performances. Embracing an approach similar to [8],
the collaborative active-sensing problem has been studied
in [9] for a group of double-integrator ground robots equipped
with range-bearing sensors. The network-connectivity issue
is addressed using a flocking-based mobility model (which
also accounts for collision avoidance), and a modified ver-
sion of the distributed Kalman filter in [21] for estimating
the target’s state is presented, along with information-driven
decentralized control laws for the agents. Recently, in [10], a
formal closed-loop stability analysis of an enhanced version
of the coupled estimation-and-control algorithm described
in [9], has been proposed by the same author. However,
both in [9] and [10], only the single-target case is addressed.
In [11], the authors focused on discrete-time target-tracking
for a team of unicycle robots with bounds on the positive
forward velocity, and showed that the associated optimization
problem is NP-hard in general. Nontrivial relaxations to this
problem are then proposed for determining the set of feasible
locations that each robot should move to, in order to collect the
most informative distance measurements. Note that differently
from [7], where the nonlinearities inherent to the range-bearing
model are “absorbed” into the nonstationary sensor noise, the
approach in [11] takes the nonlinear nature of the distance-only
measurements explicitly into account. Recently, in [12], the
results in [11] have been extended to the case of ground
vehicles processing mixtures of relative measurements (i.e.,
range and/or bearing), and a closed-form global optimal solu-
tion for the active-sensing problem is derived in the case of a
single vehicle for arbitrary target-motion models. In addition,
constraints on the maximum speed of the robots and on the
minimum distance between the agents and the target have
been incorporated into the problem formulation. However, the
mathematical tools used in [11] and [12] appear much more
involved than those in [7], thus making their approach difficult
to extend to different scenarios or to implement in a distributed
fashion. Moreover, differently from [7]–[9], inter-agent coop-
eration does not seem fully exploited in [11] and [12]. In [13],
an approximate tracking algorithm is proposed, where the
agents try to minimize the target’s location uncertainty using
range-bearing sensors. The optimization problem (minimize
the determinant of the target-position estimates’ covariance
matrix), is solved separately by each agent by a greedy search
over the discretized set of candidate headings. In [14], the
authors studied the optimal placement of range-only sensors

for nonrandom static-target position estimation. In this specific
scenario, the determinant of the Fisher information matrix
(the inverse of the covariance matrix) can be computed in
closed-form and its critical points can be easily characterized.
An optimal configuration, then turns out to be one in which
the sensors are uniformly placed in a circular fashion around
the target.

Other related work on cooperative active target tracking has
been done in [22], where constant-speed unicycle robots are
controlled using a distributed behavior-based approach, the
communication takes place on a broadcast network and estima-
tion is achieved by an unscented Kalman filter. However, dif-
ferently from [11], [12], and [14], this paper does not provide
a precise theoretical characterization of the properties of the
proposed coordination algorithm. Finally, in [23], the authors
have studied the optimal routing of two camera-equipped
fixed-wing aircraft cruising at fixed altitude, cooperatively
tracking a single ground target. A perspective transformation
relating the image-plane measurements to the ground allows
to derive the geolocation error covariance matrix, and dynamic
programming is used by the authors to compute optimal
coordinated control policies that minimize the fused target
localization error covariance.

Besides [7], [8] above, another source of inspiration, for
this paper, came from some recent works in the cooperative
localization literature [24]–[29]. In [24] and [25], the authors
used the properties of the Riccati recursion arising from the
extended Kalman filter to determine explicit upper bounds
for the steady-state accuracy of the cooperative localization
(CL) and cooperative simultaneous localization and mapping
(C-SLAM) problems. The analysis in [24] and [25] has been
repeated in [26] for the cooperative localization and target
tracking (CLATT) problem, and it has been shown that robots’
localization accuracy improves if the position of multiple
moving targets is measured.

B. Original Contributions and Organization

This paper elaborates upon [7], [8] and extends them in
several new directions.

First, by using a spherical coordinates representation, we
present a generalization for a team of unmanned aerial vehi-
cles modeled as double integrators and equipped with 3-D
range-finding sensors.

Second, we introduce a gradient-based control design proce-
dure that encompasses the three major optimum experimental
design criteria. Our estimation mechanism leverages two dif-
ferent approaches: a cooperative one in which the vehicles’
target position measurements and covariance matrices of the
measurement noise are fused together, and a noncooperative
approach that relies on tools of dynamic noncooperative game
theory. In the first scenario, a Kalman filter is used for the
fusion process, while in the second scenario the individual
target’s position estimates are produced by coupled Kalman
filter-like equations.

Third, in the case that the position of the vehicles is not
perfectly known, we introduce a new problem, termed active
cooperative localization and multitarget tracking (ACLMT).
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In this problem, the aerial vehicles (modeled here as first-order
systems) move in the 3-D space along paths that maximize
both the accuracy of their own position estimate and that
of multiple moving targets. Taking inspiration from [25] and
[26], analytical lower and upper bounds on the targets’ and
vehicles’ positioning uncertainty are derived for ACLMT by
exploiting the monotonicity property of the Riccati differential
equation arising from the Kalman–Bucy filter. These bounds
are attractive since they allow us to study the impact of
sensors’ accuracy and targets’ dynamics on the performance
of our coordination strategy. Note that the active-sensing
problem’s formulation considered in [11] and [12] does not
lend itself to the insightful performance analysis conducted
in this paper, and that ACLMT is, in several respects, more
challenging than C-SLAM and CLATT. In fact, the targets’
motion in [26] is governed by a simple zero-velocity model
(a random walk), and the ground robots in [24]–[26] move in
open loop (i.e., there is no control feedback).

It is also worth emphasizing herein that in this paper, we
are not specifically concerned with the problem of designing
distributed control laws for the aerial vehicles. In fact, one
can straightforwardly move in this direction, by adapting
the distributed strategies proposed in [8] and [9] to our
specific setting. Moreover, in order to keep our presenta-
tion accessible and concise, we decided not to incorpo-
rate collision-avoidance or maximum-speed constraints in our
problem formulation. These issues will be addressed in future,
more experiment-oriented works.

This article is based, in part, on previous material presented
in [30], compared to which, we provide herein a more compre-
hensive literature review, new theoretical results and a more
extensive numerical validation.

The rest of this paper is organized as follows. Section II
presents the measurement model and estimation-and-control
strategies for the aerial vehicles, both in the cooperative and
noncooperative scenarios. In Section III, the ACLMT problem
is introduced, and in Section IV the performance of ACLMT
is studied. Finally, in Section V the results of extensive
simulation experiments are discussed, and in Section VI, the
main contributions of this paper are summarized and possible
avenues for future research are outlined.

