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1. INTRODUCTION

Conditional logics have been introduced by Stalnaker [Stalnaker 1968] and Lewis [Lewis
1973b] to formalize a kind of hypothetical reasoning (ifφ were the case, thenψ would be
the case) that cannot be captured by classical logic with its material implication. The basic
idea was to elaborate a logic which admits two kinds of implication: classical implication
(denoted by→) and a weaker implication, namely conditional implication (denoted by⇒).
Conditional implication lacks several properties of classical implication: monotonicity,
transitivity, the property of contraposition. The weakest variant of conditional logic does
not even admit reflexivity of conditional implication.

Conditional logics have been introduced and studied in order to formalize sentences like:

—Normally, if φ thenψ;

—ψ holds because ofφ;

—Most of the time, ifφ thenψ;

—If φ were the case, thenψ;

—If we learnedφ, then we would concludeψ.

There have been various applications of conditional logics for Philosophy and Episte-
mology, but also more recently in the context of Computer Science and Artificial Intel-
ligence. Conditional logics have thus been applied to several areas such as knowledge
base update [Grahne 1998], reasoning about prototypical properties [Ginsberg 1986], the-
ory revision [Boutilier 1994; Giordano et al. 2002; 2005; Crocco et al. 1995], causality
[Giordano and Schwind 2004; Galles and Pearl 1998; Lewis 1973a; 2000], nonmonotonic
reasoning [Delgrande 1987; Lamarre 1992; Kraus et al. 1990], commonsense reasoning
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[Groeneboer and Delgrande 1988]. [Makinson 1993] discusses the similarities and dif-
ferences between counterfactual reasoning, defeasible inference, belief revision and belief
update.

Similarly to modal logics, the semantics of conditional logics can be defined in terms
of possible world structures. The intuition is that a conditionalφ ⇒ ψ is true in a world
w just in caseψ is true in theφ-worlds (that is worlds satisfyingφ) that aremost simi-
lar/most preferred/closestto w. As there are different ways of formalizing the notion of
“closest/preferred/most similar” worlds, it comes without surprise that there is not a stan-
dard semantics for conditional logics. This is a difference with (standard) modal logics,
where there is a unique type of models, the usual Kripke models with an accessibility rela-
tion, and different modal systems are identified by classes of models characterized by the
properties of the accessibility relation. In the case of conditional logics, there are at least
three different types of semantics: the selection function semantics, the sphere semantics
and the preferential semantics. We briefly describe them below.

Selection function semantics.In this semantics, models are equipped by a so-called se-
lection function that, given a formulaφ and a possible worldw, selects a set of possible
worldsf(φ, w). The idea is thatf selects theφ-worlds which are closest/preferred/most
similar tow. A conditional formulaφ ⇒ ψ is true in a worldw wheneverψ is true in all
worlds satisfyingφ which are most preferred with respect tow, i.e. in all worlds selected
by f(φ,w). A further requirement is imposed, called normality: the set of worldsf(φ,w)
does not depend on the syntactic form ofφ, but only on the interpretation ofφ, that is to say,
on the set of worlds satisfyingφ. There are two equivalent ways of expressing this require-
ment: (i) imposing that ifφ andφ′ hold in the same worlds, thenf(φ,w) = f(φ′, w) and
(ii) defining the functionf to have as argument the set of worlds [[φ]] satisfyingφ, rather
than the formulaφ itself. Without this condition, the logic would not have the substitution
property on conditional formulas. This semantics is the most general one for conditional
logics, the worlds inf(φ,w) are not even meant to satisfyφ. The selection function seman-
tics characterizes all systems of conditional logic: from the weakest systemCK to all its
extensions by extra axioms. The extensions ofCK are then captured by imposing further
conditions on the selection function. For instance, the extension ofCK by the well-known
axiom (AC) (cumulativity)

(φ ⇒ ψ) ∧ (φ ⇒ χ) → (φ ∧ χ ⇒ ψ)

is semantically characterized by the class of models where the selection function satisfies
the property:

if f(φ,w) ⊆ [[χ]] thenf(φ ∧ χ,w) ⊆ f(φ,w).

While it is usually an easy task to translate an axiom into a condition on the selection
function, the conditions themselves (as the one above for AC) are not very informative.
What is worse is the fact that this semantics does not allow to develop analytic deduction
methods (except for some relatively-simple systems, see [Olivetti et al. 2007; Crocco and
Fariñas del Cerro 1995; Artosi et al. 2002]). The problem is that the conditions on the
selection function often make reference to the syntactic structure of a formulaφ occurring
in f(φ,w) (e.g. if the formula is a conjunctionψ∧χ). On the other hand, by the normality
principle, the syntactic form ofφ should be irrelevant. These two requirements seem in
conflict. The consequence is that it is very difficult to develop analytic proof systems from
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the selection function semantics. For many important extensions ofCK (including almost
all the systems examined in this work), analytic proof systems of this type have not been
found, and it is unlikely that they will be.

Sphere Semantics.A sphere system associates to each worldw a setSw of nested sets of
worlds, closed under union. Each nested set inSw is called a sphere and the structure of
Sw is thus onion-like. Intuitively, the spheres associated with a world represent a ranking
of worlds in degrees of similarity with respect to the given world: a worldw1 is more
similar or closer tow thanw2 if there is a sphere associated tow that containsw1 but does
not containw2. The idea is that a conditionalφ ⇒ ψ is true in a worldw if the worlds
satisfyingφ ∧ ψ are more preferred (i. e. belong to a smaller sphere) than the worlds
satisfyingφ ∧ ¬ψ (or if there is no world satisfyingφ). This semantics, elaborated by
Lewis [Lewis 1973b] captures in a good way some intuitions, but it only works for rather
strong systems of conditional logics, such as LewisVC and VW . De Swart [de Swart
1983], Gent [Gent 1992], and Lamarre [Lamarre 1993] give sequent/tableau calculi for
conditional logics based on the sphere semantics.

Preferential semantics. This represents a generalization of the sphere semantics, and it
has been studied by Burgess [Burgess 1981], Katsuno and Satoh [Katsuno and Satoh 1991],
Grahne [Grahne 1998], Nejdl [Nejdl 1991], Friedman and Halpern [Friedman and Halpern
1994]. It has been developed also in a more restricted context (formalisation of default
rules) by Kraus, Lehmann and Magidor [Kraus et al. 1990], and Boutilier [Boutilier 1994].
Instead of associating a sphere system to every worldw, preferential semantics associates
a preference relation<w, that is a transitive and irreflexive relation among worlds:x <w y
may be read as ‘x is preferred toy with respect tow, or x is more similar tow than
y is’. Given a worldw we can then define that a conditionalφ ⇒ ψ is true inw if ψ
is true in allφ-worlds that are closest/most preferred with respect tow, that is that are
minimal with respect to<w. Denoting such a set byMin<w([[φ]]), we can write thatw
satisfiesφ ⇒ ψ if all worlds in Min<w([[φ]]) satisfyψ. We can seeMin<w([[φ]]) as a
concrete way of defining a selection functionf(φ,w). However the preferential semantics
imposes some conditions on the selection function. That is to say, it is more restrictive
than the selection function semantics, and it validates a certain number of axioms. Thus,
it cannot characterize the weakest systemCK and the like. It characterizes all systems
which contain at leastCK and the identity axiom

(ID)φ ⇒ φ

together with the ‘or’- axiom

(CA)(φ ⇒ χ) ∧ (ψ ⇒ χ) → (φ ∨ ψ ⇒ χ)

and the axiom (CSO)

(φ ⇒ ψ) ∧ (ψ ⇒ φ) → (φ ⇒ χ) ↔ (ψ ⇒ χ).

However, preferential logic is more general than the sphere semantics as it does not impose
that worlds are always ranked with respect to a given world. In order to give a meaning
to all conditionals, we assume that wheneverφ-worlds exist, also closest/most preferred
worlds with respect to anyw do exist, that isMin<w([[φ]]) is non-empty. This condition
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is the well-known Limit Assumption, that we explicitly assume2.

The logic characterized by the preferential semantics will be our starting point. We will
call it PCL , from Preferential Conditional Logic(and it coincides with the SystemP in
[Nejdl 1991]).

Independently from technical reasons, the preferential semantics is motivated at least by
two kinds of applications of conditional logics: (i) the link between conditionals and the
notion of belief update and (ii) the semantics of nonmonotonic consequence relation. For
the former (see [Grahne 1998]), the semantics of update specifies that the worlds satisfying
an updated belief set are the worlds where the update is true and that are closest to some
world satisfying the initial belief set. For the latter (see [Kraus et al. 1990]), it can be
seen that all systems of KLM logics correspond to the flat fragment of some conditional
logics (namely PreferentialP and Rational logicR correspond respectively toPCL and
VC, studied by Lewis [Lewis 1973b]). The flat fragment of a conditional logic does not
contain nested occurrences of the conditional operator (for instance,p ⇒ r belongs to the
flat fragment, whereasp ⇒ (r ⇒ q) does not belong to the flat fragment). KLM logics are
therefore less expressive than the logics we consider here.

Finally, the conditional logic of preferential structures has some relation with the logic
of comparative concept similarity recently introduced in [Sheremet et al. 2005]. It turns
out that considering arbitrary Min spaces (roughly speaking, spaces where the minimum
of a set of distances always exists), the operator of comparative similarity is interdefinable
with the conditional operator, where the latter is defined by a specific extension ofPCL
considered here.

Tableau calculi for preferential logics in general have never been provided. Partial results
have been given by [Giordano et al. 2005] and [Giordano et al. 2006], that deal with KLM
logics. The language of KLM logics being simpler than the language ofPCL , the calculi
proposed in [Giordano et al. 2005] and [Giordano et al. 2006] cannot be straightforwardly
extended to the full language of nested conditionals.

To summarize, we have three semantics for conditional logic of increasing strength, or
decreasing generality: selection function semantics, preferential semantics, sphere seman-
tics.

In the present paper, we consider all conditional logics which can be characterized by
preferentialsemantics. The semantics comes with two options:

1 The more general kind, that characterizes our basic logicPCL : each worldw car-
ries with it a set of accessible (or ‘conceivable’) worldsWw which is a subset of the
universeW ; the preference relation<w then ranges on the setWw.

2 The more restricted kind: we postulate that conceivable worlds are the same for all
worlds and coincide with the universe, i.e:∀w Ww = W .

The requirement 2. is called (expectedly)Universality [Nute 1980; Lewis 1973b], that
corresponds to a well-defined set of axioms. The consequence is that we have actually two
families of conditional logics based on the preferential semantics: those where Universality

2A few authors [Lewis 1973b; Friedman and Halpern 1994; Boutilier 1994] have refused for theoretical reasons
the Limit Assumption and have shown that redefining the conditional operator (in a much less natural way, as a
matter of fact) one can avoid this assumption, obtaining equivalent systems, that is to say, systems with the same
set of theorems.
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is not assumed and the stronger systems with Universality. In both cases, stronger and
stronger systems are obtained by imposing further conditions on the preference relation
(e.g. connectedness, modularity, centering etc.).

In this work we consider systems of both kinds. Our first result is a uniform and direct
proof of the completeness of the axiomatization of each system with respect to the prefer-
ential semantics with the Limit Assumption. Our result is a generalization of the seminal
results presented by Burgess in [Burgess 1981]. Burgess provides a completeness proof
for a similar logic but, as a difference, he does not accept the Limit Assumption. We will
come back to this in Section 3.

Our second and main result is a uniform labelled tableau procedure for all systems under
consideration. To the best of our knowledge, our tableau calculus is the first one to cover
uniformly this spectrum of logics, since no tableau systems based on the preferential se-
mantics in its generality have ever been studied. We notice that some tableau and sequent
calculi have been presented for conditional logics weaker thanPCL [Crocco and Farĩnas
del Cerro 1995; Artosi et al. 2002; Giordano et al. 2005; 2006]. Our tableau calculus gives
a practical implementable decision procedure for these logics, and it allows us to obtain
upper complexity results for the logics in a constructive way.

Intuitively, our tableau method is based on an analogy between the preferential semantics
under the Limit Assumption and the modal logics of arithmetic provability (known as
Goëdel-L̈ob GL ): it turns out that the existence of minimal worlds enforced by the Limit
Assumption can be captured by rules similar to the modal rules forGL . However, here we
have to deal with arbitrary families of preference relations indexed by worlds so that the
situation is more complicated than in modal logicGL . To account for the semantics in the
calculus, we have to expand the syntax of formulas and we will have a hybrid language
comprising pseudo-modalities indexed by worlds and some other relations and predicates
on labels. The use of modal formulas to interpret the semantics of conditionals is not
new: Boutilier [Boutilier 1994] introduces a bi-modal logic to define some conditional
logics related toPCL andVC. However, there are two important differences between our
approach and Boutilier’s: first in Boutilier’s semantics there is only one modality, rather
than a family of modal operators indexed by worlds (as in our calculus). For this reason,
Boutilier’s logic is unable to properly represent nested conditionals (sinceβ ⇒ γ implies
α ⇒ (β ⇒ γ)). As a second difference, he does not accept the Limit Assumption, and thus
uses a truth definition for conditionals which is different from ours (and is similar to the
one adopted by Lewis [Lewis 1973b], Burgess [Burgess 1981] and Halpern and Friedman
[Friedman and Halpern 1994]).

Our tableau method gives a decision procedure for all logics under consideration. Termi-
nation of the calculus is obtained by adding some loop-checking conditions on the tableau
construction. Given the presence of multiple preference relations and pseudo-modalities,
finding suitable conditions ensuring termination is not straightforward.

The structure of the paper is the following: in Section 2, we introduce conditional logics
and the preferential semantics, and in Section 3 we give a general completeness result for
all logics under consideration. In Section 4, we present our tableau calculus. In Section
5 we prove soundness, completeness of the calculus. Last, in Section 6 we give a set of
restrictions that ensure the termination of our calculus and we remark on the complexity of
our calculus.
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2. THE CONDITIONAL LOGIC PCL AND ITS EXTENSIONS

2.1 The logic PCL

Let ATM be a set of propositional variables. We define the languageL of logic PCL and
its extensions. Formulas ofL are built from propositional variables by means of the con-
nectives¬,∧,⊥,⇒; the last one⇒ is the conditional operator.∨,→ and↔ are defined
as usual. Priorities among connectives are defined as usual;⇒ has the lowest priority (e.g.
φ ⇒ ψ → χ must be read asφ ⇒ (ψ → χ)).

Our models are structures of the form(W, {Wx}x∈W , {<x}x∈W , I). W is the set of
possible worlds,I is an interpretation function that associates to each possible world the
set of atoms that it satisfies. Furthermore, for each possible worldx, Wx represents the set
of worldsaccessiblefrom x, and<x is a preference relation:y <x z means thaty is closer
to x thanz, or y is preferredto z w.r.t. <x

3.

DEFINITION 2.1 SEMANTICS OF PCL . A PCL -modelM has the form

(W, {Wx}x∈W , {<x}x∈W , I),

where:

—W 6= ∅ is a set of items called worlds;

—{Wx}x∈W is a family of subsets ofW . For each elementx ∈ W , Wx ⊆ W ;

—For each elementx ∈ W , <x⊆ Wx ×Wx is a binary irreflexive, transitive relation on
Wx, satisfying the Limit Assumption below.

—I is a functionW −→ Pow(ATM) that associates to each worldx ∈ W the set of
atoms satisfied byx.

For S ⊆ W we define:

Minx(S) = {w ∈ S ∩Wx | ¬∃y ∈ S ∩Wx, such thaty <x w}.
We say thatMinx(S) is the set of<x-minimal elements ofS. Notice thatMinx(S) ⊆ Wx.

We define the truth conditions of formulas with respect to worlds in a modelM , by the
relationM, x |= φ, as follows. For readability, we use[[φ]]M (or [[φ]], when the modelM
is clear from the context) to denote{y ∈ W | M,y |= φ}.
(1) M, x |= p, for p atomic, ifp ∈ I(x),
(2) M, x 6|= ⊥,

(3) M, x |= ¬φ if M, x 6|= φ,

(4) M, x |= φ ∧ ψ if M,x |= φ andM, x |= ψ.

(5) M, x |= φ ⇒ ψ if for all y ∈ Minx([[φ]]M ), M,y |= ψ. We abbreviateMinx([[φ]]M )
byMinx(φ).

We say thatφ is valid in a modelM if M,x |= φ for everyx ∈ W . We say thatφ is
PCL -valid (and write|=PCL φ) if it is valid in every PCL -model.

3An equivalent definition can be given, as in [Burgess 1981] and [Nejdl 1991], by considering structures equipped
by a ternary relation R which corresponds to the non strict version of our parametrized preference relation. In this
framework,Wx can be defined as{y : ∃z s.t.Rxyz}.
ACM Transactions on Computational Logic, Vol. V, No. N, June 2008.
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In case where[[φ]] contains an infinitely descending<x-chain of worlds, all conditionals
φ ⇒ ψ are identically true, even ifφ is not always false. In order to prevent this situation,
we assume the following condition, calledLimit Assumption:

Limit Assumption: for all φ ∈ L, if [[φ]] ∩Wx 6= ∅, thenMinx(φ) 6= ∅
The set of valid formulas according to the previous semantics is axiomatized by consid-

ering the axioms and rules given below. In the following rules,` refers to provability w.r.t.
to the conditional logic being defined. For the time being, it stands for provability inPCL ,
when we will deal with the extensions ofPCL (next section) it will stand for provability
in the considered extension.

