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We present a tableau calculus for some fundamental systems of propositional conditional logics. We consider the
conditional logics that can be characterizebsferentialsemantics (i.e. possible world structures equipped with
afamily of preference relations). For these logics, we provide a uniform completeness proof of the axiomatization
w.r.t. the semantics, and a uniform labelled tableau procedure.
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1. INTRODUCTION

Conditional logics have been introduced by Stalnaker [Stalnaker 1968] and Lewis [Lewis
1973b] to formalize a kind of hypothetical reasoninggifvere the case, then would be
the case) that cannot be captured by classical logic with its material implication. The basic
idea was to elaborate a logic which admits two kinds of implication: classical implication
(denoted by—) and a weaker implication, namely conditional implication (denoteg:dy
Conditional implication lacks several properties of classical implication: monotonicity,
transitivity, the property of contraposition. The weakest variant of conditional logic does
not even admit reflexivity of conditional implication.

Conditional logics have been introduced and studied in order to formalize sentences like:

—Normally, if ¢ theny;

—) holds because af;

—NMost of the time, if¢ then;

—If ¢ were the case, thep;

—If we learnedp, then we would conclude.

There have been various applications of conditional logics for Philosophy and Episte-
mology, but also more recently in the context of Computer Science and Atrtificial Intel-
ligence. Conditional logics have thus been applied to several areas such as knowledge
base update [Grahne 1998], reasoning about prototypical properties [Ginsberg 1986], the-
ory revision [Boutilier 1994; Giordano et al. 2002; 2005; Crocco et al. 1995], causality
[Giordano and Schwind 2004; Galles and Pearl 1998; Lewis 1973a; 2000], nonmonotonic
reasoning [Delgrande 1987; Lamarre 1992; Kraus et al. 1990], commonsense reasoning
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[Groeneboer and Delgrande 1988]. [Makinson 1993] discusses the similarities and dif-
ferences between counterfactual reasoning, defeasible inference, belief revision and belief
update.

Similarly to modal logics, the semantics of conditional logics can be defined in terms
of possible world structures. The intuition is that a conditioha- ¢ is true in a world
w just in casey is true in theg-worlds (that is worlds satisfying) that aremost simi-
lar/most preferred/closedb w. As there are different ways of formalizing the notion of
“closest/preferred/most similar” worlds, it comes without surprise that there is not a stan-
dard semantics for conditional logics. This is a difference with (standard) modal logics,
where there is a unique type of models, the usual Kripke models with an accessibility rela-
tion, and different modal systems are identified by classes of models characterized by the
properties of the accessibility relation. In the case of conditional logics, there are at least
three different types of semantics: the selection function semantics, the sphere semantics
and the preferential semantics. We briefly describe them below.

Selection function semanticsIn this semantics, models are equipped by a so-called se-
lection function that, given a formula and a possible world, selects a set of possible
worlds f(¢,w). The idea is thayf selects thes-worlds which are closest/preferred/most
similar tow. A conditional formulap =  is true in a worldw whenevery is true in all
worlds satisfyings which are most preferred with respectitoi.e. in all worlds selected

by f(¢,w). A further requirement is imposed, called normality: the set of woflds w)

does not depend on the syntactic forngpbut only on the interpretation @f, that is to say,

on the set of worlds satisfying. There are two equivalent ways of expressing this require-
ment: (i) imposing that ith and¢’ hold in the same worlds, thef(¢, w) = f(¢',w) and

(i) defining the functionf to have as argument the set of worldg][[satisfying ¢, rather
than the formulap itself. Without this condition, the logic would not have the substitution
property on conditional formulas. This semantics is the most general one for conditional
logics, the worlds iry (¢, w) are not even meant to satisfy The selection function seman-
tics characterizes all systems of conditional logic: from the weakest sy@kero all its
extensions by extra axioms. The extension€Kf are then captured by imposing further
conditions on the selection function. For instance, the extensi@oby the well-known
axiom (AC) (cumulativity)

(p=V)N(d=x)— (@AXx=1)

is semantically characterized by the class of models where the selection function satisfies
the property:

it f(¢,w) C [[x]] thenf (¢ A x, w) C (¢, w).

While it is usually an easy task to translate an axiom into a condition on the selection
function, the conditions themselves (as the one above for AC) are not very informative.
What is worse is the fact that this semantics does not allow to develop analytic deduction
methods (except for some relatively-simple systems, see [Olivetti et al. 2007; Crocco and
Farinas del Cerro 1995; Artosi et al. 2002]). The problem is that the conditions on the
selection function often make reference to the syntactic structure of a forhudeurring

in f(¢,w) (e.g. if the formula is a conjunction A x). On the other hand, by the normality
principle, the syntactic form of should be irrelevant. These two requirements seem in
conflict. The consequence is that it is very difficult to develop analytic proof systems from
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the selection function semantics. For many important extensio@&ofincluding almost
all the systems examined in this work), analytic proof systems of this type have not been
found, and it is unlikely that they will be.

Sphere SemanticsA sphere system associates to each warlk setS,, of nested sets of
worlds, closed under union. Each nested sef jnis called a sphere and the structure of
Sw is thus onion-like. Intuitively, the spheres associated with a world represent a ranking
of worlds in degrees of similarity with respect to the given world: a waesldis more
similar or closer tav thanws if there is a sphere associateddhat containgv, but does

not containws. The idea is that a conditional = ¢ is true in a worldw if the worlds
satisfyinge A ¢ are more preferred (i. e. belong to a smaller sphere) than the worlds
satisfyingg A —p (or if there is no world satisfying). This semantics, elaborated by
Lewis [Lewis 1973b] captures in a good way some intuitions, but it only works for rather
strong systems of conditional logics, such as LeWf3 and VW. De Swart [de Swart
1983], Gent [Gent 1992], and Lamarre [Lamarre 1993] give sequent/tableau calculi for
conditional logics based on the sphere semantics.

Preferential semantics. This represents a generalization of the sphere semantics, and it
has been studied by Burgess [Burgess 1981], Katsuno and Satoh [Katsuno and Satoh 1991],
Grahne [Grahne 1998], Nejdl [Nejdl 1991], Friedman and Halpern [Friedman and Halpern
1994]. It has been developed also in a more restricted context (formalisation of default
rules) by Kraus, Lehmann and Magidor [Kraus et al. 1990], and Boutilier [Boutilier 1994].
Instead of associating a sphere system to every woylgreferential semantics associates

a preference relatiost,,, that is a transitive and irreflexive relation among worlds:,, y

may be read asx'is preferred toy with respect tow, or x is more similar tow than

y is’. Given a worldw we can then define that a conditional=-  is true inw if ¢

is true in all p-worlds that are closest/most preferred with respeab tdhat is that are
minimal with respect te<,,. Denoting such a set bylin.  ([[¢]]). we can write thatv
satisfiesp = ¢ if all worlds in Min., ([[¢]]) satisfyy. We can seé/in. ,([[¢]]) as a
concrete way of defining a selection functif(yp, w). However the preferential semantics
imposes some conditions on the selection function. That is to say, it is more restrictive
than the selection function semantics, and it validates a certain number of axioms. Thus,
it cannot characterize the weakest syst€i and the like. It characterizes all systems
which contain at leastK and the identity axiom

(ID)¢ = ¢
together with the ‘or’- axiom
CA=X)N{W=x) = (@V=X)
and the axiom (CSO)
@=NW=9)—=(¢=x) < ¥ =X

However, preferential logic is more general than the sphere semantics as it does not impose
that worlds are always ranked with respect to a given world. In order to give a meaning
to all conditionals, we assume that whenegeaworlds exist, also closest/most preferred
worlds with respect to any do exist, that isMin._ ([[¢]]) is non-empty. This condition
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is the well-known Limit Assumption, that we explicitly assutne

The logic characterized by the preferential semantics will be our starting point. We will
call it PCL , from Preferential Conditional Logi¢and it coincides with the Systef in
[Nejdl 1991)).

Independently from technical reasons, the preferential semantics is motivated at least by
two kinds of applications of conditional logics: (i) the link between conditionals and the
notion of belief update and (ii) the semantics of nonmonotonic consequence relation. For
the former (see [Grahne 1998]), the semantics of update specifies that the worlds satisfying
an updated belief set are the worlds where the update is true and that are closest to some
world satisfying the initial belief set. For the latter (see [Kraus et al. 1990]), it can be
seen that all systems of KLM logics correspond to the flat fragment of some conditional
logics (namely Preferentid@ and Rational logidR correspond respectively t8CL and
VC, studied by Lewis [Lewis 1973b]). The flat fragment of a conditional logic does not
contain nested occurrences of the conditional operator (for instareey belongs to the
flat fragment, wheregs = (r = ¢) does not belong to the flat fragment). KLM logics are
therefore less expressive than the logics we consider here.

Finally, the conditional logic of preferential structures has some relation with the logic
of comparative concept similarity recently introduced in [Sheremet et al. 2005]. It turns
out that considering arbitrary Min spaces (roughly speaking, spaces where the minimum
of a set of distances always exists), the operator of comparative similarity is interdefinable
with the conditional operator, where the latter is defined by a specific extens@lof
considered here.

Tableau calculi for preferential logics in general have never been provided. Partial results
have been given by [Giordano et al. 2005] and [Giordano et al. 2006], that deal with KLM
logics. The language of KLM logics being simpler than the languadeQif , the calculi
proposed in [Giordano et al. 2005] and [Giordano et al. 2006] cannot be straightforwardly
extended to the full language of nested conditionals.

To summarize, we have three semantics for conditional logic of increasing strength, or
decreasing generality: selection function semantics, preferential semantics, sphere seman-
tics.

In the present paper, we consider all conditional logics which can be characterized by
preferentialsemantics. The semantics comes with two options:

1 The more general kind, that characterizes our basic I1B@it : each worldw car-
ries with it a set of accessible (or ‘conceivable’) worlds, which is a subset of the
universelV; the preference relatiosi,, then ranges on the sBt,,,.

2 The more restricted kind: we postulate that conceivable worlds are the same for all
worlds and coincide with the universe, iY¥ew W,, = W.

The requirement 2. is called (expectedlyhiversality [Nute 1980; Lewis 1973b], that
corresponds to a well-defined set of axioms. The consequence is that we have actually two
families of conditional logics based on the preferential semantics: those where Universality

2A few authors [Lewis 1973b; Friedman and Halpern 1994; Boutilier 1994] have refused for theoretical reasons
the Limit Assumption and have shown that redefining the conditional operator (in a much less natural way, as a
matter of fact) one can avoid this assumption, obtaining equivalent systems, that is to say, systems with the same
set of theorems.

ACM Transactions on Computational Logic, Vol. V, No. N, June 2008.



is not assumed and the stronger systems with Universality. In both cases, stronger and
stronger systems are obtained by imposing further conditions on the preference relation
(e.g. connectedness, modularity, centering etc.).

In this work we consider systems of both kinds. Our first result is a uniform and direct
proof of the completeness of the axiomatization of each system with respect to the prefer-
ential semantics with the Limit Assumption. Our result is a generalization of the seminal
results presented by Burgess in [Burgess 1981]. Burgess provides a completeness proof
for a similar logic but, as a difference, he does not accept the Limit Assumption. We will
come back to this in Section 3.

Our second and main result is a uniform labelled tableau procedure for all systems under
consideration. To the best of our knowledge, our tableau calculus is the first one to cover
uniformly this spectrum of logics, since no tableau systems based on the preferential se-
mantics in its generality have ever been studied. We notice that some tableau and sequent
calculi have been presented for conditional logics weaker B@ah [Crocco and Fafias
del Cerro 1995; Artosi et al. 2002; Giordano et al. 2005; 2006]. Our tableau calculus gives
a practical implementable decision procedure for these logics, and it allows us to obtain
upper complexity results for the logics in a constructive way.

Intuitively, our tableau method is based on an analogy between the preferential semantics
under the Limit Assumption and the modal logics of arithmetic provability (known as
Goédel-Lbb GL): it turns out that the existence of minimal worlds enforced by the Limit
Assumption can be captured by rules similar to the modal ruleSorHowever, here we
have to deal with arbitrary families of preference relations indexed by worlds so that the
situation is more complicated than in modal lo@t . To account for the semantics in the
calculus, we have to expand the syntax of formulas and we will have a hybrid language
comprising pseudo-modalities indexed by worlds and some other relations and predicates
on labels. The use of modal formulas to interpret the semantics of conditionals is not
new: Boutilier [Boutilier 1994] introduces a bi-modal logic to define some conditional
logics related td?CL andVC. However, there are two important differences between our
approach and Boutilier's: first in Boutilier's semantics there is only one modality, rather
than a family of modal operators indexed by worlds (as in our calculus). For this reason,
Boutilier's logic is unable to properly represent nested conditionals (ginee~ implies
a = (8 = ~)). As a second difference, he does not accept the Limit Assumption, and thus
uses a truth definition for conditionals which is different from ours (and is similar to the
one adopted by Lewis [Lewis 1973b], Burgess [Burgess 1981] and Halpern and Friedman
[Friedman and Halpern 1994])).

Our tableau method gives a decision procedure for all logics under consideration. Termi-
nation of the calculus is obtained by adding some loop-checking conditions on the tableau
construction. Given the presence of multiple preference relations and pseudo-modalities,
finding suitable conditions ensuring termination is not straightforward.

The structure of the paper is the following: in Section 2, we introduce conditional logics
and the preferential semantics, and in Section 3 we give a general completeness result for
all logics under consideration. In Section 4, we present our tableau calculus. In Section
5 we prove soundness, completeness of the calculus. Last, in Section 6 we give a set of
restrictions that ensure the termination of our calculus and we remark on the complexity of
our calculus.
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2. THE CONDITIONAL LOGIC PCL AND ITS EXTENSIONS
2.1 The logic PCL

Let AT M be a set of propositional variables. We define the langdagklogic PCL and

its extensions. Formulas df are built from propositional variables by means of the con-
nectives—, A, |, =; the last one= is the conditional operator/, — and« are defined
as usual. Priorities among connectives are defined as usuads the lowest priority (e.g.

¢ = 1Y — x mustbe read ag = (v — x)).

Our models are structures of the foW, {W,}oew, {<s}zew,I). W is the set of
possible worlds/ is an interpretation function that associates to each possible world the
set of atoms that it satisfies. Furthermore, for each possible wo¥ld, represents the set
of worldsaccessibldrom x, and<, is a preference relation. <, z means thay is closer
to z thanz, ory is preferredto z w.r.t. <, 3.

DEFINITION 2.1SEMANTICS OFPCL . APCL -modelM has the form
(Wa {Wa:}:EEW; {<z}a:€Wa I)a

where:

—W # () is a set of items called worlds;
— W, }zew is a family of subsets a¥. For each element € W, W, C W;

—For each element € W, <,C W, x W, is a binary irreflexive, transitive relation on
W, satisfying the Limit Assumption below.

—I is a functionW — Pow(AT M) that associates to each world € T the set of
atoms satisfied by.
For S C W we define:
Min,(S)={we SNW, | -3y € SNW,, suchthaty <, w}.
We say thafi/in,(S) is the set ok ,-minimal elements &§. Notice thatMin,(S) C W,.

We define the truth conditions of formulas with respect to worlds in a mbfdby the
relation M, z = ¢, as follows. For readability, we ugés]]™ (or [[¢]], when the model/
is clear from the context) to denofg € W | M,y |= ¢}.

(1) M,z = p, forp atomic, ifp € I(x),

(2 M,z - 1,

) M,z = —oif M,z - 6,

@) M,z oAbt M,z = ¢andM,z = .

(5) M,z | ¢ = yifforally € Min,([[¢]]™), M,y = . We abbreviaté/Zin,. ([[¢]]*)
by Min, (o).

We say that is valid in a modelM if M,z | ¢ for everyz € W. We say that is
PCL -valid (and write=pc1, ¢) ifitis valid in every PCL -model.

3 An equivalent definition can be given, as in [Burgess 1981] and [Nejdl 1991], by considering structures equipped
by a ternary relation R which corresponds to the non strict version of our parametrized preference relation. In this
framework,W;. can be defined afy : 3z s.t. Rxyz}.
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In case wheré[¢]] contains an infinitely descending,-chain of worlds, all conditionals
¢ = 1 are identically true, even i is not always false. In order to prevent this situation,
we assume the following condition, callednit Assumption

Limit Assumptionfor all ¢ € L, if [[¢]] N W, # 0, thenMin, (¢) # 0

The set of valid formulas according to the previous semantics is axiomatized by consid-
ering the axioms and rules given below. In the following rutesefers to provability w.r.t.
to the conditional logic being defined. For the time being, it stands for provabilRLin,
when we will deal with the extensions BICL (next section) it will stand for provability
in the considered extension.

DEFINITION 2.2 AXIOM SYSTEM PCL. The systen?CL is defined by
(TAUT) All classical tautologies and the Modus Ponens rule.

