Liquid crystal flows in two dimensions
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Abstract

The paper is concerned with a simplified hydrodynamic equation, proposed
by FEricksen and Leslie, modeling the flow of nematic liquid crystals. In dimen-
sion two, we establish both interior and boundary regularity theorem for such a
flow under smallness conditions. As a consequence, we establish the existence of
global weak solutions that are smooth away from at most finitely many singular

times in any bounded smooth domain of R2.

1 Introduction

We consider the following hydrodynamic system modeling the flow of liquid crystal

materials in dimension two (see [6] [7] [11] [14] and references therein):

w+u-Vu—vAu+VP = —AV-(Vdo Vd) in Q x (0,400), (1.1)
Veu = 0 in © x (0, +00), (1.2)
di+u-Vd = ~y(Ad+|Vd*d) inQx(0,+00), (1.3)

where 0 C R? is a bounded smooth domain, u(z,t) : Q x (0,4+00) — R? repre-
sents the velocity field of the flow, d(x,t) : Q x (0,+00) — 52, the unit sphere in
R3, is a unit-vector field that represents the macroscopic molecular orientation of

the liquid crystal material, and P(z,t) : © x (0,+00) — R represents the pressure
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function. The constants v, A\, and ~ are positive constants that represent viscosity,
the competition between kinetic energy and potential energy, and microscopic elas-
tic relaxation time for the molecular orientation field. V- denotes the divergence
operator, and Vd ® Vd denotes the 2 x 2 matrix whose (7, j)-the entry is given by
Vid -V dfor 1 <i,5 <2.

The above system is a simplified version of the Ericksen-Leslie model, which re-
duces to the Ossen-Frank model in the static case, for the hydrodynamics of nematic
liquid crystals developed during the period of 1958 through 1968 ([7] [6] [11]). It is
a macroscopic continuum description of the time evolution of the materials under
the influence of both the flow field u(z,t), and the macroscopic description of the
microscopic orientation configurations d(x,t) of rod-like liquid crystals. Roughly
speaking, the system (1.1)-(1.3) is a coupling between the non-homogeneous Navier-
Stokes equation and the transported flow of harmonic maps. In a series of papers, Lin
[13] and Lin-Liu [14, 15] initiated the mathematical analysis of (1.1)-(1.3) in 1990’s.
More precisely, they considered in [14] the Leslie system of variable length, i.e. the
Dirichlet energy % [, |Vd|* da for d : @ — S"~! is replaced by the Ginzburg-Landau
energy [,,(3|Vd|* + %) dx for d : Q@ — R™ (e > 0), and proved existence of
global classical and weak solutions in dimensions two or three. In [15], they proved
the partial regularity theorem for suitable weak solutions, similar to the classical
theorem by Caffarelli-Kohn-Nirenberg [5] for the Navier-Stokes equation. However,
as pointed out in [14, 15], both their estimates and arguments depend on €, and it
is a challenging problem to study the convergence as e tends to zero.

In this paper, we are interested in the existence of global weak solutions (u, d)
of (1.1)-(1.3) that may enjoy possible regularity under the initial and boundary

conditions:

(u(x,0),d(z,0)) = (uo(x),do(z)) x €, (1.4)

(u(z,t),d(z,t)) = (0,do(x)) (x,t) € I x (0,+00). (1.5)
Throughout this paper, we introduce

H = closure of C5°(Q,R*) N {v:V-v =0} in L*(Q,R?),



J = closure of C°(Q,R*) N{v:V-v=0} in H}(Q,R?),
HY(Q,8%) = {de H'(Q,R?) : d(z) € S? ae. z € Q},
We make the assumptions:
uo € H, dy € H'(Q,5?) and dy € C*P(8Q, 5?) for some 3 € (0,1). (1.6)

Definition 1.1 For 0 < T < +oo, u € L*>([0,7],H) N L*([0,7],J) and d €
L2([0,T), H'(Q, S?)) is a weak solution of (1.1)-(1.5), if

- / (u, ') + / (- Vu, ) + v (Vai, YV )
Qx[0,T] Qx[0,T

= —(0) /Q(u(), o)+ A (Vd© Vd, V),

Qx[0,T]

- / (d, o) + / (- Vd, $6) +1(Vd, $V )]
Qx[0,T]

Qx[0,T

——0(0) [ (dod) + [ o VP00,

for any v € C>([0,T]) with (T) =0 and ¢ € HE(Q,R3). Moreover, (u,d) satisfies
(1.5) in the sense of trace.

In this paper, we establish both the regularity and existence of global weak

solutions in dimension two. More precisely, we prove

Theorem 1.2 For 0 < T < 400, assume u € L*>([0,T]),H) N L?([0,T],J) and
d € L*([0,T), H*(Q, S?)) is a weak solution of (1.1)-(1.5), with (1.6). If, in addition,
d € L2([0,T], H*(Q)), then (u,d) € C*(Q x (0,T]) N C5(Q x (0, T7).

Utilizing Theorem 1.2, the global and local energy inequality, and the global
estimate of the pressure function P in §4 below, we establish the existence of global

weak solutions that enjoy the partial smoothness property.

Theorem 1.3 Under the assumption (1.6), there exist a global weak solution u €
L>=([0,00), H)NL%([0,0),J) and d € L>=([0,00), H*(Q, S?)) of (1.1)-(1.5) such that
the following properties hold:

(i) There ezists L € N depending only on (ug,dp) and 0 < Ty < --- <Tp,1<i<L,
such that

(u, d) € C%( x ((0,400) \ {Ti} 1)) N CF (2 x (0, +00) \ {Ti}1))-
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(ii) Each singular times T;, 1 < i < L, can be characterized by

lim inf max/ (|u* + |Vd*)(y, t)dy > 8m, Vr > 0. (1.7)
1T 2eQ JonB,(z)

Moreover, there exist x!, — x% €Q, t, 1T, r, | 0 and a non constant smooth

harmonic map w; : R2 — S with finite energy such that as m — +oo,

(ui d’ ) — (0,w;) in CIQOC(R2 X [—00,0]),

m? 'm

where
ul (x,t) =7l u(xl 4l oz th 4 (ri)2t), d(x,t) = d(z!, + izt 4+ (rl )3,
(i1i) Set To = 0. Then, for 0 <i <L —1,
[d| + [V2d| € LX(Q % [T}, Tigr — €], |usl + |V2u| € L3(Q x [T}, Tigy — €])
for any € > 0, and for any 0 < Ty < T < 400,
de| + [V2d) € L2(Q x [Ty, T)), |ws] + V2| € L5 (2 x [Ty, T)).

(iv) There exist t}, T +oo and a harmonic map ds € C®(£2,5%) N C%P(Q, S?) with
doo = do on OQ such that u(-,tx) — 0 in HY(Q), d(-,t) — doo weakly in H*(Q),
and there exist | € N, points {z;}l_; C Q, and {m;}\_, C N such that

l
IVd(-, 1) do — [Vdoo|* da + > 87mibe,. (1.8)
=1

(v) If (up,dy) satisfies
[ (ol + o) < 8
Q

then (u,d) € C*°(Q2 x (0,+00)) N Cé’l(ﬁ x (0,+00)). Moreover, there exist tj, T +00
and ds € C(Q, S?)NC%P(Q, S?) with ds = do on O such that (u(-, tg), d(-, tg)) —
(0,ds) in C%(Q).

Remark 1.4 We would like to point out
(i) If d is a constant map, then (1.1)-(1.3) reduces to the Navier-Stokes equation. It

is well-known (see Temam [24] and Ladyzhenskaya [9]) that in dimension two, any



weak solution u € LL2 N L?H' to the Navier-Stokes equation is smooth.

(ii) If w = 0, then (1.1)-(1.3) reduces to the heat flow of harmonic maps. The clas-
sical theorems by Struwe [23] and Chang [1] assert that there exists a unique global
weak solution that is smooth away from finitely many singular points.

(iii) Theorem 1.3 can be viewed as a mixture of the Navier-Stokes equation and the
heat flow of harmonic maps in dimension two.

(iv) For smooth initial data (ug,dp), it is also a very interesting question to ask
whether the short time smooth solution to (1.1)-(1.3) can develop finite time singu-

larity (see Chang-Ding-Ye [2] for the heat flow of harmonic maps).

Remark 1.5 (i) We conjecture that the global weak solution (u, d) in Theorem 1.3
is unique in the class of all weak solutions (i, d) of (1.1)-(1.5) that enjoy the following
properties: there are K € N and 0 < 57 < -+ < Sg < 400 such that d satisfies

d € L*°([0,400), H'()) and
d € N5 Neso L2([Si, Sivr — e, HA(Q)) [ L[Sk, +00), H2 ().

(ii) We also conjecture that there are at most finitely many singular points for the

weak solution constructed by Theorem 1.3.

The paper is written as follows. In section 2, we prove both interior and boundary
regularity theorems for (1.1)-(1.3) under smallness conditions and Theorem 1.2. In
section 3, we employ the contraction map theory to establish the existence of short
time smooth solutions to (1.1)-(1.3). In section 4, we show both global and local
energy inequalities for smooth solutions to (1.1)-(1.3) and global estimates for the
pressure function. In section 5, we prove Theorem 1.3 by estimating the first singular
time in terms of energy concentration and performing blow-up analysis near each
singularity.

Since the exact values of v, A,y don’t play a role, we henceforth assume

r=A=vy=1.



2 Regularity of solutions and proof of Theorem 1.2

This section is devoted to the proof of Theorem 1.2. The proof is based on two Lem-
mas: (i) the interior regularity under the smallness condition, and (ii) the boundary
regularity under the smallness condition. We refer to [3] for interesting results on
two dimensional NSE with singular forcing.