II. ACTIVE TARGET TRACKING

A. Measurement Model

Consider a team of n aerial vehicles (hereafter, also simply
“agents”) with positions p1, . . . , pn ∈ IR3 expressed with
respect to a common global reference frame, and a target
moving in 3-D according to the following model:

ẋ(t) = F x(t) + G uT(t) + w(t) (1)

where x(t) ∈ IR3 denotes the position of the target at time t ,
uT(t) ∈ IR3 is an exogenous input, and w(t) ∈ IR3 is a
continuous-time white Gaussian noise with zero mean and
covariance matrix Q ∈ IR3×3. The observation zi (t) ∈ IR3

of the target’s position made by the i th vehicle at time t , is
assumed to be given by the following measurement model:

zi (t) = Hi x(t) + vi (t)

target

vehicle i

θi

φi

ex

ey

ez

ri
eφ

eθ

er

Fig. 1. Measurement model for the 3-D range-finding sensor of vehicle i .
The spherical coordinates (ri , θi , φi ) have been used, where ri ∈ (0, +∞)
is the distance from vehicle i to the target, θi ∈ (0, 2π)\{π} is the bearing
angle and φi ∈ (0, π) is the polar angle. {ex , ey , ez}, {eφ, eθ , er } represent
the Cartesian and spherical orthonormal bases, respectively.

where vi (t) is a continuous-time zero-mean white Gaussian
noise. In the following, we will assume that the measurement
noises of the vehicles are independent and that the position pi

of vehicle i is perfectly known, e.g., from accurate GPS mea-
surements (this last assumption will be relaxed in Section III).
In addition, we will suppose that each agent is equipped
with a magnetic compass (or an equivalent sensor), which
provides its absolute orientation with respect to the fixed
global reference frame: in this way, without loss of generality,
we can assume that the reference frames attached to the
vehicles are all aligned.

By adopting a standard 3-D range-finding sensor model
[31, Sec. 4.3.2], we have that Hi = I3 (the 3 × 3 identity
matrix) and that the covariance matrix RCar

i (t) ∈ IR3×3 of
vi (t) ∈ IR3 assumes the form

RCar
i (t) � Ti (t) Ri (t) TT

i (t) (2)

where the rotation matrix Ti (dropping the time index t),
is given by

Ti =Rz(θi )Ry(φi )=
⎡
⎣

cos θi cos φi − sin θi cos θi sin φi

sin θi cos φi cos θi sin θi sin φi

− sin φi 0 cos φi

⎤
⎦

(3)

and Rz(θi), Ry(φi ) denote the basic 3 × 3 rotation matrices
about the z− and y-axes of an angle θi and φi , respectively
(see Fig. 1). Ri in (2) is the covariance matrix of the mea-
surement noise in the range-bearing-polar frame of vehicle i ,
and it has the following diagonal structure:

Ri = diag
(
σ 2

φi
, σ 2

θi
, σ 2

ri

)
. (4)

The variance of the range-measurement noise σ 2
ri

is typically
represented by a function fr (ri ) of the Euclidean distance
ri � ‖pi − x‖2 from agent i to the target [7]; the polar and
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fr(ri)

a1 ri

a0

Fig. 2. Uncertainty in measurements is minimal at a distance a1 from
the target. The locus of points at distance a1 from the target is called
the “sweet spot” (cf. [7]).

bearing measurement-noise variances σ 2
φi

and σ 2
θi

can also be
modeled as dependent on the range ri through the functions
fφ(ri ) and fθ (ri ), respectively. In this paper, we will consider
the following simple form for these functions:

fr (ri ) � a2(ri − a1)
2 + a0

fθ (ri ) � αθ fr (ri )

fφ(ri ) � αφ fr (ri )

where a0, a1, a2, αθ , and αφ are strictly positive para-
meters (however, note that our subsequent results can be
straightforwardly extended to the case of general differentiable
positive-valued convex functions fr (ri ), fθ (ri ), fφ(ri )). This
model assumes the existence of a “sweet spot” located at
a distance a1 from the target, where uncertainty in mea-
surements is minimal (see Fig. 2). Parameter a1 depends on
the physics of the sensing device, and it may vary from
several tens of centimeters for infrared sensors, to few meters
for time-of-flight sensors (e.g., ultrasonic sensors). Although
environmental factors, such as temperature, humidity, or back-
ground noise, might affect the sweet spot, a1 is typically
assumed to be a constant parameter in the literature. It is finally
worth observing that a1, together with the other parameters
a0, a2, αθ , and αφ , can be estimated from real data collected
by the range-finding sensor, using, for example, standard
least-squares methods (cf. [32]).

Remark 1: Note that the transformation (2) from spherical
coordinates Ri , to Cartesian coordinates1 RCar

i , is valid only
for small θi and φi (cf. [4, Sec. 10.4.3]). However, extensive
simulation experiments (see Section V), have shown that a
violation of this “small-angle condition,” does not lead to
a significant performance degradation of the target-tracking
algorithms proposed in this paper.

In Sections II-B and II-C, we will present a cooperative
estimation-and-control strategy. In Section II-D, instead, we
will describe a noncooperative approach that leverages notions
of differential game theory, and that is of value in throwing
further light on the active target-tracking problem.

1The spherical coordinates (r, θ, φ) are related to the Cartesian coordi-
nates (x, y, z) by the nonlinear transformation r =

√
x2 + y2 + z2, θ =

atan2(y, x), φ = arccos (z/r), where atan2(·, ·) stands for the four-quadrant
inverse tangent.

B. Cooperative Control

The target-position measurements zi and covariances RCar
i

from the n agents will be fused together to obtain a global
target position estimate x̂fus and global position-error covari-
ance Pfus (see Section II-C). In this section, we will present
a cooperative control strategy that moves the aerial vehicles
in order to minimize a scalar function of the covariance Pfus,
thus reducing the target’s localization error (cf. [8]).

In order to show the generality of our approach, for the
design of the gradient-based control laws we will simultane-
ously consider the cost functions for the three most popular
optimum experimental design criteria [6, Sec. 2.3]

J = ln det(Pfus) (5)

for the D-optimality (determinant) criterion

J = tr(Pfus) (6)

for the A-optimality (trace) criterion, and

J = λmax(Pfus) = ‖Pfus‖2 (7)

for the E-optimality criterion, where λmax(Pfus) denotes the
maximum eigenvalue of Pfus and ‖Pfus‖2 is the spectral
norm of Pfus. The D-optimum design (the most widely used
criterion), minimizes the volume of the uncertainty ellipsoid
for the estimates, the E-optimum design minimizes the length
of the largest axis of the same ellipsoid, and the A-optimum
design suppresses the average variance of the estimates. Note
that although the cost functions (5)–(7) are convex with respect
to P−1

fus [assuming that tr(Pfus) = ∞ and λmax(Pfus) = ∞, if
det(P−1

fus) = 0 (cf. [6, Sec. B.5])], they are not convex with
respect to the relative position and orientation of the vehicles
and target, and they are thus prone to local minima [33].

Since the cost function (7) is not differentiable in general
(in fact, the gradient of λmax(Pfus) does not exist when the
maximum eigenvalue of Pfus is not simple), in the following,
we will consider its smoothed version [34]:

�ε(Pfus) = ε ln

(
3∑

i=1

exp
(
λi (Pfus)/ε

))

where ε > 0 is an assigned smoothing parameter and λi (Pfus)
denotes the i th eigenvalue of Pfus. Note that function �ε(Pfus)
is of class C∞ and it possesses the following uniform approx-
imation property to λmax(Pfus):

0 ≤ �ε(Pfus) − λmax(Pfus) ≤ ε ln(3), ∀ ε > 0

from which it follows that limε ↓ 0 �ε(Pfus) = λmax(Pfus).
As indicated in [35, p. 249], it turns out that when ε ∈
[10−4, 10−6], �ε(Pfus) yields an excellent approximation
to λmax(Pfus).