DEFINITION 2.2 AXIOM SYSTEM PCL. The systemPCL is defined by

(TAUT) All classical tautologies and the Modus Ponens rule.
(ID) φ ⇒ φ

(CA) (φ ⇒ χ) ∧ (ψ ⇒ χ) → (φ ∨ ψ ⇒ χ)
(CSO) (φ ⇒ ψ) ∧ (ψ ⇒ φ) → (φ ⇒ χ) ↔ (ψ ⇒ χ)
(RCEA) if ` φ ↔ ψ then ` (φ ⇒ χ) ↔ (ψ ⇒ χ)
(RCK) if ` (φ1 ∧ . . . ∧ φn) → χ then ` (ψ ⇒ φ1 ∧ . . . ∧ ψ ⇒ φn) → (ψ ⇒ χ)

(ID) states that A is conditionally implied by itself; (CA) states that a conditional conclu-
sion of two separate premises is also a conditional conclusion of their disjunction; (CSO)
states that two formulas which conditionally imply each other have the same conditional
consequences; (RCEA) states that the syntactic form of the antecedent of a conditional for-
mula is irrelevant; (RCK) states that the conditional distributes over classical implication.

Observe that the conditional operator is non monotonic, in the sense that fromφ ⇒ χ it
does not follow thatφ ∧ ψ ⇒ χ.

In the following, we will sometimes use the theorems ofPCL described in the following
proposition and remark.

PROPOSITION 2.3. The following theorems are derivable fromPCL.

(DT) (φ ⇒ χ) → (φ ∨ ψ ⇒ φ → χ),
(MOD) (φ ⇒⊥) → (ψ ⇒ ¬φ),
(RT) (φ ∧ χ ⇒ ψ) ∧ (φ ⇒ χ) → (φ ⇒ ψ).

PROOF.
(DT): if φ ⇒ χ, by (RCK) alsoφ ⇒ φ → χ, hence by (RCEA) also((φ ∨ ψ) ∧ φ) ⇒

φ → χ. But it can be shown by (ID) and (RCK) that also((φ ∨ ψ) ∧ ¬φ) ⇒ φ → χ. By
(CA) and (RCEA) we conclude thatφ ∨ ψ ⇒ φ → χ.
(MOD): if φ ⇒⊥, then by (DT), alsoφ ∨ ψ ⇒ φ →⊥, hence by (RCK)φ ∨ ψ ⇒ ¬φ. By
(ID) and (RCK)φ ∨ ψ ⇒ ψ, and alsoψ ⇒ φ ∨ ψ, we conclude by (CSO) thatψ ⇒ ¬φ.
(RT): from (φ ⇒ χ), by (ID) and (RCK), we also know that(φ ⇒ φ ∧ χ). By (ID) and
(RCK) we also know that(φ ∧ χ ⇒ φ). From(φ ∧ χ ⇒ ψ) and (CSO) we conclude that
(φ ⇒ ψ).

2

REMARK 2.4. The following theorems are derivable inPCL . The proof of these theo-
rems is along the same lines as the proof for the flat fragment that can be found in [Kraus
et al. 1990].
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1 ` (φ ∨ ψ ⇒ φ) ∧ (ψ ⇒ χ) → (φ ⇒ (ψ → χ))

2 ` (φ ∨ ψ ⇒ φ) ∧ (ψ ∨ χ ⇒ ψ) → (φ ⇒ (χ → ψ))

3 ` (φ ∨ ψ ⇒ φ) ∧ (ψ ∨ χ ⇒ ψ) → (φ ∨ χ ⇒ φ)

4 ` (φ ∨ ψ ⇒ φ) → (φ ∨ ψ ⇒ χ) ↔ (φ ⇒ χ).

2.2 Extensions of PCL

Different logics can be constructed depending on the assumptions we make about<x.
These additional assumptions characterize extensions ofPCL . We consider here a set of
extensions ofPCL that frequently occur in conditional logic. These extensions contain,
besidesPCL , one or more of the following well-known axioms.

(MP) ((φ ⇒ ψ) ∧ φ) → ψ,
its corresponding semantic property is (S-MP):
∀x ∈ W,x ∈ Wx, and∀y ∈ Wx ¬(y <x x).

(CS) (φ ∧ ψ) → (φ ⇒ ψ),
its corresponding semantic property is (S-CS):
∀x ∈ W,∀y ∈ Wx x <x y ∨ x = y.

(CV) (φ ⇒ ψ) ∧ ¬(φ ⇒ ¬χ) → (φ ∧ χ ⇒ ψ),
its corresponding semantic property is (S-CV):
∀x ∈ W,∀y, z, u ∈ Wx y <x z → (y <x u ∨ u <x z).

(CEM) (φ ⇒ ψ) ∨ (φ ⇒ ¬ψ),
its corresponding semantic property is (S-CEM):
∀x ∈ W,∀y, z ∈ Wx y = z ∨ y <x z ∨ z <x y.

(A0)+ (A1) + (A2) :
(A0): (¬φ ⇒ ⊥) → φ;
(A1): (¬φ ⇒ ⊥) → ¬(¬φ ⇒ ⊥) ⇒ ⊥;
(A2): ¬(φ ⇒ ⊥) → (φ ⇒ ⊥) ⇒ ⊥,

the overall semantic property corresponding to these axioms is Universality, i. e.
∀x ∈ W,Wx = W .

These axioms and semantic conditions have been variously considered in the literature on
conditional logics; they are variously related to each other (for instance, given the axioms
and rules ofPCL , (CEM) implies (CV), see for instance [Nute 1980]). We give some
intuitive justification for the semantic conditions.

(S-MP) and (S-CS) express a connection between the real world and a conditional. In
both cases the truth value of a formula in the real world has an influence on the conditional
containing that formula (and vice versa). According to (S-MP) no world is preferred (with
respect to<x) to the ‘real world’,x. According to (S-CS), which is stronger than (S-
MP), the real worldx is preferred to all other possible worlds with respect to its associated
relation<x.

Condition (S-CV) makes<x a modular(or ranked) relation. This condition is required
by some important extensions ofPCL . It is contained, for instance in Lewis’s logicsVC
andVW [Lewis 1973b].

The property (S-CEM) requires that given two different worldsy and z, eithery is
strictly preferred toz or z is strictly preferred toy w.r.t. <x . In turn, this entails that
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for each formulaφ, Minx(φ) contains at most one world. This property is the well-
known Uniqueness Assumption that characterizes Stalnaker’s logicC2 [Stalnaker 1968;
Nute 1980].

Axioms {(A0)+ (A1) + (A2)}must be considered together. They characterize the prop-
erty of Universality which requires that all worlds are ‘accessible’ from every world. In
order to get an intuitive idea of these axioms, notice that we could define an “internal”
necessity modality operator2 (that must not be confused with the modality2x used in the
calculus and introduced later in the paper) by means of the conditional implication in the
following way:

2φ ↔ (¬φ ⇒ ⊥)

Notice that the right part of the equivalence is true in a worldx just in caseMinx(¬φ) = ∅,
i. e. by the Limit Assumption, in caseWx ∩ [[¬φ]] = ∅. By the intuitive meaning ofWx,
this corresponds to the case in which there is no conceivable world satisfying¬φ, i. e. in all
conceivable worldsφ holds. The2 modality just defined has hence the usual meaning:2φ
is satisfiable in a worldx just in case for ally ∈ Wx, y |= φ, i. e. φ holds in all conceivable
worlds. With this interpretation, axioms{(A0)+ (A1) + (A2)} become nothing more than
the usual S5-axioms of modal logic.

(T) 2φ → φ (A0)

(S4) 2φ → 22φ (A1)

(S5) ¦φ → 2 ¦ φ (A2)

As for modal logics, it can be shown that these axioms characterizeUniversalmodels.
Notice that in presence of Universality, for allx ∈ W , it holds thatWx = W . In this

case,Wx becomes redundant and the definition of model could be simplified by consid-
ering triples of the form(W, {<x}x∈W , I). However, for uniformity reasons, also in this
case we will consider models as defined in Definition 2.1.

In the following, we only consider systems containing either all axioms (A0) + (A1)
+ (A2) or none of them. We call a system containing (A0) + (A1) + (A2) a system with
Universality.

ForΣ ⊆ { (MP), (CS), (CV), (CEM), (A0), (A1), (A2)}, such that either
{(A0), (A1), (A2)} ⊆ Σ or {(A0), (A1), (A2)} ∩ Σ = ∅, we will use the following
notions:

DEFINITION 2.5Σ-MODEL. A Σ-model is a PCL model that satisfies the semantic
conditions corresponding to the axioms inΣ. If Σ = ∅, aΣ-model is simply aPCL model,
as in Definition 2.1.

DEFINITION 2.6Σ−VALID . φ is valid in aΣ−modelM if M, x |= φ for everyx ∈ W .
φ isΣ-valid (and write|=Σ φ) if it is valid in everyΣ-model. IfΣ = ∅, a formula isΣ-valid
if it is PCL -valid, as defined in 2.1.

DEFINITION 2.7 DERIVABLE IN PCL ∪Σ. A formulaφ is derivable inPCL ∪Σ (de-
noted bỳ Σ φ) if it is derivable using the axioms and rules contained inPCL and inΣ. If
Σ = ∅, a formula is derivable inPCL ∪ Σ if it is derivable inPCL (i.e. `Σ is `PCL ).

When the logic is clear from the context, we will simply write` φ and|= φ (instead of
`Σ φ or `PCL φ, and|=Σ φ or |=PCL φ) .
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3. SOUNDNESS AND COMPLETENESS OF PCL AND ITS EXTENSIONS

We show the following soundness and completeness theorem for the logicsPCL ∪ Σ,
whereΣ ⊆ { (MP), (CS), (CV), (CEM), (A0), (A1), (A2)} such that either
{(A0), (A1), (A2)} ⊆ Σ or {(A0), (A1), (A2)} ∩ Σ = ∅. Notice thatΣ can also be
empty: in this case the logic isPCL . The first theorem can be easily proven by showing
that axioms are valid in the corresponding semantics and that rules preserve validity.

THEOREM 3.1 SOUNDNESS OFPCL ∪ Σ. If a formula is derivable inPCL ∪ Σ,
then it isΣ−valid.

THEOREM 3.2 COMPLETENESS OFPCL ∪ Σ. If a formula isΣ−valid, then it is deriv-
able inPCL ∪ Σ.

The completeness is shown by the construction of a canonical model. We show that
PCL ∪Σ is complete with respect to the semantics by showing that for any set of formulas
Γ, if Γ is consistent with respect toPCL ∪ Σ, thenΓ is satisfiable in aΣ-model.
To this purpose, we first introduce some definitions.

DEFINITION 3.3.

(1) A set of formulasΓ is calledinconsistentwith respect toPCL ∪ Σ iff there is a finite
subset ofΓ, {γ1, . . . γn} such that̀ Σ ¬γ1 ∨ ¬γ2 ∨ . . .¬γn. Γ is calledconsistentif
Γ is not inconsistent. If an (in)consistentΓ contains only one formulaγ, we say that
γ is (in)consistent.

(2) A set of formulasΓ is called maximal consistentiff it is consistent and if for any
formulaγ not inΓ, Γ ∪ {γ} is inconsistent.

We will use properties of maximal consistent sets, the proofs of which can be found in
most textbooks of logic (see e.g. [Shoenfield 1967]). In particular:

REMARK 3.4. Every consistent set of formulas is contained in a maximal consistent
set of formulas.

REMARK 3.5. Letw be a maximal consistent set of formulas andφ, ψ formulas inL⇒.
Thenw has the following properties:

(1) If `Σ φ → ψ andφ ∈ w, thenψ ∈ w

(2) If from φ ∈ w we inferψ ∈ w, thenφ → ψ ∈ w.

(3) φ ∧ ψ ∈ w iff φ ∈ w andψ ∈ w

(4) φ 6∈ w iff ¬φ ∈ w

Let ATM be the set of atoms of the language,L the propositional (classical) language
andL⇒ the propositional conditional language. LetU be the set of all maximal consistent
sets of formulas, defined as usual.

DEFINITION 3.6. Letw ∈ U be a complete formula set, andφ, ψ, . . . ∈ L⇒ formulas.
We define:

1. φ ≤w ψ iff φ ∨ ψ ⇒ φ ∈ w

2. wφ = {ψ | φ ⇒ ψ ∈ w}
wφ may be inconsistent. Formula(⊥ ⇒ p) ∧ (⊥ ⇒ ¬p) is satisfiable.
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REMARK 3.7. Letw, w′ ∈ U be a maximal consistent set of formulas, andφ, ψ, χ L⇒
formulas. Then we have:

1. For all w ∈ U , φ ∨ ψ ≤w φ

2 . If wφ ⊆ w′ thenφ ∈ w′

3 . ≤w is reflexive and transitive

4 . If φ ≤w ψ andwφ ⊆ w′ andψ ∈ w′ thenwψ ⊆ w′

5 . If φ ≤w ψ ≤w χ andwφ ⊆ w′ andχ ∈ w′ thenwψ ⊆ w′

6. If φ ≤w ψ thenwφ = wφ∨ψ

PROOF.

1 This immediately follows from definition of≤w and from (ID).

2 From definition ofwφ and (ID).

3 Reflexivity follows from definition of≤w together with the fact that by (ID) and
(RCK) φ ∨ φ ⇒ φ ∈ w. Transitivity follows from Remark 2.4, 3.

4 Let beχ ∈ wψ, thenψ ⇒ χ ∈ w. Sinceφ ∨ ψ ⇒ φ ∈ w (by (ID) and (RCK)) we
conclude by Remark 2.4, 1 that(φ ⇒ (ψ → χ) ∈ w (by the completeness ofw).
Thereforeψ → χ ∈ w′. Sinceψ ∈ w′, we conclude thatχ ∈ w′.

5 By Remark 2.4, 1, we have thatφ ⇒ (χ → ψ) ∈ w. Therefore,χ → ψ ∈ w′ and
sinceχ ∈ w′ we conclude thatψ ∈ w′. The lemma follows by the last point 2.

6 Let χ ∈ wφ, i.e. φ ⇒ χ ∈ w. Then, since by (ID) and (RCK)φ ⇒ φ ∨ ψ ∈ w by
(CSO)φ ∨ ψ ⇒ χ ∈ w, i.e. χ ∈ wφ∨ψ.

2

We are now ready to prove Theorem 3.2:
PROOF. We distinguish four cases.

Case 1:{(CS), (CEM), (A0), (A1), (A2)} ∩ Σ = ∅
DEFINITION 3.8 CANONICAL MODEL. We let

M = 〈W, {<(w,γ)}(w,γ)∈W , {W(w,γ)}(w,γ)∈W , I〉,
where:

—W = {(w, γ): γ ∈ w, for w ∈ U , andγ ∈ L⇒}
—I(w, γ) = w ∩ATM .

—(w′, φ) <(w,γ) (w′′, ψ) iff:

—wφ ⊆ w′, and
—eitherwψ 6⊆ w′′ or wψ ⊆ w′′, wφ 6⊆ w′′, φ ≤w ψ, andψ 6∈ w′

—W(w,γ) = {(w′, φ) : for all ψ ∈ L⇒, if ψ ⇒⊥∈ w then¬ψ ∈ w′}
Since the formulaγ in (w, γ) does not play any role in the definitions of<(w,γ) andW(w,γ),
we will write for short<w andWw respectively.
GivenI, the satisfiability relation|= is defined in the usual way.
We prove the following facts:
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Fact 1: The relation<w is irreflexive and transitive. Irreflexivity immediately follows

from definition of<w. As far as transitivity is concerned, let (i):(w′, φ) <w (w′′, ψ),
and (ii): (w′′, ψ) <w (w′′′, χ). We show that (iii):(w′, φ) <w (w′′′, χ). From (i) and
(ii), by Definition 3.8, we know that (iv):wφ ⊆ w′, wψ ⊆ w′′, φ ≤w ψ andψ 6∈ w′.
We consider (ii) and distinguish two cases.
1. wχ 6⊆ w′′′: the result (iii) immediately follows from definition of<w in Definition
3.8.
2. wχ ⊆ w′′′: from (ii), and Definition 3.8, we also know that (v)ψ ≤w χ, χ 6∈ w′′,
andwψ 6⊆ w′′′. By transitivity of≤w and (iv) alsoφ ≤w χ. In order to prove (iii) we
still have to prove that (a)χ 6∈ w′ and (b)wφ 6⊆ w′′′. (a): supposeχ ∈ w′. By Remark
3.7 we get thatwψ ⊆ w′, hence by Remark 3.7.2,ψ ∈ w′, which contradicts (iv). (b):
supposewφ ⊆ w′′′. By Remark 3.7, alsowψ ⊆ w′′′, which contradicts (v). We have
thus shown thatφ ≤w χ, thatχ 6∈ w′ andwφ 6⊆ w′′′, hence by Definition 3.8, that (iii):
(w′, φ) <w (w′′′, χ) .