We begin with some notations. Throughout the paper, we use A < B to denote
A < CyB for some universal constant Cy > 0. For 29 € R?, tg € R, 29 = (z0,10),

and r > 0, let
B,(xg) = {z € R? : |z — 29| < r} and P.(z9) = B,(xg) X [to — 72, to]
denote the ball in R? and the parabolic cylinder in R? respectively. Let
OpPr(20) = (B (o) x {to — r*}) U (0B, (20) x [to — 1%, t0])
denote the parabolic boundary of P.(zp). For xg = 0 and ¢y = 0, we simply denote
B, = B,(0), P, = P:(0,0), 0,P, = 0,P,(0,0).

For f € L'(P,(2)), denote by

) 1
Foow = o f(z,t) dxdt and fy, (1) = ]B (z0)] By (20)

|Pr(20)] J P, (z0)
as the average of f over P,(zp) and B, (x) respectively.

For 1 < p,q < 400, denote LPI(P;(z0)) = LI([to — 7, to], LP (B (20))) and

f(z,t)dx

to q
11l zoa(pr o)) = </ 117G Oz, o) dt)

Wi2(P.(20)) = Li([to — 12, to], WHP(B,(0))), with the norm
1 w0, (o)) = I lLrapzo)) + IV Flleacp, (o))-
Wi (Pr(20)) = {f € Wy (Pr(20)) : V2f, f; € LP9(Py(2))}, with the semi-norm
w2 (pygaoyy = NIV + 1l Lraces o))

and the norm

HfHW +(Pr(20)) ||f||W q(pr 20)) + [f]Wg;ql(PT(zO))'
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For p = g, we denote LP(-) = LPP(-), Wp°(-) = W (), and W' (1) = Wy (-).

By scaling, the first part of Theorem 1.2 follows from the following Lemma.

Lemma 2.1 For any o € (0,1), there exists €9 > 0 such that for zy = (wo,ty) € R3
and r > 0, if (u,d) € WQI’O(PQT(,ZO)), P € Wl’%(PQT(Zo)) is a weak solution to
(1.1)-(1.3) and
[ it vt <<, (2.)
Pr(z0)

then (u,d) € C’O‘(P%(zo),R2 x S2). Moreover,

[d]Ca(P%(zo)) < C(llullzap zo)) + VAl L2, (20))) (2.2)

O {llullzace, oy + IVl ars oy + VP g g - (23)

IN

[l (py z0))

Proof. By translation and dilation, we may assume that zp = (0,0) and r = 1. It

then follows from the interior VVQ2 L_estimate (see [10]) that d € W22 ’1(P%) and

Hv2dHL2(P%) S llellzay + IVAlllpapy- (2.4)

Pick any point 21 = (21,¢1) € P1 and 0 < R < 1. We need
2

Claim 1.
r

4 da 4
/ v < () / Vd, Y0 <r < R. (2.5)
Pr(z1) R Pr

Let d' : Pr(z1) — R? solve

dl —Ad' = 0in Pg(z) (2.6)

d' = don 9,Pp(z).
Then d? = d — d' : Pg(z1) — R3 solves

d? — Ad*> = —u-Vd+|Vd*din Pg(z) (2.7)

d2 = 0 on8pPR(zl).

Since (—u - Vd+ |Vd|?d) € L?(Pg(z1)), we have that d?, V2d? € L?(Pg(z1)). Hence,

multiplying the equation (2.7) by Ad? and integrating over Br(z1), we obtain

2|2
R N R e\ Y
dt Br(z1) 2 Br(z1) Br(z1)
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Integrating over [t; — R2,t1] and applying Holder inequality yields

sup / \Vd2|2—|—/ |Ad?)?
t17R2§t§t1 BR(ml) PR(Zl)
< / 2| Vdf? + / V!
Pr(z1) Pr(z1)
1 1 1
<[ / )% + ( / V)3 / V).
Pr(z1) Pr(z1) Pr(z1)

By the Ladyzhenskaya inequality, we have

/ |w2|4§/ |Vd2|2(/ |Ad2]2+R‘2/ Vd2]?).
Bpr(z1) Bpr(z1) Br(z1) Br(z1)
Hence, by integrating t over [t; — R%, t1], we have
[oovert s ose [ wep
Pr(z1) t1—R2<t<t1 J Br(z1)
(f ge@ps sw [ v
Pr(z1) t1—R2<t<t; J Bgr(z1)
S e[ gwan [ wath e
Pr(z1) Pr(z1) Pg(z1)

For d?, we have that for any 6 € (0,1),

/ valt < 6t / v
Pyr(z1) Pr(z1)

< o[ v+ / Va2l
Pgr(z1) Pr(z1)

< o / V!
Pr(z1)
+(/ yu\4+/ de|4)/ |Vd|*. (2.9)
Pgr(z1) Pgr(z1) Pgr(z1)

Combining (2.8) with (2.9) yields

/ vt < {094+c</ ful® + / vl / v’
Pyr(z1) Pr(z1) Pr(z1) Pg(z1)

(CO* + Ced) / \Vd|*. (2.10)

Pr(z1

IN

For any o € (0,1), first choose 6y = 6y(c) € (0, 3) such that 2C63 < 63 and then

choose ¢y < 6y, we have

/ |Vd|* < 93“/ \Vd|*. (2.11)
Poyr(21) Pr(21)
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Iteration of this inequality yields that for any 0 < r < R,

/ va < (7")4@/ vaf, (2.12)
Pr(z1) R Pr(=1)
Claim 2.
/ |dy|* < C(T)Qa(/ IVd[*)2, VO < r < R. (2.13)
Py (20) R™ " pa(z0)

Let ¢ € C3°(By(x0)) be such that 0 < ¢ < 1, ¢ =1 on B%(l‘o), Vol < 2r~1

Multiplying (1.3) by d;¢? and integrating over B, (z¢) gives

d
2/ |d;|2¢? + / |Vd|?¢?
By (x0) dt J B, (xo)

= —4/ ¢d;Vd -V — 2/ (u - V)dd,¢?
By (z0) By (z0)

g/ |dt|2¢>2+0r_2/ |Vd|2+0/ 2| V2.
Br(-TO) B (330) Pr(zo)

Let sg € (tg — r2,tg — %) be such that

/ IVd(-, s0)? §2r2/ V2.
By (zo) Pr(z0)

Then we obtain

[aap o< cr [ ware [ quPvap
P% (Z()) P’r'(ZO) PT'(ZO)
COL+ ullFaip ey IVl T4, (o))

" \2a 2
ClR)IVllza(p, (z0))-

IN

IN

IN

Claim 1 and Claim 2 imply that

1
IVd|z, Yz e Py0<r<.. (214)

[ VP ) < co
Pr(z)

Py
2

Hence the parabolic Morrey’s decay Lemma (see [4]) implies that d € CO‘(P% ) and

(2.2) holds.

Now we proceed to estimate u as follows. Let u' : Pg(z1) — R? solve

uf — Aul = 0 in Pr(z) (2.15)

u' = wu on 9,Pp(z).



Then u? = u — u' : Pp(z1) — R? solves

up — AP+ VP = —V-[u® (u—u,r)+VdoVd in Pg(z) (2.16)

w? = 0 on OpPr(z1)

where ® denotes the tensor product. Multiply both sides of (2.16) by u? and inte-

grate over Br(z1), we obtain

d 2|2
et ‘u ‘ + / |vu2|2
At /(@) 2 Br(z1)

< / (V] + Jullu — s,
R\T1

] [Vu?| + [V P||u?|

1
7] +/ |Vu2|2—|—/ lu?||VP|.
2 JBr(w1) Br(z1)

Integrating over [t; — R?,t1] and applying Holder inequality, we have
sup / |u?|? +/ |Vu?|?
t1—R2<t<ty BR(:El) PR(Zl)

< / |w|4+</ |u|4>%</ ft — s 1Y)
Pr(z1) Pr(z1) Pr(z1)

+HG‘%](PR(21))HVPH@(Zl))- (2.17)

Applying Ladyzhenskaya inequality and Holder inequality, we have

/ W2 < [ sup / hi2[?] / Vu?|?
PR(Z1) tE[tlfRQ,tl] BR($1) PR(Zl)

< 8/ 1V + [l — sy
BR Tl

N

<olf waree | ju-wt [l

Pr(z1) Pr(z1) Pr(z1)

1

+/ yu2|4+c</ IVP|3)3.