With the exception of Sections III and IV, the following
double-integrator model will be used for the aerial vehicles:

ṗi = qi

q̇i = ui , i ∈ {1, . . . , n} (8)
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where qi ∈ IR3 denotes the velocity of vehicle i and ui ∈ IR3

its control input. The gradient controller of vehicle i will then
be of the form

ui = − B qi − � Ti

[
1

ri sin θi

∂ J

∂ φi
,

1

ri

∂ J

∂ θi
,

∂ J

∂ ri

]T

(9)

where B ∈ IR3×3, B � 0, is a damping matrix and � ∈ IR3×3,
� � 0, is a gain matrix2. In order to simplify the forthcoming
derivations, let us introduce the following 3 × 3 matrices,
whose explicit expression will be given in Section II-C:

Pr
i � ∂ Pfus

∂ ri
, Pθ

i � ∂ Pfus

∂ θi
, Pφ

i � ∂ Pfus

∂ φi
. (10)

By using [6, Th. B.17], we can explicitly compute the partial
derivatives appearing on the right-hand side of (9) for the
D-optimality criterion

∂ J

∂ ri
= tr(P−1

fus Pr
i ),

∂ J

∂ θi
= tr(P−1

fus Pθ
i ),

∂ J

∂ φi
= tr(P−1

fus Pφ
i )

for the A-optimality criterion

∂ J

∂ ri
= tr(Pr

i ),
∂ J

∂ θi
= tr(Pθ

i ),
∂ J

∂ φi
= tr(Pφ

i )

and for the E-optimality criterion

∂ J

∂ ri
= tr

(
UT diag(∇λ �ε(Pfus)) U Pr

i

)

∂ J

∂ θi
= tr

(
UT diag(∇λ �ε(Pfus)) U Pθ

i

)

∂ J

∂ φi
= tr

(
UT diag(∇λ �ε(Pfus)) U Pφ

i

)
. (11)

The lth component of the gradient vector ∇λ �ε(Pfus)
in (11) is

[∇λ �ε(Pfus)]l = exp
(
λl(Pfus)/ε

)
∑3

j=1 exp
(
λ j (Pfus)/ε

) , l ∈ {1, 2, 3}

and the orthogonal matrix U satisfies Pfus = UTdiag(λ(Pfus))U,
where diag(λ(Pfus)) is a diagonal matrix with the elements
of the vector λ(Pfus) � [λ1(Pfus), λ2(Pfus), λ3(Pfus)]T ,
λ1(Pfus) ≥ λ2(Pfus) ≥ λ3(Pfus), put on its main diagonal.

Remark 2: Note that the controller (9) is centralized since
Pfus, Pr

i , Pθ
i , and Pφ

i contain information from all the agents.
However, the control law (9) can be implemented in a distrib-
uted fashion by replacing any unavailable global quantity with
local estimates, as done, e.g., in [8] and [9].

C. Kalman-Filter Fusion

As anticipated in Section II-B, we describe here a method
inspired by [8], to fuse the local target position measurements
and error covariance matrices: in this way, we can determine
the three matrices in (10), necessary for the implementation
of controller (9). The method defines x̂fus and Pfus by means
of a Kalman-Bucy filter [36, Sec. 4.5]

Ṗfus = F Pfus + Pfus FT + Q − Pfus C Pfus (12)

2The symbols “�,” “�,” denote the matrix inequality in the positive definite
and positive semidefinite sense, respectively.

˙̂xfus = F x̂fus + G uT + Pfus (y − C x̂fus) (13)

where

C �
n∑

i=1

(RCar
i )−1, y �

n∑
i=1

(RCar
i )−1 zi

and (12) and (13) are, respectively, initialized with

Pfus(t0) =
[ n∑

i=1

(RCar
i (t0))

−1
]−1

(14)

x̂fus(t0) = Pfus(t0)
n∑

i=1

(RCar
i (t0))

−1 zi (t0) (15)

where t0 denotes the initial time instant. Note that (15) is
a weighted least-squares estimate for the position of the
target, and that (14) is the covariance matrix of the weighted
least-squares estimator. By taking the partial derivatives with
respect to ri , θi , and φi on both sides of the Riccati differential
equation (RDE) (12), we get the following three Lyapunov
differential equations:

Ṗr
i = (

F − Pfus C
)
Pr

i + Pr
i

(
F − Pfus C

)T

+2 a2(ri − a1) Pfus Ti R−2
i diag(αφ, αθ , 1) TT

i Pfus

Ṗθ
i = (

F − Pfus C
)
Pθ

i + Pθ
i

(
F − Pfus C

)T

−Pfus
(
Aθi + AT

θi

)
Pfus , Aθi = � Ti R−1

i TT
i

Ṗφ
i = (

F − Pfus C
)
Pφ

i + Pφ
i

(
F − Pfus C

)T

− Pfus
(
Aφi + AT

φi

)
Pfus , Aφi = Tiϒ R−1

i TT
i (16)

where

� =
⎡
⎣

0 −1 0
1 0 0
0 0 0

⎤
⎦, ϒ =

⎡
⎣

0 0 1
0 0 0

−1 0 0

⎤
⎦.

The equations in (16) are respectively initialized with

Pr
i (t0) = 2 a2(ri (t0) − a1) Pfus(t0) Ti (t0) R−2

i (t0) ·
diag(αφ, αθ , 1) TT

i (t0) Pfus(t0)

Pθ
i (t0) = − Pfus(t0)

(
Aθi (t0) + AT

θi
(t0)

)
Pfus(t0)

Pφ
i (t0) = − Pfus(t0)

(
Aφi (t0) + AT

φi
(t0)

)
Pfus(t0).

D. Noncooperative Estimation and Control

In Sections II-B and II-C, we have assumed that the n aerial
vehicles coordinate their 3-D motion in order to estimate the
position of the target as accurately as possible. In this section,
we briefly explore the converse scenario (of potential interest,
e.g., in a military setting) in which antagonistic agents compete
with each other in order to optimally estimate the location of
the moving target. The control strategy obtained in this case
is more amenable to a decentralized implementation than that
presented in Section II-B, but as it is natural to expect, it leads
to less accurate individual estimates of the target’s position (cf.
Figs. 4 and 5). More specifically, in this section we re-interpret
the active-target tracking problem as an n-person noncooper-
ative nonzero-sum differential game [37, Sec. 6.1], and we
are interested in the existence of possible feedback Nash
equilibrium strategies [38]. As shown in Corollary A-1 of [39],
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for the class of n-person linear-quadratic differential games,
a set of these equilibrium strategies can be expressed in
closed-form. The dualization of (A-16) of this corollary (with
zero cross-weighting matrices), leads to the following Kalman
filter-like equations for i ∈ {1, . . . , n}:

Ṗi = F Pi + Pi FT + Q

−
n∑

j=1
j �=i

Pi ((RCar
j )−1 P j ) −

n∑
j=1

((RCar
j )−1 P j )

T Pi (17)

˙̂xi = F x̂i + G uT + Pi (RCar
i )−1 (zi − x̂i) (18)

where (17) are n coupled RDEs, and x̂i and Pi denote the
target’s position estimate of agent i and the associated error
covariance matrix, respectively. Similarly to Section II-C,
we can initialize (17) and (18) with Pi (t0) = RCar

i (t0) and
x̂i (t0) = Pi (t0) (RCar

i (t0))−1 zi (t0), respectively. Note that
Lemma 6.6.1 of [37], ensures the existence of
positive-semidefinite solutions to (17).