Fact 2: Let |φ| = {(w′, ψ) : φ ∈ w′}.
We letMinw(|φ|) = {(w′, ψ) : (w′, ψ) ∈ |φ| and there is no(w′′, χ) ∈ |φ| such that
(w′′, χ) <w (w′, ψ)}. We prove thatMinw(|φ|) ⊆ |χ| iff φ ⇒ χ ∈ w.
⇐. Let (w′, ψ) ∈ Minw(|φ|). We can prove the following facts. (i)φ ∈ (w′, ψ).
Obvious. (ii)wψ ⊆ w′. Indeed, suppose by absurd thatwψ 6⊆ w′. Consider(w′′, φ)
with wφ ⊆ w′′ (this world exists: since(w′, ψ) ∈ Ww, φ ∈ w′, hence by definition
of Ww, φ ⇒⊥6∈ w, hencewφ is consistent). Clearly,(w′′, φ) ∈ |φ|. Furthermore, by
definition of<w, (w′′, φ) <w (w′, ψ), which contradicts the hypothesis that(w′, ψ) ∈
Minw(|φ|). (iii) wφ ⊆ w′. Supposewφ 6⊆ w′. Then,¬((φ ∨ ψ) ⇒ ψ) ∈ w (otherwise
ψ ≤w φ and by (ii) and Remark 3.7,4wφ ⊆ w′). Hence inW there is(w′′, φ ∨ ψ) with
wφ∨ψ ⊆ w′′ and¬ψ ∈ w′′. It can be easily shown that(w′′, φ∨ψ) ∈ |φ|, and(w′′, φ∨
ψ) <w (w′, ψ), thus contradicting the hypothesis that(w′, ψ) ∈ Minw(|φ|). We can
therefore conclude thatwφ ⊆ w′. It follows that if φ ⇒ χ ∈ w, thenMinw(|φ|) ⊆ |χ|.
⇒. Let Minw(|φ|) ⊆ |χ|, and suppose for a contradiction that (i)φ ⇒ χ 6∈ w. By (i)
and by definition ofW , there is(w′, φ) in W with wφ ⊆ w′ andχ 6∈ w′. Furthermore,
(w′, φ) ∈ Ww: indeed, by (MOD) for allψ s.t. ψ ⇒⊥∈ w, alsoφ ⇒ ¬ψ ∈ w, and
sincewφ ⊆ w′, it follows that for allψ, if ψ ⇒⊥∈ w, then¬ψ ∈ w′. By definition
of Ww, (w′, φ) ∈ Ww. It can be easily shown, by definition of<w, that (w′, φ) ∈
Minw(|φ|), which contradicts the assumption thatMinw(|φ|) ⊆ |χ|. We conclude that
if Minw(|φ|) ⊆ |χ|, thenφ ⇒ χ ∈ w.

Fact 3: For all formulasφ, (w, γ) |= φ iff (w, γ) ∈ |φ|. We reason by induction on the
complexity ofφ. If φ is an atom, the property follows by definition ofI. If φ is a boolean
combination of formulas, the proof easily follows by the inductive step. Consider the
case in whichφ = ψ ⇒ χ. By inductive hypothesis,|ψ| = [[ψ]] and|χ| = [[χ]]. Since
it can be easily shown thatMinw(ψ) = Minw(|ψ|), the property immediately follows
from Fact 2 above.

Fact 4: The relation<(w) satisfies the Limit Assumption: for all formulaφ, if [[φ]]∩Ww 6=
∅, thenMin<w(φ) 6= ∅.
Let [[φ]] ∩ Ww 6= ∅. By definition of Ww it follows that φ ⇒⊥6∈ w, hencewφ is
consistent. Consider(w′, φ) with wφ ⊆ w′. Clearly,(w′, φ) ∈ |φ|, and by definition
of <w, (w′, φ) ∈ Minw(|φ|). By Fact 3 we can easily show that(w′, φ) ∈ Minw(φ),
henceMinw(φ) 6= ∅.

ACM Transactions on Computational Logic, Vol. V, No. N, June 2008.



· 13

Furthermore, we show that:

Fact 5: If (CV ) ∈ Σ, thenM satisfies (S-CV) (i.e. modularity). Let (w′, φ) <w (w′′, ψ).
Then by definition of<w in Definition 3.8,wφ ⊆ w′, and either (a)wψ ⊆ w′′ or (b)
wψ 6⊆ w′′. If (b), the property follows from the observation that given any(w′′′, χ) if
wχ 6⊆ w′′′, then by definition of<w in Definition 3.8,(w′, φ) <w (w′′′, χ), whereas if
wχ ⊆ w′′′, then(w′′′, χ) <w (w′′, ψ).
If (a), by definition of<w, the following facts also hold: (i)φ ≤w ψ, i.e. (φ ∨ ψ) ⇒
φ ∈ w, (ii) ψ 6∈ w′, and (iii) wφ 6⊆ w′′. Furthermore, from (i) and by Remark 3.7.6
it follows that: (iv)wφ∨ψ = wφ. From (iii) and (iv) it follows that: (v)wφ∨ψ 6⊆ w′′.
From (v), it follows that (vi):φ ∨ ψ ⇒ ¬ψ (otherwise by (CV) and (RCEA), for allχ,
if φ ∨ ψ ⇒ χ ∈ w, thenψ ⇒ χ ∈ w, i.e. wφ∨ψ ⊆ wψ, hencewφ∨ψ ⊆ w′′, against(v)).
With these facts at hand, consider now any(w′′′, χ). If wχ 6⊆ w′′′, then(w′, φ) <w

(w′′′, χ) by definition of<w. If wχ ⊆ w′′′, we distinguish two cases.
Case (a):φ ∨ ψ ∨ χ ⇒ ¬(ψ ∨ χ) ∈ w. By (RCK) and propositional reasoning, we also
have that (vii)φ ∨ ψ ∨ χ ⇒ ¬χ, and (viii) φ ∨ ψ ∨ χ ⇒ ¬ψ. From (viii), by (ID) and
(RCK), we derive thatφ ∨ ψ ∨ χ ⇒ φ ∨ χ. From this, together with (vii) and Remark
2.4,4 we derive that (ix)φ ∨ χ ⇒ ¬χ. From (ID) we haveφ ∨ χ ⇒ φ ∨ χ ∈ w, hence
from (ix) and (RCK), we derive that (x)φ ∨ χ ⇒ φ, henceφ ≤w χ. Furthermore, from
(x) and Remark 2.4, 4, alsoφ ⇒ ¬χ ∈ w, hence (xi)χ 6∈ w′, and by consistency of
w′′′, (xii) wφ 6⊆ w′′′. By definition of<w it follows that(w′, φ) <w (w′′′, χ).
Case (b):¬(φ∨ψ∨χ ⇒ ¬(ψ∨χ)) ∈ w. In this case, from (vi) above and (DT) we have
thatφ∨ψ∨χ ⇒ φ∨ψ → ¬ψ ∈ w. By (CV), ((φ∨ψ∨χ)∧(ψ∨χ)) ⇒ φ∨ψ → ¬ψ ∈ w,
hence by (RCEA), alsoψ ∨ χ ⇒ φ ∨ ψ → ¬ψ, and by (RCK)ψ ∨ χ ⇒ ¬ψ ∈ w. By
reasoning analogously to what done just above in order to show points (x)-(xii), we
conclude that(w′′′, χ) <w (w′′, ψ).

Fact 6: If (MP ) ∈ Σ, thenM satisfies (S-MP). First of all, by (MP) we know that if
ψ ⇒⊥∈ w, alsoψ →⊥∈ w, hence by consistency and maximality ofw, ¬ψ ∈ w,
and from definition ofW(w,γ), (w, γ) ∈ W(w,γ). We now show that for no(w′, φ)
((w′, φ) <(w,γ) (w, γ)) holds. For a contradiction, suppose(w′, φ) <(w,γ) (w, γ).
Then by definition of<(w,γ) in Definition 3.8, either (a)wγ 6⊆ w or, among other facts,
(b) (i) φ ≤w γ, i.e. φ ∨ γ ⇒ φ and (ii) wφ 6⊆ w. (a) is impossible: given (MP), and
γ ∈ w, alsowγ ⊆ w. Consider (b). By (i) and Remark 3.7.6 it follows thatwφ = wφ∨γ .
From (ii) we conclude thatwφ∨γ 6⊆ w. However this contradicts the facts that:γ ∈ w,
henceφ ∨ γ ∈ w, hence by (MP)wφ∨γ ⊆ w. We conclude that it cannot be that
(w′, φ) <(w,γ) (w, γ), hence¬((w′, φ) <(w,γ) (w, γ)) holds.

Fact 7: PCL ∪ Σ is complete w.r.t the semantics. From the facts above.

Case 2:{(CS)} ∩ Σ 6= ∅, and{(CEM), (A0), (A1), (A2)} ∩ Σ = ∅. Let M be the model
obtained by the same construction used in Definition 3.8, starting from maximal sets of
formulas consistent w.r.t.PCL +Σ. Notice that even if (CS)∈ Σ, the modelM does not
satisfy (S-CS) but something weaker, namely that either(w, γ) <(w,γ) (w′, φ) or w = w′

(but possibly not(w, γ) = (w′, φ)).
In order to obtain a model satisfying (CS), we need to strengthen the definition of

{<′(w,γ)}(w,γ)∈W ′ . The resulting model isM ′ defined as follows.
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DEFINITION 3.9 CANONICAL MODEL IF (CS)∈ Σ. We let

M ′ = 〈W, {<′(w,γ)}(w,γ)∈W , {W(w,γ)}(w,γ)∈W , I〉,
where W,{W(w,γ)}(w,γ)∈W , andI are defined as inM , and{<′(w,γ)}(w,γ)∈W is defined
as follows.

(1) if (w′, φ) <(w,γ) (w′′, ψ) in M , then(w′, φ) <′(w,γ) (w′′, ψ).

(2) for all φ, (w, γ) <′(w,γ) (w, φ).

We can prove thatM ′ is aPCL -model satisfying (S-CS) that preserves the properties
of M by showing the following facts:

Fact 1: (S-CS) holds. We show that for all(w, γ) and all (w′, φ), either(w, γ) <(w,γ)

(w′, φ) or (w, γ) = (w, φ). First of all notice that sinceγ ∈ w, by (CS),wγ = w, i. e.
wγ ⊆ w. If wφ 6⊆ w′, by definition of<w, (w, γ) <(w,γ) (w′, φ).
Let wφ ⊆ w′. We reason as follows. Since bothγ ∈ w andφ∨γ ∈ w, by (CS) it follows
thatφ ∨ γ ⇒ γ ∈ w. We distinguish two cases: (a)φ ∈ w; (b) φ 6∈ w. (b): in order to
prove that(w, γ) <(w,γ) (w′, φ), we still have to prove thatwγ 6⊆ w′. This holds since
wγ = w, hence by maximality ofw, if wγ ⊆ w′, thenw = w′ but this is impossible,
sinceφ ∈ w′ whereasφ 6∈ w. In case (a) holds, by (CS)wφ = w and by maximality
of w, w′ = w. By definition of <′(w,γ), in this last case either(w, γ) = (w′, φ) or
(w, γ) <′(w,γ) (w′, φ).

Fact 2: <′(w,γ) is irreflexive. This follows from the irreflexivity of<(w,γ) in M together
with the observation that for all(w, φ) (having the same first element than(w, γ)), only
(w, γ) <′(w,γ) (w, φ) holds.

Fact 3: <′(w,γ) is transitive. This follows from the fact that<(w,γ) is transitive together
with the observation that the only possible extra case is: (i)(w, γ) <′(w,γ) (w, φ) for
some(w, φ) with the first element equal to the first element of(w, γ), and(w, φ) <′(w,γ)

(w′′, ψ) for some(w′′, ψ). We show that(w, γ) <′(w,γ) (w′′, ψ). If wψ 6⊆ w′′ then

(w, γ) <(w,γ) (w′′, ψ) (since by (CS)wγ ⊆ w), i.e. (w, γ) <′(w,γ) (w′′, ψ). If wψ ⊆
w′′ then we reason as follows. First of all, by (CS) (since bothγ ∈ w andγ ∨ ψ ∈ w),
γ ∨ ψ ⇒ γ ∈ w. Second, by definition of<(w,γ) in Definition 3.8, from (ii), we derive
thatψ 6∈ w. From (ii), always by definition of<(w,γ) in Definition 3.8, we also know
that wφ 6⊆ w′′. In presence of (CS), since bothφ ∈ w andγ ∈ w, we know that
wφ = w = wγ , hencewφ 6⊆ w′′. We can therefore conclude by definition of<(w,γ) in
Definition 3.8 that(w, γ) <(w,γ) (w′′, ψ), hence(w, γ) <′(w,γ) (w′′, ψ).

Fact 4: <′(w,γ) satisfies the Limit Assumption. If [[φ]] 6= ∅, then by the Limit Assumption
in M there is(w′, φ) ∈ Min(w,γ)(φ). If in M ′ (w′, φ) 6∈ Min(w,γ)(φ), this can only
be because(w, γ) ∈ [[φ]], and the relation(w, γ) <′(w,γ) (w′, φ) has been inserted in
M ′. In this case, it can be easily shown that by (S-CS)(w, γ) ∈ Min(w,γ)(φ), hence
Min(w,γ)(φ) 6= ∅.

Fact 5: For all formulasφ, φ is satisfiable inM iff it is satisfiable inM ′. By induction
on the complexity ofφ. If φ is an atom, the property immediately follows since the
valuation function inM andM ′ is the same. Ifφ is a boolean combination of formulas,
the property easily follows by the inductive step. Letφ = ψ ⇒ χ. We show that
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for all (w, γ), Min(w,γ)(ψ) ⊆ [[χ]] in M iff Min(w,γ)(ψ) ⊆ [[χ]] in M ′. The⇒
direction immediately follows, since for all(w′, µ) if (w′, µ) ∈ Min(w,γ)(ψ) in M ′,
then also(w′, µ) ∈ Min(w,γ)(ψ) in M . For the⇐ direction we reason as follows. Let
Min(w,γ)(ψ) ⊆ [[χ]] in M ′, andMin(w,γ)(ψ) 6⊆ [[χ]] in M . Then there is(w′, µ) s.t.
(i) (w′, µ) 6∈ [[χ]], (ii) (w′, µ) ∈ Min(w,γ)(ψ) in M and (iii) (w′, µ) 6∈ Min(w,γ)(ψ) in
M ′. If this is the case, then there must be a world(w′′, µ′) in [[ψ]] s.t. (w′′, µ′) <′(w,γ)

(w′, µ) in M ′, whereas it does not hold that(w′′, µ′) <(w,γ) (w′, µ) in M . This can
only happen in case(w′′, µ′) = (w, γ) andw = w′ (indeed, for all other worlds< and
<′ behave in the same way). Sincew = w′, by (i), also(w, γ) 6∈ [[χ]]. Furthermore,
sinceM ′ satisfies (S-CS), it can be easily proven that(w, γ) ∈ Min(w,γ)(ψ) in M ′,
henceMin(w,γ)(ψ) 6⊆ [[χ]] in M ′, which contradicts the hypothesis. We can conclude
that if Min(w,γ)(ψ) ⊆ [[χ]] in M ′, then alsoMin(w,γ)(ψ) 6⊆ [[χ]] in M .

Fact 6: M ′ satisfies (S-MP). Since (S-MP) is a consequence of (S-CS).

Fact 7: if (CV ) ⊆ Σ, then<′(w,γ) is modular. This follows from the fact that<(w,γ) in M

is modular. Moreover, the only extra relation we have to consider here is(w, γ) <(w,γ)

(w′, φ). In this case the modularity is satisfied since by (S-CS) for any(w′′, φ),
(w, γ) <(w,γ) (w′′, ψ).

Fact 8: PCL ∪ Σ is complete w.r.t the semantics. From the facts above.

Case 3:{(CEM)} ∩ Σ 6= ∅, and{ (A0), (A1), (A2)} ∩ Σ = ∅. Let M be the canonical
model built by using the same construction of Definition 3.8 above, starting from sets of
formulas that are maximal and consistent w.r.t.PCL +Σ. If (CS) ∈ Σ, then consider the
modelM ′ defined in Case 2 above. Whether(CS) ∈ Σ or not, we will refer to the starting
model byM . Notice that even if (CEM)∈ Σ, this model does not satisfy (S-CEM) but
something weaker. In order to obtain a model that satisfies (S-CEM), we buildM ′ which
is equivalent toM and satisfies (S-CEM), as follows. The only difference betweenM and
M ′ is in the definition of the relations<′(w,γ).

DEFINITION 3.10CANONICAL MODEL IF (CEM) ∈ Σ. We let

M ′ = 〈W, {<′(w,γ)}(w,γ)∈W , {W(w,γ)}(w,γ)∈W , I〉,
where W,{W(w,γ)}(w,γ)∈W , andI are defined as inM . <′(w,γ) is defined as follows.

1 if (w′, φ) <(w,γ) (w′′, ψ), then(w′, φ) <′(w,γ) (w′′, ψ);

2 let π(w,γ) be an enumeration of the set of worldsS(w,γ) = {(w′, φ) s.t. wφ 6⊆ w}.
For all (w′, φ) and(w′′, ψ) in S(w,γ), we let(w′, φ) <′(w,γ) (w′′, ψ) iff π(w,γ)(w′, φ) <

π(w,γ)(w′′, ψ);

3 for each(w′, φ) ∈ W such thatwφ ⊆ w′, we let [(w′, φ)](w,γ) be the set of worlds
(w′, ψ) such thatwψ ⊆ w′ having the same first element than(w′, φ). For all [(w′, φ)](w,γ),
we letπ′([(w′,φ)],(w,γ)) be an enumeration over[(w′, φ)](w,γ). If (w, γ) ∈ S′, then the
first element of the enumeration will be(w, γ) itself. We let(w′, φ) <′(w,γ) (w′, ψ) iff
π′([(w′,φ)],(w,γ))(w

′, φ) < π′([(w′,φ)],(w,γ))(w
′, ψ).

We can easily show the following facts in order to prove thatM ′ is aPCL -model, that it
is equivalent toM , that it satisfies (S-CEM), and that it preserves the properties of<′.
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Fact 1: <′ is irreflexive. Consider the definition of<′(w,γ) above.(w′, φ) <′(w,γ) (w′, φ)

is not introduced by step 1, since< is irreflexive; it is not introduced by step 2 either,
sinceπ(w,γ) assigns a different number to each world(w′, φ); it is not introduced by
step 3 for the same reason.