2 Jpr(=) Pr(z1)
Thus
/ ru2|45[/ VP + / = sy " / |u|4+</ VP[P,
Pr(z1) Pr(z1) Pr(z1) Pr(z1) Pr(z1)

(2.18)
Plugging (2.17) into (2.18) also gives

|Vu?|? / |Vd|4}2+/ |u—uz R 4
/PR(Zl) @ Pr(z1) Pr(z1) '

- / ul+ ( / VP,
Pr(z1) Pr(z1)
(2.19)
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For u! solves the heat equation, we have that for any 6 € (0, %)

[ it <6 [ a0 umual [
Por(21) Pr(z1) Pr(z1) Pr(z1)

and

/ |vu1\2594/ yvu1|2594/ Wu|2+/ V2.
Popr(21) Pp(z1) Pr(z1) Pr(z1)

Putting these inequalities together yields

/ = s grlt S (64 / ) / ot — 1y !
Pyr(z1) Pr(z1) Pr(z1)

+ [/ |w|4}2+(/ IV P|3)3. (2.20)
Pr(z1) Pr(z1)
/ Vu? < 6 / Vul? + / ] / I———
Pyr(z1) Pr(z1) Pr(z1) Pg(z1)
+ [/ |Vd|4]2+(/ VP, (2.21)
Pr(z1) Pr(z1)

Now we estimate HVPHL%. On Bg(z1), write P as P = P! + P2, where P!
solves
AP' = —V.-(u-Vu+V-(Vd®Vd)) in Br(z;)
Pt =0 on OBpg(x1)

so that P? is a harmonic function on Br(x1). For P!, the Calderon-Zygmund theory

implies that VP! € L%(PR(zl)) and

HVPlHLs (Py (o) S IVl e (Pap (1) HUHL4(P (21))
+ [IVdlzap (Pag (= V2l z2p (Pap (1))
S lullzapre VUl Lo (prcy)
+  (lullpapr(zy) + IVl LaprE) IVl Lt (Py(z))- (2:22)
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For P2, we have that for 6 € (0, %),

/ VP23 92/ VP23
Pyr(z1) Ppg(z1)

2

AN

AN

92/ (P} + VP[4
PRr(z1

2

A

2 4 % %
’ /pR o VP s ey [Vl o e

2

4 4 4
+ (Hu”z“(PR(zl))+HVd”z“(PR(zl)))HVdHZ“(PR(zﬂ)' (2.23)

Putting (2.22) and (2.23) together, we obtain

4
/ vp
Pyr(z1)

2 4 4 4
s f /R VPP s IVl 2 ey

4 4 4
£ Ullagpyony + IV o IVl o (2.21)
Define
(I)(uv ZI7R) = / ’u_uz1,9R’4+/ |Vu]2,
Pp(z1) Pr(z1)

Vo) = [t D <[ vPR
Pr(z1) Pr(z1)

O(z1, R) = ®(u, 21,0R) + D(P, 21, R).

Putting (2.20) together with (2.21) and applying Claim 1, we have
®(u, z1,0°R) < (0% + U(u, 21,0R))®(u, 21,0R) + (OR)®® + D(P, 21, 6R),

D(P,21,0R) < {0°D(P, 21, R) + ¥(u, 21, R)®(u, 21, R) + (R** + U(u, 21, R))R**)} .

Adding these two inequalities, we obtain

O(z1,0R) < C[0° + U (u,21,0R))O(21, R) + CU(u, 21, R)®(u, 21, R)

+ C(RY™ + ¥(u,z,R))R™ (2.25)
provide Py-15(z1) C Py. Since ¥(u, z1,0R) < U(u, z1, R), we have

O(z1,0R) < C[0° 4+ ¥(u, 21, R)|O(21,0 ' R) + C(R* + U(u, 21, R))R'*  (2.26)
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provide Pj-1z(21) C Pi. Let a; = 22 and choose § = 0(a) € (0, 3) so that
2096 < (02)2+2a1'

If ¢ < 9%, then fPl |u|* + |Vd[* < 65. Hence, for any 23 € Py and 0 < R < Ry = %,
2
we have

U(u, 2, R) < 0%

Hence, for p = % and 7 = 02, we have

1
O(z1,7p) < 7221 [O(21, p) + Cp*T2™1], V21 € P1, 0 < p < T (2.27)
2
Iterating (2.27) finitely many times, we obtain
242a1 1
O(z1,R) <R M@R € P%,O <R< 1 (2.28)

where
4
My=Cl[ (ult+[vat)+ ([ VP
Py Py
Now we want to show the decay estimate for W(u, z1, R) as follows. By (2.28),
we have

ay—1

1
(z1,p) S CMy p~ 2

e

[ug—1, — u,| < C’pl(/ |u—up|4)i <=0

PP(ZO

for any z; € P1 and 0 < p < i. Hence, for Ry = %, we have
2

so that

This implies, for any 0 < p < Rg = 1,

U(u,z1,p) S D(u,21,p) + ptlusz, !
S P(u, 21, ) + Ptz p — sy Rl + P71z R
< @(u, 21, p) + Mop* + Mop® >
< Myp*t2e, (2.29)
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Substituting (2.29) into (2.25), we arrive

O(21,0R) < 0*119(21, R) + C(1 + My) R | vz, € P, 0<R< (2.30)

> =

Iterating (2.30) finitely many times yields

d(u, 21, p) < CMop*Hior, vz € P%,O <p<

B~ =

Using the characterization by Campanato spaces, we conclude that u € Cal(P%)
and (2.3) holds with @ = a. By repeating the above argument, we can show that
u € CO‘(P%) and (2.3) holds for any « € (0,1). m

Now we need to establish the boundary regularity Lemma under the smallness
condition. To state it, eed some notations. Denote R2 = {z = (21,22) € R?:
xg > 0}. For xy € O%j; € R and r > 0, denote 29 = (wo,to) let B (xg) =
B.(z0) NR? be the upper half ball, P (z9) = B} (z0) x [to — 72, o] denote the half
parabolic cylinder. Write OB, () = I'.(20)US,(z0), where I'.(z¢) = 0B, (19) NOR?
and S, (zo) = 0B, (z9) NR%, and

Op P (20) = (B (o) x {to —*}) U (9B (o) x (to — %, t0))

be its parabolic boundary. When zg = 0 and ¢y = 0, we simply denote B;Y = B;(0),
P+ = PF(0,0), B} = 9B (0), T, = [,(0), S, = 5,(0), and 8,2 = 8,P(0,0).

Lemma 2.2 For any a € (0,1), there exists ey depending on v and Hd0||cz,5(p2+r(x0))
such that if for zo = (20,t0) € OR? x R and v > 0, (u,d) € W21’0(P2t(zo)), P e
Wl’%(P;(zo)) is a weak solution of (1.1)-(1.8), with (u,d) = (0,do) on T3, (z0) X
[to — 72, to] and
L.t 1vat < (2:31)
P (20)

then (u,d) € CY(P; (20)). Moreover,
2
[d]CUé(P;"(ZO)) S HU||L4(p;“(ZO)) + ||VdHL4(p;“(ZO)) + ||d0HC'275(FT(mo)) (2.32)
2

[U]Cﬁ(p%r(zo)) < ‘|U||L4(pj(z0)) + ||Vd||L4(p:r(ZO)) + ||d0||C2ﬁ(F7>(:co)) + ||VP||L7§(PT+( )

20

(2.33)
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附注
R^2_+


Proof. By scalings, it suffices to consider zp = (0,0) and » = 1. The argument is
similar to Lemma 2.1, except that we have to estimate P differently. Here we only
outline it.

For any z; = (z1,t1) € I'1 % [—i,O] and 0 < R < %, let d' : P;{(zl) — R3 solve
2

dy —Ad' = 0 in P}(z) (2.34)
dl = do on FR(.Tl) X [tl — Rz,tl]

d' = d on Sg(z1) x [t1 — R*, t1] U (Bf(z1) x {t1 — R*}).
Then d? = d —d' : P} (z1) — R3 solves
d? — Ad* = —u-Vd+|Vd*d in Pg(z) (2.35)
2 =0 on 0P (21).

Since (—u - Vd + |Vd|?d) € L*(Pg(z1)"), we have that d7, V2d®> € L*(Pj(z1)).
Multiplying (2.35) by Ad? and integrating over Bg(acl), we obtain

d IVd?[?
2

— +/ |Ad2|2:/ (u-Vd— |Vd|*d) - Ad>.
dt Jpi( Bf(21) B (a1)

1)

Integrating over [t; — R2,t1] and applying Holder inequality yields

sup / !Vd2\2+/ |Ad2|2
t1—R2<t<t1 J B} (21) Pp(z1)*

< / V[ + / v’
P (21) P (z1)

R
< / )3+ ( / V3] / V)3,
Pg(n) P;{(zl) PIJ{(zl)

This, combined with the Ladyzhenskaya inequality, yields

[oower s sw [ vep
P (z1) t1—R2<t<ty J Bf (21)
-(/ |IAd?>+  sup / |Vd?|?)
Pi(21) t1—R2<t<t; J Bf(21)
wy‘*)/+ |Vd|*. (2.36)
z1 Z1

< / ful + /
P (21) P (21)

R PR

Since d1|FR(x1)><[t1_R27tl] = dy € C%P, the boundary regularity for the heat equation
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implies that d' € C?8(Pf(z1)) and for any 0 € (0,1),

2

Lo TS ORI ey

S (GR)4||dO||C2,B(r1X[_l,o}) +94[/ |Vd|4+/P+ ’Vd2‘4]

Py (1) (1)

< 6URYdoll: 7
[R*]] OHCQﬁ(FlX[—LOD P;{(Z1)| .