In the noncooperative framework described in this section,
we can define the gradient controller for agent i as

ui = − B qi − � Ti

[
1

ri sin θi

∂ Ji

∂ φi
,

1

ri

∂ Ji

∂ θi
,

∂ Ji

∂ ri

]T

(19)

where Ji = ln det(Pi ), or alternatively Ji = tr(Pi ), Ji =
λmax(Pi ) [cf. (9)]. In order to write concise equations in
the remaining of this section, let us introduce (with a slight
abuse of notation), the following 3 × 3 matrices for all i, k ∈
{1, . . . , n}:

Pr
ik � ∂ Pi

∂ rk
, Pθ

ik � ∂ Pi

∂ θk
, Pφ

ik � ∂ Pi

∂ φk
.

By using [6, Th. B.17], we can compute, as before, the partial
derivatives appearing on the right-hand side of (19), for the
D-, A-, and E-optimality criteria. For the sake of brevity, we
only report here the explicit expressions for the first criterion

∂ Ji

∂ ri
= tr(P−1

i Pr
ii ),

∂ Ji

∂ θi
= tr(P−1

i Pθ
ii ),

∂ Ji

∂ φi
= tr(P−1

i Pφ
ii )

(20)

being the others easily deducible from the equations in
Section II-B. The matrix Pr

ii in (20), is obtained by integrating
the following n2 coupled Lyapunov differential equations for
i, k ∈ {1, . . . , n}:

Ṗr
ik = E Pr

ik + Pr
ik ET −

n∑
j=1
j �=i

(
Wi j Pr

j k + Pr
j kWT

i j

) − �ik (21)

where

E � F −
n∑

j=1

P j (RCar
j )−1, Wi j � Pi (RCar

j )−1

�ik � ρik

[
Pi

∂ (RCar
k )−1

∂ rk
Pk + Pk

∂ (RCar
k )−1

∂ rk
Pi

]

∂ (RCar
k )−1

∂ rk
= − 2 a2 (rk − a1) Tk R−2

k diag(αφ, αθ , 1) TT
k

with ρik = 1/2 if i = k, and ρik = 1 otherwise. Analogously,
Pθ

ii and Pφ
ii in (20) are obtained from the integration of the

following coupled Lyapunov differential equations for i, k ∈
{1, . . . , n}:

Ṗθ
ik = E Pθ

ik + Pθ
ik ET −

n∑
j=1
j �=i

(
Wi j Pθ

j k + Pθ
j kWT

i j

)

−ρik
[
Pi (Aθk + AT

θk
)Pk + Pk(Aθk + AT

θk
)Pi

]

Ṗφ
ik = E Pφ

ik + Pφ
ik ET −

n∑
j=1
j �=i

(
Wi j Pφ

j k + Pφ
j kWT

i j

)

− ρik
[
Pi (Aφk + AT

φk
)Pk + Pk(Aφk + AT

φk
)Pi

]
(22)

where Aθk and Aφk are defined as in (16), and (21) and (22)
are initialized analogously to the equations in (16).

III. ACTIVE COOPERATIVE LOCALIZATION AND

MULTITARGET TRACKING (ACLMT)

In this section, we extend the cooperative scenario
described in Sections II-B and II-C to one in which we
have m moving targets with positions x1, . . . , xm and n aerial
vehicles whose location p1, . . . , pn is not exactly known.
The agents simultaneously perform vehicle-to-target and
vehicle-to-vehicle relative measurements, and they move along
trajectories that maximize the accuracy of both their own and
the other targets’ and vehicles’ position estimate. We will
refer to this new problem as active cooperative localization
and multi-target tracking (ACLMT). In what follows, we will
assume that each vehicle is capable of distinguishing the
other agents/targets. The “assignment information” (i.e., which
vehicle is assigned to which vehicle/target) is incorporated
into the association matrix �, that, as we will see later in
this section, is instrumental in defining the control for the
n vehicles.

Definition 1: (Association matrix �): Let xtot � [xT
1 , . . . ,

xT
m, pT

1 , . . . , pT
n ]T ∈ IR3(m+n) be the stacked vector of the

positions of the m targets and n vehicles. Let G(xtot(t)) =
(V, T ∪ V, E(xtot(t))) be a bipartite dynamic digraph with
vertex sets V and T ∪ V (V = {V1, . . . , Vn} is the set
of vehicles and T = {T1, . . . , Tm} the set of targets), and
edge set E(xtot(t)) (obviously, (Vi , Vi ) /∈ E(xtot(t)), for all
i and t). We define the association matrix of G(xtot(t)) (see
the illustrative example in Fig. 3), to be the n × (m + n)
matrix �(xtot(t)) = [�ih(xtot(t))], ∑m+n

h=1 �ih(xtot(t)) = 1,
such that �ih (xtot(t)) > 0 if (Vi , [T ∪ V]h) ∈ E(xtot(t)) and
�ih(xtot(t)) = 0 otherwise, i ∈ {1, . . . , n}, h ∈ {1, . . . , m + n},
where [T ∪ V]h denotes the hth element of the set T ∪ V .

We will assume that �ih(xtot(t)) = 0 when vehicle i is not
able to sense the hth target/vehicle at time t . On the other
hand, the value of the positive weights �ih(xtot(t)) may vary
according to the distance of vehicle i to the hth target/vehicle
or it may be chosen according to other priority/hierarchical
criteria, depending on the specific application scenario.

By extending (1), let us suppose that the motion of the
targets is governed by

ẋ j = F j x j + G j uT j + w j , j ∈ {1, . . . , m} (23)
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(b)

(a)

Fig. 3. Example of association matrix. (a) Bipartite digraph G(xtot)
in the case of three vehicles {V1, V2, V3} and two targets {T1, T2}.
(b) Corresponding 3 × 5 association matrix �(xtot).

where x j ∈ IR3 is the position of the target j , uT j ∈ IR3 is an
exogenous input and w j ∈ IR3 is a continuous-time zero-mean
white Gaussian noise with covariance matrix Q j ∈ IR3×3.

Differently from the preceding section, we suppose here that
the motion of the aerial vehicles is governed by the following
first-order model3:

ṗi = ui + ni , i ∈ {1, . . . , n} (24)

where pi ∈ IR3 is the position of agent i , ui ∈ IR3 its
control input, and ni ∈ IR3 is a continuous-time white
Gaussian noise with zero mean and diagonal covariance matrix
Ni ∈ IR3×3. By combining (23) and (24) together, we obtain
the following system:

ẋtot = Ftot xtot + Gtot utot + wtot

� blkdiag
(
F1, . . . , Fm, 03×3, . . . , 03×3

)
xtot

+blkdiag (G1, . . . , Gm, I3, . . . , I3) utot + wtot (25)

where utot � [uT
T1, . . . , uT

Tm, uT
1 , . . . , uT

n ]T ∈ IR3(m+n), wtot �
[wT

1 , . . . , wT
m , nT

1 , . . . , nT
n ]T ∈ IR3(m+n), blkdiag(·) denotes a

block diagonal matrix obtained by the concatenation of its
matrix arguments, and 03×3 is the 3 × 3 matrix of zeros.