Fact 2: <′ is transitive. Let (a)(w′, φ) <′(w,γ) (w′′, ψ), and (b)(w′′, ψ) <′(w,γ) (w′′′, χ).
If both relations have been introduced at step 1, then transitivity follows by transitivity of
< in M . If both relations have been inserted at point 2 or 3, then transitivity immediately
follows from the total ordering established by the enumerations. Since the set of worlds
considered at point 2 are disjoint from the sets of worlds considered at point 3, it cannot
happen that one relation is introduced by step 2 and the other by step 3. We are left with
the possible combinations of step 1 and either step 2 or step 3.
Let us consider steps 1 and 2. Notice that by definition of<(w,γ) in Definition 3.8, it
cannot be that (a) has been introduced at step 2, and (b) at step 1 (indeed, ifwψ 6⊆ w′′,
then inM it never holds that(w′′, ψ) <(w,γ) (w′′′, χ)). If (a) has been introduced at step
1 and (b) has been introduced at step 2, thenwφ ⊆ w′, andwχ 6⊆ w′′′. By definition of
<(w,γ) in Definition 3.8,(w′, φ) <(w,γ) (w′′′, χ), hence also(w′, φ) <′(w,γ) (w′′′, χ).
Let us consider steps 1 and 3. If (a) has been introduced at step 1 and (b) at step 3, we
reason as follows. By Definition 3.8, we know that (c):φ∨ψ ⇒ φ ∈ w, (d)ψ 6∈ w′ and
(e)wφ 6⊆ w′′. Furthermore, we know that (f)w′′ = w′′′, thatwψ ⊆ w′′, andwχ ⊆ w′′′.
By maximality ofwψ andwχ given (CEM), we know thatwψ = w′′, wχ = w′′′, hence,
given (f), that (g)wψ = wχ. We want to show that (c’)φ ∨ χ ⇒ φ ∈ w, (d’) χ 6∈ w′

and (e’) wφ 6⊆ w′′′, from which we can conclude by Definition 3.8 and step 1 that
(w′, φ) <′(w,γ) (w′′′, χ).
First of all we show that given (CEM) and (c) (i.e.φ ∨ ψ ⇒ φ ∈ w), then also (h)
φ∨χ∨ψ ⇒ φ ∈ w holds, otherwise by (CEM)φ∨χ∨ψ ⇒ ¬φ ∈ w, which contradicts
(c). Indeed, fromφ∨χ∨ψ ⇒ ¬φ ∈ w, we derive thatφ∨χ∨ψ ⇒ ¬(φ∨ψ) ∈ w (by
(RCK) together with the fact that (DT) and (c) entailφ∨χ∨ψ ⇒ ((φ∨ψ) → φ) ∈ w).
By (ID) and (RCK) it follows thatφ ∨ χ ∨ ψ ⇒ χ ∈ w and by Remark 2.4,6 that
χ ⇒ ¬(φ ∨ ψ) ∈ w, henceχ ⇒ ¬ψ ∈ w. However this is impossible given (g) (since
by (ID) ψ ⇒ ψ ∈ w). Hence we conclude that (h) holds.
We are now ready to show that (c’), (d’) and (e’) hold. For a contradiction, first suppose
that (c’) does not hold, i.e.(φ∨χ) ⇒ φ 6∈ w, which given (CEM) means that(φ∨χ) ⇒
¬φ ∈ w. This is impossible, given (h) (i.e.φ∨χ∨ψ ⇒ φ ∈ w). Indeed, by (RCK), from
(h) it follows thatφ∨χ∨ψ ⇒ φ∨χ ∈ w, and by Remark 2.4,6, from(φ∨χ) ⇒ ¬φ ∈ w
we would concludeφ∨ χ∨ψ ⇒ ¬φ ∈ w, which contradicts (h). Hence (c’) must hold.
Furthermore, (d’), namely thatχ 6∈ w′, holds, otherwise by (c’), the fact that by (g)
ψ ⇒ χ ∈ w, and Remark 2.4, 3 we would have thatφ ⇒ χ → ψ ∈ w. In turn, this
would entail thatχ → ψ ∈ w, hence ifχ ∈ w′ alsoψ ∈ w′, which contradicts that by
(d) ψ 6∈ w′. Furthermore, by (CEM) eitherφ ⇒ χ ∈ w or φ ⇒ ¬χ ∈ w. φ ⇒ χ ∈ w is
impossible sincewφ ⊆ w′ , χ 6∈ w′ andw′ is consistent. Henceφ ⇒ ¬χ ∈ w, and by
consistency ofw′′′, sinceχ ∈ w′′′, wφ 6⊆ w′′′, hence (e’) holds, and the result follows.
If (a) has been introduced at step 3 and (b) at step 1, we reason as follows. By (a) we
know that (c)wφ ⊆ w′, that (d)w′ = w′′, and by maximality ofwφ andwψ, together
with (d), that (e)wφ = wψ. If wχ 6⊆ w′′′, the result follows by definition of<(w,γ) in
Definition 3.8 and step 1. Ifwχ ⊆ w′′′, then by (b) we know that (f)ψ ∨ χ ⇒ ψ ∈ w,
(g) χ 6∈ w′′ and (h)wψ 6⊆ w′′′. We want to show that (f’)φ ∨ χ ⇒ φ ∈ w, (g’) χ 6∈ w′
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and (h’)wφ 6⊆ w′′′, from which we conclude that(w′, φ) <′(w,γ) (w′′′, χ), by Definition
3.8 and point 1. From (g) and (d) we immediately conclude that (g’), and from (h) and
(e) we immediately conclude that (h’). We are still left to prove (f’). This can be proven
by reasoning analogously to what done above when proving (c’), and the result follows.

Fact 3: <′(w,γ) satisfies the Limit Assumption. By the Limit Assumption of<(w,γ) in M
together with fact (a) of point (iv) below.

Fact 4: For all (w, γ), for all φ, M ′, (w, γ) |= φ iff M, (w, γ) |= φ. If φ is an atom this
is obvious. Ifφ is a boolean combination of formulas the result easily follows by the
inductive step. Letφ = ψ ⇒ χ. We can show that (a)Min(w,γ)(ψ) ⊆ [[χ]] in M iff
Min(w,γ)(ψ) ⊆ [[χ]] in M ′. The only if direction immediately follows by inductive
hypothesis, since it can be easily proven that for all(w′, δ), if (w′, δ) ∈ Min(w,γ)(ψ) in
M ′, then(w′, δ) ∈ Min(w,γ)(ψ) in M .
For the if direction, supposeMin(w,γ)(ψ) ⊆ [[χ]] in M ′ andMin(w,γ)(ψ) 6⊆ [[χ]]
in M . Then there is(w′, δ) s.t. (b) (w′, δ) 6∈ [[χ]], (c) (w′, δ) ∈ Min(w,γ)(ψ) in
M , and (d)(w′, δ) 6∈ Min(w,γ)(ψ) in M ′. However, this is impossible. Indeed, it
can be easily shown that by (b)wδ ⊆ w′. By (c) and (d), we can infer that there is
(w′′, µ) ∈ [[ψ]] s.t. (w′′, µ) <′(w,γ) (w′, δ) without (w′′, µ) <(w,γ) (w′, δ). This means
that the relation(w′′, µ) <′(w,γ) (w′, δ) has been inserted at step 3, hencew′′ = w′.
We can assume without loss of generality that(w′′, µ) is minimal w.r.t.π′([(w′,δ)],(w,γ)).
We can show that (e)(w′′, µ) ∈ Min(w,γ)(ψ) in M ′. Suppose it was not, then there
would be(w′′′, ε) ∈ [[ψ]] s.t. (w′′′, ε) <′(w,γ) (w′′, µ). First notice that by transitiv-
ity of <′, (w′′′, ε) <′(w,γ) (w′, δ). Second, notice that by minimality of(w′′, µ) w.r.t.
π′([(w′,δ)],(w,γ)), (w′′′, ε) 6∈ [(w′, δ)](w,γ). This means that the relation can only have
been inserted by point 1, hence also(w′′′, ε) <(w,γ) (w′, δ) in M , which contradicts
(w′, δ) ∈ Min(w,γ)(ψ) in M . Hence, (e) holds. Sincew′′ = w′, and(w′, δ) 6∈ [[χ]] also
(w′′, µ) 6∈ [[χ]], and from (e) we derive thatMin(w,γ)(ψ) 6⊆ [[χ]] in M ′. Contradiction.
We hence have shown that ifMin(w,γ)(ψ) ⊆ [[χ]] in M ′ alsoMin(w,γ)(ψ) ⊆ [[χ]] in
M , and the result follows.

Fact 5: <′(w,γ) in M ′ satisfies(S − CEM). Consider(w′, φ) and(w′′, ψ). If wφ 6⊆ w′

andwψ 6⊆ w′′, then if π(w,γ)(w′, φ) < π(w,γ)(w′′, ψ), then(w′, φ) <′(w,γ) (w′′, ψ),
otherwise(w′′, ψ) <′(w,γ) (w′, φ).
If wφ ⊆ w′ andwψ 6⊆ w′′, then(w′, φ) <′(w,γ) (w′′, ψ) by point 1 and definition of<

in 3.8; if wφ 6⊆ w′ andwψ ⊆ w′′, then(w′′, ψ) <′(w,γ) (w′, φ).
Let us consider the case in whichwφ ⊆ w′ andwψ ⊆ w′′. We distinguish two cases:
(a)φ∨ψ ⇒ ¬ψ ∈ w (b)φ∨ψ ⇒ ψ ∈ w. (a): it can be easily shown that(w′, φ) <′(w,γ)

(w′′, ψ). (b): we distinguish two other cases: (c)φ ∨ ψ ⇒ ¬φ ∈ w (d)φ ∨ ψ ⇒ φ ∈ w.
(c): we can easily show that(w′′, ψ) <(w,γ) (w′, φ). (d): wφ = wφ∨ψ = wψ, and by
maximality ofwφ in case (CEM) holdsw′ = w′′. In this case, a relation is introduced
at step 3. Hence either(w′, φ) = (w′′, ψ) or (w′, φ) <′(w,γ) (w′′, ψ) or (w′′, ψ) <′(w,γ)

(w′, φ).
Fact 6: <′ is modular. Since it is total (by(S − CEM)).
Fact 7: If in M (S−MP ) holds then it holds also inM ′. Consider(w, γ). By (MP), since

γ ∈ w, alsowγ ⊆ w. By definition ofW(w,γ) and by consistency and maximality ofw, it
follows that(w, γ) ∈ W(w,γ). Consider any(w′, φ). The relation(w′, φ) <(w,γ) (w, γ)
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is not introduced at step 1, since< in M satisfies(S−MP ). It is not introduced at step
2. It is not introduced at step 3 either, since(w, γ) is minimal w.r.tπ′(w,γ).

Fact 8: If (CS) ∈ Σ, thenM ′ satisfies(S − CS). Indeed,(S − CS) holds inM and if
(w, γ) <(w,γ) (w′, φ) in M , then also(w, γ) <′(w,γ) (w′, φ) in M ′.

Fact 9: PCL ∪ Σ is complete w.r.t the semantics. From the facts above.

Case 4:{(A0), (A1), (A2)} ∩ Σ 6= ∅.
Let M be a model built by one of the constructions in the case above corresponding to

the axioms inΣ. Even if (A0),(A1),(A2) belong toΣ, the resulting model may not entail
the Universality.

Let M, (w0, ψ) |= Γ for some possible world(w0, ψ). Starting from this model we can
build a modelM ′ satisfyingΓ and in which the Universality holds. From this follows the
completeness of the logic w.r.t. models satisfying Universality.

Before we proceed, notice that by (A0),(A1), (A2) we can prove the following facts:

Fact 1: (w0, ψ) ∈ W(w0,ψ). If it were not so, then for someφ, φ ∈ w0 andφ ⇒⊥∈ w0.
But this is impossible, given(A0).

Fact 2: If (w′, γ) ∈ W(w0,ψ), thenW(w0,ψ) = W(w′,γ). ⇒ Suppose there were(w′′, φ)
such that (a)(w′′, φ) ∈ W(w0,ψ) and (b)(w′′, φ) 6∈ W(w′,γ), then for someχ, χ ∈ w′′

andχ ⇒⊥∈ w′, whereas (c)¬(χ ⇒⊥) ∈ w0. However, since(w′, γ) ∈ W(w0,ψ) by
hypothesis, fromχ ⇒⊥∈ w′ it follows that¬((χ ⇒⊥) ⇒⊥) ∈ w0, which contradicts
(c), by (A2).⇐ Suppose now (a)(w′′, φ) ∈ W(w′,γ) and (b)(w′′, φ) 6∈ W(w0,ψ). Then
for someχ, χ ∈ w′′, (c) χ ⇒⊥∈ w0, whereas¬(χ ⇒⊥) ∈ w′. However, since
(w′, γ) ∈ W(w0,ψ), ¬(¬(χ ⇒⊥) ⇒⊥) ∈ w0, which contradicts (c), given (A1).

With these facts at hand, we buildM ′ as follows. The only difference betweenM ′ andM
is in the definition of the set of possible worldsW :

DEFINITION 3.11CANONICAL UNIVERSAL MODEL. We let

M ′ = 〈W ′, {W(w,γ)}(w,γ)∈W ′ , {<(w,γ)}(w,γ)∈W ′ , I〉,
where:

(1) W ′ = W ∩W(w0,ψ)

We can show the following Facts:

Fact 3: (w0, ψ) ∈ W ′. By Fact 1 above.

Fact 4: For each(w, γ) ∈ W ′, W(w,γ) = W ′, i.e. Universality holds. By Fact 2 above.

Fact 5: Since<(w,γ) has not changed, it is still irreflexive, transitive, satisfies the Limit
Assumption, it satisfies(S − MP ) if (MP) ∈ Σ, it satisfies (S-CS) if (CS)∈ Σ, it
satisfies the modularity if (CV)∈ Σ, it satisfies (S-CEM) if (CEM)∈ Σ.

Fact 6: For all φ, for all (w, γ) ∈ W ′, M, (w, γ) |= φ iff M ′, (w, γ) |= φ. By induction
on the complexity ofφ. If φ is an atom, obvious. Ifφ is a boolean combination of
formulas, this follows by the inductive step. Ifφ is a conditionalψ ⇒ χ, notice that in
M Min(w,γ)(ψ) ⊆ W(w,γ), by definition ofMin(w,γ)(ψ). In turn, by Fact 2 above,
W(w,γ) ⊆ W ′, henceMin(w,γ)(ψ) ⊆ W ′ and Min(w,γ)(ψ) in M ′ coincides with
Min(w,γ)(ψ) in M . The result follows by inductive hypothesis.
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Fact 7: M ′, (w0, ψ) |= Γ. As a consequence of the point above, for allφ, if M, (w0, ψ) |=
φ, alsoM ′, (w0, ψ) |= φ. Hence, fromM ′, (w0, ψ) |= Γ, it follows that
M ′, (w0, ψ) |= Γ.

Fact 8: PCL ∪ Σ is complete w.r.t the semantics. We have shown that ifΓ is consistent
w.r.t. PCL ∪Σ where(A0), (A1), (A2) are inΣ, then it is satisfiable in aPCL -model
satisfying Universality. Hence,PCL ∪ Σ is complete w.r.t the semantics.

2

We have given uniform and modular proof of completeness forPCL and its extensions.
A result of such generality does not seem to be known in the literature. In order to relate
our completeness proof to existing work, we recall some of the most important work on
conditional logic systems and their completeness.

Completeness proofs for the more general selection function semantics [Nute 1980] are
close to those for modal logics, and the definition of the canonical model is straightforward.

Burgess [Burgess 1981] gives a completeness proof for a conditional logic, calledS
which has the same theorems thanPCL but a different semantics. As a difference with
respect to our approach, Burgess considers a semantics without the Limit Assumption. Fur-
thermore, he considers only systems without Universality. He then considers extensions
S corresponding to additional properties of the preference relation, namely connectivity
(CV), nonvacuity (¬(> ⇒ ⊥)), MP andCS (centering). Notice that nonvacuity is deriv-
able inPCL with Universality (by A0).

Similarly to Burgess, Friedman and Halpern [Friedman and Halpern 1994] consider the
same families of systems we consider, but they show the completeness of the systems
with respect to the preferential semantics without the Limit Assumption (with a different
definition of the semantics of the conditional operator).

Lewis [Lewis 1973b] proves the completeness of his logic with respect to sphere seman-
tics, which is less general than preferential semantics, since it characterizes systems which
contain (at least) axiom CV.

Grahne [Grahne 1998] presents a system of conditional logic augmented by an update
operator. The purpose of his work is the logical modelling of an update operator following
the postulates by Katsuno and Satoh [Katsuno and Satoh 1991] and allowing for the Ram-
sey rule. He obtains a completeness proof with respect to the selection function semantics
for a logic stronger thanPCL (including CV). He also establishes a correspondence be-
tween the selection function semantics and the sphere semantics and then between the
latter and the preferential semantics. However, this correspondence only holds for logics
including CV that have a sphere semantics. By this reason, Grahne’s completeness proof
cannot be adapted to handlePCL .

Kraus, Lehmann and Magidor [Kraus et al. 1990] prove completeness for the flat frag-
ment ofPCL and ofPCL + CV (corresponding to their systemsP andR, as recalled
above). Observe that the completeness proof for the flat case is considerably simpler than
the case ofPCL , since it comprises only one preference relation rather than a family of
preference relations parametrized to worlds.

Nejdl in [Nejdl 1991] investigates a number of conditional logics that we study in this
work. He adopts the preferential semantics, rephrased in terms of structures equipped with
a ternary relation. He does not present however any new completeness result, as his purpose
is mainly to clarify the relations among the systems found in the literature with respect to
alternative axiomatizations. Except for the weakest logic CK (included for exaustiveness),
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the range of systems he considers largely overlaps with ours. More precisely, his starting
point is our logic PCL (named SystemP), then he considers its extensions with one or
more of the following conditions: centering (weak and strong corresponding to MP and
CS), modularity (CV), totality (CEM). Moreover he examines systems with the additional
property of Absoluteness (for eachx, y, <x=<y) that we do not consider here; observe
that this property makes nested conditional collapse, simplifying dramatically the logics.
On the opposite, he does not take into account the property of Universality as we do. For
all systems under consideration he presents alternative axiomatizations and characteristic
theorems.