+ / (Jul* + |Vd|*) / V|, 247
PE(Zl) P;(Zl)

Combining (2.36) with (2.37) yields that for any 6 € (0, 3),

/ v < 00(9R)4+0[94+/ (\u|4+|w|4)]/ V!
e (21) P (21) P (21)

< Co(OR)' + C(6" + Ocb) / v, (2.38)

Pg (z1)

where Cy < ||d0||é2,ﬁ(1“1><[—1,0})'

For any a € (0,1), choose 6y = 0p(a) € (0,1) such that 2C63 < 63> and €y < 6,
we obtain

/ |Vd|* < Co(6oR)* + 930‘/ \Vd[*. (2.39)
Py p(z1) P (21)

Iteration of this inequality yields that for any 0 < r < R,

4 4 T \da 4 .
/P;(Zl)wcu < Cor' + () /Pg(de\ (2.40)

The estimate of fP+(Zl) |d¢|? is similar to Lemma 2.1. Let ¢ € C§°(B,(x1)) be
such that 0 < ¢ <1, ¢ =1 on Bz (z1), [Vo| < 2r~1. Since dy = 0 on I'y(w1) x [t1 —

r2,t1], multiplying (1.3) by d;¢? and integrating over B, (z1) gives

d
/ |ds|>¢* + i / |Vd|?¢? 57«—2/ Vd]2+/ lul?|Vd|?.
B;f (x1) t JBf(a1) Bif (1) B (z1)

Integrate ¢ from sg to tg, where sg € (tp — r2 tg — %) is such that

/ |Vd(-,so)|2 < 27‘_2/ |Vd|2,
B (z1) P (1)

/ dif?
P(z1)
2

we obtain

IN

Clr / v + / 2|V d[?]
P (z1) P (z1)

Ol + (£ IVl s 1) (2.41)

IN
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Hence we have

7~2/+ (IVd? +7°|di|*) < C[r? +7~2a(/+ IVd|*)?] (2.42)
P (=1

1

for any 21 € I'T x [~%,0] and 0 < r < 1. Combining this with Lemma 2.1 and the
parabolic Morrzey’s decay Lemma ([4]), we conclude that d € C%(P;") and (2.32)
holds. 2

To estimate u and P, let u! : R2 x [~1,0] — R? and P! : R2 x [-1,0] — R solve

the non homogeneous, non-stationary Stokes equation:

ul — Aul + VP = —[u-Vu+ V- (Vdo Vd)Aps ., R2 x (—1,0) (2.43)

ut = 0, (OR% x [-1,0]) U (R x {-1}),

where A P (1) is the characteristic function of P (21).

Set u? =u —u': Pf(z1) — R* and P> = P — P : P (21) — R. Then (u?, P?)

solves

uj — A +VP? = 0, Pi(z) (2.44)

u2 = 0, FE(.’El)X[tl*Ratl].

By the boundary Wq2 _estimate of non-stationary Stokes equations (see [17]
Lemma 3.1), we conclude that u' € I/V%Z’l(R?F x[~1,0]) and P! € W%’O(Ri x [—1,0]),

and

1 1
| u ||W§’1(]R3_><[—1,0]) +ve ”L%(Rix[—l,ol)

S M1Vl + IVullV2ulll g ey

~ HUHL4(P$(Z1))|’quL2(P$(z1))

+ HVQdHLQ(Pg(Zl))||VdHL4(P$(Z1)) (245)

By Sobolev embedding theorem (see [10]), WZ’l(Ri x[—1,0]) C W21’0 (R2 x[-1,0))N
3

LY(R?% x [—1,0]), (2.45) yields
<

IVutll 2@ ooy + sz x-10p S lell oot ey IVl 2Pt 2y (2:46)

+ V2l b e IVl s 1)

17



For (u?, P?), by the boundary Wg ’ql—estimate for homogeneous, non-stationary
Stokes equation (see [17] Lemma 3.2), we have u? € VV2 1P+(z1)), VP2 e L93 (P (z1))
’3 2 2

for any 4 < ¢ < 400 and

[SI[9)
SN

R [[uQ]WQ,S(P: o HIVP g e )]
5
S IV sty + IV
S IVl +||VP||L3 iy T UIVull 2 pst oy + IVP g (Pt (1))
S (HVUHLZ Ph(z ) T HVPHLg (P (= ))) + HUHL‘l(P;{(zl))HVUHLQ(PIJ{(zl))
+ HVQdHLQ(P;{(zl))HVdHL‘l(P;{(zl))'
By Sobolev inequality and Holder inequality, we have that for any 6 € (0, 1),
lu? — U31,9R||L4(P+ (1) T ||VP2||L§(P+ (1))
< OPTERITI([VAY, w2 e + VP2, 4 e )
< 0T IVul ey +IVPH8 e ) (2.47)
+ e%*%wunm(%))uwnm(p,gzm + 192 2 it (o) 1V 1 (o))

To estimate ||Vu?||12, let ¢ € C}(Bpr(z1)) be such that 0 < ¢ <1, ¢ =1 on
B% (z1), and |Vo| < %. Multiplying the equation of u? by (u? — uzl,eR)‘ZQ and

integrating over Byn (1), we obtain

L]
dt BJR(QJ"I)

s on

2
0 g6+ [ (vl
BOR(:El)

= gnl+ [ TP~ ol
(z1) eR(xl)

OR
: 2 (OR)*)
Integrating over [sq, t1], where s € [t; — (OR)?, 11 — 5] is such that
/ u® — Ugl orl® S (HR)Q/ |u® — UZ,QR\Q,
B (21)x{s0} ’ Pyla(21)
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we obtain

[ wer
P0+R (z1)

2

S OB [ W eienfr [ 9P~ i gl
PQR(Zl) @R(Zl)
< e _uz1,9R||L4 P(z +HVP2HL3 (Pfo(= ))||U2—U21,9R||L4(p;R(zl))
P22
S I =l a1V (2.48)

Putting together (2.45), (2.46), (2.47), (2.48), applying (2.39), and setting ¢ = 8, we

arrive

[|w UZ1,0R||L4 Pjn(21)) + HVUHL2 Plp(=1)) + HVPH

L3 (Pfy(21))
S 1%+ Nl a0 = g ey + IV oy + 9P e )
+ ||v2d||L2(Pé(Zl))||VdHL4(P$(21)) (249)
For ||v2d||L2(P§ (21)) W€ have
2
”VQd”L?(Pé(zl)) Sl papy ey + 1V s -
Thus, by choosing 6§ = 6 sufficiently small and ¢y < 0y, we obtain
©7(21,0R) < 007 (21, R) + Co(6 + R*) R, (2.50)
where Cy depends on ||dol|c2.5(p,), and
1
Ot (21,7) = |lu — uzy , papr ) T IVl p2pr o) T IIVPI 4 (P (1) ,0<r < T

The same argument as in Lemma 2.1 can imply
1 1
r_4/ lu —uzy [P < CLHOT (21, =), VO < < -
P+(Z1) ’ 2 4

This, combined with Lemma 2.1, implies that v € C*(P;") and (2.33) holds. O

2

Proof of Theorem 1.2: Since u € L>([0,T], L*(Q)) N L([0,T], HY(Q)), it fol-
lows from the Ladyzhenskaya’s inequality that u € L*(92 x [0,T]). Since Vd €
L%([0,T), HY(Q)) and |d| = 1, we have

dAd+ |Vd|* =0
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Hence |Vd| € L*(Q x [0,T)) and u - Vu + V - (Vd ® Vd) € L3(9 x [0,T]). Hence
Lemma 4.4 implies that VP € Ls (2% [0,T7). It follows from the absolute continuity
of [(Jul* +|Vd|?) that

(i) for any zo = (zg,to) € Q x (0,7, there exists 0 < rg < min{dist(zo, IN), vt}

such that
/ (luf* + |Vd[*) < e,
Pry(20)

where €y > 0 is given by Lemma 2.1. Hence we conclude (u,d) € C*(Pr(29)) for

2

any a € (0,1).
(i) for any zop = (wo,t0) € 9 x (0,T], since 02 is smooth, it is well known that
there exists 79 > 0 depending only on 9 such that (N By, (z0)) x [to — 73, t0] is
C3-close to P and
/ ult+ |val") < df,
(QNBry (20)) X [to—72 o]
where €y > 0 is given by Lemma 2.2. Hence, we can perform the standard boundary

flatten technique, which is a small perturbation of the one on P;g,

so that a slight
modification of Lemma 2.2 implies that (u,d) € C*((2N B%o (o)) X [to — %,tg].
The reader can consult with [17] for such details.

The higher order regularity can be obtained as follows. Omne can follow the
standard hole filling argument for (1.3) of d to show that Vd € C*(Q2 x (0,7T])
and then apply the Schauder theory to show d € ngl(Q x (0,T7). Substitute this
regularity of d into (1.1)-(1.2), we can apply the standard 2! regularity theory
(see [19]) to show u € CZ1(€2 x (0,T]). Once we obtain Ca'-regularity for (u,d),
the smoothness of (u,d) on  x (0,7 can be obtained by the standard boot-strap

argument. Similarly, the boundary Cé’l—regularity for (u,d) can be obtained. )

3 Existence of short time smooth solutions

In this section, we prove the existence of short time smooth solutions to (1.1)-(1.3)
for smooth initial and boundary data. We would like to point out that the proof

also works for 2 C R3. More precisely, we have
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Theorem 3.1 For any o > 0, if ug € Cg’o‘(Q,RQ) with V - ug = 0, and dy €
C%2(0Q), S?), then there exists T > 0 depending on [uollc2.e(q), [ldollc2.0(qy such that
there is a unique smooth solution (u,d) € Ca(Q x [0,T),R% x $2) to the initial-

boundary value problem (1.1), (1.2), (1.3), (1.4), and (1.5).

Proof. The proof is based on the contraction mapping principle. For T > 0 and
K > 0 to be chosen later, denote Qp = Q x [0, 7],

X = {(’va) S 0271<5T7R2 X Rg) ‘ V-v=0, (v7f)‘t:0 = (u07d0)7

v — UOHcivl(QT) +11f = dOHcgvl(QT) < K}.
Equip X with the norm
10 Dllx = lellgzt g + 1zt opye () € X.
It is easy to see that (X, || - ||x) is a Banach space. Define the operator
L:X — C*Y(Qp,R* x R?)

as follows. For any (v, f) € X, let (u,d) = L(v, f) be the unique solution to the non

homogeneous, non-stationary Stokes system:

w—Au+VP = —v-Vu-V-(VdoVd), Qx(0,T), (3.1)
V-u = 0, Q x (0,7) (3.2)

di—Nd = |Vf2f —v-Vf, Qx(0,7) (3.3)

(u,d) = (uo,do), Q x {0} (3.4)

(u,t) = (0,do), Q. (3.5)

We will prove that for T' > 0 sufficiently small and K > 0 sufficiently large, L : X —

X is a contraction map.
Lemma 3.1 There exist T >0 and K > 0 such that L : X — X.