As in Section II-A, we assume here that vehicle i is
equipped with a 3-D range-finding sensor: this time, however,
we will suppose that the position pi of agent i is not perfectly
known. Then the measurement model of agent i will take the
form

zi = xtot + vi + di , i ∈ {1, . . . , n} (26)

3Note that owing to our 3-D range-finding sensor model [31, Section 4.3.2],
the adoption of a second-order model for the vehicles would make the
implementation of the Kalman–Bucy filter more problematic. On the other
hand, if we set Hi = I3(m+2n) instead of Hi = [I3(m+n) 03(m+n)×3n ],
each double-integrator agent should also measure the velocity of its teammates
besides their position, which is impractical in a real application.

where the covariance matrix RCar
i of the vehicle-to-target/

vehicle-to-vehicle measurement noise vi ∈ IR3(m+n) is again
of the form (2), but with

Ri = blkdiag(RVi
T1, . . . , RVi

Tm , RVi
V1, . . . , RVi

Vn)

and
Ti = blkdiag(TVi

T1, . . . , TVi
Tm, TVi

V1, . . . , TVi
Vn)

where RVi
T j , RVi

Vk ∈ IR3×3 are covariance matrices of the
form (4) and TVi

T j , TVi
Vk ∈ IR3×3 are rotation matrices of the

form (3), relative to vehicle i with respect to target j ∈
{1, . . . , m} and vehicle k ∈ {1, . . . , n}, respectively. Note that,
in particular, RVi

Vi = 03×3 and TVi
Vi = I3. The zero-mean white

Gaussian noise di ∈ IR3(m+n) models the uncertainty on the
self-localization of vehicle i and its covariance matrix is

�i = blkdiag(Di , . . . , Di )

where Di is a 3 × 3 diagonal matrix. The noises vi and di

are assumed to be independent. The fusion method described
in Section II-C is still valid in the more challenging scenario
studied in this section as long as suitable modifications are
introduced. In particular, the equations of the Kalman–Bucy
filter for system (25) and (26), are now

Ṗfus = Ftot Pfus + Pfus FT
tot + Qtot − Pfus Ctot Pfus (27)

˙̂xfus = Ftot x̂fus + Gtot utot + Pfus (ytot − Ctot x̂fus) (28)

where

Ctot �
n∑

i=1

(RCar
i + �i )

−1

ytot �
n∑

i=1

(RCar
i + �i )

−1 zi

Qtot � blkdiag(Q1, . . . , Qm , N1, . . . , Nn).

Equations (27) and (28) are initialized with (14) and (15),
where RCar

i (t0) is replaced with RCar
i (t0) + �i . Let now ui|h

denote the gradient control of vehicle i due to the influence
of the hth vehicle/target

ui|h = −� Ti|h
[

1

ri|h sin θi|h
∂ J

∂ φi|h
,

1

ri|h
∂ J

∂ θi|h
,

∂ J

∂ ri|h

]T

where the symbols Ti|h , ri|h , θi|h , and φi|h have an obvi-
ous meaning [cf. (9) and (24)]. Then, according to Defin-
ition 1, we can write the (overall) control ui of vehicle i ,
as (cf. [8])

ui �
m+n∑
h=1

�ih(xtot) ui|h , i ∈ {1, . . . , n}.

IV. PERFORMANCE OF ACLMT

In this section, we will derive analytical bounds on the
covariance matrix Pfus of the Kalman–Bucy filter for system
(25) and (26), that will allow us to study the role played by the
sensors’ accuracy and targets’ dynamics on the performance
of ACLMT.
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In order to state the two main results of this section (Propo-
sitions 1 and 2), we briefly review here an interesting property
of Hermitian Riccati differential equations (HRDEs) [37,
Ch. 2]. Consider the following RDE:

Ṗ = −A∗(t)P − PA(t) − M(t) + P S(t)P, t ∈ I (29)

where A∗(t) is the conjugate transpose of A(t) ∈ Cq×q , and
M(t), S(t) are q × q Hermitian matrices for t ∈ I ⊂ IR≥0.
The coefficients A(t), M(t), and S(t) are assumed to be piece-
wise continuous, locally bounded functions of time. Equa-
tion (29) is called HRDE since its solutions with Hermitian
initial values P(t0), are Hermitian.

The following comparison theorem [37, Th. 4.1.4], shows
that Hermitian solutions of HRDEs are monotonically depen-
dent on initial values and on the coefficients: in other words,
the solutions of HRDEs tend to preserve their ordering with
respect to positive definiteness as their argument changes.

Theorem 1 (Comparison theorem): Let I ⊂ IR≥0 be some
interval, t0 ∈ I and let the Hamiltonian matrices4

[
A j (t) −S j (t)

−M j (t) −A∗
j (t)

]
, j ∈ {1, 2}

be piecewise continuous and locally bounded on I, with S j (t)
and M j (t) Hermitian matrices for t ∈ I. If P j , j ∈ {1, 2}, are
on I solutions of

Ṗ j = −A∗
j (t)P j − P j A j (t) − M j (t) + P j S j (t)P j (30)

with P1(t0) � P2(t0) and P1(t0), P2(t0) Hermitian, then[
M1(t) A∗

1(t)
A1(t) −S1(t)

]
�

[
M2(t) A∗

2(t)
A2(t) −S2(t)

]
, for t ∈ I (31)

implies P1(t) � P2(t) for t ∈ I ∩ [t0, +∞), i.e., the solutions
of (30) depend monotonically on

[
M j (t) A∗

j (t)
A j (t) −S j (t)

]
, j ∈ {1, 2}

(and in particular on M j (t) and −S j (t)) and on the initial
value P j (t0). �

From Theorem I, we immediately deduce the following
result concerning the existence of lower and upper bounds
on the solution of the RDE (27).

Proposition 1 (Bounds on Pfus): Let I ⊂ IR≥0 be some
interval, and t0 ∈ I. If PL

fus, Pfus, and PU
fus are on I solutions

of the following RDEs:
ṖL

fus = Ftot PL
fus + PL

fus FT
tot + Qtot − PL

fus CU
tot PL

fus (32)

Ṗfus = Ftot Pfus + Pfus FT
tot + Qtot − Pfus Ctot(t) Pfus (33)

ṖU
fus = Ftot PU

fus + PU
fus FT

tot + Qtot − PU
fus CL

tot PU
fus (34)

with PL
fus(t0) = Pfus(t0) = PU

fus(t0), Pfus(t0) symmetric, and
CL

tot, CU
tot constant symmetric matrices, then

CL
tot � Ctot(t) � CU

tot, for t ∈ I

implies

PL
fus(t) � Pfus(t) � PU

fus(t), for t ∈ I ∩ [t0, +∞). (35)

4A matrix H ∈ C2q×2q is called Hamiltonian if I H = (I H)∗, where
I �

[
0 −Iq
Iq 0

]
is the unit imaginary matrix [37, Def. 2.1.1 (i i i)].

Proof: The result can be proved by performing the follow-
ing substitutions in the statement of Theorem 1 [we consider
herein only the first pair of equations (32) and (33); a similar
reasoning applies to the second pair (33) and (34)]:

P1(t) → Pfus(t), P2(t) → PL
fus(t)

−A∗
1(t),−A∗

2(t) → Ftot, −M1(t),−M2(t) → Qtot

−S1(t) → CU
tot, −S2(t) → Ctot(t).