(ID) ¢ = ¢

(CA) (p=x)N{W=x)—(pVV=X)

(CSO) (p =)A= ¢) = (¢ = x) < (¥ =x)

(RCEA) if F ¢ < tpthent (¢ = x) < (¢ = x)

(RCK) if (1 A...A¢y) — xthenk (= d1 A... AP = ¢,) — (¥ = X)

(ID) states that A is conditionally implied by itself; (CA) states that a conditional conclu-
sion of two separate premises is also a conditional conclusion of their disjunction; (CSO)
states that two formulas which conditionally imply each other have the same conditional
consequences; (RCEA) states that the syntactic form of the antecedent of a conditional for-
mula is irrelevant; (RCK) states that the conditional distributes over classical implication.

Observe that the conditional operator is non monotonic, in the sense thap frony it
does not follow that) A ¢ = x.

In the following, we will sometimes use the theorem®@afL. described in the following
proposition and remark.

PrROPOSITION 2.3. The following theorems are derivable frdCL.

(DT) (¢=x) = (#V = ¢ —x),
(MOD) (¢ =1) — (¢ = ),
(RT) (0 Ax =) A (0= Xx) = (0=1).
PROOF

(DT): if ¢ = x, by (RCK) alsop = ¢ — x, hence by (RCEA) als@(¢ V ) A ¢) =
¢ — x. Butit can be shown by (ID) and (RCK) that al§@ Vv ¥) A —=¢) = ¢ — x. By
(CA) and (RCEA) we conclude thatVv ¢ = ¢ — x.
(MOD): if ¢ =L, then by (DT), als@ V ) = ¢ — L, hence by (RCK)) V¢ = —¢. By
(ID) and (RCK)¢ V ¢ = 1, and alsa) = ¢ V 1, we conclude by (CSO) that = —¢.
(RT): from (¢ = x), by (ID) and (RCK), we also know thdt) = ¢ A x). By (ID) and
(RCK) we also know thato A x = ¢). From(¢ A x = ) and (CSO) we conclude that
(0= ).

O

REMARK 2.4. The following theorems are derivable RCL . The proof of these theo-
rems is along the same lines as the proof for the flat fragment that can be found in [Kraus
et al. 1990].
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1L FE@VY=d)AW=x) — (0= (¥ —X)
2@V =AM VX=Y) = (9= (x =)
BE(pVY =) AW VXx=9) = (dVX=9)

4 (pVi=9¢)— (pVi=x) < (¢=x)

2.2 Extensions of PCL

Different logics can be constructed depending on the assumptions we make<about
These additional assumptions characterize extensioREhf. We consider here a set of
extensions oPCL that frequently occur in conditional logic. These extensions contain,
besidePCL , one or more of the following well-known axioms.

(MP) ((¢ = ) A ) — 2,
its corresponding semantic property is (S-MP):
Ve e Wx € W, andVy € W, —(y <, x).

(CS) (¢ AY) = (o =),
its corresponding semantic property is (S-CS):
Vee WVyeW, z<,yVe=uy.

(CV) (@ =¢)A=(d=—X) = (A X = ¥),
its corresponding semantic property is (S-CV):
Ve e WVy,zueW, y<,z— (y<suVu<g2z).

(CEM) (¢ = ) V (¢ = —0),
its corresponding semantic property is (S-CEM):
Vee WVy,zeW, y=2Vy<,zVz<,y.
(A0)+ (A1) + (A2) :
(A0): (—¢p = L) — ¢
ALl): (o= 1) > (9= 1)=1;
(A2): =(¢p=1L)—(p=>1)= 1,
the overall semantic property corresponding to these axioms is Universality, i. e.
Ve e W,W, =W.

These axioms and semantic conditions have been variously considered in the literature on
conditional logics; they are variously related to each other (for instance, given the axioms
and rules ofPCL, (CEM) implies (CV), see for instance [Nute 1980]). We give some
intuitive justification for the semantic conditions.

(S-MP) and (S-CS) express a connection between the real world and a conditional. In
both cases the truth value of a formula in the real world has an influence on the conditional
containing that formula (and vice versa). According to (S-MP) no world is preferred (with
respect to<,) to the ‘real world’, z. According to (S-CS), which is stronger than (S-
MP), the real worldr is preferred to all other possible worlds with respect to its associated
relation<,,.

Condition (S-CV) makesc,, amodular(or ranked) relation. This condition is required
by some important extensions BCL . It is contained, for instance in Lewis’s logit&C
andVW [Lewis 1973b].

The property (S-CEM) requires that given two different worljdand z, eithery is
strictly preferred toz or z is strictly preferred tay w.r.t. <, . In turn, this entails that
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for each formulag, Min,(¢$) contains at most one world. This property is the well-
known Uniqueness Assumption that characterizes Stalnaker's GijiStalnaker 1968;
Nute 1980].

Axioms {(A0)+ (A1) + (A2)} must be considered together. They characterize the prop-
erty of Universality which requires that all worlds are ‘accessible’ from every world. In
order to get an intuitive idea of these axioms, notice that we could define an “internal”
necessity modality operatar (that must not be confused with the modality used in the
calculus and introduced later in the paper) by means of the conditional implication in the
following way:

0¢ < (=g = 1)

Notice that the right part of the equivalence is true in a warjdst in case\fin, (—¢) = (),

i. e. by the Limit Assumption, in casé’,, N [[=¢]] = 0. By the intuitive meaning ofV/,,,
this corresponds to the case in which there is no conceivable world satisfyinge. in all
conceivable world® holds. Thed modality just defined has hence the usual mearing:
is satisfiable in a world: justin case foraly € W, y = ¢, i. e. ¢ holds in all conceivable
worlds. With this interpretation, axiom$§(AO)+ (A1) + (A2)} become nothing more than
the usual S5-axioms of modal logic.

(T) O¢ — ¢ (A0)
(S4) O — 00 (AL)
(S5) o6 — 0o ¢ (A2)

As for modal logics, it can be shown that these axioms charactdrizersalmodels.

Notice that in presence of Universality, for alle 1, it holds thatiV,, = W. In this
case,lV, becomes redundant and the definition of model could be simplified by consid-
ering triples of the form(W, {<, },ew, I). However, for uniformity reasons, also in this
case we will consider models as defined in Definition 2.1.

In the following, we only consider systems containing either all axioms (AO) + (Al)
+ (A2) or none of them. We call a system containing (AQ0) + (A1) + (A2) a system with
Universality.

ForX C { (MP), (CS), (CV), (CEM), (A0), (A1), (A2}, such that either
{(A0), (A1), (A2)} C X or {(A0),(A1),(A2)} N X = @, we will use the following
notions:

DEFINITION 2.5X-MODEL. A ¥-modelis a PCL model that satisfies the semantic
conditions corresponding to the axiomsinIf 3 = (), a X-model is simply #CL model,
as in Definition 2.1.

DEFINITION 2.6X—VALID. ¢isvalidinaX—modelM if M,z |= ¢ foreveryx € W.
¢ is X-valid (and writel=yx; ¢) ifitis valid in everyX-model. If¥ = (), a formula isX-valid
if itis PCL -valid, as defined in 2.1.

DEFINITION 2.7 DERIVABLE IN PCL UX.. Aformula¢ is derivable inPCL U X (de-
noted by, ¢) ifitis derivable using the axioms and rules contained@L and inX. If
Y = (), aformula is derivable ilPCL U X if it is derivable inPCL (i.e.Fx istpcr ).

When the logic is clear from the context, we will simply writep and|= ¢ (instead of
"2 ¢ or l_PCL ¢, and|:2 ¢) or |:PCL ¢) .
ACM Transactions on Computational Logic, Vol. V, No. N, June 2008.
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3. SOUNDNESS AND COMPLETENESS OF PCL AND ITS EXTENSIONS

We show the following soundness and completeness theorem for the B@IEs U 3,
whereX C { (MP), (CS), (CV), (CEM), (A0), (A1), (A2) such that either

{(A0), (A1), (A2)} C X or {(A0),(A1),(A2)} N X = (. Notice that® can also be
empty: in this case the logic BCL . The first theorem can be easily proven by showing
that axioms are valid in the corresponding semantics and that rules preserve validity.

THEOREM 3.1 SOUNDNESS OFPCL U X. If a formula is derivable inPCL U X,
then it isX—valid.

THEOREM 3.2 COMPLETENESS OFPCL U X. IfaformulaisX—valid, thenitis deriv-
able inPCL U X.

The completeness is shown by the construction of a canonical model. We show that
PCL UX is complete with respect to the semantics by showing that for any set of formulas
T, if " is consistent with respect BCL U X, thenI' is satisfiable in &-model.

To this purpose, we first introduce some definitions.

DEFINITION 3.3.

(1) A setofformulad’ is calledinconsistentvith respect td?CL U ¥ iff there is a finite
subset ofT, {71,...v,} such that-s, =y, V =2 V... —,. T'is calledconsistentf
I" is not inconsistent. If an (in)consisterit contains only one formula, we say that
~ is (in)consistent.

(2) A set of formulad” is called maximal consisteniff it is consistent and if for any
formula~y notinT, ' U {~} is inconsistent.

We will use properties of maximal consistent sets, the proofs of which can be found in
most textbooks of logic (see e.g. [Shoenfield 1967]). In particular:

REMARK 3.4. Every consistent set of formulas is contained in a maximal consistent
set of formulas.

REMARK 3.5. Letw be a maximal consistent set of formulas ang formulas inL_. .
Thenw has the following properties:
(1) Ifkg ¢ — ¢ andg € w, theny € w
(2) If from ¢ € w we infery € w, thenp — ¢ € w.
() oAy ewiff p €wandy € w
4 o Zwiff ~p €w
Let AT M be the set of atoms of the languadethe propositional (classical) language

andL_. the propositional conditional language. IL&ébe the set of all maximal consistent
sets of formulas, defined as usual.

DEFINITION 3.6. Letw € U be a complete formula set, aad, ... € L_. formulas.
We define:

L o<, yiffovyy=¢pcw
2. w ={y | =1 €w}
w? may be inconsistent. Formu{d. = p) A (L = —p) is satisfiable.
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REMARK 3.7. Letw,w’ € U be a maximal consistent set of formulas, and, x L—
formulas. Then we have:

1. FPorallwelU,pVy <, o

2. Ifw? Cw' theng € w'

3. <, Is reflexive and transitive

4. 1f ¢ <, ¥ andw® C w’ andy € w’ thenw? C w’
5.1f¢ <, ¥ <, xyandw? C w’ andy € v’ thenw? C v’
6. If ¢ <., ¥ thenw? = w®V¥

PROOE

1 This immediately follows from definition of,, and from (ID).
2 From definition ofw? and (ID).

3 Reflexivity follows from definition of<,, together with the fact that by (ID) and
(RCK) ¢ V ¢ = ¢ € w. Transitivity follows from Remark 2.4, 3.

4 Letbey € w¥, theny = x € w. Sincep vV = ¢ € w (by (ID) and (RCK)) we
conclude by Remark 2.4, 1 thép = (v — x) € w (by the completeness af).
Thereforeyy — x € w’. Sincey € w’, we conclude thag € w’.

5 By Remark 2.4, 1, we have that= (x — ¢) € w. Thereforex — ¢ € w’ and
sincey € w’ we conclude tha#) € w’. The lemma follows by the last point 2.

6 Lety € w? ie. ¢ = x € w. Then, since by (ID) and (RCK) = ¢V o) € w by
(CSO)p VY = x € w,ie.x € w?V¥.

We are now ready to prove Theorem 3.2:
PrRoOOFE We distinguish four cases.
Case 1:{(CS), (CEM), (A0), (A1), (A2)NX =10

DEFINITION 3.8 CANONICAL MODEL. We let

M = (W A<t wmnew {Wwm }wyew: 1),

where:

—W={(w,y): yew, forweU,andy € L.}
—I(w,y) =wNATM.
—(U}’7 (b) <(w,’y) (’w//,’(/)) iff:
—w?® C W', and
—eitherw? ¢ w” orw? C w”, w® € w", ¢ <, ¥, andy) € w’
—Wiw,yy = {(w', @) :forall ¢ € L, if = Le wthen—y € w'}
Since the formulg in (w, ) does not play any role in the definitionsof,, ) andW,, -,
we will write for short<,, andW,, respectively.

GivenI, the satisfiability relatioh= is defined in the usual way.
We prove the following facts:
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Fact 1: The relation<,, is irreflexive and transitive Irreflexivity immediately follows
from definition of<,,. As far as transitivity is concerned, let (ijw’', ¢) <, (w”,v),
and (ii): (w”,¥) < (W, x). We show that (jii): (w’, ¢) <. (w”,x). From (i) and
(i), by Definition 3.8, we know that (iv)w? C w’, w¥ C w”, ¢ <, ¢ andy) & w'.

We consider (ii) and distinguish two cases.

1. wX & w''; the result (iii) immediately follows from definition of,, in Definition
3.8.

2. wX C w": from (ii), and Definition 3.8, we also know that (¥) <,, x, x € w”,
andw? ¢ w. By transitivity of <,, and (iv) alsop <., x. In order to prove (i) we
still have to prove that (ay ¢ w’ and (b)w?® Z w'’. (a): supposg € w’. By Remark
3.7 we get thatv¥ C w’, hence by Remark 3.7.2, € w’, which contradicts (iv). (b):
supposew® C w"”. By Remark 3.7, alsw? C w'’, which contradicts (v). We have
thus shown thap <., x, thaty ¢ w’ andw? € w"”’, hence by Definition 3.8, that (jii):
(W', @) <w (W, X) -

Fact 2: Let|¢| = {(w',¢) : ¢ € w'}.

We letMin, (|¢]) = {(w',¥) : (w',¢) € |¢| and there is ndw”, x) € |¢| such that
(W, x) <w (w',1)}. We prove thablin,, (|¢|) C |x|iff ¢ = x € w.

<. Let (w',¢) € Min,(|¢|). We can prove the following facts. () € (v, ).
Obvious. (i)w¥ C w’. Indeed, suppose by absurd thet ¢ w’. Consider(w”, ¢)
with w? C w” (this world exists: sincéw’,v) € W, ¢ € w’, hence by definition
of Wy, ¢ =1¢ w, hencew? is consistent). Clearlyw”,¢) € |¢|. Furthermore, by
definition of <,,, (w”, ¢) <. (w',), which contradicts the hypothesis tHat’, ¢)) €
Miny,(|¢]). (i) w? C w'. Supposev? Z w'. Then,—((¢ V ) = 1) € w (otherwise
1 <, ¢ and by (ii) and Remark 3.74¢ C w’). Hence inW there is(w”, ¢ \ 1)) with
w?V¥ C w"” and—p € w”. It can be easily shown thét”, ¢ v ) € |4, and(w”, ¢ v
) < (w',9), thus contradicting the hypothesis that’, ¢)) € Min,,(|¢|). We can
therefore conclude that? C w’. It follows that if = x € w, thenMin,,(|¢|) C |x|.
=. Let Min,(]¢]) C |x|, and suppose for a contradiction thatdi}> x ¢ w. By (i)
and by definition o, there is(w’, #) in W with w® C w’ andy ¢ w’. Furthermore,
(w',¢) € W, indeed, by (MOD) for alk) s.t. ¢y = 1€ w, alsop = —) € w, and
sincew? C w’, it follows that for allv, if ¢» =1 € w, then— € w'. By definition
of W, (w',¢) € W,. It can be easily shown, by definition ef,, that (v’, ¢) €
Min,, (|¢|), which contradicts the assumption thidtin,, (|¢|) C |x|. We conclude that
if Min,(|¢]) C |x|, theng = x € w.

Fact 3: For all formulas¢, (w,v) = ¢ iff (w,v) € |¢|. We reason by induction on the
complexity ofé. If ¢ is an atom, the property follows by definition bfIf ¢ is a boolean
combination of formulas, the proof easily follows by the inductive step. Consider the
case in whichp = i) = x. By inductive hypothesigy)| = [[¢]] and|x| = [[x]]- Since
it can be easily shown thdt/in,, (v) = Min,(|3]), the property immediately follows
from Fact 2 above.

Fact 4: The relation<,, satisfies the Limit Assumption: for all formuaif [[¢]|NW,, #
0, thenMin. (o) # 0.

Let [[¢]] N W, # 0. By definition of W, it follows that¢ =1 ¢ w, hencew? is

consistent. Considgn’, ¢) with w? C w’. Clearly, (w’, ¢) € |¢|, and by definition
of <y, (W', ¢) € Min,(|¢|). By Fact 3 we can easily show th@t’, ¢) € Min,, (),

henceMin,, (¢) # 0.
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Furthermore, we show that:

Fact5: If (CV) € X, thenM satisfies (S-CV) (i.e. modularitylet (w’, ¢) <., (w”, ).
Then by definition of<,, in Definition 3.8,w? C w’, and either (av¥ C w” or (b)
w¥ ¢ w”. If (b), the property follows from the observation that given dny”’, ) if
wX ¢ w', then by definition ok, in Definition 3.8,(w’, ¢) <, (w", x), whereas if
wX Cw"”, then(w”, x) <., (w”, ).