4. TABLEAU CALCULUS FOR PCL AND ITS EXTENSIONS

Our calculus makes use of labels to represent possible worlds.
In order to test the satisfiability of a formulaφ, we start the tableau byx : φ, for an
initial label x. We then verify whether the tableau so obtained is closed. If it is,φ is not
satisfiable, otherwise it is satisfiable (and, in Theorem 5.8, we show how to extract a model
from the open tableau). In order to test the satisfiability of a finite set of formulasΓ, we
start the tableau by labelling all its formulas by the initial labelx (which is the same than
considering the conjunction of all the elements ofΓ).

As usual, atableauis a tree. Itsbranchesare sets of tableau formulas. These formulas
are either the labelled formulas of the initial setΓ or they are obtained from previous
tableau formulas by the application of tableau rules.

Tableau rules encode the semantics of the formulas. It is well known how this works
for classical logic. Let us look at the conditional formulasφ ⇒ ψ and¬(φ ⇒ ψ) under
preferential semantics. Then we have:
M, x |= φ ⇒ ψ iff for all y, if y ∈ Minx(φ) theny |= ψ

Let us look closer at the definition ofMinx(φ). The following conditions are equivalent:

(i) y ∈ Minx(φ)
(ii) y |= φ andy ∈ Wx and¬∃z s.t. (z |= φ ∧ z ∈ Wx ∧ z <x y)
(iii) y |= φ andy ∈ Wx and∀z((z <x y) ∧ z ∈ Wx → z |= ¬φ)

At this point, we observe that the second part of (iii), namely∀z((z <x y) ∧ z ∈
Wx → z |= ¬φ) can be understood as the definition of a modality indexed by worldx
and characterized by the preference relation<x. Let us call this modality2x. 2x is then
defined by:

M, y |= 2xφ iff ∀z ∈ Wx if z <x y thenM, z |= φ

In order to represent the assertionz ∈ Wx, we introduce another modality indexed by
x, namelyVx, whose meaning is

M, y |= Vx iff y ∈ Wx

From (iii) above, by using this definition, we get:

(∗)y ∈ Minx(φ) iff M, y |= Vx ∧ φ ∧2x¬φ

In the following, we will refer to formulas of the kind2x¬φ or Vx aspseudo-formulas.
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DEFINITION 4.1 TABLEAU FORMULAS. Our tableau formulas are of the following
kinds:

(a) x : φ, whereφ is a formula or a pseudo-formula

(b) x <y z

(c) x = y

wherex, y andz are labels.

The formulas of the form (a) are calledworld formulas, the formulas of the form (b) are
calledrelation formulas, the formulas of the form (c) are calledequalities. Formulas of
the form (a) or (b) are used in all tableau rules whereas the equalities only occur within the
rules introduced to deal with axioms (CS) or (CEM).

In order to develop the tableau rule for the positive conditional formulaφ ⇒ ψ we use
pseudo-formulas. We haveM, x |= φ ⇒ ψ if for all y, y 6∈ Minx(φ) or y |= ψ. Using
(∗), we then obtain for ally

y |= ¬φ ∨ ¬2x¬φ ∨ ¬Vx ∨ ψ

This disjunction has four disjuncts and each disjunct will produce a branch in the tableau.
Hence, we obtain the following tableau rule (T⇒) for the positive conditional

x : φ ⇒ ψ

y : ¬φ | y : ¬2x¬φ | y : ψ | y : ¬Vx

Obviously, the tableau rule for the negative conditional¬(φ ⇒ ψ) can be obtained in
the same way from the corresponding satisfiability condition.

M, x |= ¬(φ ⇒ ψ) if there isy such thaty ∈ Minx(φ) andy 6|= ψ, i.e. if there isy such
that:

y |= φ ∧2x¬φ ∧ Vx ∧ ¬ψ

This conjunction leads to the following tableau rule (F⇒) for the negative conditional

x : ¬(φ ⇒ ψ)

y : φ
y : 2x¬φ
y : ¬ψ
y : Vx

wherey is a new parameter in the branch.
Let us derive the two rules for the pseudo modalities in the same way. According to their

definition, we have:
M, z |= 2xφ iff for every y ∈ Wx if y <x z thenM,y |= φ
From this, we derive : ifM, z |= 2xφ, andy <x z andy ∈ Wx, thenM, y |= φ leading

to the tableau rule:
z : 2xφ
y <x z
y : Vx

y : φ
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On the other hand, we have thatM, z |= ¬2xφ iff there isy ∈ Wx such thaty <x z

andM, y |= ¬φ. The rule we use in the tableau calculus is slightly different since it takes
into account the minimality imposed by the Limit Assumption: ifM, z |= ¬2xφ, by (*)
z 6∈ Min(¬φ) and by the Limit Assumption we know that there is any such thaty <x z,
andy ∈ Minx(¬φ), i. e. by (*) M, y |= ¬φ, M, y |= 2φ, y |= Vx. The resulting
rule is the following (called (F2)). This rule does the same job as the corresponding rule
(due to Fitting [Fitting 1983]) for modal systemGL , the extension of K4 by L̈ob axiom
2(2φ → φ) → 2φ. Hence the tableau rule for¬2x has the form

z : ¬2xφ

y <x z
y : ¬φ
y : 2xφ
y : Vx

wherey is new. In order to simplify the calculus, we avoid to explicitly introducey : Vx in
a branch in which we also havey <x z or z <x y. In these cases, we implicitly assume that
y : Vx (andz : Vx). This is captured by condition (iii) in the definition of closed branch
(definition 4.3 below). The above rules for the modality2x hence become the simplified
tableau rules:

(T2):

z : 2xφ
y <x z

y : φ

and (F2):

z : ¬2xφ

y <x z
y : ¬φ
y : 2xφ

Figure 1 shows all the tableau rules forPCL . Following the terminology of [Goŕe 1999],
we refer to the rules generating new worlds asdynamic rules, and to all other rules asstatic
rules. Observe that all the rules we introduced are static except for(F ⇒) and(F2) which
are dynamic.

In order to deal with the extensions ofPCL , we need to add some extra rules, shown in
Figure 2. These rules straightforwardly capture the semantic properties of the correspond-
ing axioms. We provide one extra rule for each extra axiom, with the exception of (MP)
for which we introduce two rules. In order to obtain a calculus for extensions ofPCL
containing more than one axiom, it will be enough to consider the calculus containing all
the rules introduced for the extra axioms. Hence, for instance, in order to obtain a calculus
for the logic obtained by adding toPCL axioms (CV) and (MP) below, we will have to
consider all the rules introduced forPCL + (R-CV) + (R-MP).

Notice that the rules (R-CS) and (R-CEM) introduce in the tableau some equalities of
the kindx = y. In the presence of these rules, we need some extra rules to deal with the
equality. The rules for equality are shown in Figure 3. Hence, for instance, in order to deal
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(T∧)
x : φ ∧ ψ

x : φ, x : ψ
(F∧)

x : ¬(φ ∧ ψ)

x : ¬φ | x : ¬ψ

(NEG) x : ¬¬ψ

x : ψ

(T ⇒)(∗) x : φ ⇒ ψ

y : ¬φ | y : ¬2x¬φ | y : ψ | y : ¬Vx

(F ⇒)(∗∗) x : ¬(φ ⇒ ψ)

y : φ, y : 2x¬φ, y : ¬ψ, y : Vx

(T2)(∗) z : 2xφ, y <x z

y : φ
(F2)(∗∗) z : ¬2xφ

y <x z, y : ¬φ, y : 2xφ,

(Trans)
y <x z , z <x u

y <x u

(*) y is a label occurring in the branch.
(**) y is a new label not occurring in the branch.

Fig. 1. Tableau rules forPCL

(R−MP )
y <x x

x :⊥
x : ¬Vx

x :⊥

(R− CS) old x, y
x <x y | x = y| y : ¬Vx

(R− CV )
y <x z

old u
u : ¬Vx | y <x u | u <x z

(R− CEM) old x, y, z
y : ¬Vx | z : ¬Vx | y = z | y <x z | z <x y

(R− UNIV )
y : ¬Vx

x :⊥

Fig. 2. Rules for the extensions ofPCL .

with Stalnaker’s logicC2, containingPCL plus axioms (CV), (MP) and (CEM) we have
to consider the rules forPCL + (R-CV) + (R-MP) + (R-CEM) + all the rules for equality
((E-R) + (E-T) + (E-<) + (E-¬ V) + (E-φ)).

The following is a formal definition of a tableau forPCL and its extensions.

DEFINITION 4.2Σ-TABLEAU . LetΣ ⊆ {(R-MP), (R-CS), (R-CV), (R-CEM), Universality}.
A Σ-tableau is a tableau built by applying
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(E −R) (∗)
x = x

(E − S)
x = y

y = x

(E − T )
x = y, y = z

x = z
(E− <)

x = x′, y = y′, z = z′, y <x z

y′ <x′ z′

(E − ¬V )
x = x′, y = y′, y : ¬Vx

y′ : ¬Vx′
(E − φ)

x = x′, x : φ
(∗∗)

x′ : φ

Fig. 3. Rules for Equality. (*)x is a label in the branch. (**)φ is either a formula or a pseudo-formula.

(i) the rules forPCL of Figure 1,

(ii) the rules inΣ of Figure 2,

(iii) the rules for Equality in Figure 3 whenever (R-CS) or (R-CEM) belong toΣ.

DEFINITION 4.3 CLOSED BRANCH AND CLOSED TABLEAU . We say that a branch of
a Σ-tableau is closed if it contains one of the following formulas (i) or (ii) or (iii):

(i) x : φ andx : ¬φ, for any formula or pseudo-formulaφ, or x :⊥;

(ii) y <x y;

(iii) y <x z andy : ¬Vx or z : ¬Vx;

A Σ-tableau is closed if every branch is closed.

DEFINITION 4.4 Σ-PROVABLE. A formulaφ is Σ-provable if there exists a closed
Σ-tableau forx : ¬φ.

Notice that in the presence of rule (R-UNIV) to deal with Universality, all branches
containingy : ¬Vx close. This expresses that every world belongs to every of the subsets
Wx of W , which is precisely the semantic condition for Universality. For example, the
formula ¬(> ⇒ ⊥) is not a theorem ofPCL . In the absence of rule (R-UNIV), the
tableau contains one branch withx : ¬Vx, which cannot be closed. This branch closes in
presence of the rule (R-UNIV) (the formula is indeed a theorem ofPCL + Universality).
In the presence of (R-UNIV) , the calculus could be simplified by omitting all the branches
in which y : ¬Vx is introduced. The fact that in the presence of Universality the calculus
can be simplified is related to the remark done before that in the presence of this property,
PCL -models become simpler.

As an example of how the calculus works, in Figure 4 we show thatφ ⇒ (ψ ∧ χ) →
(φ ∧ ψ ⇒ χ) is a theorem ofPCL .

5. SOUNDNESS AND COMPLETENESS OF THE TABLEAU CALCULUS FOR
PCL AND ITS EXTENSIONS

5.1 Soundness of the calculus

In order to prove the soundness and completeness of the tableau rules, we have to define
the notion of satisfiability of a tableau branch.
Given a branchB, we denote byWB the set of labels occurring inB.
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x : ¬(φ ⇒ (ψ ∧ χ) → (φ ∧ ψ ⇒ χ))

x : φ ⇒ (ψ ∧ χ)

x : ¬(φ ∧ ψ ⇒ χ)

y0 : φ ∧ ψ
y0 : ¬χ

y0 : !x¬(φ ∧ ψ)

y0 : Vx

y0 : ¬φ y0 : ¬Vxy0 : ¬!x¬φ y0 : ψ ∧ χ

z0 <x y0

z0 : φ

z0 : !x¬φ

z0 : ¬(φ ∧ ψ)

z0 : ¬φ z0 : ¬ψ

z0 : ¬φ z0 : ¬!x¬φ z0 : ψ ∧ χ

×

z0 : ¬Vx

×××

×

× × ×

Fig. 4. Example of tableau.

DEFINITION 5.1PCL -MAPPING. LetM = (W, {Wx}x∈W , {<x}x∈W , I) be aPCL -
model. Given a branchB, we say thatf : WB → W is a PCL -mapping fromB to M ,
if

(1) for everyy <x z ∈ B, f(y), f(z) ∈ Wf(x) andf(y) <f(x) f(z) holds inM

(2) for everyy : Vx ∈ B, f(y) ∈ Wf(x)

(3) for everyx = y ∈ B, f(x) = f(y)

DEFINITION 5.2 SATISFIABILITY OF A BRANCH . Given a branchB of a tableau, a
PCL -modelM , and aPCL -mappingf from WB to W , we say thatB is satisfiable
underf in M if the following condition holds:

if x : φ ∈ B thenM, f(x) |= φ

whereφ is a conditional formula or a pseudo-formula.
A branchB is satisfiable if it is satisfiable in somePCL -modelM under some mapping

f . A tableau is satisfiable if at least one of its branches is satisfiable.

In order to show that the tableau rules only prove correct formulas, we first show that
they preserve satisfiability.

LEMMA 5.3. Let T be a tableau satisfiable in aΣ-model. LetT ′ be obtained fromT
by applying one of the rules given forPCL or for Σ in Figures 1, 2, and 3 above. Then
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T ′ is also satisfiable.

PROOF. If T is a satisfiable tableau, then it contains at least one branchB which is sat-
isfiable, i.e. there is a modelM = (W, {<x}x∈W , {Wx}x∈W , I) and aPCL -mapping
f such that the condition from Definition 5.2 holds for all world formulas inB. We will
show that for each tableau rule applied toT , the resulting tableauT ′ is still satisfiable.

(class) The case of classical connectives is easy and left to the reader.

(T ⇒) Let x : φ ⇒ ψ ∈ B. Let T ′ be T with B replaced by four new branches:
B1 = B ∪ {y : ¬φ}, B2 = B ∪ {y : ¬Vx}, B3 = B ∪ {y : ¬2x¬φ}, y : Vx

andB4 = B ∪ {y : ψ}. By definition of (T ⇒), y ∈ WB . We will show that at
least one of these branches is satisfiable. SinceB is satisfiable, there is a modelM =
(W, {Wx}x∈W , {<x}x∈W , I) and aPCL -mappingf such thatM,f(x) |= φ ⇒ ψ.
Then for allv ∈ Min<f(x)(φ), M, v |= ψ. This is true iff∀v ∈ W , eitherv 6∈ Min<f(x)

or M, v |= ψ, i. e. ∀v ∈ W , eitherM, v 6|= φ or M, v 6|= Vf(x) or M, v 6|= 2f(x)¬φ or
M, v |= ψ. Sincey ∈ WB , f(y) ∈ W , then one of the following is true:
(1) M, f(y) |= ¬φ
(2) M, f(y) |= ¬Vx

(3) M, f(y) |= ¬2f(x)¬φ
(4) M, f(y) |= ψ

In the first case,B1 is satisfiable, in the second case,B2 is satisfiable, in the third case,
B3 is satisfiable and in the fourth caseB4 is satisfiable.

(F ⇒) Let x : ¬(φ ⇒ ψ) ∈ B. ThenM, f(x) |= ¬(φ ⇒ ψ), i. e. there isv ∈
Min<f(x)(φ) such thatM,v |= ¬ψ, i. e. M, v |= Vf(x) ∧ φ ∧ 2f(x)¬φ. If the rule
(F ⇒) is applied tox : ¬(φ ⇒ ψ) on T , the resulting tableauT ′ is T with B replaced
by B′ = B ∪ {y : φ, y : Vx, y : 2x¬φ, y : ¬ψ}, wherey 6∈ WB . Sincey 6∈ WB , f is
not defined fory. We define a new mappingf ′ : WB′ −→ W by lettingf ′(i) = f(i)
if i 6= y andf ′(y) = v. It can be easily verified thatf ′ is aPCL -mapping fromWB′

to W . Obviously, the new formulas onB′ are satisfied by the new model under the
mappingf ′

(T2) Let y : 2xφ ∈ B, andz <x y ∈ B. After application of rule(T2), the resulting
tableauT ′ is T with B replaced byB′ = B∪{z : φ}. SinceB is satisfiable byM under
f , we have that for everyv , such thatv <f(x) f(y), M,v |= φ. Sincez <x y ∈ B,
f(z) <f(x) f(y). Consequently,M,f(z) |= φ, henceB′ is also satisfiable.

(F2) Let y : ¬2xφ ∈ B. SinceB is satisfiable byM underf andy : ¬2xφ ∈ B
there is aw s. t. w <f(x) f(y) and M, w |= ¬φ. Clearly w ∈ Wf(x), hence
Wf(x)∩ [[¬φ]] 6= ∅, and therefore by the Limit Assumption there isv ∈ Min<f(x)(¬φ),
i. e. M, v |= ¬φ ∧ Vx ∧ 2xφ. After applying (F2), we haveB′ = B ∪ {z <x y, z :
¬φ, z : 2xφ}, wherez 6∈ WB . We define a new mappingf ′ by f ′(u) = f(u) for u 6= z
andf ′(z) = v. Sincef ′(z) <f ′(x) f ′(y), f ′ is aPCL -mapping. Moreover, we have
M, f ′(z) |= ¬φ andM,f ′(z) |= 2xφ.

(E - R), (E - T), (E - S)reflexivity, transitivity and symmetry of= hold due to the proper-
ties for equality

(E - <), (E -¬ V), (E - φ) obvious, by predicate substitution

(R-MP) The property trivially holds, since there is no(MP )−model satisfying a branch
B in which eitherx 6∈ Wx or y <x x.
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(R-CS) Let B be a branch ofT satisfiable by a(CS)−modelM . LetT ′ be obtained from
T by replacingB by the three branchesB1 = B ∪ {x <x y}, B2 = B ∪ {x = y}, and
B3 = B ∪ {y : ¬Vx}. By (S-CS) inM , eitherf(x) <f(x) f(y) or f(x) = f(y), or
f(y) 6∈ Vf(x). In the first caseB1 is satisfiable. In the second case,B2 is satisfiable. In
the third case,B3 is satisfiable. In both cases,T ′ is satisfiable.