Proof. For any (v, f) € X, let (u,d) = L(v, f) be the unique solution to (3.1)-(3.5).

Let Cp > 0 denote constants depending only on ||up||c2.e and ||dp|c2.a.
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Assume K > Cj. By the Schauder theory of parabolic systems, we have

ld = doll 216,y S vV llca@e) + VP fllow@r)- (3.6)

For the first term in the right hand side, we have

vV fllea@r

IN

|v -V f —ug - Vdollcaay) + lluo - Vdollca(a)

IN

| = o) - V fllce @) + luo - V(f = do)llcear) + Co

IN

2K |[v — uol|coa,) + v — uollca (o]

Co[1 +[[V(f = do)llcoory + IV = do)llceop)]-

+

Since v —ug = f —dp =0 at t =0, it is easy to see
[0 —uollcoory < KT, (IV(f = do)llcoy) < KT.

By the interpolation inequality, we have that for any 0 < § < 1,

1 T
lv = wolloaor) < 5llv—uollcor) +0llv = uollpzrq,) S 0+ F)K,

and

1 T
IV(d = Dlica@r < 51V = Do) +8lld = Fllez g < 6+ K.

Putting these inequalities together, we obtain

T VK
vV flloa@r < (COK+CK2)(T+5+3) +Cp < e (3.7)

provided K = 16C%, § < and T = §2.

1
(Co+C2KWEK’
The second term in the right hand side of (3.6) can be estimated by

IV FP flleaory < [IVFRS = 1Vdol*do o, + Vol dol| e g

< H|vf’2(f - dO)HC’D‘(QT) + HdO(‘VfF - |Vd0’2)HC‘1(QT) + Co
= L+ 1+ Cy.
L < |If = dollea@nlIV Flizogg + I1f = dollco@n IV flIZa @
< KA(If = dolleogry + I1f = dollcagory)
1
S K1+ 5)||f — dollcoar) +01f = doll g2 )]
< K3(§ +5).
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Similarly, I> can be estimated by

b < 98 [9do] gy + 1977 — (9402 oy Iollogan
< UV I+ IVdoDIV(f = do)lll e apy

Co [[(IVf1 + [VdoDIV(f = do)lllco(ap

(14 Co)K ([IV(f = do)llcogz) + IV (f = do)llcaor)

T
(1+Co)K*(T+6+ 3).

N

N+

N

Hence
T T
[IV£12f = [Vdo*do| g, S K3(§ +0)+ (1+ Co)K*(T +6 + 3)

provided K = 16C2, § < —L— and T = §2. Thus
(1+C’0)K?

VK
Hd - dOHCC%vl(QT) < T (3‘8)

By the Schauder theory for non homogeneous, non-stationary Stokes equations

[19], we have
lu = woll 21 () S V- VUllgay) + IV - (VdO V)| gaqyy - (3.9)
For the first term of the right hand side of (3.9), we have

||U : VUHC"‘(QT)

IN

[(v = wo) - Vvl gaq,y + luo - V(vo — wo)llcaa,y + llwo - Vol ca(q)

IN

K([lv = uollcoiapy + lv = woll ca )

Co([IV(v = uo)ll o, + V(v = o)l ca (o)) + Co

T K
(C0K+K2)(T+5+g)+00§2

N+

provided K = 8Cp, § < ,and T = 6°.

I
(I1+Co)K
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For the second term in the right hand side of (3.9), it follows from (3.8) that

IV - (Vd© Vd)||caqq

< IV = do) IVdl| gy + 192011V (d = do) i + 119201 Vol o
< Co+ [ld—dollpzr g, ldll 21, + Colld = doll 2.1,

< Cop+ \/f(Cb-i- \/f) + CoVK

. % (3.10)

Combining (3.8) with (3.10), we have
||u - UOHC§’1(QT) + Hd — dOHC(%’I(QT) < K.
Therefore L maps X to X.

Lemma 3.2 There exist sufficiently large K > 0 and sufficiently small T > 0 such

that L : X — X 1s a contraction map.

Proof. For any (v;, fi) € X, let (ui,d;) € X be such that (u;,d;) = L(v;, fi), i =1, 2.

Denote
U= uy — ug, d:dl—dg, PZPl—PQ, vV = U1 — Vg, f:f1—f2.

Then (u,d) solves

u—Au+VP = G, Qx(0,T) (3.11)
V-ou = 0, Qx(0,7) (3.12)
di—NAd = H, Qx(0,T) (3.13)
(u,d)|,_, = (0,0) (3.14)
(u,d) = 0, 9Qx (0,T) (3.15)

where

G = —(’01 -V, — vy - V’Ug) -V (le o Vd; —Vdy ® Vdg)

= —(U‘Vvl—FUz-VU)—V'(Vd@le—l-de@Vd),
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and

H = (VAP —|Vfalrfe) — (v1- Vi — vz Vi)

= [VAPF+ V(i + )] Vfo— (v-Vi—vg- V).

By Lemma 3.1, we have that for i = 1,2,
HU’Z - uoHCgvl(QT) + HdZ - dOHCZ’l(QT) S K.

Applying the Schauder theory of parabolic systems, we have

ldlzriayy S [Hlco@
S o= VAl + o2 - VI + VAP + L0V IV 2DVl o)
< K*(Ivlleep) + I1fllce@p) + IV Fllca@q))
< 1¥2M<HvHCgJ(QT)4—HvHCgJ(QT)>+-§<Hchm<QT)+-Hfucm<QT)n
< K6+ Dlgzian + 1z (3.16)
where we have used
Iollcogr) + 1fllca@n S (g2 g + 1z )T (3.17)

Applying the Schauder theory for non homogeneous, non-stationary Stokes equa-

tions ([19]) to (3.11)-(3.12), we have

1Gll ey

A

||u||CZ’1(QT)

A

N

K|dll c21 g,y + K(l[vlce(@) + [IVUllca@r))

A

0
K35+ -
(6 + g)[”“”cg!l(QT) + ”fHC?;l(QT)]'

N

It follows from (3.16) and (3.18) that

12601, f1) = Lo )l x5 KP6 o+ 5)0n, f1) = (o2 o)

< Slnf) — (2 fo)lx

25

[[ol[Vvr] + [v2| [V +[V2d][Vdi| + [V2d2|IVd] || oy,

T T
K5+ 2)lolloz o) + 1 lc2 ap) + K26+ el 2o,y

(3.18)



provided 6 and T are sufficiently small. Therefore, L : X — X is a contraction map.
It follows from Lemma 3.1 and Lemma 3.2 that if T > 0 is sufficiently small,
then there exists a unique solution (u,d) € C2'(Q x [0,T),R2 x S2) to (1.1-1.4),
(1.5).
Applying the maximum principle to the equation for |d|?, one can easily see that

|d| =11in Q x (0,7). The proof of Theorem 3.1 is now complete. O

4 Energy inequalities, estimates of pressure function

This section is devoted to both global and local energy inequalities, and the estimate
of the pressure function.

First, we have

Lemma 4.1 For 0 < T < +oo, suppose u € L>*(Q x [0,T]) N Wy *(Qr), d €
L>([0,T], HY(2))NL2([0,T], H*()), and VP € L%(QT) is a weak solution to (1.1)-
(1.4), (1.5). Then, for any 0 <t < T, we have

/ (Jul? +|Vd)?) (t) + 2/ (|Vu|2+ |Ad + |Vd|2d}2)
Q t
_ / (Juol® + [Vol?) . (4.1)
Q
Proof. First, by Ladyzhenskaya’s inequality, we have

u e LYQr), Vd e LY(Qr).

Multiply (1.1) by w and integrate over €. Since u € H, it is well-known (][24]) that

/(u-Vu)-u:O, /VP~u:0.
Q Q

Hence we have
d 1

— [ Z|uf? +/ |Vul* = / Vd o Vd: Vu. (4.2)
dt Jo 2 Q0 0
Multiplying (1.3) by Ad + |Vd|*d and integrating over 2, we obtain
/(dt +u-Vd) - Ad = / |Ad + |Vd|*d|?,
Q Q
where we have used the fact that |d| =1 to get

1
(di +w-Vd) - [Vd[*d = S(|Vd[*|d]f + - V|d]*|Vd]*) = 0.
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Since d; = 0 on 012, by integration by parts, we have

d
di - Ad = —— | =|Vd|>.
/t dt |V‘

Now we claim

/Ad u - Vd) /Vd@Vd Vu. (4.3)

In fact, (4.3) follows from
/Ad u-Vd) = /dgguada
Q
a o oV
= /Q[(d/gu da)gfda-dguﬁfu( 5 )a

_ _/da.dﬁug:_/w@w:w.
Q Q

Hence we obtain

d 1
a4 \w2+/ yAd+wy2dy2:—/ VdoVd: Vu. (4.4)
dt Jo 2 Q Q

It is now easy to see that (4.1) follows by adding (4.2) and (4.4) and integrating
from 0 to 7. O
In order to prove Theorem 1.3, we also need a local energy inequality of both

interior and boundary types for solutions to (1.1)-(1.4), (1.5).