If (), by definition of<,,, the following facts also hold: ) <., ¥, i.e. (¢ V¢) =

¢ € w, (i) v € v, and (i) w? ¢ w”. Furthermore, from (i) and by Remark 3.7.6
it follows that: (iv)w?V¥ = w?. From (iii) and (iv) it follows that: (V)w?®V¥ ¢ w”.
From (v), it follows that (vi):¢ vV ¢ = — (otherwise by (CV) and (RCEA), for aj,

if V= x €w,theny = y € w,i.e.w? ¥ C w¥, hencew?V¥ C w”, against(v)).
With these facts at hand, consider now dny”, x). If wX € w”, then(w', ¢) <4
(w, x) by definition of<,,. If wX C w'”, we distinguish two cases.

Case (@) V¢V x = (v V x) € w. By (RCK) and propositional reasoning, we also
have that (vii)p vV ¥ V x = —x, and (viii) ¢ V ¢ V x = —p. From (viii), by (ID) and
(RCK), we derive thaty V ¢ V x = ¢ V x. From this, together with (vii) and Remark
2.4,4 we derive that (ixp V x = —x. From (ID) we haves V x = ¢ V x € w, hence
from (ix) and (RCK), we derive that () V x = ¢, hencep <,, x. Furthermore, from
(x) and Remark 2.4, 4, alsp = —y € w, hence (xi)y ¢ w’, and by consistency of
w™, (xii) w? ¢ w"'. By definition of<,, it follows that (w’, ¢) <. (W™, ).

Case (b)—(¢VyVyx = =(¥ VX)) € w. Inthis case, from (vi) above and (DT) we have
thateViVy = ¢Vih — i € w. By (CV), (($VEVX)A($VY)) = oV — —) € w,
hence by (RCEA), alsg V x = ¢ V p — —p, and by (RCK)yp vV x = —¢ € w. By

reasoning analogously to what done just above in order to show points (x)-(xii), we

conclude thatw’, x) <., (w”,1).

Fact6: If (MP) € X, thenM satisfies (S-MPR)First of all, by (MP) we know that if
Y =1€ w, alsoy — 1€ w, hence by consistency and maximalityof ~¢ € w,
and from definition ofW(,, ), (w,v) € W, ). We now show that for ngu’, ¢)
(w',¢) <(w,) (w,v)) holds. For a contradiction, suppose’, ¢) <(,.) (w,¥).
Then by definition ok(,, - in Definition 3.8, either (a)v” Z w or, among other facts,
() () ¢ <u v, i.e. 6 Vy = ¢and (ii)w?  w. (a) is impossible: given (MP), and
v € w, alsow” C w. Consider (b). By (i) and Remark 3.7.6 it follows that = w?V".
From (ii) we conclude thaw?VY ¢ w. However this contradicts the facts that:c w,
hence¢ vV v € w, hence by (MPw?VY C w. We conclude that it cannot be that
(W', @) <(w,y) (w,7), hence=((w', ¢) <(w,) (w,7)) holds.

Fact 7: PCL U X is complete w.r.t the semantidsrom the facts above.

Case 2:{(CS)}} N X # 0, and{(CEM), (A0), (AL), (A2) "2 = (. Let M be the model

obtained by the same construction used in Definition 3.8, starting from maximal sets of

formulas consistent w.r.PCL +X. Notice that even if (CSE 3, the modelM does not
satisfy (S-CS) but something weaker, namely that eithery) <,y (w’, ¢) orw = w’
(but possibly notw,~) = (w', ¢)).

In order to obtain a model satisfying (CS), we need to strengthen the definition of

{<{w )} wyew . The resulting model id/" defined as follows.
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DEFINITION 3.9 CANONICAL MODEL IF (CS)e X. We let

M/ = <VV, {</w'y)}(’w"/ EWﬂ{Ww'y)}(w'y €W=I>7

where W{W(,, )} (w,y)ew, and ! are defined as in/, and{<{,, ) }(w,»)ew is defined
as follows.

() if () <W< w”, ) in M, then(u’, @) </, (w",4).
(@) forall 6, (w,7) </, (w,9).

We can prove thal/’ is aPCL -model satisfying (S-CS) that preserves the properties
of M by showing the following facts:

Fact 1: (S-CS) holds We show that for al(w,~y) and all (w’, ¢), either(w,~) <(w.)
(w', @) or (w,v) = (w, ¢). First of all notice that since € w, by (CS),w” = w, i. e.
w? Cw. If w? Z w', by definition of<,,, (w,7) <(w,) (W', ¢).

Letw? C w'. We reason as follows. Since bothe w and¢ Vv~ € w, by (CS) it follows

thate vV v = v € w. We distinguish two cases: (&)< w; (b) ¢ € w. (b): in order to
prove that(w, v) <(.,~) (w’, ¢), we still have to prove that” Z w'. This holds since
w” = w, hence by maX|maI|ty ofv, if w? C w’, thenw = w’ but this is impossible,
since¢ € w’ whereasp ¢ w. In case (a) holds, by (CS)? = w and by maximality
of w, w’ = w. By definition of <{, _,, in this last case eithefw,y) = (w’,¢) or

(1,7) <y (W', ).

Fact 2: <( o is irreflexive This follows from the irreflexivity of<(,, .,y in M together
with the observation that for alto, ¢) (having the same first element than, 7)), only
(w,7) <(w,w (w, ¢) holds.

Fact 3: <{,, ., is transitive This follows from the fact that(,, ,) is transitive together
with the observation that the only possible extra case isfu{iyy) <(, ., (w,¢) for
some(w, ¢) with the first element equal to the first elementat ), and(w, ¢) <{,, .,
(w”,9) for some(w”, ). We show that(w,) <(, ., (", ¢). If w¥ ¢ w” then
(w,7) <(w,y) (W",9) (since by (CSw” C w), i.e. (w,7v) <’(w7,y) (w”,4). If w¥ C
w’ then we reason as follows. First of all, by (CS) (since bpth w and~y V ¢ € w),
vV ¢ =~ € w. Second, by definition ok ,, . in Definition 3.8, from (i), we derive
thaty ¢ w. From (i), always by definition ok, ., in Definition 3.8, we also know

thatw? ¢ w”. In presence of (CS), since bothc w andy € w, we know that
w? = w = w?, hencew? ¢ w”. We can therefore conclude by definition-of,,, - in
Definition 3.8 that(w, v) <(u,) (0", ¥), hence(w, ) <(,, ., (w", ).

Fact4: <, , satisfies the Limit Assumptioff [[¢]] # 0, then by the Limit Assumption
in M there is(w’, ¢) € Ming, ,)(¢). Ifin M’ (w',¢) & Min(, ~)(¢), this can only
be becaus¢w,v) € [[¢]], and the relatiow, ) <{,, ., (w',¢) has been inserted in
M'. In this case, it can be easily shown that by (S-C8)y) € Min(, ,)(¢), hence
M”L ,’y)(¢) # 0.

Fact 5: For all formulas ¢, ¢ is satisfiable inM iff it is satisfiable inA/’. By induction
on the complexity ofp. If ¢ is an atom, the property immediately follows since the
valuation function inM/ and M/’ is the same. I# is a boolean combination of formulas,
the property easily follows by the inductive step. lget= ¢ = x. We show that
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for all (w, ), Min,(¥) C [[x]] iIn M iff Ming,,)(¥) C [[x]] in M’. The=
direction immediately follows, since for afk’, u) if (w', ) € Ming, () in M’,
then alsa(w’, ) € Min, (1) in M. For the< direction we reason as follows. Let
Ming, () C [[x]] in M, andMin, () € [[x]] in M. Then there igw’, i) s.t.
(@) (w', 0) & [, (i) (', 1) € Miingy, () in M and (ii) (w', 1) & Min,,) () in
M. I this is the case, then there must be a wadd', 1) in [[]] s.t. (w”, 1) <{,, .
(w’, ) in M’, whereas it does not hold thav", 1i') <(y) (w’, ) in M. This can
only happen in cas@w”, ') = (w, ) andw = w’ (indeed, for all other worlds. and
<’ behave in the same way). Singe= w’, by (i), also(w,~) ¢ [[x]]. Furthermore,
since M’ satisfies (S-CS), it can be easily proven thaty) € Min, (1) in M’,
henceMin, (1) € [[x]] in M’, which contradicts the hypothesis. We can conclude
that if Min, ,(¢) C [[x]] in M’, then alsaMin,, ) (¥) Z [[x]] in M.

Fact 6: M’ satisfies (S-MP)Since (S-MP) is a consequence of (S-CS).

Fact 7: if (CV)) C %, then<{,, _, is modular This follows from the fact that,, -, in M
is modular. Moreover, the only extra relation we have to consider héte, ig) <(,,.)
(w’, ¢). In this case the modularity is satisfied since by (S-CS) for(ary ¢),
(w7 fY) <(w,'y) (w/lv '(/))

Fact 8: PCL U X is complete w.r.t the semantidsrom the facts above.

Case 3:{(CEM)} N ¥ # (), and{ (A0), (A1), (A2} N X = (). Let M be the canonical
model built by using the same construction of Definition 3.8 above, starting from sets of
formulas that are maximal and consistent WREL +X. If (C'S) € X, then consider the
modelM’ defined in Case 2 above. Whetl{étS) € ¥ or not, we will refer to the starting
model by M. Notice that even if (CEME X, this model does not satisfy (S-CEM) but
something weaker. In order to obtain a model that satisfies (S-CEM), we hfikthich

is equivalent taV/ and satisfies (S-CEM), as follows. The only difference betwifeand

M’ is in the definition of the relations’(wm.

DEFINITION 3.10CANONICAL MODEL IF (CEM) € X. We let

M = <VV3 {</(u;7ry)}(w,v)EWa {W(w,'y)}(w,y)EWa I>a

where W{W(, )} (w,yew, and! are defined as ih/. <{,, _, is defined as follows.

1if (', ¢) <,y (W, 9), then(w’, ¢) <(, ) (w”,9);

2 let w(wm/be an enu/r/nera_tion of the set of \/NOI’|S§/M) = {/,<w/’@ s.t. w? /5; w}.
Forall (v, ¢) and (w”, 1) in Sy, ), we let(w’, ¢) lw) (", 4p) iff 7y ) (W', @) <
T (w,7y) (w”a w)v

3 for each(w’, ¢) € W such thatw? C w’, we let[(w’, ¢)],,) be the set of worlds

(w', 1) such thatw¥ C w’ having the same first element than', ¢). Forall [(w’, #)] (. ),
We 18|, 41 () PE an enumeration ovétw', ¢)l(w ). If (w,v) € ', then the

first element of the enumeration will B, v) itself. We let(w’, ¢) <(,, ., (', ) iff
! / !/ /
(G ) wr) (W B) < Tt g1, 0,y (W5 ).

We can easily show the following facts in order to prove th&tis aPCL -model, that it
is equivalent taV/, that it satisfies (S-CEM), and that it preserves the properties.of
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Fact 1: <’ is irreflexive Consider the definition ot’(wﬁ) above.(w',¢) <(,, ., (W', )
is not introduced by step 1, sineeis irreflexive; it is not introduced by step 2 either,
sincen(,, ) assigns a different number to each wofld’, ¢); it is not introduced by
step 3 for the same reason.

Fact 2: <’ is transitive Let (a)(w’, ¢) </(w,’y) (w”, ), and (b)(w”, 1) <’(uw (W x).
If both relations have been introduced at step 1, then transitivity follows E)y transitivity of
< in M. If both relations have been inserted at point 2 or 3, then transitivity immediately
follows from the total ordering established by the enumerations. Since the set of worlds
considered at point 2 are disjoint from the sets of worlds considered at point 3, it cannot
happen that one relation is introduced by step 2 and the other by step 3. We are left with
the possible combinations of step 1 and either step 2 or step 3.
Let us consider steps 1 and 2. Notice that by definitiorcgf .,y in Definition 3.8, it
cannot be that (a) has been introduced at step 2, and (b) at step 1 (inde€dgifw”,
then inM it never holds thatw”, ¢)) <(., ) (w", x)). If (@) has been introduced at step
1 and (b) has been introduced at step 2, thénC w’, andwX ¢ w'”’. By definition of
<(w,) In Definition 3.8,(w’, ¢) <(w,) (", X), hence alsqu’, ¢) <(,, ., (W, x).
Let us consider steps 1 and 3. If (a) has been introduced at step 1 and (b) at step 3, we
reason as follows. By Definition 3.8, we know that (v ¢ = ¢ € w, (d)¢ ¢ w’ and
(e)w® Z w”. Furthermore, we know that (f)” = w'”, thatw? C w”, andwX C w'”.
By maximality ofw? andwX given (CEM), we know thatv? = w"”, wX = w"’, hence,
given (f), that (g)w¥ = wX. We want to show that (CPp V x = ¢ € w, (d) x € v’
and (e)w® ¢ w", from which we can conclude by Definition 3.8 and step 1 that
(wlv ¢) </(w’fy) (,w///7 X)
First of all we show that given (CEM) and (c) (i.&x VvV ¢ = ¢ € w), then also (h)
oV x Vi = ¢ € w holds, otherwise by (CEM}V x V¢ = —¢ € w, which contradicts
(c). Indeed, fromp vV x V ¢ = —¢ € w, we derive that vV x V¢ = —(¢p V) € w (by
(RCK) together with the fact that (DT) and (c) entail x V¢ = ((¢ V) — ¢) € w).
By (ID) and (RCK) it follows that¢ V x V¢ = x € w and by Remark 2.4,6 that
x = (¢ V) € w, hencex = —¢ € w. However this is impossible given (g) (since
by (ID) v = v € w). Hence we conclude that (h) holds.
We are now ready to show that (c’), (d’) and (e’) hold. For a contradiction, first suppose
that (c’) does not hold, i.g¢V x) = ¢ & w, which given (CEM) means thép Vv x) =
—¢ € w. Thisisimpossible, given (h) (i.&Vx VY = ¢ € w). Indeed, by (RCK), from
(h) it follows thateV x Vi = ¢V x € w, and by Remark 2.4,6, froffV x) = —¢ € w
we would conclude Vv x V ¢ = —¢ € w, which contradicts (h). Hence (c’) must hold.
Furthermore, (d’), namely that ¢ w’, holds, otherwise by (c"), the fact that by (g)
¥ = x € w, and Remark 2.4, 3 we would have thiat- x — ¢ € w. In turn, this
would entail thaty — ) € w, hence ify € w’ alsoy € w’, which contradicts that by
(d) ¥ € w’. Furthermore, by (CEM) eithet = y cwor¢ = -y cw. ¢ = xy € wis
impossible sincev® C w’ , x € w’ andw’ is consistent. Hencgé = —y € w, and by
consistency ofv””’, sincex € w", w? € w", hence (€’) holds, and the result follows.
If (a) has been introduced at step 3 and (b) at step 1, we reason as follows. By (a) we
know that (c)w? C w’, that (d)w’ = w”, and by maximality ofw® andw?, together
with (d), that (e)w? = w¥. If wX Z w, the result follows by definition o& ,, . in
Definition 3.8 and step 1. X C w’’, then by (b) we know that (f) V x = ¢ € w,
(9) x € w”" and (hyw? Z w"”. We want to show that (fp vV x = ¢ € w, (§') x € '
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and (h)w? Z w", from which we conclude thdt’, ¢) <{,, ., (", x), by Definition

3.8 and point 1. From (g) and (d) we immediately concldJe that (g"), and from (h) and
(e) we immediately conclude that (h’). We are still left to prove (f’). This can be proven
by reasoning analogously to what done above when proving (c’), and the result follows.

Fact3: <{,, ., satisfies the Limit AssumptioBy the Limit Assumption of<(,, . in M
together with fact (a) of point (iv) below.

Fact 4: For all (w,~), for all ¢, M, (w,~) = ¢ iff M, (w,v) | ¢. If ¢ is an atom this
is obvious. If¢ is a boolean combination of formulas the result easily follows by the
inductive step. Let» = ¢» = x. We can show that (a)/in,, ) (¥) C [[x]] in M iff
Ming, 1) (1) C [[x]] in M’. The only if direction immediately follows by inductive
hypothesis, since it can be easily proven that fofall 0), if (w’, §) € Min(, ) (¢) in
M, then(w’,0) € Min(,, ) (¥)in M.