(R-CV) Let B be branch ofT with y <x z ∈ B, satisfiable in a(CV )−model. Let
T ′ be obtained fromT by replacingB by the three branchesB1 = B ∪ {u : ¬Vx},
B2 = B ∪ {y <x u}, B3 = B ∪ {u <x z} whereu ∈ WB . By (S-CV), either
f(u) 6∈ Wf(x) or f(y) <f(x) f(u) or f(u) <f(x) f(z). It follows that eitherB1 or B2

or B3 are satisfiable, henceT ′ is satisfiable.

(R-CEM) Let B be branch ofT satisfiable by a(CEM)−model. LetT ′ be obtained from
T by replacingB by the five branchesB1 = B ∪ {y : ¬Vx}, B2 = B ∪ {z : ¬Vx},
B3 = B ∪ {y = z}, B4 = B ∪ {y <x z}, B5 = {z <x y}. By (S-CEM), eitherf(y) 6∈
Wf(x), or f(z) 6∈ Wf(x), or f(y) = f(z), or f(y) <f(x) f(z) or f(z) <f(x) f(y). It
follows that one out ofB1 . . . B5 are satisfiable, henceT ′ is satisfiable.

(R-UNIV) The property trivially holds, since there is no Universal model satisfying a
branchB containingy : ¬Vx.

2

With the previous lemma at hand, we can prove the following:

THEOREM 5.4 SOUNDNESS. If φ is Σ-provable then it isΣ-valid.

PROOF. We show the contrapositive. Letφ be notΣ-valid, i.e. let¬φ be satisfiable by a
Σ−model. We show that the tableau starting withx : ¬φ does not close, which means that
φ is notΣ−provable. LetT be a tableau starting withx : ¬φ. By the previous lemma,
each expansion ofT is satisfiable, and contains at least one satisfiable branchB (i. e. there
is aΣ-modelM and aPCL−mappingf such thatB is satisfiable inM underf ). This
branch cannot be closed, otherwise by Definition 4.3, it would contain either (i)x : φ and
x : ¬φ, or x :⊥ (for some formulaφ) or (ii) y <x y or (iii) y <x z andy : ¬Vx or
z : ¬Vx. But (i), (ii), and (iii) contradict the fact thatB is satisfiable. Indeed, if (i) holds,
M, f(x) |= φ andM, f(x) |= ¬φ, impossible, orM, f(x) |= ⊥, impossible. If (ii) holds
f(y) <f(x) f(y), which contradicts the irreflexivity of<f(x) in M . Last, if (iii) holds,
thenf(y) <f(x) f(z), and eitherf(y) 6∈ Wf(x) or f(z) 6∈ Wf(x). Both cases contradict
the fact that, by definition,<f(x) ranges overWf(x).

2

5.2 Completeness of the calculus

In order to prove the completeness of the calculus, we restrict our attention to tableaux
which can be generated starting from an input formulaφ.

We first show that no tableau contains infinite descending chains of labels related by the
same relation<x, provided it does not contain an infinite number of conditional formu-
las labelled with the same label. This is of course true if the tableau starts with a finite
number of formulas (it is interesting to notice that this holds independently from Block-
ing Conditions1 and2 we will introduce below in order to ensure the termination of the
calculus).
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LEMMA 5.5. LetB be a branch of a tableau containing only a finite number of positive

conditional formulasx : φ0 ⇒ ψ0, x : φ1 ⇒ ψ1, x : φ2 ⇒ ψ2, . . . , x : φn−1 ⇒ ψn−1.
ThenB does not contain any infinite descending chain of labelsy1 <x y0, y2 <x y1, . . . ,
yi+1 <x yi, . . ..

PROOF. Let B contain a descending chain of labelsy1 <x y0, y2 <x y1, . . . , yi+1 <x

yi. This chain comes from the successive application of(T ⇒) and (F2) to formulas
x : φi ⇒ ψi for 0 ≤ i < n. B then contains the following formulas for0 ≤ i < n:
yi : ¬2x¬φi, yi+1 <x yi, yi+1 : φi, yi+1 : 2x¬φi.

Here(T ⇒) has been applied to every formulax : φi ⇒ ψi once and with parameteryi

previously (and newly) generated by(F2) from yi−1 : ¬2x¬φi−1. The only way to make
the chain longer is by applying(T ⇒) a second time to one of the positive conditional
formulas labelledx on B. Let this formula bex : φk ⇒ ψk where0 ≤ k < n. ThenB
contains furtheryn+1 : φk (together withyn : ¬2x¬φk, yn+1 <x yn, yn+1 : 2x¬φk).

By the transitivity rule, we get yn+1 <x yk+1. Moreover,B contains alsoyk+1 :
2x¬φk, from which we obtain by(T2) yn+1 : ¬φk which closes the branch.

2

We can now show the completeness of the calculus. To this purpose, we need to intro-
duce the following notion of saturated branch. This notion intuitively expresses that all
tableau rules which could be applied to the branch have been applied to it.

DEFINITION 5.6 SATURATED BRANCH. We say that a branchB of a tableau is:

—saturatedw.r.t. PCL if:
1.1 If x : φ ∧ ψ ∈ B thenx : φ ∈ B andx : ψ ∈ B.
1.2 If x : ¬(φ ∧ ψ) ∈ B then eitherx : ¬φ ∈ B or x : ¬ψ ∈ B.
1.3 If x : ¬¬φ ∈ B thenx : φ ∈ B.
1.4 If x : (φ ⇒ ψ) ∈ B then for any labely ∈ WB , eithery : ¬φ ∈ B or y : ¬Vx ∈ B

or y : ¬2x¬φ ∈ B or y : ψ ∈ B.
1.5 If x : ¬(φ ⇒ ψ) ∈ B then there is a labely such thaty : φ ∈ B, y : Vx ∈ B,

y : ¬ψ ∈ B andy : 2x¬φ ∈ B.
1.6 If y : 2xφ ∈ B andz <x y ∈ B thenz : φ ∈ B.
1.7 If y : ¬2xφ ∈ B then there is a labelz such thatz <x y ∈ B, z : ¬φ ∈ B and

z : 2xφ ∈ B.
1.8 If z <x u ∈ B andu <x y ∈ B thenz <x y ∈ B

—saturatedw.r.t. = if:
2.1 for all x ∈ B, x = x ∈ B;
2.2 if x = y ∈ B, alsoy = x ∈ B;
2.3 if x = y ∈ B andy = z ∈ B, alsox = z ∈ B;
2.4 if x = x′ ∈ B, y = y′ ∈ B, z = z′ ∈ B, andy <x z ∈ B, then alsoy′ <x′ z′ ∈ B;
2.5 if x = x′, y = y′, y : ¬Vx ∈ B, theny′ : ¬Vx′ ∈ B.
2.6 if x = x′ andx : φ are inB, then alsox′ : φ ∈ B.

—saturatedwith respect toPCL + (MP) if it is saturated w.r.t. toPCL , and for nox and
y, x : ¬Vx or y <x x ∈ B;

—saturatedwith respect toPCL + (CS) if it is saturated w.r.t. toPCL , saturated w.r.t. to
=, and for allx, y ∈ B, eitherx <x y ∈ B or x = y ∈ B or y : ¬Vx ∈ B;
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—saturatedwith respect toPCL + (CV) if it is saturated w.r.t. toPCL , and for all labels
x, y, z, u in B, if y <x z ∈ B, then alsoy <x u ∈ B or u <x z ∈ B;

—saturatedwith respect toPCL + (CEM) if it is saturated w.r.t. toPCL , saturated w.r.t.
to =, and for allx, y, z in B, eithery = z ∈ B or y <x z ∈ B or z <x y ∈ B;

—saturatedwith respect toPCL + (A0), (A1), (A2) if it is saturated w.r.t. toPCL , and
there are no labelsx andy, such thaty : ¬Vx ∈ B.

For short, in some of the proofs below we will use the notion of saturated with respect to
single axioms to mean that the branch has the single saturation condition associated to the
axiom. Hence, for instance, in a branchB saturated w.r.t. to ( CV), whenevery <x z ∈ B,
then for allu, y <x u ∈ B or u <x z ∈ B.

We can now show the following lemma.

LEMMA 5.7. If φ is not Σ-provable, then there exists a tableau which contains an
open branch starting withx : ¬φ, and which is saturated with respect toPCL + the rules
corresponding to the axioms contained inΣ.

PROOF. Sinceφ is not provable, all tableaux starting withx : ¬φ will contain an open
branch. Hence, also the tableau built according to the following systematic procedure
contains an open branch:(step a:) apply all the static rules as far as possible; in case
of branching, make the choice which preserves non-closure (there is always one choice,
by hypothesis);(step b:) apply the dynamic rules to the new formulas generated in the
previous step.

By this strategy, every formula in the branch is eventually considered. It can be easily
shown that the branch generated by this systematic procedure is saturated with respect to
the rules inPCL and with respect to the rules corresponding to the axioms contained in
Σ.

2

THEOREM 5.8 COMPLETENESS OF THE CALCULUS. If φ is valid in allΣ-models, then
it is Σ-provable.

PROOF. We show the contrapositive: that ifφ is notΣ-provable, thenx : ¬φ is satisfi-
able by aΣ-model. If φ is not provable, by Lemma 5.7 the tableau starting withx : ¬φ
contains an open branchB which is saturated with respect to the rules inPCL and the
rules corresponding to the axioms contained inΣ. Starting fromB, we build a canonical
model. We have two alternative constructions: one for the case in which neither axiom
(CS) nor axiom (CEM) belong toΣ, and another corresponding to the case in which (at
least) one of the two axioms belongs toΣ (and therefore the= symbol appears inB).

Case 1: (CS)6∈ Σ and (CEM)6∈ Σ.
Let MC = 〈W, {Wx}x∈W , {<x}x∈W , I〉, where:

1) W = WB ;

2) For eachx ∈ W , Wx = {y | y : ¬Vx 6∈ B}
3) For eachx ∈ W , y <x z if y <x z ∈ B;

4) For eachx ∈ W , I(x) = {p | p ∈ ATM andw : p ∈ B}.
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If y <x z ∈ B theny : ¬Vx 6∈ B andz : ¬Vx 6∈ B, otherwiseB would be closed. It

follows that if y <x z ∈ B, theny, z ∈ Wx andy <x z is well defined. We show the
following facts:

(1) <x is an irreflexive and transitive relation onWx. The transitivity immediately fol-
lows from the transitivity of<x entailed by the definition of saturated branch. The
irreflexivity follows from the irreflexivity of<x: by definition of closed branch, 4.3,
if for somey y <x y ∈ B, B would be closed, against the hypothesis.

(2) LetWx ∩ [[φ]] 6= ∅. ThenMinx(φ) 6= ∅. SupposeMinx(φ) = ∅; let y1 ∈ Wx ∩ [[φ]].
Sincey1 6∈ Minx(φ), there must be an infinite descending chain of elements of[[φ]]
yn+1 <x yn <x . . . <x y1. By definition of<x, this entails that we have an infinite
decreasing sequenceyn+1 <x yn <x . . . <x y1 ∈ B. By Lemma 5.5 we have a
contradiction.

We now show thatB is satisfiable byMC . Obviously, the identityid(x) = x is aPCL -
mapping by the construction ofMC . We show thatB is satisfiable byMC underid. For
all formula or pseudo-formulaφ we show that(a) if x : φ ∈ B, thenMC , x |= φ and (b) if
x : ¬φ ∈ B, thenMC , x |= ¬φ.

—if φ ∈ ATM , (a) follows by definition ofI. For what concerns (b),x : φ 6∈ B, otherwise
B would be closed. By definition ofI, φ 6∈ I(x), henceMC , x 6|= φ, andMC , x |= ¬φ;

—The case of boolean combination of formulas is easy and left to the reader;

—If φ is ψ ⇒ χ, to prove (a) we reason as follows: lety ∈ WB . Then we have four cases:
(i) y : ¬ψ ∈ B. Then, by the induction hypothesis, we haveMC , y |= ¬ψ, i.e.

MC , y 6|= ψ, thusy 6∈ Minx(ψ).
(ii) y : ¬2x¬ψ ∈ B. Then by saturation ofB, there is a labelz such thatz <x y ∈ B,

z : ψ ∈ B. By construction of the model, we havez <x y and by the induction
hypothesisMC , z |= ψ, thusy 6∈ Minx(ψ).

(iii) y : χ ∈ B. Then by the induction hypothesis we getMC , y |= χ.
(iv) y : ¬Vx ∈ B. Theny 6∈ Wx, hencey 6∈ Minx(ψ).

From (i), (ii), (iii) and (iv) we conclude that for ally ∈ WB , if y ∈ Minx(ψ), then
MC , y |= χ, henceMC , x |= ψ ⇒ χ.

To prove (b): sinceB is saturated, then there isy such thaty : ψ ∈ B, y : 2x¬ψ ∈ B,
y : Vx ∈ B andy : ¬χ ∈ B. By the induction hypothesis,MC , y |= ψ andMC , y |=
¬χ. Furthermore, sinceB is open,y : ¬Vx 6∈ B, hencey ∈ Wx. We show that
y ∈ Minx(ψ). Suppose that this is not the case; sinceMC , y |= ψ, there isz <x y and
M, z |= ψ. By definition of<x, we havez <x y ∈ B and by saturationz : ¬ψ ∈ B; by
induction hypothesis we would haveMC , z |= ¬ψ, henceMC , z 6|= ψ, a contradiction.
Thereforey ∈ Minx(ψ), which provesM, x |= ¬(ψ ⇒ χ).

—If φ is 2yψ, (a): letv <y x. By definition of<y, v <y x ∈ B. From this, by saturation,
it follows v : ψ ∈ B, and by the induction hypothesisMC , v |= ψ. We conclude that
MC , x |= 2yψ. (b) sinceB is saturated, there is a labelz such thatz <y x ∈ B,
z : ¬ψ ∈ B. From this we obtain by construction of the model thatz <y x, and by the
induction hypothesisMC , z |= ¬ψ, from which it follows thatMC , x |= ¬2yψ.

—If (MP) ∈ Σ, thenMC satisfies (S - MP). For a contradiction, supposey 6∈ Wx or
y <x x. In the first case,y : ¬Vx ∈ B; in the second case, by definition of<x,
y <x x ∈ B. Both cases contradict the saturation condition associated with (MP).
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—If (CV) ∈ Σ, thenMC satisfies (S-CV). Lety <x z. By definition ofMC , y <x z ∈ B,
and by the saturation condition associated with (CV), for allu ∈ WB , eitheru : ¬Vx ∈
B or y <x u or u <x z . In the first case,u 6∈ Wx, in the second casey <x u; in the
third caseu <x z. It follows that (S-CV) is satisfied.

—If (A0), (A1), (A2) ∈ Σ, thenMC satisfies Universality. Indeed, by definition of
saturated branch, for allx, y ∈ WB y : ¬Vx 6∈ B, hence by definition ofWx, y ∈ Wx,
i.e. Wx = WB = W .

Case 2: (CS)∈ Σ or (CEM)∈ Σ. Given a branchB saturated with respect to all the
rules inΣ, we build the canonical model as follows. For allx, y ∈ WB , we letx =M y iff
x = y ∈ B. Notice that=M is an equivalence relation. Indeed, sinceB is saturated w.r.t.
=, = (and hence=M ) is symmetric, transitive and reflexive according to Definition 5.6,
2.1, 2.2, 2.3.
For all x ∈ WB , we let [x] = {y : x =M y}. We can now define the canonical model
MC = 〈W, {W[x]}[x]∈W , {<[x]}[x]∈W , I〉, where:

—W = {[w]/ =M}, i. e. it is the set of all the equivalence classes ofWB with respect to
=M ;

—[y] <[x] [z] if y <x z ∈ B. Notice that sinceB is saturated w.r.t.=, this definition is
well given, i. e. it does not depend on the choice of the representative of[x], [y], [z],
since, according to Definition 5.6, 2.4, forx′ = x, y′ = y, andz′ = z, y <x z iff
y′ <x′ z′ ∈ B;

—[y] ∈ W[x] if y : ¬Vx 6∈ B. Notice thatW[x] is well defined because according to
Definition 5.6, 2.5,[y] ∈ W[x] does not depend on the representatives of the classes[y]
and[x] (if y = y′ ∈ B or x = x′ ∈ B, theny : ¬Vx ∈ B iff y′ : ¬Vx′ ∈ B).

—I([x]) = {p : p ∈ ATM andx : p ∈ B}. Notice that alsoI([x]) is well defined, since
by 2.6 in Definition 5.6, ifx : p ∈ B andx = x′ ∈ B, then alsox′ : p ∈ B.

Similarly to what done for Case 1 above, we show that:

1 <[x] is irreflexive, transitive, and satisfies the Limit Assumption. Since<[x] is defined as
in Case 1, the proof is the same.

2 For all formula or pseudo-formulaφ, we show that(a) if x : φ ∈ B, thenMC , [x] |= φ
and (b) ifx : ¬φ ∈ B, thenMC , [x] |= ¬φ.
—for φ ∈ ATM (a) follows from definition ofI. For (b): if x : ¬φ ∈ B, then

x : φ 6∈ B, otherwiseB would be closed. By definition ofI, it follows thatφ 6∈ I(x),
henceMC , x 6|= φ, andMC , x |= ¬φ;

—if φ is a boolean combination of formulas or a pseudo-formula2[y]φ or a conditional
formulaψ ⇒ χ, we reason as in Case 1.

3 If (CS) ∈ Σ, thenMC satisfies (S-CS). Indeed, by Definition 5.6, eitherx = y ∈ B
(and[x] = [y]) or x <x y ∈ B, and[x] <[x] [y].