It is easy to verify that the Hamiltonian matrices
[−FT

tot CU
tot

Qtot Ftot

]
,

[−FT
tot Ctot(t)

Qtot Ftot

]

are piecewise continuous and locally bounded, and that con-
dition (31) simply becomes
[
−Qtot −Ftot

−FT
tot CU

tot

]
�

[
−Qtot −Ftot

−FT
tot Ctot(t)

]
⇐⇒

[
0 0
0 CU

tot − Ctot(t)

]
� 0 ⇐⇒ Ctot(t) � CU

tot, for t ∈ I

where the last equivalence follows from [40, Prop. 8.2.4].
The inequality Ctot(t) � CU

tot for t ∈ I, implies PL
fus(t) �

Pfus(t) for t ∈ I ∩ [t0, +∞). �
Proposition 1 states that in order to determine a lower and

upper bound for the covariance matrix Pfus, it suffices to
determine a lower and upper bound for the matrix Ctot(t),
and to solve two constant-coefficient RDEs [(32) and (34)],
with the same initial condition Pfus(t0).

In order to complete our analysis, let us now derive explicit
expressions for the constant matrices CU

tot and CL
tot appearing

in (32) and (34). We have that

Ctot(t) �
n∑

i=1

(RCar
i (t) + �i )

−1

� 1

4

n∑
i=1

(
(RCar

i (t)
)−1 + �−1

i )

� 1

4

(
n

a0
max

{
1

αφ
,

1

αθ
, 1

}
I3(m+n) +

n∑
i=1

�−1
i

)

� CU
tot

where the first inequality follows from [40, Fact 8.10.7],
and the second follows from the observation that matrix
Ti diag(1/αφ, 1/αθ , 1) TT

i is related to diag(1/αφ, 1/αθ , 1)

by a similarity transformation (notice that TT
i = T−1

i , being
Ti a rotation matrix), therefore the two matrices have the same
eigenvalues. Analogously, we have that

Ctot(t) �
n∑

i=1

1

λmax
(
RCar

i (t) + �i
) I3(m+n)

�
n∑

i=1

1

λmax(RCar
i (t)) + λmax(�i )

I3(m+n)

�
n∑

i=1

1

fr (rM) max{αφ, αθ , 1} + λmax(�i )
I3(m+n)

� CL
tot



1702 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 21, NO. 5, SEPTEMBER 2013

where the first inequality follows from [40, Corollary 8.4.2],
the second from [40, Th. 8.4.11], and rM indicates the
maximum vehicle-to-target (or vehicle-to-vehicle) distance that
each agent can measure, determined, e.g., by the size of the
3-D navigation environment (cf. [24]).

If we substitute the upper and lower bounds CU
tot, CL

tot in
(32) and (34), and numerically evaluate the solution of the
two equations, we obtain a lower and upper bound on Pfus
at any instant of time. Since the system under investigation
is completely observable, then after undergoing an initial
transient phase, Pfus will reach a steady state. It is therefore
worth studying the steady-state behavior of the uncertainty
over the targets’ and vehicles’ position; this information is
conveyed by the asymptotic solutions PL

fus(∞), PU
fus(∞) of

(32) and (34). Let the pair (P
, C
) denotes either (PL
fus, CU

tot)
or (PU

fus, CL
tot). From Kalman-filter theory [36, p. 476], we

know that if the pair (Ftot, Q1/2
tot ) is stabilizable, then the

solution of

Ṗ
(t) = Ftot P
(t) + P
(t) FT
tot + Qtot − P
(t) C
 P
(t)

converges to a unique positive-definite matrix at steady state
from any initial condition P
(t0), determined by solving the
continuous-time algebraic Riccati equation (CARE)

Ftot P
(∞) + P
(∞) FT
tot + Qtot − P
(∞) C
 P
(∞) = 0.

Therefore, in summary, the study of the steady-state per-
formance of ACLMT, simply translates into solving two
standard CAREs for PL

fus(∞) and PU
fus(∞), for which efficient

numerical routines exist in mathematical software packages.
Note that the bounds described in this section are relative

to the uncertainty on the considered target and measurement
models, and they are not bounds on the (unknown) globally
optimal trajectory of the vehicles (cf. [16]).

Remark 3 (Bounds on the cost function J ): From condi-
tion (35) and Weyl’s inequality [40, Th. 8.4.9], it follows that
for t ∈ I ∩ [t0, +∞):

ln det(PL
fus(t)) ≤ ln det(Pfus(t)) ≤ ln det(PU

fus(t)). (36)

Therefore, if the pair (Ftot, Q1/2
tot ) is stabilizable,

ln det(PL
fus(∞)) and ln det(PU

fus(∞)) represent steady-state
lower and upper bounds on the value of the cost function for
the D-optimality criterion. Inequalities analogous to (36) hold
with the cost functions (6) and (7) of the A- and E-optimality
criteria.

We conclude this section with Proposition 2, which lever-
aging again the comparison theorem, studies the impact of
the process noises w j and ni on the targets’ and vehicles’
position uncertainty (cf. [26, Sect. VI]). In order to state the
proposition, let us partition the matrix Pfus as

Pfus =
[

PTT PTV
PVT PVV

]

where PTT ∈ IR3m×3m is the covariance matrix corresponding
to the targets’ position estimate, PVV ∈ IR3n×3n is the
covariance matrix relative to the vehicles’ position estimate,
and PTV ∈ IR3m×3n is the cross-correlation matrix between
the targets and vehicles (obviously, (PTV)T = PVT).

Proposition 2 (Bounds on PTT and PVV): Let I ⊂ IR≥0 be
some interval, and t0 ∈ I. Let P′

fus and Pfus be the solutions
of the following RDEs on I:

Ṗ′
fus = Ftot P′

fus + P′
fus FT

tot − P′
fus Ctot(t) P′

fus

+blkdiag(Q1, . . . , Qm, N1, . . . , N′
i , . . . , Nn)

Ṗfus = Ftot Pfus + Pfus FT
tot − Pfus Ctot(t) Pfus

+blkdiag(Q1, . . . , Qm, N1, . . . , Ni , . . . , Nn) (37)

with P′
fus(t0) = Pfus(t0), and Pfus(t0) symmetric. Then,

if N′
i � Ni for a certain i ∈ {1, . . . , n}, we have that

P′
TT(t) � PTT(t) for t ∈ I ∩ [t0, +∞).
Analogously, let P′

fus and Pfus be the solutions of the
following RDEs on I:

Ṗ′
fus = Ftot P′

fus + P′
fus FT

tot − P′
fus Ctot(t) P′

fus

+blkdiag(Q1, . . . , Q′
j , . . . , Qm , N1, . . . , Nn)

Ṗfus = Ftot Pfus + Pfus FT
tot − Pfus Ctot(t) Pfus

+blkdiag(Q1, . . . , Q j , . . . , Qm , N1, . . . , Nn)

with P′
fus(t0) = Pfus(t0) and Pfus(t0) symmetric. Then,

if Q′
j � Q j for a certain j ∈ {1, . . . , m}, we have that

P′
VV(t) � PVV(t) for t ∈ I ∩ [t0, +∞).