For the if direction, suppos8/in ., (1) € [[x]] in M" and Min, () Z [[x]]

in M. Then there iSw’,d) s.t. (b)(w',d) & [[x]], (€) (w',d) € Min(y, () in
M, and (d)(w',d) & Ming, () in M’. However, this is impossible. Indeed, it
can be easily shown that by ()’ C w’. By (c) and (d), we can infer that there is
(w”,p) € [[W]] st (w”, p) <{, ., (W',8) without (w”, 1) <(w,q) (w',0). This means
that the relation(w”, 1) <{,, ., (w’,d) has been inserted at step 3, heace = w'.
We can assume without loss of generality that, 1) is minimal W.r.t. (., 511 (w4))-
We can show that (e)w”, 1) € Ming, (¢) in M'. Suppose it was not, then there
would be(w”€) € [[¢]] s.t. (w”,€) <{, .,y (w”,p). First notice that by transitiv-
ity of </, (v ¢€) <2wﬁ) (w’,d). Second, notice that by minimality ¢fv”, ) w.r.t.
(w6, (w,y))r (W"5€) & [(w',0)](w,)- This means that the relation can only have
been inserted by point 1, hence algg”,¢) <, ) (w’,0) in M, which contradicts
(w',0) € Min(, () in M. Hence, (e) holds. Sinae” = w’, and(w’, ) ¢ [[x]] also
(w”, 1) & [[x]], and from (e) we derive thatl/in,, ,(¢) Z [[x]] in M’. Contradiction.
We hence have shown thatiin,, . (¢) C [[x]] in M" alsoMin, (1) € [[x]] in
M, and the result follows.

Fact5: <{,, ., in M’ satisfies(S — CEM). Consider(w’, ¢) and(w", ). If w?  w'
andw? ¢ w”, then if m,, ) (W', d) < T(y) (", 1), then(w', $) </(uw) (w” ),
otherwise(w”, 1) <(, ., (v, ¢).

If w? C w andw? Z w”, then(w’, ¢) <l (w",9) by point 1 and definition ok
in3.8; ifw? Z w' andw? C w”, then(w"”,4) <{,, y (W', ).

Let us consider the case in whiat? C w’ andw? C w”. We distinguish two cases:
@p VY = ewd)Viy =1 € w. (a): it can be easily shown that’, ¢) </(w,’y)
(w”, ). (b): we distinguish two other cases: ¢c) ©» = —¢ € w (d)p V) = ¢ € w.
(c): we can easily show thédty”, 1) <(,) (W', ¢). (d): w? = w?"¥ = w¥, and by
maximality ofw? in case (CEM) holdss’ = w”. In this case, a relation is introduced
at step 3. Hence eithew’, ¢) = (w”,4) or (w', ¢) <(,, ., (w”, ) or (w”,¥) <{,
(w', @)

Fact 6: <’ is modular Since it is total (by(S — CEM)).

Fact 7: Ifin M (S— M P) holds then it holds also in{’. Consider(w, ). By (MP), since
v € w, alsow” C w. By definition ofi¥/,, .y and by consistency and maximalityf it
follows that(w, v) € W, ). Consider anjuw’, ¢). The relation(w’, ¢) < ) (w,7)
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is not introduced at step 1, sineein M satisfied S — M P). Itis not introduced at step
2. Itis not introduced at step 3 either, siree +) is minimal w.r.twgwﬁ).

Fact 8: If (CS) € ¥, thenM’ satisfies(S — C'S). Indeed,(S — C'S) holds inM and if
(w,7) <(w,y) (W', ¢)in M, then alsqw, ) <2wm/) (w', @) in M.
Fact 9: PCL U X is complete w.r.t the semantidsrom the facts above.

Case 4:{(A0), (AL), (A2} N X # 0.

Let M be a model built by one of the constructions in the case above corresponding to
the axioms inx. Even if (A0),(Al),(A2) belong ta:, the resulting model may not entalil
the Universality.

Let M, (wg, %) = T for some possible worl@wy, 1)). Starting from this model we can
build a modelM’ satisfyingI” and in which the Universality holds. From this follows the
completeness of the logic w.r.t. models satisfying Universality.

Before we proceed, notice that by (A0),(A1), (A2) we can prove the following facts:

Fact 1. (wo,v) € Wiw,,y)- If it were not so, then for some, ¢ € wy and¢ = L& wy.
But this is impossible, giveA0).

Fact 2: If (w',7y) € Wiy, thenWiy, vy = Wi ). = Suppose there werev”, ¢)
such that (aJw"”, ¢) € Wi,y and (b)(w”, ¢) € Wi, ), then for somey, x € w”
andy =le w’, whereas (c_)ﬂ(x =1) € wy. However, sincéw’, ) € Wiwow) by
hypothesis, fromy =L € w’ it follows that—((x =) =) € wy, which contradicts
(c), by (A2). <= Suppose now (aw”, ¢) € W, ) and (b)(w”, ¢) & Wy, ). Then
for somey, x € w”, (¢) x =L€ wy, whereas-(x =L) € w’. However, since
(w', ) € Wiwg ) ~(=(x =L) =1) € wo, which contradicts (c), given (Al).

With these facts at hand, we build’ as follows. The only difference betwedii’ and A/
is in the definition of the set of possible worlts:

DEFINITION 3.11CANONICAL UNIVERSAL MODEL. We let

M = (W', Wewm twmew s {<@wm wmew: 1),
where:
(1) W'=W N W)
We can show the following Facts:

Fact 3: (wg,v) € W’. By Fact 1 above.

Fact 4. For each(w,~) € W', W(,, ) = W', i.e. Universality holdsBy Fact 2 above.

Fact 5: Since<(,,,) has not changed, it is still irreflexive, transitive, satisfies the Limit
Assumption, it satisfieeS — M P) if (MP) € %, it satisfies (S-CS) if (CS} %, it
satisfies the modularity if (C\§ 3, it satisfies (S-CEM) if (CEM) X..

Fact 6: For all ¢, for all (w,y) € W', M, (w,v) [ ¢ iff M’, (w,v) = ¢. By induction
on the complexity ofp. If ¢ is an atom, obvious. 1% is a boolean combination of
formulas, this follows by the inductive step. dfis a conditionak) = y, notice that in
M Ming, ,)(¥) € Wiy, by definition of Min, ) («). In turn, by Fact 2 above,
Wiw~ € W, henceMing, () € W’ and Min, -, (¢) in M’ coincides with

(w,) ) (w,) ] : (w,)\¥)
Min, ) (1) in M. The result follows by inductive hypothesis.
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Fact 7: M’, (wo,v) E=T. As a consequence of the point above, forsif M, (wy, ) =
¢, alsoM’, (wp, ) = ¢. Hence, fromM’, (wy, ) =T, it follows that
M, (w, ) = T

Fact 8: PCL U X is complete w.r.t the semanticé/e have shown that if' is consistent
w.r.t. PCL U X where(A0), (A1), (A2) are inX, then it is satisfiable in RCL -model
satisfying Universality. Henc& CL U X is complete w.r.t the semantics.

O

We have given uniform and modular proof of completenes®fok and its extensions.

A result of such generality does not seem to be known in the literature. In order to relate
our completeness proof to existing work, we recall some of the most important work on
conditional logic systems and their completeness.

Completeness proofs for the more general selection function semantics [Nute 1980] are
close to those for modal logics, and the definition of the canonical model is straightforward.

Burgess [Burgess 1981] gives a completeness proof for a conditional logic, ¢alled
which has the same theorems tHR@L but a different semantics. As a difference with
respect to our approach, Burgess considers a semantics without the Limit Assumption. Fur-
thermore, he considers only systems without Universality. He then considers extensions
S corresponding to additional properties of the preference relation, namely connectivity
(CV), nonvacuity ¢(T = 1)), MP andCS (centering). Notice that nonvacuity is deriv-
able inPCL with Universality (by AO).

Similarly to Burgess, Friedman and Halpern [Friedman and Halpern 1994] consider the
same families of systems we consider, but they show the completeness of the systems
with respect to the preferential semantics without the Limit Assumption (with a different
definition of the semantics of the conditional operator).

Lewis [Lewis 1973b] proves the completeness of his logic with respect to sphere seman-
tics, which is less general than preferential semantics, since it characterizes systems which
contain (at least) axiom CV.

Grahne [Grahne 1998] presents a system of conditional logic augmented by an update
operator. The purpose of his work is the logical modelling of an update operator following
the postulates by Katsuno and Satoh [Katsuno and Satoh 1991] and allowing for the Ram-
sey rule. He obtains a completeness proof with respect to the selection function semantics
for a logic stronger thaRPCL (including CV). He also establishes a correspondence be-
tween the selection function semantics and the sphere semantics and then between the
latter and the preferential semantics. However, this correspondence only holds for logics
including CV that have a sphere semantics. By this reason, Grahne’s completeness proof
cannot be adapted to handi€L .

Kraus, Lehmann and Magidor [Kraus et al. 1990] prove completeness for the flat frag-
ment of PCL and of PCL + CV (corresponding to their systensand R, as recalled
above). Observe that the completeness proof for the flat case is considerably simpler than
the case oPCL, since it comprises only one preference relation rather than a family of
preference relations parametrized to worlds.

Nejdl in [Nejdl 1991] investigates a number of conditional logics that we study in this
work. He adopts the preferential semantics, rephrased in terms of structures equipped with
aternary relation. He does not present however any new completeness result, as his purpose
is mainly to clarify the relations among the systems found in the literature with respect to
alternative axiomatizations. Except for the weakest logic CK (included for exaustiveness),
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the range of systems he considers largely overlaps with ours. More precisely, his starting
point is our logic PCL (hamed SysteR), then he considers its extensions with one or
more of the following conditions: centering (weak and strong corresponding to MP and
CS), modularity (CV), totality (CEM). Moreover he examines systems with the additional
property of Absoluteness (for eaah y, <,=<,) that we do not consider here; observe

that this property makes nested conditional collapse, simplifying dramatically the logics.
On the opposite, he does not take into account the property of Universality as we do. For
all systems under consideration he presents alternative axiomatizations and characteristic
theorems.

4. TABLEAU CALCULUS FOR PCL AND ITS EXTENSIONS

Our calculus makes use of labels to represent possible worlds.

In order to test the satisfiability of a formuls we start the tableau by : ¢, for an

initial label z. We then verify whether the tableau so obtained is closed. If it is,not
satisfiable, otherwise it is satisfiable (and, in Theorem 5.8, we show how to extract a model
from the open tableau). In order to test the satisfiability of a finite set of forniylase

start the tableau by labelling all its formulas by the initial lalbédlvhich is the same than
considering the conjunction of all the elementd pf

As usual, aableauis a tree. Itdranchesare sets of tableau formulas. These formulas
are either the labelled formulas of the initial detor they are obtained from previous
tableau formulas by the application of tableau rules.

Tableau rules encode the semantics of the formulas. It is well known how this works
for classical logic. Let us look at the conditional formutas=- ¢ and—(¢ = ) under
preferential semantics. Then we have:

M,z = ¢ = viffforall y,if y € Min,(¢) theny = ¢

Let us look closer at the definition af in,.(¢). The following conditions are equivalent:

(i) vy € Ming(9)
(i) yEgandy e Wyand-3zst.(z Ep Az €W, Az <, )
(i) y =g¢andy e W, andVz((z <, y) Az € W, — z = —¢)

At this point, we observe that the second part of (jii), nameéty(z <, y) Az €
W, — z |E —¢) can be understood as the definition of a modality indexed by werld
and characterized by the preference relatign Let us call this modalityd,.. O, is then
defined by:

M,y =0,¢iff V2 € W, if 2 <, ythenM, 2z E ¢

In order to represent the assertiore W,,, we introduce another modality indexed by
x, namelyV,., whose meaning is

M,yEV,iff ye W,

From (iii) above, by using this definition, we get:

(%)y € Ming(¢) iff M,y =V AP AOg—¢p
In the following, we will refer to formulas of the kind,—¢ or V,, aspseudo-formulas
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DEFINITION 4.1 TABLEAU FORMULAS. Our tableau formulas are of the following
kinds:
(@) z : ¢, whereg is a formula or a pseudo-formula
(b) <y 2
©z=y
wherez, y andz are labels.
The formulas of the form (a) are calledbrld formulas the formulas of the form (b) are
calledrelation formulas the formulas of the form (c) are calledjualities Formulas of
the form (a) or (b) are used in all tableau rules whereas the equalities only occur within the
rules introduced to deal with axioms (CS) or (CEM).

In order to develop the tableau rule for the positive conditional formuta ¢ we use

pseudo-formulas. We havll,z = ¢ = v ifforall y, y € Min,(¢) ory = 1. Using
(*), we then obtain for alj

yE gV -a0,m¢V =V, Vi
This disjunction has four disjuncts and each disjunct will produce a branch in the tableau.
Hence, we obtain the following tableau rule=£) for the positive conditional
T:ip=>Y
y:oo |y o0,m¢ [y | y:aVs

Obviously, the tableau rule for the negative condition& = ) can be obtained in
the same way from the corresponding satisfiability condition.

M,z = —(¢ = o) if there isy such thaty € Min,(¢) andy [~ v, i.e. if there isy such
that:
Y ': ANz ANV Ay
This conjunction leads to the following tableau rule{}-for the negative conditional
z: (¢ = 9)
y:o
y: Da:_‘¢
Y
y: Ve
wherey is a new parameter in the branch.
Let us derive the two rules for the pseudo modalities in the same way. According to their
definition, we have:
M,z |E Oy¢iffforeveryy € W, if y <, zthenM,y = ¢
From this, we derive : if/, z = O,¢, andy <, z andy € W, thenM,y | ¢ leading
to the tableau rule:
z: 0,0
Yy <g=z
y: Ve
y:o
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On the other hand, we have thif, z = —0,¢ iff there isy € W, such thaty <,, 2z
andM,y = —¢. The rule we use in the tableau calculus is slightly different since it takes
into account the minimality imposed by the Limit AssumptionMf 2 = —0,¢, by (*)

z ¢ Min(—¢) and by the Limit Assumption we know that there isiasuch thaty <, z,
andy € Min,(—¢),i. e. by (*) M,y E —¢, M,y E O¢, y = V,. The resulting
rule is the following (called (E)). This rule does the same job as the corresponding rule
(due to Fitting [Fitting 1983]) for modal systefaL, the extension of K4 by &b axiom
0(0¢ — ¢) — O¢. Hence the tableau rule ferd, has the form

Z:_‘Dz¢
Yy<gz
y:iop

y: o
y: Ve

wherey is new. In order to simplify the calculus, we avoid to explicitly introdgcel/,. in
a branch in which we also haye<, zorz <, y. Inthese cases, we implicitly assume that
y : Vi (andz : V). This is captured by condition (iii) in the definition of closed branch
(definition 4.3 below). The above rules for the modality hence become the simplified
tableau rules:

(TO):

and (F2):
z 0,0
Y <z Zz
Yo
y:Oz0

Figure 1 shows all the tableau rules REL . Following the terminology of [Gdr 1999],
we refer to the rules generating new worldsigaamic rulesand to all other rules agtatic
rules Observe that all the rules we introduced are static exceffes) and(F'0) which
are dynamic.

In order to deal with the extensionsBCL , we need to add some extra rules, shown in
Figure 2. These rules straightforwardly capture the semantic properties of the correspond-
ing axioms. We provide one extra rule for each extra axiom, with the exception of (MP)
for which we introduce two rules. In order to obtain a calculus for extensior¥Chf
containing more than one axiom, it will be enough to consider the calculus containing all
the rules introduced for the extra axioms. Hence, for instance, in order to obtain a calculus
for the logic obtained by adding 8CL axioms (CV) and (MP) below, we will have to
consider all the rules introduced fBCL + (R-CV) + (R-MP).

Notice that the rules (R-CS) and (R-CEM) introduce in the tableau some equalities of
the kindz = y. In the presence of these rules, we need some extra rules to deal with the
equality. The rules for equality are shown in Figure 3. Hence, for instance, in order to deal
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EEOWAN z:(pAY
(TA) Z0AY (FA) =ioBAY)
o, z:0¢ | x:p
(NEG) x:—=)
T
Q= i
(T =) rio= (F =)(+%) roo=y)
y:op | y:=0z=¢ |y | y: oV y:d,y:Opm,y: =, y: Vy
0.0,y <z 0,
o) EhvseE (FO) () 2ee
Yy Y<aezy:¢gy:Oz0,
(Trans) Y<ez,2<zu
yY<zu
(*) y is a label occurring in the branch.
(**) y is a new label not occurring in the branch.
Fig. 1. Tableau rules fdPCL
y<gx x:-Vy
(R—MP)
z:l x:l
R—CS old =,y
( ) r<gylz=yly: Ve
Yy <z z
(R—-CV) old u
u:Vely<zcul|lu<gz
R—-CEM old x,Y,z
( ) y:Velz:Vaoly=z|ly<az|z<asy
y: Vg
(R—UNIV)
Tl

Fig. 2. Rules for the extensions BCL .

with Stalnaker’s logicC2, containingPCL plus axioms (CV), (MP) and (CEM) we have
to consider the rules fd?CL + (R-CV) + (R-MP) + (R-CEM) + all the rules for equality
((E-R) + (E-T) + (E<) + (E— V) + (E-9)).