4 If (CEM) ∈ Σ, thenMC satisfies (S-CEM). Indeed, by Definition 5.6, for allx, y, z,
eithery = z ∈ B, and by construction ofMC [y] = [z], or y <x z ∈ B, and by
construction ofMC , [y] <[x] [z] or z <x y ∈ B, and by construction ofMC , [z] <[x]

[y].
5 If (MP) ∈ Σ, thenMC satisfies (S-MP). We reason analogously to Case 1.

6 If (CV) ∈ Σ, thenMC satisfies (S-CV). We reason as for Case 1.
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7 If (A0), (A1), (A2) ∈ Σ, thenMC satisfies Universality. We reason as for Case 1.

2

6. TERMINATION OF THE CALCULUS

The calculus presented above forPCL and its extensions can lead to non-terminating
computations due to the interplay among, on the one side, the rules(F ⇒) and (F2)
generating new labels, and, on the other side, rule(T ⇒), whose applications to the new
labels may generate new formulas to which(F ⇒) or (F2) can again be applied. For
instance, the tableau construction for the formulax : > ⇒ ¬(> ⇒ p) can produce an
infinite branch (containingx : ¬(> ⇒ p), y : >, y : 2x¬>, y : ¬p, y : ¬(> ⇒ p),
and so on. In this section, we show that the calculus forPCL and its extensions can
be made terminating. The solution we propose is similar to the one we have adopted to
prove the termination ofPCL in [Giordano et al. 2003]: in order to avoid the generation
of infinite branches, we introduce a systematic procedure to build a tableau and we put
suitable blocking conditions on the applications of rules(F ⇒) and(F2). We show that
the systematic procedure terminates, whence it does not lead to generate infinitely many
labels. Moreover, we show that the completeness of the calculus is not lost if we adopt the
systematic procedure with the mentioned blocking conditions.

First of all, let us assume that the tableau construction does not allow any redundant
application of the rules, where a redundant application of a rule is defined as follows:
Redundant application of a rule. LetB be a tableau branch andR a tableau rule applied to
B which producesB1, . . . Bk, the extensions ofB. The application of R isredundantif for
somei (with 0 ≤ i ≤ k), Bi = B. It can be easily seen that a branchB can be extended
to a closed branch just in case it can be extended to a closed branch without any redundant
application of the rules. In particular, we assume that the(T ⇒) applies exactly once to
each formula and label on the branch. The reason is that if we apply the rule twice, the
second application is redundant. Additionally, we assume that a branch does not contain
repetitions of labelled formulas: labelled formulas which are already on the branch are not
added again when applying new rules.

We define asystematic procedurefor constructing the tableau for a given formulax : α.
First, as in [Buchheit et al. 1993], we assume that labels are introduced in a tableau

according to the ordering≺, that is to say, given a labely in the tableau,x ≺ y for all
labelsx that are already in the tableau wheny is introduced. The relation≺ is a total order.

Furthermore, we say that two labelsx andy areB-equivalent, writtenx ≡B y, if they
label the same formulas i.e. if{φ | x : φ ∈ B} = {φ | y : φ ∈ B}.

Last, we define the following procedure for constructing the tableau for a givenx : α.
This is the same procedure described in the proof of Lemma 5.7. The procedure executes
repeatedly two steps:(step a)applies all the static rules as far as possible;(step b)applies
a dynamic rule(F2) or (F ⇒) to a labelx such that there is no labely with y ≺ x to
which a dynamic rule is applicable.

Observe that the procedure respects the following conditions: a dynamic rule is applied
to a labelx only if no dynamic rule is applicable to a labely such thaty ≺ x; a dynamic
rule is applied only if no static rule is applicable.

We observe that (step a) terminates after a finite number of rule applications. Indeed,
none of the static rules adds new labels and the number of pseudo-formulas built from a
finite set of formulas (subformula property) and from a finite number of labels is finite. As
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we require that the tableau does not contain redundant applications of rules, each applica-
tion of a rule in step (a) must at least add a new pseudo-formula to the branch, and thus
the number of rule applications must be finite. After (step a) is terminated, the branch is
downward saturated except for the formulas of the formw : ¬(φ ⇒ ψ) andw : ¬2xφ. In
(step b) the application of a dynamic rule introduces a new world.

To avoid the systematic procedure to repeat forever, by continuing to generate new
worlds, we put the following blocking conditions on the rules(F ⇒) and(F2). These
are essentially loop checking conditions, that can be added as side conditions to the rules.
Before we formulate the conditions, we need to introduce the following notation: given a
branchB, we letBoxB,y,x the set of all pseudo formulas2yφ such thatx : 2yφ ∈ B or
x′ : 2yφ ∈ B andx <y x′ ∈ B (informally, the positive boxed formulas which hold atx).

The blocking conditions are then listed below. The idea behind Blocking Condition 1
and Blocking Condition 2a is the same: if two labelsy andz satisfy the same conditional
and propositional formulas, then<y and<z can be defined in the same way. For this
reason, only one out of<y and<z needs to be explicitly built by applying all the rules
of the calculus. In particular, if<z is the relation which is built the first, we can avoid
applying rules (F2) and (F⇒) to y : ¬(φ ⇒ ψ) andx : ¬2yφ respectively.<y will then
be defined as<z by step 3 in the construction below. The idea behind Blocking Condition
2b is that applying rule (F2) to x : ¬2yφ cannot add anything more on the branch than
what has been obtained by applying the same rule tow : ¬2yφ, if all the positive modal
formulas that would hold inx′ generated by applying (F2) to x : ¬2yφ, also hold inw′,
generated by applying (F2) to w : ¬2yφ.

—Blocking Condition1: do not apply (F⇒) to y : ¬(φ ⇒ ψ) if there is az ≺ y such that
z ≡B y.

—Blocking Condition2: do not apply(F2) to x : ¬2yφ on a branchB if one of the
following conditions holds on the branch:
a: there is az ≺ y such thatz ≡B y.;
b: x : ¬Vy 6∈ B, and there isw : ¬2yφ such thatw ≺ x, and for ally1 s.t.y1 = y ∈ B,

BoxB,y1,x ⊆ BoxB,y1,w.

In case (R-MP) or (R-CS) belong to the calculus, Blocking Condition 2b is applied only
if x is distinct fromy, andx = y 6∈ B.

The two theorems below show that the calculus with the blocking conditions terminates
and is complete.

THEOREM 6.1. The calculus with Blocking Condition 1 and Blocking Condition 2 ter-
minates.

PROOF.
Let us suppose that a systematic attempt to prove a formula goes forever. Then, there

must be an infinite branch S containing infinitely many different labels because it does not
contain repetitions and only a finite number of formulas can appear in the tableau (by the
subformula property). Since labels are introduced by rules(F ⇒) and(F2), it follows
that the branch must either contain infinitely many applications of the rule(F ⇒) to a
formula¬(φ ⇒ ψ) or infinitely many applications of the rule(F2) to a formula¬2yφ
(or both).

For the first case, it is not possible to apply rule(F ⇒) infinitely many times without
violating Blocking Condition 1. To see this, each time the rule is applied to a formula
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y : ¬(φ ⇒ ψ), by Blocking Condition 1, there is noz ≺ y on the branch such thatz ≡B y
(that is, there is some formulaφ ∈ L which has a different value iny and inz). This,
however, cannot occur infinitely many times as, by the subformula property, the formulas
of L occurring on the branch are finitely many, and their number is linear in the sizen
of the initial formula. Hence, the number of different subsets of formulas inL is O(2n).
More precisely, let us consider the sequence of labelsy1, . . . , yk to which the dynamic rule
(F ⇒) has been applied in the order. By definition of (step b) in the systematic procedure,
it must be thaty1 ≺ . . . ≺ yk. By Blocking Condition 1, it must be that, for eachyi with
i = 1, . . . , k, yi 6≡B yh for all h = 1, . . . , i − 1, and hence the formulas labelled by each
of the labels must be different. Of course, this cannot be true infinitely many times.

For the second case, it is not possible to apply rule(F2) infinitely many times without
violating Blocking Condition 2. More precisely, it is not possible that rule(F2) applies
infinitely many times to a formulax : ¬2yφ, for different values of the labelsx andy
without violating Blocking Condition 2.

Observe that it is not possible to apply(F2) infinitely many times to a formulax :
¬2yφ, for different values of the labely, without violating Blocking Condition 2a. The
argument is the same as for Blocking Condition 1. The number of possible applications
of the rule to different labelsy is O(2n). On the other hand, it is not possible to apply
(F2) infinitely many times to a formulax : ¬2yφ, for a giveny but for different values
of the labelx, without violating Blocking Condition 2b. Indeed, when(F2) is applied
to x : ¬2yφ, for each formulax′ : ¬2yφ on the branch there must be at least a positive
boxed formula2yα which holds inx but does not hold inx′. Again, this cannot be true
infinitely many times. More precisely, the number of possible applications of(F2) to a
formulax : ¬2yφ, for different values of the labelx is O(2n).

2

THEOREM 6.2. The calculus with Blocking Condition 1 and Blocking Condition 2 is
complete.

PROOF.We show that given an open branchB (obtained in the calculus with the blocking
conditions), we can build an open saturated branch w.r.t. Definition 5.6. We know from the
proof of Theorem 5.8 that this branch is satisfiable, from which we can conclude, similarly
to what done for Theorem 5.8.

For the moment, we only consider the basic calculus forPCL . We saturate the branch by
the following steps. We first consider Blocking Condition 2b and then Blocking Conditions
1 and 2a.
Step 1: For eachx : ¬2yφ to which Blocking Condition 2b has been applied, we proceed
as follows: ifx = x1 ∈ B, and Blocking Condition 2b has not been applied tox1 : ¬2yφ,
nothing needs to be done (since the ‘right’ relations have been put by rule(E− <) applied
to B). If this is not the case, letw : ¬2yφ be the formula (minimal with respect to
≺) that caused the application of Blocking Condition 2b. Since(F2) has been applied
to w : ¬2yφ, there isx′ <y w in B such thatx′ : 2yφ, x′ : ¬φ. We let x′ <y x.
Furthermore, ify = y1 ∈ B, x′ = x′1 ∈ B, we also introducex′1 <y1 x in the branch.
Step 2: For all <y if x′′ <y x′ andx′ <y x are in the branch, we add to the branch
x′′ <y x.
We callB′ the branch obtained from Step 1 and Step 2 above.

We prove the following fact forB′:
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Fact 1 If x′ <y x ∈ B′, thenBoxB,y,x ⊆ BoxB,y,x′ , and if 2yφ ∈ BoxB,y,x, then
x′ : φ ∈ B′. We reason by induction on the numbern of applications of transitivity
needed to introduce the relationx′ <y x in B′ at Step 2. Ifn = 0, then eitherx′ <y

x ∈ B or x′ <y x has been introduced by Step 1. In the first case, inB it holds that
BoxB,y,x ⊆ BoxB,y,x′ by definition ofBoxB,y,x. Furthermore, if2yφ ∈ BoxB,y,x, then
eitherx : 2yφ ∈ B or z : 2yφ ∈ B andx <y z in B. In the first case, we immediately
conclude thatx′ : φ ∈ B since rule(T2) has been applied inB. Hence alsox′ : φ ∈ B′.
In the second case, by (Trans) (that has been applied toB) alsox′ <y z ∈ B; we therefore
concludex′ : φ ∈ B since rule(T2) has been applied inB. Also in this case,x′ : φ ∈ B′.

If x′ <y x has been introduced at Step 1, then there arew, x1, y1, x
′
1 such thatx′1 <y1

w ∈ B, y = y1 ∈ B, x′ = x′1 ∈ B, andBoxB,y,x ⊆ BoxB,y,w. Since rule (E -<)
has been applied toB, alsox′ <y w ∈ B, hence by what said just above,BoxB,y,w ⊆
BoxB,y,x′ , hence we infer thatBoxB,y,x ⊆ BoxB,y,x′ . Furthermore, if2yφ ∈ BoxB,y,x,
then also2yφ ∈ BoxB,y,w, and we conclude thatx′ : φ ∈ B by reasoning as done above.

If n > 0, thenx′ <y x has been introduced by transitive closure at Step 2 from (i)
x′ <y x′′ and (ii) x′′ <y x. By inductive hypothesis, the property holds for (i) and
(ii), henceBoxB,y,x ⊆ BoxB,y,x′′ ⊆ BoxB,y,x′ . If 2yφ ∈ BoxB,y,x, we infer that
2yφ ∈ BoxB,y,x′′ ; from this, by inductive hypothesis on (i), we conclude thatx′ : φ ∈ B′.

By using Fact 1, we can prove that the following saturation conditions hold inB′ (Fact
2):
Fact 2

(i) If x : 2yφ ∈ B′ andx′ <y x ∈ B′ then alsox′ : φ ∈ B′. Indeed, ifx : 2yφ ∈ B′,
then alsox : 2yφ ∈ B i.e. 2yφ ∈ BoxB,y,x; by Fact 1, we derive thatx′ : φ ∈ B′.

(ii) If x : ¬2yφ ∈ B′, and Blocking Condition 2ahas not been applied to the formula,
then there is inB′ x′ <y x, x′ : 2yφ, x′ : ¬φ. We distinguish two cases: if Blocking
Condition 2b has been applied to the formula, this holds by construction ofB′ (Step 1);
if Blocking Condition 2b has not been applied to the formula, the property holds since
rule (F2) has been applied to the formula inB.

(iii) <y is transitive. This follows by definition of Step 2.
(iv) B′ is open, since it cannot happen that one of the closure conditions below is satisfied.

Indeed it cannot happen that:
[-] x : φ ∈ B′ andx : ¬φ ∈ B′, since this does not happen inB, which is open,

and no labelled formula has been modified inB′.
[-] For no labelx andy, x <y x ∈ B′. For a contradiction, supposex <y x ∈ B′.

Then clearlyx <y x 6∈ B (otherwiseB would be closed, against the hypothesis). This
means thatx <y x has been inserted inB′ either by Step 1 or by Step 2. Suppose it has
been inserted at Step 1. Then there arex1, y1, such thatx1 = x, y1 = y, x1 : ¬2y1φ ∈
B and there isw s.t. w : ¬2y1φ, x1 <y1 w andx1 : 2yφ are inB, henceB would be
closed, against the hypothesis.
If x <y x has been inserted at Step 2 by transitivity from relations<y previously intro-
duced, then there must be a chainx <y x1 . . . <y xn <y x where all these relations
<y either belong toB or are introduced by Step1. Notice that there must be at least a
xi <y xj that was not already inB and that has been introduced by Step 1 (otherwise
by (Trans)x <y x ∈ B, andB would be closed, against the hypothesis). This means
that for somexi1 , y1 such thatxi1 = xi, y1 = y ∈ B, xi1 <y1 xj , and for someφ,
xj : ¬2y1φ, xi1 : 2y1φ ∈ B, xi1 : ¬φ are inB. By rule (E-φ), alsoxi : 2y1φ ∈ B
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andxi : ¬φ ∈ B. By definition of BoxB,y,xi , 2y1φ ∈ BoxB,y,xi . Notice that if
x <y x1 . . . <y xn <y x, by construction alsox <y1 x1 . . . <y1 xn <y1 x, and by
transitive closure of Step 2, alsoxi <y1 xi, and by Fact 1 above,xi : φ ∈ B. However,
this would entail thatB is closed, against the hypothesis.
We conclude that for nox, y it can happen thatx <y x ∈ B′, i.e. <y is irreflexive.

[-] x <y z, x : ¬Vy or z : ¬Vy. Indeed, ifx <y z ∈ B this cannot hold, since
it does not hold inB (otherwiseB would be closed) and no new formulax : ¬Vx has
been introduced. Ifx <y z has been introduced by Step 1 or Step 2, we can reason as
follows. First, it cannot be thatz : ¬Vy ∈ B′, otherwisez : ¬Vy ∈ B, and Blocking
Condition 2b would not have been applied to anyz : ¬2yφ ∈ B, hence the relation
would not have been added. For what concernsx : ¬Vy, we can easily verify that if a
relationx <y z has been inserted by Step 1 or Step 2, there should already be inB aw
such thatx <y w, and ifx : ¬Vy ∈ B, B would be closed, contradiction. We conclude,
sincex : ¬Vy cannot be introduced by step 1 or 2.

Until now, we have dealt with Blocking Condition 2b. In order to deal with the other
blocking conditions, we continue our saturation process by Step 3.
Step 3: Let Blocked1,2a be the set of labels to which Blocking Condition 1 or Blocking
Condition 2a have been applied. For allyi ∈ Blocked1,2a, letzi be the label minimal w.r.t.
≺ such thatzi ≡B yi. Notice thatBlocked1,2a is disjoint from the set of all corresponding
zi (indeed, to these labels neither Blocking Condition 1 nor Blocking Condition 2a have
been applied); we can hence perform all the substitutions described below in one single
step.

We proceed as follows in order to build the new branchB′′ from B′.

1 - We remove from branchB′ all the relations<yi , and all the formulasx : ¬2yiφ, x :
2yiφ, x : Vyi andx : ¬Vyi ;

2 - We reinsert on the branch<yi each time there is<zi ;

3 - We insertx : 2yiφ, x : ¬2yiφ, x : Vyi andx : ¬Vyi each time there isx : 2ziφ,
x : ¬2ziφ, x : Vzi andx : ¬Vzi respectively;

Fact 3: The branchB′′ so obtained is open and saturated w.r.tPCL :
[saturated:]

(i) for the saturation conditions that concern the propositional operators, this is obvious
(indeed, for any non-boxed formulaφ, if x : φ ∈ B, thenx : φ ∈ B′, andB′ is saturated
sinceB is saturated w.r.t. propositional rules)

(ii) if x : φ ⇒ ψ ∈ B′′, we distinguish two cases.
1: x 6∈ Blocked1,2a. In this case, the property holds sincex : φ ⇒ ψ ∈ B, hence
(T ⇒) has been applied to it, and it can be easily shown that the formulas introduced by
(T ⇒) in B still hold in B′′.
2: if x is yi ∈ Blocked1,2a, then alsozi : φ ⇒ ψ is in B and inB′′. Furthermore,B′′

is saturated w.r.t.zi : φ ⇒ ψ, i.e. for all x′ eitherx′ : ¬φ or x′ : ¬2ziφ or x′ : ψ
or x′ : ¬Vzi is in B′′. By construction, ifx′ : ¬2ziφ ∈ B′′ alsox′ : ¬2yiφ ∈ B′′,
and if x′ : ¬Vzi ∈ B′′, alsox′ : ¬Vyi ∈ B′′. It follows thatB′′ is also saturated w.r.t.
yi : φ ⇒ ψ.