Proof: If N′
i � Ni for a certain i ∈ {1, . . . , n}, the

application of Theorem 1 to the RDEs in (37) leads to the
condition

Y(t) �
[

P′
TT(t) − PTT(t) P′

TV(t) − PTV(t)

P′
VT(t) − PVT(t) P′

VV(t) − PVV(t)

]
� 0 (38)

for t ∈ I ∩ [t0, +∞). From the property of the Schur com-
plement of P′

TT − PTT with respect to Y [40, Prop. 8.2.4, i i)],
(38) implies P′

TT − PTT � 0, i.e., P′
TT � PTT. The second

part of the statement can be proved in an analogous way,
by considering the Schur complement of P′

VV − PVV with
respect to Y. �

Proposition 2 states that an increase in the velocity uncer-
tainty for one of the vehicles (N′

i � Ni ), leads to an uncertainty
growth in the targets’ position (P′

TT � PTT). Vice versa, an
increase in the velocity uncertainty for one of the targets
(Q′

j � Q j ), directly translates into an uncertainty growth in
the vehicles’ position (P′

VV � PVV).

V. SIMULATION EXPERIMENTS

Extensive simulation experiments have been performed to
illustrate the theory presented in the previous sections. In all
our tests we used the cost function for the D-optimality crite-
rion to design the gradient controller, because of its invariance
under any nonsingular reparametrization [19, Sec. 6.1]. In the
simulations, the initial velocity qi (t0) = qi (0) of the aerial
vehicles is set to zero.

Fig. 4(a) shows the trajectory of four aerial vehicles
cooperatively tracking tracking a target whose motion is gov-
erned by (1), with F = −5 diag(10−3, 10−4, 10−2), G = I3,
uT(t) = [0, −10−2, 0]T and Q = 0.07 I3. The initial positions
of the agents and target are, p1(0) = [−3, 15, 0]T , p2(0) =
[3, 15, 0]T , p3(0) = [0, 15, 5]T , p4(0) = [0, 15, −5]T ,
x(0) = [0, 12, 0]T and are respectively marked with circles
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Fig. 4. Cooperative active target tracking. (a) Trajectory of the four agents (colored lines) and of the target (black line). The initial positions are marked with
circles and a square, respectively, and the direction of motion of the target is indicated with an arrow. (b) Time history of the cost function J = ln det(Pfus).
(c) Time evolution of the estimation error x − x̂fus. (d) Time history of ri , i ∈ {1, . . . , 4} (colored line) and a1 = 3 m (black dashed line). (e) Mean and
standard deviation of ‖x(Tfin) − x̂fus(Tfin)‖2, Tfin = 300 s, over ten trials for Q = β2 I3, β ∈ {0.01, 0.05, 0.1, 0.15, 0.2, . . . , 0.4}.
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Fig. 5. Noncooperative active target tracking. (a) Trajectory of the four agents (colored line) and of the target (black line). The initial initial and final
positions of the agents are marked with circles and black dots, respectively, while the initial position of the target is marked with a square. (b) Time history of
the cost functions Ji = ln det(Pi ), i ∈ {1, . . . , 4}. (c) Time evolution of the estimation errors x − x̂i , i ∈ {1, . . . , 4}: red agent 1, green agent 2, blue agent 3,
magenta agent 4.

and a square in Fig. 4(a). The parameters of the measurement
model are a0 = a2 = 0.2, a1 = 3, αθ = αφ = 0.8, and the gain
and damping matrices are � = 0.5 I3 and B = 2 I3, respec-
tively. Fig. 4(b) reports the time history of J = ln det(Pfus) and
Fig. 4(c) reports the target’s estimation error x− x̂fus. Fig. 4(d)
displays the time evolution of ri , i ∈ {1, . . . , 4} (colored lines).

Note that after about 150 s all the vehicles reach their sweet
spot located at a distance a1 = 3 m from the target (black
dashed line). It is also worth mentioning that although the
“small-angle condition” is violated here (recall Remark 1),
in this as well as in many other simulation experiments, we
never experienced a significant performance degradation of our
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algorithm. Finally, Fig. 4(e) shows the influence of the process
noise w(t) on the steady-state target’s estimation error. In par-
ticular, in the figure, we have reported the mean and standard
deviation of ‖x(Tfin) − x̂fus(Tfin)‖2, (Tfin = 300 s is the final
simulation time), over ten trials for increasing process-noise
power: Q = β2 I3, β ∈ {0.01, 0.05, 0.1, 0.15, 0.2, . . . , 0.4}.
For consistency, in all the trials, we used the same initialization
for the Kalman filter: x̂fus(0) = xT (0) + [1, −3, −2]T ,
Pfus(0) = I3.

Fig. 5(a) shows the trajectory of four aerial vehi-
cles tracking a target and adopting the noncooperative
estimation-and-control strategy described in Section II-D (for
improving readability, the initial and final position of the
agents is marked here with circles and black dots, respec-
tively). The same parameters as those in Fig. 4(a)–(d) have
been used in Fig. 5, the only difference being represented
by the initial position of the vehicles and target, and by the
gain and damping matrices, that are, respectively, p1(0) =
[−5, 15, 0]T , p2(0) = [5, 15, 0]T , p3(0) = [0, 15, 5]T ,
p4(0) = [0, 15, −5]T , x(0) = [0, 18, 0]T and � = 23 I3,
B = 15 I3. Fig. 5(b) reports the time history of the cost
functions Ji = ln det(Pi ), i ∈ {1, . . . , 4}, and Fig. 5(c) the
time evolution of the estimation errors x − x̂i , i ∈ {1, . . . , 4},
(red agent 1, green agent 2, blue agent 3, and magenta
agent 4). In Fig. 5(b), we observe an agreement on the value
of the cost functions Ji , i ∈ {1, . . . , 4} (corresponding to
the existence of a feedback Nash equilibrium solution, cf.
Section II-D), and from a comparison of Figs. 5(b) and 4(b),
we notice, as expected, that the individual estimates of the
target’s position are poorer than the estimate obtained by
fusing the measurements of the four agents.

Fig. 6(a) shows the trajectory of two targets and three
vehicles performing ACLMT. In (25) and (26), we chose
F1 = F2 = −diag(10−3, 10−3, 10−4), G1 = G2 = I3,
uT1 = [−0.7, −0.01, −0.01]T , uT2 = [−0.7, 0.03, −0.01]T ,
Q1 = Q2 = 0.05 I3, N1 = N2 = N3 = 0.03 I3 and D1 = D2 =
D3 = 0.05 I3. The initial positions of the agents and targets
are p1(0) = [−3, 18, 0]T , p2(0) = [−3, 10, −2]T , p3(0) =
[6, 5, 1]T and x1(0) = [−5, 12, 1]T , x2(0) = [−5, 2, 4]T .
The parameters of the measurement model are a0 = a2 = 0.2,
a1 = 5, αθ = αφ = 1 and the gain matrix � = 0.09 I3.
For the sake of illustration, we chose the following simple
association matrix:

�(xtot(t)) =
⎡
⎣

1 0 0 0 0
1/2 1/2 0 0 0
0 1 0 0 0

⎤
⎦ , ∀ t ≥ 0.