The following is a formal definition of a tableau fBCL and its extensions.

DEFINITION 4.2%-TABLEAU. LetX C {(R-MP), (R-CS), (R-CV), (R-CEM), Universality
A Y-tableau is a tableau built by applying
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T=1y
(E—-R) () (E—S)
Tr = y==x
T=YYy=2z =z y=y,z=2y<sz
(E-T) (E-<)
T =z y'<I/ 2
r=zy=vy,y: Ve r=a,r:¢
(B —-V) , (B—¢) ———— (xx)
y' AV z'

Fig. 3. Rules for Equality. (*)c is a label in the branch. (**p is either a formula or a pseudo-formula.

(i) the rules forPCL of Figure 1,
(i) the rulesin¥ of Figure 2,
(iii) the rules for Equality in Figure 3 whenever (R-CS) or (R-CEM) belong.to

DEFINITION 4.3 CLOSED BRANCH AND CLOSED TABLEAU. We say that a branch of
a Y-tableau is closed if it contains one of the following formulas (i) or (ii) or (iii):

() x=:¢andzx : —¢, for any formula or pseudo-formula, or x : L;

(i) ¥y <z v
(i) y <, zandy : =V, or z : =V,;

A Y-tableau is closed if every branch is closed.

DEFINITION 4.4 X-PROVABLE. A formula¢ is X-provable if there exists a closed
Y-tableau forx : —¢.

Notice that in the presence of rule (R-UNIV) to deal with Universality, all branches

containingy : =V, close. This expresses that every world belongs to every of the subsets
W, of W, which is precisely the semantic condition for Universality. For example, the
formula—~(T = 1) is not a theorem oPCL . In the absence of rule (R-UNIV), the
tableau contains one branch with -V, which cannot be closed. This branch closes in
presence of the rule (R-UNIV) (the formula is indeed a theorefA@f + Universality).
In the presence of (R-UNIV) , the calculus could be simplified by omitting all the branches
in whichy : =V, is introduced. The fact that in the presence of Universality the calculus
can be simplified is related to the remark done before that in the presence of this property,
PCL -models become simpler.

As an example of how the calculus works, in Figure 4 we showdhat (¢ A x) —

(¢ AN = x) is atheorem oPCL .

5. SOUNDNESS AND COMPLETENESS OF THE TABLEAU CALCULUS FOR
PCL AND ITS EXTENSIONS

5.1 Soundness of the calculus

In order to prove the soundness and completeness of the tableau rules, we have to define
the notion of satisfiability of a tableau branch.
Given a branclB, we denote byV g the set of labels occurring iB.
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z:o(p=>WAX) = (PAY = X))
r:ig=(PAX)
z:=(dAY = x)

Yo: PNY
Yo : X

Yo : Oz (P A )
Yo : Va

Yo 1 ¢ Yo : "0z Yo Y AX Yo : Va
= 20 <z Yo X X
20: ¢
Zp - DT“(/)
201 (P AD)

T

Zo 1 ¢ 2o 1 Y
x /\
201 —p 20 : "0 =¢ 20 P AX 2o : "V
X X X X

Fig. 4. Example of tableau.

DEFINITION 5.1PCL -MAPPING. LetM = (W, {W,}rew,{<z}zew,I)beaPCL-
model. Given a branclB, we say thatf : Wp — W is a PCL -mapping fromB to M,
if
(1) foreveryy <, z € B, f(y), f(z) € Wy and f(y) <jfe) f(2) holds inM
(2) foreveryy : V, € B, f(y) € W
(3) foreveryz =y € B, f(z) = f(y)

DEFINITION 5.2 SATISFIABILITY OF A BRANCH. Given a branchB of a tableau, a

PCL -model M, and aPCL -mapping f from Wg to W, we say thatB is satisfiable
under f in M if the following condition holds:

if : ¢ € BthenM, f(z) = ¢

where¢ is a conditional formula or a pseudo-formula.
A branchB is satisfiable if it is satisfiable in soMRCL -modelM under some mapping
f. Atableau is satisfiable if at least one of its branches is satisfiable.

In order to show that the tableau rules only prove correct formulas, we first show that
they preserve satisfiability.

LEMMA 5.3. LetT be a tableau satisfiable in 8-model. LetI” be obtained from¥’
by applying one of the rules given f®¥CL or for X in Figures 1, 2, and 3 above. Then

ACM Transactions on Computational Logic, Vol. V, No. N, June 2008.



26

T’ is also satisfiable.

PrROOFE If T is a satisfiable tableau, then it contains at least one branhelhnich is sat-
isfiable, i.e. there is a moddll = (W, {<,}sew, {Wa}zew,I) and aPCL -mapping
f such that the condition from Definition 5.2 holds for all world formulasBin We will

show that for each tableau rule applieditpthe resulting tableat” is still satisfiable.

(class) The case of classical connectives is easy and left to the reader.

(T'=) Letx : ¢ = ¢ € B. LetT’ beT with B replaced by four new branches:
B, = BU{y : =¢}, B, = BU{y : =V}, Bs = BU{y : -O0,7¢},y : V,
andB, = BU {y : ¢}. By definition of (T =), y € Wg. We will show that at
least one of these branches is satisfiable. SiBég satisfiable, there is a mod&l =
(W {Wa:}:rzEW7 {<$}:1:€W7I) and aPCL 'mappingf such thamaf(x) ': ¢ = 1/1
Thenforallv € Min., ,,(¢), M,v |= 9. Thisistrueiffvo € W, eitherv ¢ Min,
orM,v =1, i. e.Vv € W, eitherM,v | ¢ or M,v = Vi) Of M, v = O p—¢ OF
M, v = 4. Sincey € Wg, f(y) € W, then one of the following is true:

(1) M, f(y) =9

@) M, f(y) E ~DOy@)=¢

4) M, f(y) =

In the first casep; is satisfiable, in the second cags, is satisfiable, in the third case,
Bj is satisfiable and in the fourth casg is satisfiable.

(F=) Letz : =(¢p = ¢) € B. ThenM, f(z) E —(¢ = o), i. e. thereisv €
Min, . (¢) such thath,v = —i, i. €. M,v [= Vi) A ¢ A Oppy—o. If the rule
(F =) is applied tox : =(¢ = ) onT, the resulting tablea@” is T with B replaced
by B =BU{y:¢,y: Ve,y: O,y : i}, wherey € Wg. Sincey € Wp, fis
not defined fory. We define a new mappingf : Wi — W by letting f/(i) = f(¢)
if i« # y and f’(y) = v. It can be easily verified that' is aPCL -mapping fromiW/
to W. Obviously, the new formulas oB’ are satisfied by the new model under the
mapping/’

(TO) Lety:0O,¢ € B, andz <, y € B. After application of rule(7'0), the resulting
tableaul” is T' with B replaced byB’ = BU{z : ¢}. SinceB is satisfiable byl\/ under
[, we have that for every , such thaty <;(,y f(y), M,v = ¢. Sincez <, y € B,
f(2) <j@) f(y). Consequently), f(z) = ¢, henceB’ is also satisfiable.

(FO) Lety : -0,¢ € B. SinceB is satisfiable byM underf andy : -0,¢ € B
thereisaw s. t. w <y f(y) andM,w | —¢. Clearlyw € Wy(,, hence
W) N[[—¢]] # 0, and therefore by the Limit Assumption therevig Min. ., (=),
i.e. M,v = —¢ AV, AO,¢. After applying (FO), we haveB’ = BU {z <, v, 2 :
-,z : 0.0}, wherez ¢ Wg. We define a new mapping by f'(u) = f(u) foru # z
andf’(z) = v. Sincef’(z) <y () f'(y), f' is aPCL-mapping. Moreover, we have
M, f'(2) E =¢ andM, f'(z) | Ou0.

(E-R), (E-T), (E - S)reflexivity, transitivity and symmetry of hold due to the proper-
ties for equality

(E-<), (E-—V), (E-¢) obvious, by predicate substitution

(R-MP) The property trivially holds, since there is 18/ P)—model satisfying a branch
B in which eitherx ¢ W, ory <, x.
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(R-CS) Let B be a branch of" satisfiable by 4C'S)—model M. LetT’ be obtained from
T by replacingB by the three brancheB, = BU {z <, y}, B = BU {z = y}, and
Bz = BU{y : -V,}. By (S-CS) inM, either f(x) <j f(y) or f(x) = f(y), or
f(y) & Vi@ In the first caseB, is satisfiable. In the second cagg, is satisfiable. In
the third casepBs is satisfiable. In both cas€B, is satisfiable.

(R-CV) Let B be branch ofl’ with y <, z € B, satisfiable in 8CV)—model. Let
T’ be obtained froni" by replacingB by the three brancheB; = B U {u : =V, },
By, = BU{y <, u}, B3 = BU{u <, z} whereu € Wg. By (S-CV), either
J(u) & Wiy or f(y) <p) f(u)or f(u) <pu) f(2). It follows that either3; or B,
or B; are satisfiable, henc® is satisfiable.

(R-CEM) Let B be branch of" satisfiable by 4C E M )—model. LetT” be obtained from
T by replacingB by the five branche®, = BU {y : -V}, Bo = BU {z : =V},
By =BU{y =z}, Bs=BU{y <, 2}, Bs = {z <, y}. By (S-CEM), eitherf(y) ¢
Wiy, O f(2) & Wiy, of f(y) = f(2), OF f(y) <p(w) f(2)OF f(2) <p@) f(y)- It
follows that one out of3; . .. Bs are satisfiable, henc® is satisfiable.

(R-UNIV) The property trivially holds, since there is no Universal model satisfying a
branchB containingy : =V/,.

O
With the previous lemma at hand, we can prove the following:
THEOREM 5.4 SOUNDNESS If ¢ is 3-provable then it is2-valid.

PrROOF We show the contrapositive. Létbe notX-valid, i.e. let—¢ be satisfiable by a
Y—model. We show that the tableau starting with—¢ does not close, which means that
¢ is notX—provable. LetI’ be a tableau starting with : —¢. By the previous lemma,
each expansion df is satisfiable, and contains at least one satisfiable brBnche. there
is aX-model M and aPCL—mappingf such thatB is satisfiable in\/ under f). This
branch cannot be closed, otherwise by Definition 4.3, it would contain either: () and
x : —¢, orx :L (for some formulay) or (i) y <, y or (i) y <, z andy : -V, or

z : =V,. But (i), (i), and (iii) contradict the fact thaB is satisfiable. Indeed, if (i) holds,
M, f(z) E ¢ andM, f(z) &= —¢, impossible, oM, f(z) &= L, impossible. If (i) holds
F(y) <@ f(y), which contradicts the irreflexivity ok s,y in M. Last, if (iii) holds,
then f(y) <jw) f(2), and eitherf(y) & Wy, or f(z) € Wy(,). Both cases contradict
the fact that, by definitions s,y ranges oveiVy ..

O

5.2 Completeness of the calculus

In order to prove the completeness of the calculus, we restrict our attention to tableaux
which can be generated starting from an input formula

We first show that no tableau contains infinite descending chains of labels related by the
same relation<,,, provided it does not contain an infinite number of conditional formu-
las labelled with the same label. This is of course true if the tableau starts with a finite
number of formulas (it is interesting to notice that this holds independently from Block-
ing Conditionsl and2 we will introduce below in order to ensure the termination of the
calculus).
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LEMMA 5.5. Let B be a branch of a tableau containing only a finite number of positive
conditional formulase : ¢g = Yo, T : 1 = V1, T : P2 = Yo, ..., T Gl = Vp_1.
ThenB does not contain any infinite descending chain of labels<,. yo, y2 <z y1, -- -,
Yit1 <a Yise oo

PROOF Let B contain a descending chain of labels <. o, ¥2 <z y1, -y Yir1 <az
y;. This chain comes from the successive application6f=) and (F0O) to formulas
x : ¢; = ¢; for 0 < i < n. B then contains the following formulas for < ¢ < n:
Yi 1 0.7G5, Yiv1 <z Yir Yit1 © Qi Yit1 - Doy

Here(T =) has been applied to every formuta ¢; = v; once and with parametgyf
previously (and newly) generated b¥'0) fromy; 1 : =0,—¢;—1. The only way to make
the chain longer is by applyingl” =-) a second time to one of the positive conditional
formulas labelledr on B. Let this formula ber : ¢, = ¥, where0 < k£ < n. ThenB
contains furthe,, 1 : ¢, (together withy,, : =0, =k, Yn+1 <z Yns Yn+1 : Dzgp).

By the transitivity rule, we get y,,+1 <, yr+1. Moreover, B contains alsayyy; :
O, ¢, from which we obtain by7'0) y,,+1 : —¢y, which closes the branch.

O

We can now show the completeness of the calculus. To this purpose, we need to intro-
duce the following notion of saturated branch. This notion intuitively expresses that all
tableau rules which could be applied to the branch have been applied to it.

DEFINITION 5.6 SATURATED BRANCH. We say that a branclB of a tableau is:

—saturatedv.r.t. PCL if:
11lfx:¢pANyY € Bthenz:¢ € Bandzx : ¢ € B.
12 1Ifz:—=(¢p A1) € Btheneitherr: ¢ € Borz: —) € B.
131Ifz:—-—~¢ € Bthenz : ¢ € B.
14 Ifz: (¢ = o) € Bthen for any labely € W, eithery : ¢ € Bory: -V, € B
ory:—-0,-¢ € Bory:y € B.
15Ifz: (¢ = ¥) € Bthenthereis alabe) suchthaty : ¢ € B,y : V,, € B,
y: ) € Bandy : O,—¢ € B.
161Ify:0,¢0€ Bandz <, y € Bthenz: ¢ € B.
1.7 If y : -0,¢ € B then there is a labet such that: <, y € B, z : -¢ € B and
z: 0,0 € B.
18Ifz<,ue Bandu <, y € Bthenz <, y € B
—saturatedv.r.t. = if:
21 forallz € B,z =z € B,
22ifx=y e B,alsoy =z € B;
23ifr=ye Bandy =z € B,alsox =z € B;
24ifzx=2"€ B,y=y € B,z=2 € B,andy <, z € B,thenalsq) <, 2’ € B;
25ife=2"y=vy,y: -V, € B,theny : =V, € B.
26 if x =2 andx : ¢ arein B, then alsar’ : ¢ € B.
—saturatedwith respect tdPCL + (MP) if it is saturated w.r.t. toPCL , and for nox and
y,x: oV 0ory <, x € B,
—saturatedvith respect tdPCL + (CS) if it is saturated w.r.t. t&°CL , saturated w.r.t. to
=,andforallz,y € B, eitherz <, y € Borc =y € Bory: -V, € B;
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—saturatedvith respect tdPCL + (CV) if it is saturated w.r.t. tdPCL , and for all labels
x,y,z,uinB,ify <, z € B,thenalsoy <, u € Boru <, z € B;

—saturatedvith respect tdPCL + (CEM) if it is saturated w.r.t. tdPCL , saturated w.r.t.
to=,andforallz,y,zinB, eithery =z€ Bory <, z€ Borz <, y € B;

—saturatedwith respect taPCL + (AQ), (A1), (A2) if it is saturated w.r.t. t®CL , and
there are no labels: andy, such thaty : =V, € B.

For short, in some of the proofs below we will use the notion of saturated with respect to
single axioms to mean that the branch has the single saturation condition associated to the
axiom. Hence, for instance, in a branBrsaturated w.r.t. to ( CV), whenevgr<, z € B,
then for allu, y <, u € Boru <, z € B.

We can now show the following lemma.

LEMMA 5.7. If ¢ is not X-provable, then there exists a tableau which contains an
open branch starting with: : —¢, and which is saturated with respectR&L + the rules
corresponding to the axioms contained ih

PROOF Since¢ is not provable, all tableaux starting with: —¢ will contain an open
branch. Hence, also the tableau built according to the following systematic procedure
contains an open branclfstep a:) apply all the static rules as far as possible; in case

of branching, make the choice which preserves non-closure (there is always one choice,
by hypothesis){step b:) apply the dynamic rules to the new formulas generated in the
previous step.

By this strategy, every formula in the branch is eventually considered. It can be easily
shown that the branch generated by this systematic procedure is saturated with respect to
the rules inPCL and with respect to the rules corresponding to the axioms contained in
3.

O

THEOREM 5.8 COMPLETENESS OF THE CALCULUS If ¢ is validin all ¥X-models, then
it is X-provable.