Lemma 4.2 For 0 < T < +oo, suppose u € L**(Q x [0,T]) N W;’O(QT), d e
L>([0,T], HY(2))NL2([0,T], H*()), and VP € Lg(QT) is a weak solution to (1.1)-
(1.4), (1.5). Then, for any nonnegative ¢ € C3°(Q2) and 0 < s <t < T,

[ ot + 1970 +2 [ t [ o1vu + 18d+ [vapap)

< /Q o(luf? + [Vd[2)(s)

+c | t [ IVOlll? + 1P = Pollul + Vallul + [VaPful + ][V, (45
where Pq is the average of P over €.
Proof. Multiplying (1.1) by uy and integrating over €2 implies

G | ko2 [ vaps

= /[ u-Vu-up—Vu-u-Vo+ (P—Pg) -u-Vo+Vdo Vd: V(up)].
Q
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For the first term in the right hand side, we have, by integration by parts,

—2/u-Vu-u¢:/1\u|2u'V¢.
Q Q2

For the last term in the right hand side, we have
/Vd@Vd:V(ugb) :/u-Vd-VquzH-/ Vd o Vd: Vug.
Q Q Q
Putting all these two terms into the identity above yields

d/|u\2¢+2/|vuy2¢ < 2/Vd®Vd:Vu¢>
dt Jo Q Q

(4.6)

4 / (uf* + 21V ullu| + 2|P — Pollul + 2/Vd[u])| Vo).
Q

Multiplying (1.3) by (Ad + |Vd|?d)$ and integrating over  yields
/Q(dt +u-Vd) - (Ad + |Vd)*d)p = /Q |Ad + |Vd|*d|*¢.
As in Lemma 4.1, since |d| = 1, we have
/Q(dt +u - Vd) - |Vd|*dé = 0.

On the other hand, by integration by parts, we have
d [ |vd?
/dt-Ad¢:—/ [Vl ¢—/dt-Vd-V¢,
Q dt Jo 2 0
/ u-Vd- Adp
Q

= —/ﬂ(uidi)j‘dﬂﬁ—/Quidi'dj@f’j
- _/Qu"(wf)m—/guj‘di'dj¢—/Quidi'djd)j

2

_ / Wd|2u.v¢_/vd@w:vw—/(u‘Vd)(VdrVd)-
Q Q @

Combining (4.7), (4.8), (4.9), with (4.10), we obtain
d
/ |Vd\2qb+2/ |Ad + |Vd|*d|*¢
= 2/dt-w.v¢2/vu:(w@w)¢
Q Q
+ 2/ |Vd|2u-V<z>—2/(u-Vd)(Vd-V)d).
Q Q
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Adding (4.7) and (4.11), we have

d
- [ (Wl + |vd)e+ 2/(!Vu|2 +1Ad + [Vd[d)
Q Q

< /HU\SJrQIVUHUI+2!P—PQHU\+6\Vd2!u+!dtHVdH!V¢\-
Q

Integrating this inequality from s to ¢ implies (4.5). This completes the proof. O

We also need the boundary version of the local energy inequality. More precisely,

Lemma 4.3 For 0 < T < +oo, suppose u € L>*(Q x [0,T]) N WQI’O(QT), d e
L>([0,T], HY(Q2))NL2([0,T], H*()), and VP € Lg(QT) is a weak solution to (1.1)-
(1.4), (1.5). There exists ro = ro(02) > 0 such that for any xo € 0 and 0 < r < ro,

if o € C§°(Br(xo)) is nonnegative and 0 < s <t < T, then
t
[ e evatoaz [ [ o(val 4 |sd+ V)
QNBr(xo) s J(QNBr(x0))
<[ e+ Iva)e (4.12)
QﬂBT(Io)
t
vl Vol + 1P~ Pallul + (Vullul + [VdPlu] + |d:]| V]
s J(QNBr(z0))

where Pq is the average of P over €.

Proof. Multiply (1.1) by u¢ and integrate over Q N B,(zg). Since u¢ = 0 on
I(2N B, (xp)), all the boundary terms vanish in the process of integration by parts.
Multiply (1.3) by (Ad+ |Vd|?d)¢ and integrate over QN B,.(z). Since both dy;¢ = 0
and u¢ = 0 on 9(2 N By(zp)), all the boundary terms vanish in the process of
integration by parts. The rest of the argument is exactly same as Lemma 4.2. We
leave it to the readers. a

In order to justify the assumptions on pressure functions in Lemma 2.1 and

Lemma 2.2, we need

Lemma 4.4 For 0 < T < +oo, suppose u € L>®(Q x [0,T]) N W21’O(QT), d e
L>=([0,T], HY(2)) N L([0, T, H*(Q)) is a weak solution to (1.1)-(1.4), (1.5). Then
VP e Lg(QT). Moreover, P satisfies the following estimate:

max {[VP, 3 o AP = Pallug g }

< Nl VUl rzp) + 1Vl am 1IV2dl 2(0q)- (4.13)
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Proof. Write u = v + w, where v solves the heat equation:

—Av = 0, Qx(0,7)
v = 0, 02 x(0,T)

v o= wup, Qx{t=0}

and w solves the non homogeneous, non-stationary Stokes equation:

—Aw+VP = —u-Vu—V-(VdoVd), Qx(0,T) (4.14)
w = 0, o0 x (0,7) (4.15)
w = 0, Qx{t=0}  (4.16)

Since f = —u-Vu—-V-(VdoVd) € Lg(QT), the LP-theory [20] of non homogeneous,
non-stationary Stokes equations to (4.14)-(4.16) implies that VP € L%(QT) and

<
9Pl 30, S M40,

HIUHVUHI

N

2
i T IVl 0

<l VUl z2@p + 11Vl e IV dl 2207

Since

1P = Poll, g0, SIVPl4 g

(4.13) follows. The proof of Lemma 4.4 is complete. O

5 Global weak solutions and proof of Theorem 1.3

In this section, we will establish the existence of global weak solutions to (1.1)-(1.5)
that enjoy both the regularity and uniqueness properties described as in Theorem
1.3.

First, we need to recall the following version of Ladyzhenskaya’s inequality.

Lemma 5.1 There exist Cy > 0 and Ry > 0 depending only on Q such that for any
T >0, if u € L**(Qr) N Wy (Qr), then for R € (0, Ry),

1
fowtsco s [ peod [ veegs [wEf 6
Q7 (w.6)€0r JONBr() Qr R
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Proof. See Struwe [23] Lemma 3.1. O
We now derive the life span estimate for smooth solutions in term of Sobolev

space norms of initial data.

Lemma 5.2 Let ¢g > 0 be given by Lemma 2.1 and 2.2. There exist 0 < €1 << €
and 0y = bo(e1, Eo) € (0,1), here Ey = [o,(Juol® + [Vdo|?), such that if (ug,do) €
C?8(Q,R? x S?) satisfies
sup/ (luol? + |Vol?) < & (5.2)
Ieﬁ QﬂBQRQ (23)
for some 0 < Ry < 1. Then there exist Ty > HOR% and a unique solution (u,d) €
C(Q x (0,Tp), R? x §2) N C51(Q x [0, Tp), R? x S?) to (1.1)-(1.5) satisfying
2 2 2
sup [ (o VAP < 26 (53)
(z,t)€Q7, Y NBr, (z)
Proof. By Theorem 3.1, there exists Ty > 0 such that there exists a unique smooth
solution (u,d) € C*( x (0,Tp), R? x §2) N C3! (2 x [0, Tp), R? x $2) to (1.1)-(1.5).

Let 0 < tg < Tp be the maximal time such that

sup sup/ (Jul + [Vd2) (- ) < 262 (5.4)
0<t<to Q) QﬂBRO(

Since t( is the maximal time for (5.4), we have

Sup/ (ul? + [Vd2) (-, to) = 262 (5.5)
+e0J9NBry (2)

Now we estimate the lower bound of ¢y as follows. Assume tg < R%. For, otherwise,

we are done. Set
E(t) Z/Q(\U|2+|Vd|2)('at), EOZ/Q(\U0|2+Wdo!2).
Then Lemma 4.1 implies that for any 0 < ¢t < ¢y,
E(t) +/ﬂ (|Vul? + |Ad + |VdP2d|]?) < Eo. (5.6)
¢
Lemma 5.1 implies

/ V' < Col sup / VAP, 5))( / AdP + = / V)
Qt (CE,S)GQt QHBRO(QT)

tE
Col, (t>(/ |Adf* + R—f) (5.7)
(o 0

IN
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where

Eh(t)= sup / ul?(-5),
(z,5)€Q JQNBR, (v)

€2.(t)= sup / VAP s),
(z,5)€0: QﬂBRO()

and

Ero(t) = Ehy(t) + ER, (1).
By (5.4), we have

Ery(t) < 262, YO < t < ty.