In this way, the first agent is assigned to the first target, the
third agent to the second target, and the second agent to
both targets. Fig. 6(b) shows the time history of ln det(Pfus)
(solid line), ln det(PL

fus) (dotted line) and ln det(PU
fus) (dashed

line); to generate this plot, we chose rM = 12 m. In Fig. 6(c)
and (d), the estimation errors xtot(1:3) − x̂fus(1:3) and
xtot(4:6) − x̂fus(4:6) (red solid line) of the first and second
target, respectively, are compared against the ±3σ enveloping
lines associated with the actual position estimate’s covariance
matrix (black solid line), and with the theoretical lower
and upper bounds for Pfus (black dotted and dashed lines,

respectively); similar position estimation errors were obtained
for the three vehicles (not shown in Fig. 6).

Fig. 6(e) and (f) have been generated using the same
parameters and initial conditions as those in Fig. 6(a)–(d), and
they illustrate Proposition 2. Actually, Fig. 6(e) shows the time
history of the eigenvalues of the matrix P′

TT − PTT ∈ IR6×6

where P′
TT corresponds to N′

2 = 1.05 I3 and PTT to N2 =
0.03 I3 [note that there are only two distinct curves in Fig. 6(e),
since some of the eigenvalues coalesce]. Analogously, Fig. 6(f)
reports the time history of the eigenvalues of the matrix
P′

VV − PVV ∈ IR9×9, where P′
VV corresponds to Q′

1 = 1.05 I3
and PVV to Q1 = 0.05 I3. As it is evident from the two figures,
the eigenvalues of P′

TT − PTT and P′
VV − PVV are nonnegative

at all times, and hence P′
TT(t) � PTT(t) and P′

VV(t) � PVV(t)
for all t ≥ 0, as predicted by Proposition 2.

In Fig. 6(g), we compared the performance of our basic
cooperative active target-tracking algorithm (the positions of
the vehicles are perfectly known here), with ACLMT, under
equivalent conditions. The figure, in particular, shows the time
history of the estimation error of a single target, obtained by
four vehicles using the two approaches (black and red lines,
respectively), with � = 0.05 I3, B = 50 I3 (for the former
method), a0 = a2 = 0.2, a1 = 5, αθ = αφ = 1 and initial con-
ditions, p1(0) = [0, 14, −3]T , p2(0) = [3, 13, 0]T , p3(0) =
[−1, 11, 5]T , p4(0) = [1, 9, −2]T , x1(0) = [0, 12, 0]T .
For ACLMT we chose F1 = −0.5 diag(10−2, 10−3, 10−2),
G1 = I3, uT1 = [0, −0.01, 0]T , Q1 = 0.07 I3, N1 = · · · =
N4 = 0.15 I3, D1 = · · · = D4 = 0.5 I3, and

�(xtot(t)) =

⎡
⎢⎢⎣

1 0 0 0 0
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0

⎤
⎥⎥⎦ , ∀ t ≥ 0.

Finally, the Kalman filter was initialized with x̂fus(0) =
xT

1 (0) + [1, −3, −2]T , Pfus(0) = I3, and x̂fus(0) = [xT
1 (0) +

[1, −3, −2]T , pT
1 (0), pT

2 (0), pT
3 (0), pT

4 (0)]T , Pfus(0) = I15,
respectively. From Fig. 6(g), we observe that although the
transient performance of ACLMT is worse than that of
the basic cooperative active target-tracking algorithm, the
steady-state target’s estimation errors of the two approaches
are comparable.

Finally, Fig. 7(a)–(c) illustrate the influence of the
parameters αθ = αφ ∈ {0.05, 0.1, 0.25, 0.5, . . . , 2},
a0 ∈ {0.01, 0.05, 0.25, 0.5, . . . , 1} and �1 = �2 =
�3 = γ I15, γ ∈ {0.05, 0.075, 0.1, 0.25, 0.5, . . . , 1},
on the bounds ln det(PL

fus) and ln det(PU
fus) (dotted and

dashed lines, respectively) in ACLMT. Fig. 7(a)–(c)
were obtained using the same simulation parameters as
those in Fig. 6(a)–(f), and initializing the Kalman fil-
ter with x̂fus(0) = [xT

1 (0), xT
2 (0), pT

1 (0), pT
2 (0), pT

3 (0)]T ,
Pfus(0) = I15. From the figures, it comes as no surprise that
the smaller αθ , αφ , a0, and the “smaller” �1, �2, �3, the
higher is the steady-state estimation accuracy of the target’s
position.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have proposed an active target-tracking
strategy to deploy a team of unmanned aerial vehicles along
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Fig. 6. ACLMT. (a) Trajectory of the three agents (colored lines) and of the two targets (black and gray lines); the initial positions are marked with
circles and squares, respectively. (b) Time history of the cost function J = ln det(Pfus) (solid line), ln det(PL

fus) (dotted line), and ln det(PL
fus) (dashed line).

(c) and (d) Time evolution of the estimation errors xtot(1:3)− x̂fus(1:3) and xtot(4:6)− x̂fus(4:6) of the first and second target, respectively (red solid lines), and
±3σ enveloping lines associated with the actual estimate’s error covariance matrix (black solid lines) and with the theoretical lower and upper bounds ((black
dotted and dashed lines, respectively). (e) Time history of the eigenvalues of P′

TT − PTT ∈ IR6×6. (f) Time history of the eigenvalues of P′
VV − PVV ∈ IR9×9.

(g) Time evolution of the position estimation error of a single target obtained by four agents using our basic cooperative active target-tracking algorithm (black
lines; the position of the agents is perfectly known) and ACLMT (red lines).

paths that minimize the uncertainty about the position of a
moving target. Both cooperative and noncooperative scenarios
have been explored, and a new problem, called ACLMT has
been introduced. In this problem, the aerial vehicles relocate
themselves in the 3-D space in order to maximize both the
accuracy of their own position estimate and that of multiple
moving targets. For ACLMT, the monotonicity property of the
Riccati differential equation arising from the Kalman–Bucy

filter, which describes the propagation of the targets’/vehicles’
position uncertainty through time, allowed us to determine
guaranteed performance bounds for our algorithm. The pro-
posed theoretical results have been illustrated via extensive
numerical simulations.

There is a series of interesting open issues that this paper has
not tackled. First, in future research, we are going to extend
the proposed results to heterogeneous teams of ground and
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Fig. 7. ACLMT. Influence of the parameters (a) αθ = αφ , (b) a0, and (c) �1 = �2 = �3, on the bounds ln det(PL
fus) and ln det(PU

fus) (dotted and dashed
lines, respectively).

aerial robots (e.g., more realistically modeled as nonholonomic
vehicles, cf. [41]), and to take advantage of the performance
analysis of Section IV to synthesize more efficient controllers
for ACLMT. We also aim to study the impact of team topology
on the target’s estimation accuracy in the case of limited
inter-vehicle communication [25], and to test the proposed
approach on real flying platforms (e.g., on commercial quadro-
tors [42]). Finally, in future works, we will consider more
sophisticated assignment algorithms for ACLMT in the case
of exteroceptive sensors with limited range and/or aperture
and cluttered environments [43]–[46], we will analyze the
stability of the full closed-loop system in terms of the con-
troller’s parameters (cf. [10]), and we will investigate convex
approximations to the cost functions (5)–(7), by exploiting the
concavity property of the Riccati differential equation of the
Kalman–Bucy filter.
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