PROOFE We show the contrapositive: thatdfis notX-provable, then: : —¢ is satisfi-
able by a>-model. If ¢ is not provable, by Lemma 5.7 the tableau starting with—¢
contains an open brandB which is saturated with respect to the rulesRA€L and the
rules corresponding to the axioms containedin Starting fromB, we build a canonical
model. We have two alternative constructions: one for the case in which neither axiom
(CS) nor axiom (CEM) belong ta:, and another corresponding to the case in which (at
least) one of the two axioms belongs ¥ (and therefore the- symbol appears if3).

Case 1: (CS¥ X and (CEM)¥ 3.
Let Mo = (W, {W,}rew, {Cs }oew, I), where:
1) W=Wg,
2) Foreache e W, W, ={y|y: -V, & B}
3) Foreachw e W,y C, zif y <, z € B;
4) Foreachc € W,I(z)={p|p € ATM andw : p € B}.
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If y <, z € Btheny : =V, & B andz : =V, ¢ B, otherwiseB would be closed. It
follows that ify <, z € B, theny,z € W, andy C, z is well defined. We show the
following facts:

(1) . is an irreflexive and transitive relation oi,. The transitivity immediately fol-
lows from the transitivity of<, entailed by the definition of saturated branch. The
irreflexivity follows from the irreflexivity of<,: by definition of closed branch, 4.3,
if for somey y <, y € B, B would be closed, against the hypothesis.

(2) LetW,N[[#]] # 0. ThenMin,(¢) # 0. SupposeMin,(¢) = 0; lety, € W, N[[¢]].
Sincey; ¢ Min,(¢), there must be an infinite descending chain of elementg{f
Yn+1 Ca Yn Co ... T y1. By definition of C,, this entails that we have an infinite
decreasing sequengg.1 <; Yn <z ... < Y1 € B. By Lemma 5.5 we have a
contradiction.

We now show thaB is satisfiable byl/. Obviously, the identityd(z) = x is aPCL -
mapping by the construction dff. We show thatB is satisfiable byl/~ underid. For
all formula or pseudo-formula we show thata) if = : ¢ € B, thenM¢, z = ¢ and (b) if
T : ¢ € B, thenM¢, x |: —.

—if ¢ € AT M, (a) follows by definition off. For what concerns (b); : ¢ ¢ B, otherwise
B would be closed. By definition of, ¢ ¢ I(z), henceM¢, z ~ ¢, andM¢, z |= —¢;

—The case of boolean combination of formulas is easy and left to the reader;

—If ¢pisy = x, to prove (a) we reason as follows: et Wg. Then we have four cases:

() y : mb € B. Then, by the induction hypothesis, we haVk,y = —, i.e.
Mc,y [E ¥, thusy & Min, ().

(i) y:-0O,—) € B. Then by saturation oB, there is a labet such that: <, y € B,
z : 1 € B. By construction of the model, we have—, y and by the induction
hypothesisM ¢, z |= ¢, thusy & Min,(v).

(i) y :x € B. Then by the induction hypothesis we dét-, vy = x.

(iv) y: -V, € B. Theny ¢ W, hencey & Min,(v).

From (i), (ii), (i) and (iv) we conclude that for aly € W, if y € Min, (), then
Me,y = x, henceM¢g, x = ¢ = x.

To prove (b): sinceB is saturated, then theregssuch thaty : ¢ € B,y : O, € B,

y : V, € Bandy : -x € B. By the induction hypothesisiic,y E ¥ andM¢,y =

—x. Furthermore, sincé3 is open,y : -V, ¢ B, hencey € W,. We show that

y € Min,(v). Suppose that this is not the case; sifde, y = v, there isz C, y and

M, z |= 4. By definition of C,,, we have: <, y € B and by saturation : —¢ € B; by

induction hypothesis we would hawd, = = —, henceM¢, z [~ v, a contradiction.

Thereforey € Min, (), which provesM, z = =(¢ = x).

—If ¢ isT,, (a): letv C, x. By definition ofC,, v <, = € B. From this, by saturation,
it follows v : ¢» € B, and by the induction hypothesi,v | ¢. We conclude that
Mc,z = Oy, (b) sinceB is saturated, there is a labelsuch that: <, = € B,
z : p € B. From this we obtain by construction of the model that, «, and by the
induction hypothesid/¢, z = -, from which it follows thatM¢, « = —0,.

—If (MP) € %, then M satisfies (S - MP). For a contradiction, suppgsg W, or
y C, x. Inthe first casey : -V, € B; in the second case, by definition of,,
y <z ¢ € B. Both cases contradict the saturation condition associated with (MP).
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—If (CV) € X, thenM satisfies (S-CV). Ley . z. By definition of M,y <, z € B,
and by the saturation condition associated with (CV), fouadl W, eitheru : =V, €
Bory <, uoru <, z. Inthe first casey ¢ W,, in the second casg C,. u; in the
third caseu ,, z. It follows that (S-CV) is satisfied.

—If (A0), (Al), (A2) € X, then M satisfies Universality. Indeed, by definition of
saturated branch, forall, y € Wg y : =V, € B, hence by definition otV,,, y € W,
i.e. W,=Wp=W.

Case 2. (CSE X or (CEM) € X. Given a branchB saturated with respect to all the
rules inX, we build the canonical model as follows. Forally € W, we letx =), y iff
x = y € B. Notice that=), is an equivalence relation. Indeed, singés saturated w.r.t.
=, = (and hence=,,) is symmetric, transitive and reflexive according to Definition 5.6,
2.1,2.2,2.3.
Forallz € Wp, we let[z] = {y : « =5 y}. We can now define the canonical model
Mc = (W, AW alew s {C 2] Hajew, 1), Where:

—W = {[w]/ =am}, i. e. itis the set of all the equivalence classe$lgf with respect to
=M:

—y] Cy [2] if y <, z € B. Notice that since3 is saturated w.r.t=, this definition is
well given, i. e. it does not depend on the choice of the representatieg,df], [z],
since, according to Definition 5.6, 2.4, fof = =,y = y, andz’ = 2z, y <, z iff
Yy <m0 2 € B;

—ly] € Wi if y : =V, ¢ B. Notice thati¥,; is well defined because according to
Definition 5.6, 2.5]y] € W/, does not depend on the representatives of the clggses
and[z] (if y=y' € Borz =2’ € B,theny : =V, € Biff y : =V, € B).

—I([z]) ={p:p € ATM andz : p € B}. Notice that alsd ([z]) is well defined, since
by 2.6 in Definition 5.6, ifz : p € B andxz = 2’ € B, then alsar’ : p € B.

Similarly to what done for Case 1 above, we show that:

1 [, isirreflexive, transitive, and satisfies the Limit Assumption. Singgis defined as
in Case 1, the proof is the same.

2 For all formula or pseudo-formula, we show thata) if z : ¢ € B, thenM¢, [z] = ¢
and (b) ifz : ~¢ € B, thenM¢, [z] |E —¢.

—for ¢ € ATM (a) follows from definition of/. For (b): ifx : —¢ € B, then
x : ¢ ¢ B, otherwiseB would be closed. By definition df, it follows that¢ ¢ I(x),
henceM¢, x |~ ¢, andMe, x = —¢;

—if ¢ is a boolean combination of formulas or a pseudo-formyag or a conditional
formulay = x, we reason as in Case 1.

3 If (CS) € %, thenM satisfies (S-CS). Indeed, by Definition 5.6, eithe= y € B
(and[z] = [y]) orz <, y € B, and[z] C5 [y].

4 If (CEM) € %, thenM satisfies (S-CEM). Indeed, by Definition 5.6, for ally, z,
eithery = z € B, and by construction of¢ [y] = [z], ory <, z € B, and by
construction ofM¢, [y] Ty, [2] Or 2 <, y € B, and by construction of/¢, [z] Ty
[y]-

5 If (MP) € %, thenM satisfies (S-MP). We reason analogously to Case 1.

6 If (CV) € X, thenM( satisfies (S-CV). We reason as for Case 1.
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7 If (A0), (A1), (A2) € X, thenM satisfies Universality. We reason as for Case 1.

O

6. TERMINATION OF THE CALCULUS

The calculus presented above 8€L and its extensions can lead to non-terminating
computations due to the interplay among, on the one side, the (Hles-) and (FO)
generating new labels, and, on the other side, {flle=), whose applications to the new
labels may generate new formulas to whidh =) or (F0O) can again be applied. For
instance, the tableau construction for the formula T = —=(T = p) can produce an
infinite branch (containing : =(T = p),y : T,y : O.~T,y : =p,y : ~(T = p),

and so on. In this section, we show that the calculusHGL and its extensions can

be made terminating. The solution we propose is similar to the one we have adopted to
prove the termination dPCL in [Giordano et al. 2003]: in order to avoid the generation

of infinite branches, we introduce a systematic procedure to build a tableau and we put
suitable blocking conditions on the applications of ru/&s=-) and (#'0). We show that

the systematic procedure terminates, whence it does not lead to generate infinitely many
labels. Moreover, we show that the completeness of the calculus is not lost if we adopt the
systematic procedure with the mentioned blocking conditions.

First of all, let us assume that the tableau construction does not allow any redundant
application of the rules, where a redundant application of a rule is defined as follows:
Redundant application of a ruld.et B be a tableau branch artla tableau rule applied to
B which producesy, ... By, the extensions aB. The application of R isedundanif for
somei (with 0 < ¢ < k), B; = B. It can be easily seen that a branBlcan be extended
to a closed branch just in case it can be extended to a closed branch without any redundant
application of the rules. In particular, we assume that(ffie=-) applies exactly once to
each formula and label on the branch. The reason is that if we apply the rule twice, the
second application is redundant. Additionally, we assume that a branch does not contain
repetitions of labelled formulas: labelled formulas which are already on the branch are not
added again when applying new rules.

We define asystematic proceduffer constructing the tableau for a given formula a.

First, as in [Buchheit et al. 1993], we assume that labels are introduced in a tableau
according to the ordering, that is to say, given a label in the tableaug < y for all
labelsz that are already in the tableau wheis introduced. The relatior is a total order.

Furthermore, we say that two labelsandy are B-equivalent writtenz =5 y, if they
label the same formulasi.e.{f) |x: ¢ € B} ={¢ |y : ¢ € B}.

Last, we define the following procedure for constructing the tableau for a givem.

This is the same procedure described in the proof of Lemma 5.7. The procedure executes
repeatedly two stepgstep a)applies all the static rules as far as possitdtep b)applies

a dynamic rule( FO) or (F =) to a labelz such that there is no labglwith y < « to

which a dynamic rule is applicable.

Observe that the procedure respects the following conditions: a dynamic rule is applied
to a labelz only if no dynamic rule is applicable to a labgkuch thaty < z; a dynamic
rule is applied only if no static rule is applicable.

We observe that (step a) terminates after a finite number of rule applications. Indeed,
none of the static rules adds new labels and the number of pseudo-formulas built from a
finite set of formulas (subformula property) and from a finite number of labels is finite. As
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we require that the tableau does not contain redundant applications of rules, each applica-
tion of a rule in step (a) must at least add a new pseudo-formula to the branch, and thus
the number of rule applications must be finite. After (step a) is terminated, the branch is
downward saturated except for the formulas of the farm—(¢ = ) andw : =0, ¢. In
(step b) the application of a dynamic rule introduces a new world.

To avoid the systematic procedure to repeat forever, by continuing to generate new
worlds, we put the following blocking conditions on the rulgs =) and (FO). These
are essentially loop checking conditions, that can be added as side conditions to the rules.
Before we formulate the conditions, we need to introduce the following notation: given a
branchB, we letBox g, .. the set of all pseudo formulas, ¢ such thate : O,¢ € B or
z' : O0,¢ € Bandz <, 2’ € B (informally, the positive boxed formulas which hold:gt

The blocking conditions are then listed below. The idea behind Blocking Condition 1
and Blocking Condition 2a is the same: if two labglandz satisfy the same conditional
and propositional formulas, then, and <, can be defined in the same way. For this
reason, only one out of, and <. needs to be explicitly built by applying all the rules
of the calculus. In particular, &, is the relation which is built the first, we can avoid
applying rules (F2) and (F=) toy : ~(¢ = ¢) andz : -0, ¢ respectively.<, will then
be defined as, by step 3 in the construction below. The idea behind Blocking Condition
2b is that applying rule (1) to = : —0,¢ cannot add anything more on the branch than
what has been obtained by applying the same rule to-0,¢, if all the positive modal
formulas that would hold in’ generated by applying (B) to « : =0, ¢, also hold inw’,
generated by applying (B) to w : ~0,¢.

—Blocking Conditionl: do not apply (=) toy : —(¢ = %) if there is az < y such that
Z=BY.
—Blocking Condition2: do not apply(FO) to x : —=0,¢ on a branchB if one of the
following conditions holds on the branch:
a: thereis & < y such that =p y.;
b: «: -V, € B, and there isv : ~0,¢ such thatv < z, and for ally; s.t.y; =y € B,
Boxpy,.« C Boxp y, w-

In case (R-MP) or (R-CS) belong to the calculus, Blocking Condition 2b is applied only
if z is distinct fromy, andz =y ¢ B.

The two theorems below show that the calculus with the blocking conditions terminates
and is complete.

THEOREM 6.1. The calculus with Blocking Condition 1 and Blocking Condition 2 ter-
minates.

PROOF

Let us suppose that a systematic attempt to prove a formula goes forever. Then, there
must be an infinite branch S containing infinitely many different labels because it does not
contain repetitions and only a finite number of formulas can appear in the tableau (by the
subformula property). Since labels are introduced by rafs=-) and (FDO), it follows
that the branch must either contain infinitely many applications of the(fdle=) to a
formula—(¢ = ) or infinitely many applications of the rul@'0) to a formula—-0O,¢
(or both).

For the first case, it is not possible to apply rgfé =) infinitely many times without
violating Blocking Condition 1. To see this, each time the rule is applied to a formula
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y : (¢ = ), by Blocking Condition 1, there is no < y on the branch such that=5 y

(that is, there is some formuta € £ which has a different value ip and inz). This,
however, cannot occur infinitely many times as, by the subformula property, the formulas
of £ occurring on the branch are finitely many, and their number is linear in thensize

of the initial formula. Hence, the number of different subsets of formula& imO(2").

More precisely, let us consider the sequence of labgls. . , yx to which the dynamic rule

(F =) has been applied in the order. By definition of (step b) in the systematic procedure,
it must be that); < ... < y,. By Blocking Condition 1, it must be that, for eaghwith
i=1,....k,y; Zp yp forallh = 1,... i — 1, and hence the formulas labelled by each

of the labels must be different. Of course, this cannot be true infinitely many times.

For the second case, it is not possible to apply (#&) infinitely many times without
violating Blocking Condition 2. More precisely, it is not possible that rigd) applies
infinitely many times to a formula : —0,¢, for different values of the labels andy
without violating Blocking Condition 2.

Observe that it is not possible to apply'd) infinitely many times to a formula: :
—-0,¢, for different values of the labg, without violating Blocking Condition 2a. The
argument is the same as for Blocking Condition 1. The number of possible applications
of the rule to different labelg is O(2"). On the other hand, it is not possible to apply
(F'O) infinitely many times to a formula : -0,¢, for a giveny but for different values
of the labelz, without violating Blocking Condition 2b. Indeed, whéa'0) is applied
to x : -0, ¢, for each formular’ : ~0O,¢ on the branch there must be at least a positive
boxed formulad,« which holds inz but does not hold in’. Again, this cannot be true
infinitely many times. More precisely, the number of possible applicatior{g'af) to a
formulaz : -0, ¢, for different values of the label is O(2").

O

THEOREM 6.2. The calculus with Blocking Condition 1 and Blocking Condition 2 is
complete.

PrROOEWe show that given an open branBh{obtained in the calculus with the blocking
conditions), we can build an open saturated branch w.r.t. Definition 5.6. We know from the
proof of Theorem 5.8 that this branch is satisfiable, from which we can conclude, similarly
to what done for Theorem 5.8.

For the moment, we only consider the basic calculuffoL. . We saturate the branch by
the following steps. We first consider Blocking Condition 2b and then Blocking Conditions
1 and 2a.
Step 1: For eachr : =0, ¢ to which Blocking Condition 2b has been applied, we proceed
as follows: ifz = z; € B, and Blocking Condition 2b has not been appliedta —-0,¢,
nothing needs to be done (since the ‘right’ relations have been put byFule<) applied
to B). If this is not the case, lety : —-0O,¢ be the formula (minimal with respect to
<) that caused the application of Blocking Condition 2b. Sifg&l) has been applied
tow : —0,¢, there isz’ <, w in B such thatz’ : Oy¢, 2’ : —¢. We letz’ <, .
Furthermore, iy = y; € B, 2’ = x| € B, we also introduce’} <,, = in the branch.
Step 2: For all <, if 2” <, 2’ anda’ <, z are in the branch, we add to the branch
' <, .
We call B’ the branch obtained from Step 1 and Step 2 above.