Hence

J

|Ad]? < 2(|Ad + |Vd)?d)? + |Vd|Y),

t
V' < Cod( | 18dP + T Ey) 65)
tO Qto 0

Since

(5.6) and (5.8) imply

/ |AdP? < 2/
Q Q

to

(1Ad+ [Vd2d)? + |Vd]Y) < 2E0+2/ v

Q

to to

2E0+C()6%(/Q |Ad’2

IN

Eo)
to }%2
Therefore we get

élto

(1 - C()E%)/ ’AdP < Co(l + 3 )EO
Qs Rg
Choose 0 < €7 < %, we have
/ |Ad|2 < 00(1 —l— R2 )EO < 00(1 I%OQ)EO < CyEy. (59)
Qio 0
This, combined with (5.8), also gives
/ IVd[* < Coed(1 + 02)E0 < Coé2Ey. (5.10)
Qy RO

Similarly, we can estimate [, |u|* as follows.
“0

/ uf?
Q

to

IN

1
Coghy(to) ([ (Va1 [ JuP)
Q Q4

to 0

IN

Coh, (to)( /Q w2 + 000

to

IN

t
Coet(1+ ) < Coel Eo. (5.11)



Now we estimate the quantity £g,(t) as follows. For any x € €, let ¢ €

C°(B2r,(z)) be a cut-off function of Br,(x) such that

4
0<¢<1, ¢=1on Bg,(z), ¢ =0 outside Bag,(z), |V¢| < o
0

Then, by the local energy inequality Lemma 4.2 and Lemma 4.3, we have

sup / (Juf? + [Vd]?) - Eary (0)
0<t<to JONBg, ()

< swp / ([uf? + |Vd)é — £, (0)
QﬂBQRo(I)

0<t<tp

S / [lul® + [Vullul + |P — Pollu| + [Vd|u| + |d:||Vd[]| V]
t

Dt

to \ 4
S (1) [1hay + 19l Bolis)] + 1P = Poll g g Tullisca,

Ry
o\ 1
0 2
+ <R(Q)> |:||Vd||L4(QtO) ||u||L4(Qt0) + ”dtHLQ(QtO) ||Vd||L4(QtO)] ,
where we have used ty < R2 < 1. Notice

1 1
[Vullz2(a,,) < (toEo)? < Ef.

For d;, multiplying (1.3) by d; and integrating over €, we obtain

[o1ap < [vaPea [P
Q Q Q

to to

Eo + 4||U||%4(Qt0)||Vd\|%4(§zt0)

IN

< CyEy.
Putting (4.13), (5.9), (5.10), (5.11), (5.13) and (5.14) into (5.12), we obtain
2¢2 = sup / (Jul* + |Vd|*)
QﬁBRo(m)

0<t<tg
fo\1 1
0 4 1 3
) it E]

A\
oE
&
e
+
S
VRS

IA
[
=D
_l’_
£
Y

o
N———
'
ol
&
Onlw

This implies

(5.12)

(5.13)

(5.14)

(5.15)



Set Ty = tg, we have Ty > 0pR3 and (5.3) holds. This completes the proof. a
Before we prove Theorem 1.3, we need the following density property of Sobolev

maps, whose proof can be found in Schoen-Uhlenbeck [22].

Lemma 5.3 For n = 2 and any given map f € H'(Q,5%) N C*°(09Q, S?) with
0 <0 <1, there exist {fi,} € C(Q,S?) N C?*9(Q, S?) such that fr = f on OQ for
all k, and

Jim [ fx = fllar @) = 0.

Proof of Theorem 1.3:

Since 1y € H, there exists uf € C$°(Q,R?), with V - uf = 0, such that
li - = 0.
Jim lug —uol|L2(q)

Since dy € H'(Q,5%) N C*P(99, S?), Lemma 5.3 implies that there exist {df} C
C>(9,8%) N C?5(Q, S?), with d& = dy on 01, such that

Jm I — doll 1) = 0.

By the absolute continuity of [(|ug|? + |Vdp|?), we conclude that there exists
Ry > 0 such that

2
€
sup/ (Juol? + |Vdo|?) < 51 (5.16)
zeQ J QN Bag, (z)

where €1 > 0 is given by Lemma 5.2. By the strong convergence of (u’é,Vd’é) to
(ug, Vdp) in L?(2), we have that
sup/ (k|2 + |VdE2) < &2, Wk >> 1. (5.17)
z€Q J QNBar, ()
For simplicity, we assume (5.17) holds for all k¥ > 1. By Lemma 5.2, there exist
0o = 6o(e1, Eo) € (0,1) and T > 0yR2 such that there exist solutions (u*,d*) C
C%° Qg R2 % SH)NCF Qg , R x S?) to (1.1)-(1.3) along with the initial-boundary

condition:
(U, d) e poy = (U6 d5)s (U, d) | gy g = (s )- (5.18)
Moreover we have
sup / (|uk|2 + |de|2)(-, t) < 262 (5.19)
(a;,z:)eﬂTcéc QNBR, ()
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By Lemma 4.1, we have

o / <’“’“!2+\de|2><~¢>+2/ (Va2 + |Ad® + Vb 2d?)
Q Q

k
0<t<T} Tk

< /Q b [? + [Vdh[2) (< 1+ Fo) (5.20)

for sufficiently large k. Combining (5.19) and (5.20) with Lemma 5.1, we conclude

that
[t v < cé, (5.21)
QT(;)g

and
| [ v <o (5.2
T(])c QTéﬂ

By Lemma 4.4, (5.19), (5.21), and (5.22), we have
VP, S 190 i I g+ 192 i, 19
< CeEL. (5.23)
Furthermore, (1.1) implies that for any ¢ € J,
(uf, p) = —/QVuk : v¢+/g(u’€®uk+w’“ o Vd¥) - Ve,

where (-, -) denotes the inner product between H~! and H}, we conclude that uf €

L%([0,T}], H~1(2)) and

k
Ju

< CE,. (5.24)

L2([0,T§], H=1())

By Theorem 2.1, we conclude that for any § > 0,

k gk
G, d5) 21 @ 5,101

IN

’ k k
C(6, Eo, [[u ||L4(QT6€)7HVd HL4(QT§)7HVP HLg(QTk)aHdOchyﬁ(aQ))

0

< Cler, Bo,d, dollcnom). (5.25)

A

Furthermore, for any compact sub domain K CC € and é > 0,

1, )l aewpszzyy < C(dist (K, 09), 6,1, Bo), V1> 1. (5.26)
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Hence, after passing to possible subsequences, there exist Ty > HOR(Q), u € W21 ’O(QTO, R?),

and d € W2 (Qr,, 52) such that
u® — u weakly in WQ’O(QTO,RQ), d* — d weakly in Wg’l(QTO,R2),
. k
kli)ngo [u® = ull sy, =0,

. k k
Jim (Hd —dll gy + V"~ VdHLQ(QTO)) —0,

and for any [ > 2, § > 0, v < 8, and compact K CC {2,
Jim (u*,d*) = (u, d)ll ot i x50)) = 05

- ko gk
klggo |(u®, d") — (u, d)”cg’l(ﬁx[(s’:ro}) =0.
It is clear that (u,d) € C*°(Q x (0,Tp],R? x S?) N Cé’l(ﬁ x (0,Ty], R? x S?) solves
(1.1)-(1.3) in £ x (0, Tp] and satisfies the boundary condition. It follows from (5.24)

and (5.22) that we can assume
(u, Vd)(-,t) — (uo, Vdo) weakly in L?(Q)

as t | 0. In particular,

< limi .
E0) < hr?l(l)nfE(t)

On the other hand, (5.20) implies

E(0) > limsup E(t).
i)

This implies (u, Vd)(-,t) converges to (ug, Vdp) strongly in L?(Q2). Hence (u,d)
satisfies the initial condition (1.4).

Let T1 € (Tp, +00) be the first singular time of (u,d), i.e.
(u,d) € C®(Q x (0,T1),R?* x $) N C3 (@ x (0,T1),R? x §?),

but
(u,d) ¢ C(Q x (0,T1],R?* x §%) N C51(Q x (0,T1], R? x §?).

Then we must have

lim sup max/ (Jul® + |Vd?)(-,t) > €1, VR > 0. (5.27)
1Ty €S QNBgr(z)
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Now we look for an eternal extension of this weak solution in time. In order to do
it, we need to define the new initial data at t = T3.
Claim 3. (u,d) € C°([0,Ty], L3(Q)).

In fact, for any ¢ € H3(Q,R3), (1.3) yields

d )] = /Q(Vd-VcHde-w—/QIVdFd-cb'

S VAl 2@ [IVOll 2 @) + (lulln2@) IVl r2q) + ||Vd||i2(9))||¢||00(9)

S VAl e + (lull 2 IVl p20) + HvdH%?(Q))]H@bHHQ(Q)a

where we have used the fact H3(Q2) c C°(Q) and [|¢]lco) < ¢llm2(q). Hence
di € L*([0,T1], H~2()). This, combined with d € L2([0,T1], H(Q2)), implies d €
Co([0,74], L*(92)).-

Similarly, for any ¢ € H3(Q,R?) with V- ¢ = 0, (1.1) yields

[(ue, §)| =

/(Vu-Vqé—l—u-Vu-gb)—/Vd@Vd:Vd)‘
0 Q
IVull 2o [IVOll 2y + llull 2o [[Vull 2|9l co@)

+HIVullZ ) [Vl cog)]

N

< IVull g2 + lull 20 IVl z20) + [Vullf20) 1l 53 0)]

where we have used the fact H3(Q2) ¢ C*(Q) and [9llcr) S Iollas@)- Since u
is divergence free, We have u; € L?([0,T1], H3(2)). This, combined with u €
L2([0,T1], HY(Q2)), implies u € CY([0, T1], L?(£2)).

By Claim 3, we can define

(u(T2), d(T2)) = lim (u(t). (1)) in L*(9).

By the energy inequality, we have that Vd € L*([0,T1], L*(2)). Hence Vd(t) —
Vd(Ty) weakly in L?(2). In particular, u(7}) € H and d(T}y) € H'(2). Moreover,
since d(t)|an = do, d(T1) = dp on ON2.