We prove the following fact foB’:
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Fact 11If 2/ <, z € B’, thenBozp ., C Boxp,,, and ifO,¢ € Boxp, ., then
' : ¢ € B’. We reason by induction on the numberof applications of transitivity
needed to introduce the relation <, x in B’ at Step 2. Ifn = 0, then eitherz’ <,

x € Bora’ <, z has been introduced by Step 1. In the first case3iit holds that
Bozp .. C Boxp,y . by definition ofBoxp , .. Furthermore, ih,¢ € Boxp 4 ., then
eitherz : O,¢ € Borz: Oy¢ € Bandx <, zin B. In the first case, we immediately
conclude that’ : ¢ € B since rule(T0) has been applied iB. Hence alsa’ : ¢ € B’.

In the second case, by (Trans) (that has been appli&) &dsoz’ <, z € B; we therefore
concluder’ : ¢ € B since rule(T'0) has been applied iBB. Also in this casez’ : ¢ € B’.

If 2’ <, « has been introduced at Step 1, then thereuare,, y;, 2} such that} <,
we€ B,y=uy € B,2' =2} € B,andBozp,,, C Borp,y.. Since rule (E <)
has been applied t8, alsoz’ <, w € B, hence by what said just abovBozp ., <
Bozxg ., hence we infer thaBox g, , C Boxp y .. Furthermore, il ¢ € Boxpg y 4,
then alsad,¢ € Boxp ., and we conclude that : ¢ € B by reasoning as done above.

If n > 0, thenz’ <, x has been introduced by transitive closure at Step 2 from (i)
x' <, «” and (i) 2” <, =z. By inductive hypothesis, the property holds for (i) and
(i), henceBoxp > C Borpya.r C Boxpye. If Oy¢ € Borp,., we infer that
Oy¢ € Boxpy,.; fromthis, by inductive hypothesis on (i), we conclude tifat ¢ € B’.

By using Fact 1, we can prove that the following saturation conditions hall ifFact
2):

Fact 2

(i) Ifz: 0,0 € B andz’ <, € B’ thenalsar’ : ¢ € B'. Indeed, ifz : O,¢ € B,
then alsar : O,¢ € Bi.e.0,¢ € Boxp, ; by Fact 1, we derive that' : ¢ € B'.

(i) If 2 : -0,¢ € B’, and Blocking Condition 2&as not been applied to the formula,
then there is ilB’ z’ <, z, 2’ : O,¢, 2’ : —¢. We distinguish two cases: if Blocking
Condition 2b has been applied to the formula, this holds by constructi® (Step 1);
if Blocking Condition 2b has not been applied to the formula, the property holds since
rule (F'O) has been applied to the formulaih

(iif) <, is transitive. This follows by definition of Step 2.

(iv) B’isopen, since it cannot happen that one of the closure conditions below is satisfied.
Indeed it cannot happen that:

[[] x: ¢ € B"andz : —¢ € B’, since this does not happen i which is open,
and no labelled formula has been modifieddh

[-] For no labelz andy, z <, = € B’. For a contradiction, suppose<, = € B’.
Then clearlyx <, « ¢ B (otherwiseB would be closed, against the hypothesis). This
means that <, = has been inserted iB’ either by Step 1 or by Step 2. Suppose it has
been inserted at Step 1. Then thereargy,, such thate; = z, y1 =y, 1 : -0y, ¢ €
B and thereisv s.t. w : -0y, ¢, 21 <, w andx; : O,¢ are inB, henceB would be
closed, against the hypothesis.
If z <, « has been inserted at Step 2 by transitivity from relatiapgreviously intro-
duced, then there must be a chain<, z;... <, z, <, = where all these relations
<, either belong taB or are introduced by Steph Notice that there must be at least a
x; <y x; that was not already i and that has been introduced by Step 1 (otherwise
by (Trans)z <, « € B, andB would be closed, against the hypothesis). This means
that for somer;,,y; such thaty;, = x;,y1 =y € B, z;, <y, z;, and for somep,
xj : "0y, ¢, x;, : Oy, ¢ € B, z;, : ~¢ are inB. By rule (E-¢), alsox; : 0,,¢ € B
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andz; : ~¢ € B. By definition of Boxp,y »,, O, ¢ € Boxrp,.,. Notice that if
T <y x1... <y T <y x, Dy construction alse <,, z1... <, T, <, , and by
transitive closure of Step 2, alsg <,, z;, and by Fact 1 above; : ¢ € B. However,
this would entail thaf3 is closed, against the hypothesis.

We conclude that for n@, y it can happen that <, = € B’, i.e. <, is irreflexive.

[1 z <y z,z : 2V, orz : =V,. Indeed, ifx <, z € B this cannot hold, since
it does not hold inB (otherwiseB would be closed) and no new formuta: =V, has
been introduced. I£ <, z has been introduced by Step 1 or Step 2, we can reason as
follows. First, it cannot be that : -V, € B’, otherwisez : -V, € B, and Blocking
Condition 2b would not have been applied to any -O,¢ € B, hence the relation
would not have been added. For what concerns-V,, we can easily verify that if a
relationz <, z has been inserted by Step 1 or Step 2, there should alreadyba in
such thatr <, w, and ifz : =V, € B, B would be closed, contradiction. We conclude,
sincex : —V,, cannot be introduced by step 1 or 2.

Until now, we have dealt with Blocking Condition 2b. In order to deal with the other
blocking conditions, we continue our saturation process by Step 3.
Step 3: Let Blocked; 2, be the set of labels to which Blocking Condition 1 or Blocking
Condition 2a have been applied. Forglle Blocked, 2., let z; be the label minimal w.r.t.
< such that; =g y;. Notice thatBlocked, 2, is disjoint from the set of all corresponding
z; (indeed, to these labels neither Blocking Condition 1 nor Blocking Condition 2a have
been applied); we can hence perform all the substitutions described below in one single
step.

We proceed as follows in order to build the new bradhfrom B’.

1 - We remove from brancl’ all the relations<,,, and all the formulas: : -0, ¢, z :
Oy, 0,2 : Vy, andx : 2V,;

2 - We reinsert on the branch,, each time there is,;

3 -Weinsertz : O,,¢, x : =0y, ¢, x : V,, andz : -V, each time there is : O, ¢,
x -0, ¢,z : V,, andx : =V, respectively;

Fact 3: The branchB” so obtained is open and saturated WAL :
[saturated:]

(i) for the saturation conditions that concern the propositional operators, this is obvious
(indeed, for any non-boxed formufaif = : ¢ € B, thenx : ¢ € B’, andB’ is saturated
sinceB is saturated w.r.t. propositional rules)

(i) if x: ¢ = ¢ € B”, we distinguish two cases.

1: « & Blocked; 2,. In this case, the property holds sinee ¢ = ¢ € B, hence
(T =) has been applied to it, and it can be easily shown that the formulas introduced by
(T =) in B still hold in B".
2:if z isy; € Blocked; 24, then alsoz; : ¢ = « isin B and inB”. Furthermore B”
is saturated w.r.tz; : ¢ = 1, i.e. for allz’ eitherz’ : ~¢ orz’ : =0, ¢ orz’ : ¢
orz’ : =V, isin B”. By construction, ifz’ : —=0,,¢ € B” alsoz’ : =0,,¢ € B”,
andifz’ : =V,, € B”, alsoz’ : =V,, € B”. It follows that B” is also saturated w.r.t.
Yi i o= 1.
(i) if z: (¢ = ¢) € B”, andz & Blocked; 24, then for some’, 2’ : V,, 2’ : O,—¢,
z' ¢, 2’ mp € B. All these formulas are iB”. If = isy; € Blocked; 24, then also
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z;: ~(¢ = ¢ € B”),and for somer’, 2’ : V., 2’ : O,,—¢, 2’ : ¢, 2’ : b € B”. By
construction, alsa’ : V,,,, z’ : O,,—~¢, andB” is saturated w.r.tz : (¢ = ).

(iv) if z : =O,¢ € B”" andz’ ¢ Blockeds 2., then by Fact 2 (ii) above, there is in
Bz <, x st z” : Ou¢, 2" : =¢. All these formulas still hold inB”, which is
hence saturated w.rk: : =0,/ ¢. If 2" isy,; € Blocked; 24, then by construction also
x : -0, ¢ for z; corresponding ta;. Furthermore, there is” <., z, 2" : O,,¢,
z” : =¢in B’, hence inB”. By construction oB”, alsoz” <, z, 2" : O,,¢, andB"
is saturated w.r.t. negative boxed formulas.

(v) if x : Op¢ € B” andz’ ¢ Blocked; o, then by Fact 2 (i),B” is saturated w.r.t.
the formula. Ifz’ is y; € Blocked; 24, then the formula has been inserted only if
x : O, € B” for z; corresponding t@;. The property follows from the fact th@&"” is
saturated w.r.tz : O, € B’, and<,, has been defined as.,.

(vi) It can be easily shown that all the obtained are transitive, by construction and from
Fact 2 (iii).

[open:]
B is open, since it cannot happen that one of the closure conditions below is satisfied.
Indeed it cannot happen that:

- x: ¢ andx : —¢, since by Fact 2 (iv) this does not happemdh and the only formulas
that have been modified iB” are the boxed formulas with index, which behave well,
since the corresponding boxed formulas with indekehave well.

- x <, x. By Fact 2 (iv) above this does not happerif and it does not happen for the
<, modified at step 3, since it does not hold for the corresponging

-x <y z,x: oV, orz: 2V, By Fact2 (iv) above, this does not hold B. If
y € Blocked, 24, this does not hold, since it does not hold for the corresponegling

We still have to show that if some of the rules for the extensio3Qif are included in
the calculus, the brancB” obtained by the construction above is saturated with respect to
the corresponding conditions.

Fact 4: If any of the following rules belong to the calculus, thghis saturated with
respect to the corresponding conditions.

(Rules for =) If the rules for the equality belong to the calculus, brarighis saturated
W.It. =.
For what concerns conditions 2.1, 2.2, 2.3 of Definition 5.6, this is obvious, since it
holds for B, and the equalities are not concerned by the construction. For what concerns
24, letzx =2’y =y, 2 = 2 andy <, zin B". If y <, z € B”, it can be easily
shown thaty’ <, z” € B”. Indeed,<, is not modified by step 3, this holds by rule
(E— <)ify <, z € B;if y <, z € B’ this holds by construction: fay’ andz’ this
is specified at step 1. Faf, by (E-¢) alsoz’ : =0O.¢ € B. If 2’ : =0_¢ € B has not
been blocked, then the relation has not been introduced at step’L.4#3,.¢ € B has
been blocked, the chosenmust be the same as fer: -0.¢ € B, hencey <, 2’ has
been introduced iB’, and alsoy’ <, 2'. If <, has been modified by step 3, and set
equal to some<,, this holds since it holds for .

(R-CEM) Since (R-CEM) has been applied to all labelsAnfor all z, y, z, it holds that
y=z€ Bory <, z € Borz <, y € B. If <, is not modified by step 3, then
y=z€ B"ory<, z€ B"orz <, y € B". If <, is modified by step 3, then it is
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defined as<, for which the property holds. In all cas€3’ is saturated w.r.t.
PCL + ( CEM).

(R-UNIV) In the presence of rule (R-UNIV), there is no formula -V, in B, hence
there is no such formula iB”, andB” is saturated w.r.tPCL + (A0),(A1),(A2).

(R-CV) Evenif (R-CV) has been applied 8, the saturation condition associated to (CV)
might not hold forB”, since new relations might have been inserted by steps 1, 2 or 3.
In this case, we proceed as follows: we saturate w.r.t. (CV) the brBhobtained from
step 1 and step 2. It can be easily seen th&'ifs saturated w.r.t. (CV) (i.e. ak,
are modular), the same property holds &f. In order to saturat®’, we introduce the
following step 2’ just after step 2 in the construction above:

Step 2': We define the saturated bransh* as follows. We first leB'* = B’. We then
consider eacly <, z € B: if Boxp 5. C Borpg ,,y (strictly included), then for each
20 St Boxp y,. = Boxp z ., We lety <, zp € B'*.

We show that3'* is saturated w.r.t. the conditions of Fact 2, w.r.t. (CV), and open.
[saturated:]

() Ify: 0,0 € B* andz <, y € B'*, thenz : ¢ € B'*. First of all, notice that
y : O,¢ € B, since the boxed formulas have not been changed by steps 1, 2, 2'. If
z <, y € B’, this follows from Fact 2 (i). Ifz <, y has been added at step 2’, then
there isy’ s.t. z <, ¥ € B, andBox g, = Bozrp ,, . The property follows by the
application of rules (Trans) and @) in B.

(ii) holds since ify’ <, y € B',thenalsq/ <, y € B'*.

Before dealing with transitivity (property (iii)) we show that all the relatiensin B'*
are asymmetric and modular. Transitivity will be a consequence of these two facts
<, is asymmetric: suppose for a contradiction that, = € B*, andz <, y €
B'*. Then clearly at least one of the two relations must have been added by step 2’
above (the relation is asymmetric BY, by irreflexivity and transitivity): ifz <, y has
been introduced at step 280z, C Borp, .. This means thag <, z cannot be
introduced by step 2’, and that it cannot belongo(otherwise by Fact Bozp ., C
Box gz 4, contradiction). We can reason in the same way4f, z is introduced at step
2'. We therefore conclude that eithgr<, z € B'* or = <, y € B'* but not both, i.e.
<, Is asymmetric.

The relation<, is modular, i.e. for all:,y, z,u if y <, z € B'*, then eithery <,
we B*oru <, z € B*. If y <, z € B, this is obvious by the application
of (R-CV)inB. Ify <, 2z ¢ Bbuty <, z € B, then there is a chaip <,

20 <g ... <z 2Zn <z z (Wherezy <, ... <, 2z, might be empty) such that each
single relation either belongs 1B or is inserted at step 1. Consider ngw<, zq (if
20 <z ... <g zpn IS empty, considey <, z). We distinguish the following cases.

1) Ify <, z0 € B, then by (R- CV) applied td3 it can be easily shown that either
y<xueBoru<zzoeB hencey<xueB oru<xzoeB* i.e. by
transitivity of <., u <, z € B'*, and the property holds. 2)#f <, z, has been inserted
by step 1 fromy <, w € B, we know by step 1 thaBozp ., C Boxp s, (indeed,
by step 1 for some, w : -0,¢ € B whereag, : O,¢ € B). By definition of step 1,
we know thatBoz g 4 ., € Borp .., and by Fact 1 thaBoxp . C Boxp y »,, from
which we conclude thaBoz s . C Boxp 5 .,. We distinguish two cases: by (R- CV)
applied toB, eithery <, z € Borz <, w € B. The first case is not possible (since
we are working under the hypothesis that, = ¢ B). From the second case, and Fact
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1, we conclude thaBox g 5 . C Boxrp ;. ., henceBoxp , . = Boxp ., and by step

2, y<gzE€ B'*.

We are left with the case in whigh<, z has been inserted at step 2'. In this case, there
is 2’ such thatBoxp ;. = Borp s,y <y 2’ € B, andBozg ;. C Boxp s . By

(R- CV) applied toB, eithery <, u € Boru <, 2z’ € B. Inthe first case, we are done.
In the second case, by Fact 1 we know tBatr , .» C Bozp ... We distinguish two
cases: ifBoxp ., = Borp ., theny <, u has been inserted by step 2 m*. I
Boxp ;.. C Borp .., thenu <, z has been inserted by step 2'*. The property
therefore holds.

Asymmetry and modularity of, entail transitivity (vi): letu <, y andy <, z in B'*.

By modularity, eithery <, u € B oru <, z € B'*. The first case is not possible by
asymmetry ok ., hence we conclude that<, z.

[open] The only possible closure condition that might have changed with saturation
step 2’ is thaty <, y might have been introduced i *. However, it can be easily
verified that this cannot happen.

Fact 3 above shows that step 3 appliedt® (that satisfies Fact 2) is open and saturated.
It can be easily seen tha&” obtained by step 3 fron8'* is saturated with respect to
(CV). Furthermore, it can be easily verified that if (R-CEM) and (R-UNIV) belong to
the calculus, theB” is also saturated w.r.t. (CEM) and (UNIV). Last, if the rules for
equality belong to the calculis” is saturated w.r.t=. We can conclude that if (R - CV)
belongs the calculus, the calculus with Blocking Condition 1 and Blocking Condition 2
is complete w.r.t. to modular models.

(R- CS) Since (R- CS) has been applied® for all z,y, x <, y € B. However,<,
might have been modified at step 3, hence the property might not h@d.itf <, has
been modified at stey and it has been put equal 0., we adjustB” by the following
step 4:

Step 4: We defineB”* from B” as follows: for all<, modified at step 3, for alt;
equal tox or such thatr; = x € B”:

—we remove all formulas <, z;

—we introducer <., yforallyst.x =y ¢ B” andy : =V, ¢ B”

—we remover : ~0,, ¢;

—if z : ¢ € B”, thenwe add: : O,, ~¢ to B”, and remove : O,, —¢ from B”.

The obtained branch is obviously saturated w.r.t. (CS). Furthermore, we show that the
obtained branch satisfies all the properties of Fact 3. For (i), (v) this is obvious.

As far as (ii) is concerned: if : ¢ = ¢ € B"*, (i.e. z : ¢ = ¢ in B” and inB),

then for ally s.t. y = = ¢ B it can be easily shown that the saturation condition corre-
sponding to the conditional is satisfied (by Fact 3 (ii))z & y € B, theny : =0,-¢
might have been removed froB’. However, it can be shown thatyjf: -0,—-¢ € B”,

this can only be because, has been modified by step 3 (otherwise in the presence of
(R-CS) a branch containing : -0,—-¢ andy = x would be closed, indeed Blocking
Condition 2b is not applied in this case). At step<3, has been defined as, for some
zst forallg € £,z : ¢ € Biff x : ¢ € B. In particular,z : ¢ = ¢ € B. Then,
eitherz : =¢ € B orz : ¢ € B (all the other branches being closed, in the presence of
(R-CS)). Hence als@ : ~¢ € Borxz :v¢ € B,i.e.xz:—~¢p € B orx : ¢ € B”, and

the branch is saturated w.rit.: ¢ = 1.
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For (iii), let 2 : ~(¢ = 1) € B"*. Alsoz : ~(¢ = ) € B", and by Fact 3 (ii), there
isysty:o,y: 0,79, y:—areinB”. If <, has not been modified at step 4, this
still holds. Otherwise, ik, has been modified at step 4, then it had been defined equal
to some<, at step 3. We distinguish two cases. In the first case;¢ € B”, hence

no formulay : 0,-¢ is removed from the branch, and the property still holds. In the
second case; : ¢ € B”, (hencex : ¢ € B) and by the construction aboye: O,—¢

has been removed from the branch in all cases in whiehx ¢ B”. Notice that in this
case, by step 3, also: ¢ € B andy : O,—~¢ € B. By (R-CS), either: <, y € B or

z =y € B. The first case is not possible (otherwise, ¢ € B, i.e. z : ¢ € B,
contradiction). It must hence be= y € B, i.e. alsoz : —¢ € B, and therefore also

y : = € B. From this we conclude that : -y € B"*, furthermore by step 4 also

2 : O,-¢ has been added 8" *. It follows that the saturation condition associated to
x : (¢ = 1) is satisfied.

(iv) continues to hold, since the only relations that have been changed are the relations
of kindy <, x, and these can only affect the property for formutas-0, ¢; however,
these formulas have been removed from the branch;

(v) Considerz : O, ¢. If <, has not been changed by step 3, this holds by Fact 3 (v).
Otherwisex’ : ¢ € B” (otherwise the boxed formula would have been removed from
the branch). The only added relationifs<,. x, and the property continues to hold.

(vi) It can be easily verified that the relatien, so obtained is still transitive.

It can be easily shown that if (R-CEM), (R-UNIV) belong to the calculus, tBen is
saturated w.r.t (R-CEM) and (R-UNIV) respectively. If the rules for equality belong
to the calculusB”* is saturated w.r.t=. If (R-CV) belongs to the calculus and step
2" has been performed between step 2 and stdp 3,is saturated w.r.t. (R- CV): let

y <, z € B"*. We distinguish two cases. First cagex, = ¢ B”, hence the relation
has been added iB”* by step 4, i.ey = « € B”. Notice that in this case for all,
eithery = u € B”, andu <, z has been introduced iB"* ory = v ¢ B”, andy <, u

has been introduced iB"*, hence the property holds. Second cages, z € B”.

By what shown above (in the case of (R-CV)), we know that5ith for all u either

y <, u € B"oru <, z € B”. If the relation<, has not been modified by step 4, this
holds inB"*. If <, has been modified, consider two cases forallf y <, u€ B,

this might not hold inB"* because: = u € B, and the relation has been erased by
step 4. However, in this case<, z has been inserted by step 4.ulf<, z € B” but
U<z z¢g B"*, then the relation might have been erased by step 4 becausec B”.
However this case is not possible since ajse, z would have been erased by step 4
(whereas by hypothesis<, z € B"*).

Furthermore, the modifieB” is still open. Indeed, it can be easily verified that none of
the closure conditions have been insertedirt.

(R-MP) First, notice that if (R- CS) belongs to the calculus, we do not need any extra
construction, since it can be easily shown tiat* obtained by step 4 above (case of
(R-C9)) is also saturated w.r.t. (MP). We consider the case in which (R- CS) does not
belong to the calculus, and we describe the following construction which is alternative
to the construction for (R- CS). In order to build a branch saturated w.r.t. (MP), we
need to perform the following step 4.

Step 4:for all z, for all z; equal tox or such thatr; = = € B”, for all 5, remove from
B" y <., xandz : -0, ¢. If (R-CV) belongs to the calculus, and<,, r € B”,
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andy <., r has not been removed froB’, we introducer <, r. We letB"* be the
obtained branch.

We show thatB"* is saturated w.r.PCL + (MP). All the properties of Fact 3 still hold

in B"*. As far as (i), (iii) are concerned, this is obvious. For (ii),det¢ = ¢ € B"*.
Alsoz : ¢ = ¢ € B, and for allz, rule (T =) has introduced irB eitherz : —¢
orz:v¢orz:-O,-¢orz: -V, If z=ax ¢ B, the same formulas hold iB"*,
hence the property holds. #= x € B”, then also: = x € B, and by (R- MP) the
branches containing : —=0,—¢ or z : =V, would be closed (recall that in this case
Blocking Condition 2b would not be applied to: —0,—-¢). In this case, we hence
know that either: : —¢ or z : ¢ are inB and hence iBB”*. We conclude that also in
this case the property holds. As far as (iv) is concernedy forO, ¢ with z = = ¢ B”,

the property still holds; on the other handzif= z € B”, thenz : —0O,¢ has been
removed. For what concerns (v), the sensitive caseas4f,, r has been introduced
atstep 4 and : 0,,¢ € B *. We distinguish two cases on the relatipn<,,  that
originated the insertion of <,, rin B"*: if y <,, r € B, then, given that (R-CV)
and (R-MP) have been applied & = <,, r € B,hencer: ¢ € B'*. If y <,, r € B

has been introduced at step 1, ther;, 7o € B, with Bozp z, » € Boxp 5, .r,- BY
(R-CV) and (R - MP) applied t@3, we conclude that <., ro € B, hencezr : ¢ € B,
andz : ¢ € B"*. We can repeat the same reasoning to conclude that the same holds if
y <., T has been inserted at step 2. If it has been inserted at step 2’, then forgome
S.t. Boxg g »r = Boxp g, vy Y <z, 7o € B. By (R-CV) and (R-MP) applied td,

we conclude that <,, o € B, hencexr : ¢ € B,andz : ¢ € B *. Last, ify <,

has been inserted at step 3, thepy has been defined equal to soresuch that for all

Y € L,z : ¢ € Biff z: ¢ € B. Ifthe relation has been introduced, ther . r € B'*
obtained from step 2'. By repeating the same reasoning done for the previous cases
(applied toz instead ofz,), we derive that : ¢ € B, hence alsa:; : ¢ € B, and by

(E — ¢) appliedtoB alsoz : ¢ € B,i.e.x : ¢ € B *, from which we conclude. As far

as (vi) is concerned, it can be easily shown that transitivity still holds: the sensitive case
is the one in whiche <., r has been inserted at step 4, and,, ' € B"*. In this
case by step 4 alse <., ' has been inserted, hence transitivity holds. Furthermore,
B"* is open: the only closure condition that could be inserted by steprd<ig, z,
however it can be easily verified that this cannot happen. It can be easily shown that if
(R-CEM), (R-UNIV) belong to the calculus, the® * is saturated w.r.t (R-CEM) and
(R-UNIV) respectively. If the rules for equality belong to the calcuRis® is saturated
w.rt. =. If (R-CV) belongs to the calculus: lgt<, z € B"*. If y <, z € B”, by what
said for (R- CV), forall uy <, u € B” oru <, z € B”. In the first case, it could be

y <, u & B"* in caser = u. However, in this case, <, z has been introduced at step
4. In the second case, it might be<, z ¢ B * because: = z € B”. However this
case is not possible since algo<, 2 would have been removed fro®’. If y <, z

has been inserted at step 4, thee- z € B and for some-, r <, z € B"* (without
being inserted at step 4). By what said above, either, w € B"* oru <, z € B"*.

In the second case, the property holds. In the first casg, « has been inserted at step
4, and we can conclude.

O

In the proof of Theorem 6.1, we have already observed that the number different labels
to which rule(F =) can be applied on a branch (2"), wheren is the size of the
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initial input formula. As there ar@(n) distinct negative conditionals(¢ = 1) to which
(F =) can be applied in a label, the overall numbef Bf=-) applications on a branch is
o2m).

Concerning rulg F'00), we have seen that it can be applied to a formuta—0,¢ on
a branch:O(2™) times, for the different choices of the lahglandO(2™) times, for the
different choices of labet. The number of labels that can be introduced on a branch is
thereforeO(27).

In order to establish an upper bound on the complexity of the systematic procedure
above, we need to estimate the overall number of rule applications, including those ones
in step (a). To this purpose, we can observe that the number of pseudo-formulas which
can be built fromO(n) formulas andD(2™) labels isO(2™). As we do not admit redun-
dant applications of rules, on each branch the overall number of tableau rule applications
determined by the systematic procedur®i{2™). Thus, our systematic procedure allows
a non-deterministic algorithm for testing satisfiability®@L to be defined: at each step
the algorithm first saturates with respect to the static rules (step a), then guesses a branch
and applies a dynamic rule (step b). By what said just above, the algorithm eventually
terminates, and returns "satisfiable” if it finds an open branch and "unsatisfiable” if it does
not. Since the number of rules applied on the branei(i&*), we can conclude that:

THEOREM 6.3. For all extensiond?CL+3 of PCL, the systematic procedure decides
the satisfiability of a formula in non-deterministic exponential time with respect to the size
of the input.

The above result seems to be in partial accordance with [Friedman and Halpern 1994],
where the authors show that a formula is satisfiable iff it is satisfiable in an exponentially
sized structure. Moreover, the authors argue that deciding satisfiability can be done in
EXPTIME (that we understand as Deterministic Exponential Time), even if the algorithm
they suggest is not described in full details (Theorem 0.13). In future investigation we will
study whether we can obtaindeterministicEXPTIME decision procedure based on our
tableau calculus, thus matching the known upper bound for these logics.

7. RELATED WORK

To put our tableau method in a context, we briefly recall and compare related works on
proof methods for conditional logics.

[Giordano et al. 2003] and [Giordano et al. 2005] contain preliminary versions of some
of the results contained in this paper.

De Swart [de Swart 1983] and Gent [Gent 1992] give sequent/tableau calculi for con-
ditional logicsVC (= PCL +CV+MP+CS) andvCS. The kind of systems they propose
are based on the entrenchment connectiyérom which the conditional operator can be
defined. Their systems are analytic and comprise an infinite set of¥ulég:, m), with a
uniform pattern, to decompose each sequent withegative andh positive entrenchment
formulas.

Crocco and Fafias [Crocco and Fdras del Cerro 1995] present sequent calculi for
some conditional logics including minim&lK , C2, CO (= PCL without CA) and others.
Their calculi comprise two levels of sequents: principal sequentstwitborrespond to the
basic deduction relation, whereas auxiliary sequentsiwjtborrespond to the conditional
operator: thus the constituentslof-» A are sequents of the ford -, Y, whereX,Y
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are sets of formulas. However, their calculi are not analytic, and do not give a decision
procedure.

Artosi, Governatori, and Rotolo [Artosi et al. 2002] develop labelled tableau for the
flat fragment of conditional logi€O (they call it CU and it corresponds to cumulative
KLM logic C). Formulas are labelled by path of worlds containing also variable worlds.
Since they adopt a selection function semantics, they have to cope witiothwlity
condition if [[A]]™ = [[A/]]M then f(A,w) = f(A’,w). To this purpose, they use
an efficient unification procedure to propagate positive conditionals, and the unification
procedure takes care of checking the equivalence of antecedents. Their tableau contains
a cut-rule, called PB, which is not eliminable. They also discuss the extension of their
method toPCL and stronger systems on the one hand, and to nested conditionals, on the
other; however the feasibility of these extensions is rather problematic.

Broda, Gabbay, Lamb, and Russo develop an elegant natural deduction system for
Boutilier's conditional logic of normality and some variants of it [Boutilier 1994], [Broda
et al. 2002]. Their proof system uses labels following the methodolodgyabélled De-
ductive SysteniBroda et al. 2002], where the objects involved in the proofs are structured
configurations of formulas, worlds, and relations thereof. In this respect, their approach
is rather similar to ours. However, as we already observed, Boutilier's conditional logic
has a simpler semantics defined in terms of standard modal logic without world-indexed
relations or modalities (and thus it cannot handle nested and iterated conditionals). More-
over, it is not evident if one can extract a decision procedure for Boutilier’s logic from their
natural deduction system.

Lamarre [Lamarre 1993] presents tableau systems for conditional MGd3CL +CV),

VN, VC andVW (= PCL +CV+MP). Lamarre’s method is a consistency-checking proce-
dure which tries to build a system of spheres falsifying the input formulas. The method
makes use of a subroutine to compute tbeg, that is defined as the set of formulas char-
acterizing the minimal sphere. The computation of the core needs in turn the consistency
checking procedure. Thus, there is a mutual recursive definition between the procedure for
checking consistency and the one to compute the core.

Groeneboer and Delgrande [Groeneboer and Delgrande 1988; Delgrande and Groeneboer
1990] have developed a tableau method for conditional lI®@icwhich is based on the
translation of this logic into modal logig4.3

In [Olivetti et al. 2007], sequent calculi for the minimal conditional loGiK and some
extensions of it are presented (namely almost all extensio6&otombining (ID), (CS),
(CEM), and (MP)). The calculi are based on the selection function semantics for these
logics and make use of labels. It is shown that, by means of these calculi, one can obtain
complexity bounds, sometimes tighter than what was previously known, for the respective
logics.

Finally, in [Giordano et al. 2005], the authors present tableau calculi for the logics for
default reasoning proposed by Kraus, Lehmann and Magidor in [Kraus et al. 1990]. In
particular, [Giordano et al. 2005] provides calculi for the systém€, CL andR by
Kraus Lehmann and Magidor. The systefandR can be seen as the flat fragment of the
logicsPCL andPCL +CYV studied here, whereas the other two are weaker and do not
fit directly into the preferential semantics. The two mentioned loBiesidR of the KLM
framework are hence simpler than the logics studied in the present work, whose language
is not restricted to the flat fragment. Therefore it is not surprising that the calculus for the
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latter systems (presented in this work) is more complex than the calculi for the former,
although they are based on similar ideas: namely expressing by modal rules the Limit
Assumption or, in the context of KLM systems, the so-calletbothness conditiorFor

the same reason, the complexity of the calculi proposed in [Giordano et al. 2005] is lower
than the complexity we argue for the logics studied here.

8. CONCLUSION

In this work we have studied the conditional logics of preferential structures, ndafdly

and its most important extensions. First, we have given a general and direct completeness
result for a wide range of logics (with and without the universality condition) with respect

to preferential structures under the Limit Assumption. This result extends the seminal re-
sult presented by Burgess [Burgess 1981] for a semantics without the Limit Assumption.
Then we have presented a tableau proof procedure for these logics. The proposed tableau
system is uniform and modular in the sense that each specific semantic condition is cap-
tured by a tableau rule. Moreover, our proof method makes use of labels and is based on
the use of hybrid modal formulas, where the modalities are indexed by worlds. We have
been able to obtain a terminating procedure by a loop-checking mechanism similar to stan-
dardblocking Our method gives a practical decision procedure for the class of conditional
logics investigated in this work. Moreover, by the proof method we constructively obtain

a complexity upper bound for these logics.

In future work, we intend to carry on a finer grained complexity analysiBGL. ex-
tensions by means of our tableau method. Moreover, we intend to investigate several im-
provements on the tableau system, including loop-checking mechanisms, a better treatment
of equality via label-substitution and specific proof-search strategies. We also plan to im-
plement this method along the lines of [Giordano et al. 2007]. Finally, we think that our
methods can be adapted to provide reasoning method®fmept comparative similarity
in description logics presented in [Sheremet et al. 2005], as this notion is strongly related
to the systems of conditional logics studied in this work.
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