Now we can use (u(T1),d(T1)) and (0,dp)|oq as initial and boundary data in the
above procedure to obtain a continuation of (u,d) beyond T) as a weak solution of
(1.1)-(1.5). At any further singular time, we repeat this procedure. We will prove
that there are at most finitely many such singular times, afterwards we will have

constructed an eternal weak solution.
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We want to show that at any singular time there is at least a loss of energy

amount of €2. By (5.27), there exist t; T T} and x¢ € Q such that

limsup/ (Jul> + |Vd|*)(-, t;) > € for all R > 0.
t; 1T QNBr(zo)

This implies

/ (luf? + [VdP)(,T})
Q

= lim ul? + VA (-, T
i Q\Bwo)(!\ |Vd[7)(-, T1)

limliminf/ (Jul®* + |Vd*) (-, t;)
Q\Bg(z0)

IN

RO 1Ty

IN

lim [liminf/(\u|2+ Vd2) (- 1) —lirnsup/ (ul2 + [Vd2) (-, )]
RIO - 61T Jq t:1T1  JQNBg(zo)

< liminf | (Jul* 4+ |Vd*) (-, t;) — €& < Ep — €3,
1Ty Jo

From this, we see that the number of finite singular times must be bounded by
L= [%], here [-] denotes the largest integer part. If 0 < T < +oo is the last
1

singular time, then we must have
B(te) = [ (uf + (94 T0) < &
Q

Hence, if we use (u(71),d(Tr)) and (0,dp)|asn as the initial and boundary data to
construct a weak solution (u, d) to (1.1)-(1.3) as before, then (u, d) will be an eternal
weak solution that we look for.

It is clear that (i), (iii), and (ii) (1.7) of Theorem 1.3 has been established. Now,
we want to perform the blow-up analysis at each singular time. It follows from (1.7)

that there exist 0 < tg < 11, ty T 11, rm | 0 such that

&=  sup / (Jul? + |Vd]2). (5.28)
QN By, (z)

2€Qto<t<tm

By Lemma 5.2, there exist 6y, depending only on €¢; and Ey and x,, € ) such that

/ (uf? + V) (tn — B0r2,)
QﬂB2rm($m)

1
> L / (a2 + [VdP) (b — 09r2) = <. (5.20)
2 2eq JanBa,,, (2) 4
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By Lemma 4.1, (5.28), and the Ladyzhenskaya’s inequality, we have
[ it 419 < e, o). (5.30)
QX[to,tm]

Denote Q,, = r.(Q \ {zn}). Define the blow-up sequence (um,dn) : Qm X
[foz, 0] — (R?, S?) by

m

U (T, 1) = ripu(Tm, + rm@, by + rfnt), dp(z,t) = d(Tpm + T, ty + T%t).

Then (tp,, d) solves (1.1)-(1.3) on Q,, x [ 0]. Moreover,

2
Tm

=N

€

)

/ (tml? + (V) (—60) =
QnNB2(0)

0|

to—1
/ (uml? + [Vdn)(t) < &, Vi € Q, 220 <t <0,
QmNBi(x) r

m

/ ‘um‘4+|Vdm’2 SC(ELEO).
Qun x [ 0]

Assume z,, — xg € , we divide into two cases.
Casel. zo € Q. We can assume 7, < dist(zg, 92) and Q,, — R2. Also notice that

toZtm _, _ 0. Hence, by Theorem 1.2, we can assume that there exists a smooth

2
Tm

solution (tee, doo) : R? x (—00,0] — R% x S? to (1.1)-(1.3) such that
(s ) = (Uoo, doo) in C2(R? x [—00,0]).

We want to first show us, = 0. In fact, for any parabolic cylinder Pr C R? x

[—00,0], since u € L*(Q x [0,T}]), we have

tm
/ ]uoo]4 = lim / \um\4 = lim / \u\4 =0.
Pr m—0oo Jpp m—oo BRrp (@m) Jtm—R?r3,

Next we want to show do, is a nontrivial, smooth harmonic map with finite energy.

In fact, since (Ad + |Vd|*d) € L?(2 x [0,T1]), we have, for any compact K C R,

0 0
/ /|Adoo+\Vdoo|2doo|2 < liminf/ / |Ady, + |V |2 |?
7290 K m *2‘90 Q'm

tm

= lim / |Ad + |Vd|*d]* = 0.
Q

M Jtm—260 r2,
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This implies (doo )t + Uso - Vdoo = 0 on R? x [—20,0]. Hence (dwo); = Uso = 0 and

doo € C%(R?,S?) is a harmonic map. Since

€
)

"’;‘I—\M

/ |Vdoso|? :nm/ (Jtim|? + |V |*) (—60) >
B2 m JBy

ds is nontrivial. By the lower semicontinuity, we have for any ball Bg C R?,

/ Vdoo|? < liminf/ |Vdm|*(—6) = liminf/ \Vd|*(ty, — Oor2,) < Eo
BR m BR m B'rmR(mm,)

so that d has finite energy. It is well-known ([21], [23]) that ds can be lifted to
be a non constant harmonic map from S? to S?. In particular, ds, has nontrivial

degree and

/ |Vdoo|? > 87|deg(duo)| > 8.
R2

It follows from the above argument that for any r > 0,

fimsupmax [ (u? + [Va?)0) 2 [ (fuel? + V) 2 87
1T z€Q JONB,(z) R2

Case 2. xg € 0. Then either (a) lim,, w = o0, or (b) lim,, ‘m”;i;ro' < oo. If
(a) holds, then €2, — R? and the same argument as Case 1 yields that (u,,dm) —
(0,ds) in C2.(R?), and ds, € C*(R?, S?) is a nontrivial harmonic map with finite
energy. Now we want to show that (b) can’t happen. For, otherwise, assume that

Im=%0 _, ((),a) for some a € R and

Tm

Qn, — R2 = {(21,22) ER®: 25 > a}.

Since dp(z) = d(zm + rmz) for x € 0, we can show, similar to Case 1, that
Um — 0 in CE_(R2), and dy, — deo in C2 (R2), where ds : R2 — S? is a nontrivial
harmonic map with finite energy and duo(-,a) = d(zp) is a constant map. This
contradicts the nonexistence theorem by Lemaire [12]. Thus (ii) is established.
To show (iv). By Lemma 4.1, there exists t; T +oo such that for (ug,d;) =
(u( k), (- k),
/Q up|* + [Vdi|* < E,

klim (IVur|? + |Ady + |Vdi |2 di|?) = 0.
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Since ug|an = 0, it is easy to see that u,, — 0in H'(Q). di is a H'-bounded sequence
of approximate harmonic maps from Q into S?, with di|sq = do € C?P(9Q) and the
L? norm of their tension fields 7(dy) = Ady, + |Vdg|?dx converging to zero. By the
energy identity result by Qing [18] and Lin-Wang [16], we can conclude that there
exist a harmonic map do, € C?P(Q, S?) with do = dy on 9Q and finitely many

points {x;}'_;, {m;}!_; C N such that

!
Vdi|* dz — |Vdoo|* d + Z 870y, .
i=1

This yields (iv).
To show (v). First we claim
(a) There exist no finite time singularities. For, otherwise, (ii) implies that we

can blow up near the first singular time 77 to obtain one nontrivial harmonic map

w € C*(R?, 5?) and
87 g/ Vul? < 1im/(yu|2+ VdP)(t) < /(|u02+ Vdol?) < 8.
R2 T Jo Q
This, combined with Lemma 4.1, yields
T
/ /(yw?+ A + [VdPd2) = 0
0 Q

so that u = d; = 0 in Q x [0, T1] and hence d(-,t) = dy € C*P(Q,S?), 0 < t < Ty, is
a harmonic map. This contradicts the fact that T} is a singular time.
(b) ¢(t) = max,q <, (|u| +|Vd|)(x,7) remains bounded as ¢ T +oo. For, otherwise,

there exist ¢, T 400 and z;, € Q such that
Ak = o(tk) = (|u] + [Vd|) (g, tg) — +o0.
Define Q; = A\ (2 \ {zx}) and (ug, di) : Qg x [—tA7,0] — R? x S? by
up(z,t) = N ulmg + A st + AL%E), di(2,t) = d(zg + A o, e + APt
Then (uy, dy) solves (1.1)-(1.3) on Qx x [—txA2,0], and

1= (lug| + [Vdi[)(0,0) = (Jur| + |Vdi|)(@,t), V() € Qp x [~txAF, 0].
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As in the proof of (ii), we can conclude that either (i) Q; — R? and (uy,d;) —

(0,dso) in C?

2 (R?), where ds € C*(R?,S?) is a nontrivial harmonic map with

finite energy. As in (a), this implies

/ /(\wm A + [Vd2d]?) = 0
0 Q

so that u = d; = 0 on Q x [0, 4+00) and hence d(t) = dy € C*>P(9,52%), 0 <t < +o0,
is a harmonic map. This implies that ¢(¢) is constant for 0 < t < +o00 and we get a
contradiction. Or (ii) Q — R2 for some a € R and (uy,dj) — (0,do) in CZ (R2),
where d, is a nontrivial harmonic maps with finite energy and d,, =constant on
OR2, which is impossible by Lemaire’s theorem.

Since ¢(t) is a bounded function of ¢ € (0,400), the higher order regularity (see
Theorem 1.2) implies that [u(-,t)|lc2.6(q) + [|d(+,t)[|c25(q) is a bounded function of

t € (0,400). Then we can choose sequence t;, — oo such that
a1V ) < B, [ (90 + |Ad + [VaPd?) ) = 0
Q Q
and
[us to)llczs0) + 1A th)llc2m ) < C.
Thus we may assume that there exist a harmonic map do, € C?#(Q,S?), with
doo = dy on 02, such that

(u(-,tx), d(-, 1)) — (0,ds) in C*(Q, S?).

This proves (v). The proof of Theorem 1.3 is now complete. O
Note of proof. After the completion of this paper, we learned that Professor Min-
Chun Hong [8] independently obtained Theorem 1.3 (i) on R?, i.e. the existence of
global weak solutions having finitely many singular times to the Cauchy problem of

(1.1)-(1.3) on R2.
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