(iii) if x : ¬(φ ⇒ ψ) ∈ B′′, andx 6∈ Blocked1,2a, then for somex′, x′ : Vx, x′ : 2x¬φ,
x′ : φ, x′ : ¬ψ ∈ B. All these formulas are inB′′. If x is yi ∈ Blocked1,2a, then also
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zi : ¬(φ ⇒ ψ ∈ B′′), and for somex′, x′ : Vzi , x
′ : 2zi¬φ, x′ : φ, x′ : ¬ψ ∈ B′′. By

construction, alsox′ : Vyi
, x′ : 2yi

¬φ, andB′′ is saturated w.r.t.x : ¬(φ ⇒ ψ).
(iv) if x : ¬2x′φ ∈ B′′ andx′ 6∈ Blocked1,2a, then by Fact 2 (ii) above, there is in

B′ x′′ <x′ x s.t. x′′ : 2x′φ, x′′ : ¬φ. All these formulas still hold inB′′, which is
hence saturated w.r.t.x : ¬2x′φ. If x′ is yi ∈ Blocked1,2a, then by construction also
x : ¬2zi

φ for zi corresponding toyi. Furthermore, there isx′′ <zi
x, x′′ : 2zi

φ,
x′′ : ¬φ in B′, hence inB′′. By construction ofB′′, alsox′′ <yi x, x′′ : 2yiφ, andB′′

is saturated w.r.t. negative boxed formulas.

(v) if x : 2x′φ ∈ B′′ andx′ 6∈ Blocked1,2a, then by Fact 2 (i),B′′ is saturated w.r.t.
the formula. Ifx′ is yi ∈ Blocked1,2a, then the formula has been inserted only if
x : 2zi ∈ B′′ for zi corresponding toyi. The property follows from the fact thatB′′ is
saturated w.r.t.x : 2zi

∈ B′, and<yi
has been defined as<zi

.

(vi) It can be easily shown that all the obtained<x are transitive, by construction and from
Fact 2 (iii).

[open:]
B′′ is open, since it cannot happen that one of the closure conditions below is satisfied.
Indeed it cannot happen that:

- x : φ andx : ¬φ, since by Fact 2 (iv) this does not happen inB′, and the only formulas
that have been modified inB′′ are the boxed formulas with indexyi, which behave well,
since the corresponding boxed formulas with indexzi behave well.

- x <y x. By Fact 2 (iv) above this does not happen inB′, and it does not happen for the
<y modified at step 3, since it does not hold for the corresponding<zi .

- x <y z, x : ¬Vy or z : ¬Vy. By Fact 2 (iv) above, this does not hold inB′. If
y ∈ Blocked1,2a, this does not hold, since it does not hold for the correspondingzi.

We still have to show that if some of the rules for the extensions ofPCL are included in
the calculus, the branchB′′ obtained by the construction above is saturated with respect to
the corresponding conditions.

Fact 4: If any of the following rules belong to the calculus, thenB′′ is saturated with
respect to the corresponding conditions.

(Rules for =) If the rules for the equality belong to the calculus, branchB′′ is saturated
w.r.t. =.
For what concerns conditions 2.1, 2.2, 2.3 of Definition 5.6, this is obvious, since it
holds forB, and the equalities are not concerned by the construction. For what concerns
2.4, letx = x′, y = y′, z = z′ andy <x z in B′′. If y <x z ∈ B′′, it can be easily
shown thaty′ <x′ z′′ ∈ B′′. Indeed,<x is not modified by step 3, this holds by rule
(E− <) if y <x z ∈ B; if y <x z ∈ B′ this holds by construction: fory′ andx′ this
is specified at step 1. Forz′, by (E-φ) alsoz′ : ¬2zφ ∈ B. If z′ : ¬2zφ ∈ B has not
been blocked, then the relation has not been introduced at step 1. Ifz′ : ¬2zφ ∈ B has
been blocked, the chosenw must be the same as forz : ¬2zφ ∈ B, hencey <x z′ has
been introduced inB′, and alsoy′ <x′ z′. If <x has been modified by step 3, and set
equal to some<z, this holds since it holds for<z.

(R-CEM) Since (R-CEM) has been applied to all labels inB, for all x, y, z, it holds that
y = z ∈ B or y <x z ∈ B or z <x y ∈ B. If <x is not modified by step 3, then
y = z ∈ B′′ or y <x z ∈ B′′ or z <x y ∈ B′′. If <x is modified by step 3, then it is
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defined as<z for which the property holds. In all cases,B′′ is saturated w.r.t.
PCL + ( CEM).

(R-UNIV) In the presence of rule (R-UNIV), there is no formulay : ¬Vx in B, hence
there is no such formula inB′′, andB′′ is saturated w.r.t.PCL + (A0),(A1),(A2).

(R-CV) Even if (R-CV) has been applied toB, the saturation condition associated to (CV)
might not hold forB′′, since new relations might have been inserted by steps 1, 2 or 3.
In this case, we proceed as follows: we saturate w.r.t. (CV) the branchB′ obtained from
step 1 and step 2. It can be easily seen that ifB′ is saturated w.r.t. (CV) (i.e. all<x

are modular), the same property holds forB′′. In order to saturateB′, we introduce the
following step 2’ just after step 2 in the construction above:
Step 2’: We define the saturated branchB

′∗ as follows. We first letB
′∗ = B′. We then

consider eachy <x z ∈ B: if BoxB,x,z ⊂ BoxB,x,y (strictly included), then for each
z0 s.t.BoxB,x,z = BoxB,x,z0 , we lety <x z0 ∈ B

′∗.
We show thatB

′∗ is saturated w.r.t. the conditions of Fact 2, w.r.t. (CV) , and open.
[saturated:]
(i) If y : 2xφ ∈ B

′∗, andz <x y ∈ B
′∗, thenz : φ ∈ B

′∗. First of all, notice that
y : 2xφ ∈ B, since the boxed formulas have not been changed by steps 1, 2, 2’. If
z <x y ∈ B′, this follows from Fact 2 (i). Ifz <x y has been added at step 2’, then
there isy′ s.t. z <x y′ ∈ B, andBoxB,x,y = BoxB,x,y′ . The property follows by the
application of rules (Trans) and (T2) in B.
(ii) holds since ify′ <x y ∈ B′, then alsoy′ <x y ∈ B

′∗.
Before dealing with transitivity (property (iii)) we show that all the relations<x in B

′∗

are asymmetric and modular. Transitivity will be a consequence of these two facts
<x is asymmetric: suppose for a contradiction thaty <x z ∈ B

′∗, andz <x y ∈
B
′∗. Then clearly at least one of the two relations must have been added by step 2’

above (the relation is asymmetric inB′, by irreflexivity and transitivity): ifz <x y has
been introduced at step 2’,BoxB,x,y ⊂ BoxB,x,z. This means thaty <x z cannot be
introduced by step 2’, and that it cannot belong toB′ (otherwise by Fact 1BoxB,x,z ⊆
BoxB,x,y, contradiction). We can reason in the same way ify <x z is introduced at step
2’. We therefore conclude that eithery <x z ∈ B

′∗ or z <x y ∈ B
′∗ but not both, i.e.

<x is asymmetric.
The relation<x is modular, i.e. for allx, y, z, u if y <x z ∈ B

′∗, then eithery <x

u ∈ B
′∗ or u <x z ∈ B

′∗. If y <x z ∈ B, this is obvious by the application
of ( R-CV) in B. If y <x z 6∈ B but y <x z ∈ B′, then there is a chainy <x

z0 <x . . . <x zn <x z (wherez0 <x . . . <x zn might be empty) such that each
single relation either belongs toB or is inserted at step 1. Consider nowy <x z0 (if
z0 <x . . . <x zn is empty, considery <x z). We distinguish the following cases.
1) If y <x z0 ∈ B, then by (R- CV) applied toB it can be easily shown that either
y <x u ∈ B or u <x z0 ∈ B, hencey <x u ∈ B

′∗ or u <x z0 ∈ B
′∗, i.e. by

transitivity of<x, u <x z ∈ B
′∗, and the property holds. 2) Ify <x z0 has been inserted

by step 1 fromy <x w ∈ B, we know by step 1 thatBoxB,x,w ⊂ BoxB,x,y (indeed,
by step 1 for someφ, w : ¬2xφ ∈ B whereasy : 2xφ ∈ B). By definition of step 1,
we know thatBoxB,x,z0 ⊆ BoxB,x,w, and by Fact 1 thatBoxB,x,z ⊆ BoxB,x,z0 , from
which we conclude thatBoxB,x,z ⊆ BoxB,x,w. We distinguish two cases: by (R- CV)
applied toB, eithery <x z ∈ B or z <x w ∈ B. The first case is not possible (since
we are working under the hypothesis thaty <x z 6∈ B). From the second case, and Fact
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1, we conclude thatBoxB,x,w ⊆ BoxB,x,z, henceBoxB,x,z = BoxB,x,w, and by step
2’, y <x z ∈ B

′∗.
We are left with the case in whichy <x z has been inserted at step 2’. In this case, there
is z′ such thatBoxB,x,z = BoxB,x,z′ , y <x z′ ∈ B, andBoxB,x,z′ ⊂ BoxB,x,y. By
(R- CV) applied toB, eithery <x u ∈ B or u <x z′ ∈ B. In the first case, we are done.
In the second case, by Fact 1 we know thatBoxB,x,z′ ⊆ BoxB,x,u. We distinguish two
cases: ifBoxB,x,z′ = BoxB,x,u, theny <x u has been inserted by step 2’ inB

′∗. If
BoxB,x,z′ ⊂ BoxB,x,u, thenu <x z has been inserted by step 2’ inB

′∗. The property
therefore holds.
Asymmetry and modularity of<x entail transitivity (vi): letu <x y andy <x z in B

′∗.
By modularity, eithery <x u ∈ B

′∗ or u <x z ∈ B
′∗. The first case is not possible by

asymmetry of<x, hence we conclude thatu <x z.
[open:] The only possible closure condition that might have changed with saturation
step 2’ is thaty <x y might have been introduced inB

′∗. However, it can be easily
verified that this cannot happen.
Fact 3 above shows that step 3 applied toB

′∗ (that satisfies Fact 2) is open and saturated.
It can be easily seen thatB′′ obtained by step 3 fromB

′∗ is saturated with respect to
(CV). Furthermore, it can be easily verified that if (R-CEM) and (R-UNIV) belong to
the calculus, thenB′′ is also saturated w.r.t. (CEM) and (UNIV). Last, if the rules for
equality belong to the calculusB′′ is saturated w.r.t.=. We can conclude that if (R - CV)
belongs the calculus, the calculus with Blocking Condition 1 and Blocking Condition 2
is complete w.r.t. to modular models.

(R- CS) Since (R- CS) has been applied toB, for all x, y, x <x y ∈ B. However,<x

might have been modified at step 3, hence the property might not hold inB′′. If <x has
been modified at step3, and it has been put equal to<z, we adjustB′′ by the following
step 4:
Step 4: We defineB

′′∗ from B′′ as follows: for all<x modified at step 3, for allx1

equal tox or such thatx1 = x ∈ B′′:
—we remove all formulasz <x1 x;
—we introducex <x1 y for all y s.t.x = y 6∈ B′′ andy : ¬Vx 6∈ B′′

—we removex : ¬2x1φ;
—if x : φ ∈ B′′, then we addx : 2x1¬φ to B′′, and removey : 2x1¬φ from B′′.
The obtained branch is obviously saturated w.r.t. (CS). Furthermore, we show that the
obtained branch satisfies all the properties of Fact 3. For (i), (v) this is obvious.
As far as (ii) is concerned: ifx : φ ⇒ ψ ∈ B

′′∗, (i.e. x : φ ⇒ ψ in B′′ and inB),
then for ally s.t. y = x 6∈ B it can be easily shown that the saturation condition corre-
sponding to the conditional is satisfied (by Fact 3 (ii)). Ifx = y ∈ B, theny : ¬2x¬φ
might have been removed fromB′′. However, it can be shown that ify : ¬2x¬φ ∈ B′′,
this can only be because<x has been modified by step 3 (otherwise in the presence of
(R-CS) a branch containingy : ¬2x¬φ andy = x would be closed, indeed Blocking
Condition 2b is not applied in this case). At step 3,<x has been defined as<z for some
z s.t. for allφ ∈ L, z : φ ∈ B iff x : φ ∈ B. In particular,z : φ ⇒ ψ ∈ B. Then,
eitherz : ¬φ ∈ B or z : ψ ∈ B (all the other branches being closed, in the presence of
(R-CS)). Hence alsox : ¬φ ∈ B or x : ψ ∈ B, i.e. x : ¬φ ∈ B′′ or x : ψ ∈ B′′, and
the branch is saturated w.r.t.x : φ ⇒ ψ.
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For (iii), let x : ¬(φ ⇒ ψ) ∈ B

′′∗. Also x : ¬(φ ⇒ ψ) ∈ B′′, and by Fact 3 (ii), there
is y s.t. y : φ, y : 2x¬φ, y : ¬ψ are inB′′. If <x has not been modified at step 4, this
still holds. Otherwise, if<x has been modified at step 4, then it had been defined equal
to some<z at step 3. We distinguish two cases. In the first case,x : ¬φ ∈ B′′, hence
no formulay : 2x¬φ is removed from the branch, and the property still holds. In the
second case,x : φ ∈ B′′, (hencex : φ ∈ B) and by the construction abovey : 2x¬φ
has been removed from the branch in all cases in whichy = x 6∈ B′′. Notice that in this
case, by step 3, alsoz : φ ∈ B andy : 2z¬φ ∈ B. By (R-CS), eitherz <z y ∈ B or
z = y ∈ B. The first case is not possible (otherwise,z : ¬φ ∈ B, i.e. z : ¬φ ∈ B,
contradiction). It must hence bez = y ∈ B, i.e. alsoz : ¬ψ ∈ B, and therefore also
y : ¬ψ ∈ B. From this we conclude thatx : ¬ψ ∈ B

′′∗, furthermore by step 4 also
x : 2x¬φ has been added toB

′′∗. It follows that the saturation condition associated to
x : ¬(φ ⇒ ψ) is satisfied.
(iv) continues to hold, since the only relations that have been changed are the relations
of kind y <x x, and these can only affect the property for formulasx : ¬2xφ; however,
these formulas have been removed from the branch;
(v) Considerx : 2x′φ. If <x′ has not been changed by step 3, this holds by Fact 3 (v).
Otherwise,x′ : φ ∈ B′′ (otherwise the boxed formula would have been removed from
the branch). The only added relation isx′ <x′ x, and the property continues to hold.
(vi) It can be easily verified that the relation<x so obtained is still transitive.
It can be easily shown that if (R-CEM), (R-UNIV) belong to the calculus, thenB

′′∗ is
saturated w.r.t (R-CEM) and (R-UNIV) respectively. If the rules for equality belong
to the calculusB

′′∗ is saturated w.r.t.=. If (R-CV) belongs to the calculus and step
2’ has been performed between step 2 and step 3,B

′′∗ is saturated w.r.t. (R- CV): let
y <x z ∈ B

′′∗. We distinguish two cases. First case:y <x z 6∈ B′′, hence the relation
has been added inB

′′∗ by step 4, i.e.y = x ∈ B′′. Notice that in this case for allu,
eithery = u ∈ B′′, andu <x z has been introduced inB

′′∗ or y = u 6∈ B′′, andy <x u
has been introduced inB

′′∗, hence the property holds. Second case:y <x z ∈ B′′.
By what shown above (in the case of (R-CV)), we know that inB′′ for all u either
y <x u ∈ B′′ or u <x z ∈ B′′. If the relation<x has not been modified by step 4, this
holds inB

′′∗. If <x has been modified, consider two cases for allu. If y <x u ∈ B′′,
this might not hold inB

′′∗ becausex = u ∈ B, and the relation has been erased by
step 4. However, in this caseu <x z has been inserted by step 4. Ifu <x z ∈ B′′ but
u <x z 6∈ B

′′∗, then the relation might have been erased by step 4 becausex = z ∈ B′′.
However this case is not possible since alsoy <x z would have been erased by step 4
(whereas by hypothesisy <x z ∈ B

′′∗).
Furthermore, the modifiedB′′ is still open. Indeed, it can be easily verified that none of
the closure conditions have been inserted inB

′′∗.

(R-MP) First, notice that if (R- CS) belongs to the calculus, we do not need any extra
construction, since it can be easily shown thatB

′′∗ obtained by step 4 above (case of
(R-CS)) is also saturated w.r.t. (MP). We consider the case in which (R- CS) does not
belong to the calculus, and we describe the following construction which is alternative
to the construction for (R- CS). In order to build a branch saturated w.r.t. (MP), we
need to perform the following step 4.
Step 4: for all x, for all x1 equal tox or such thatx1 = x ∈ B′′, for all y, remove from
B′′ y <x1 x andx : ¬2x1φ. If (R-CV) belongs to the calculus, andy <x1 r ∈ B′′,
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andy <x1 r has not been removed fromB′′, we introducex <x1 r. We letB
′′∗ be the

obtained branch.
We show thatB

′′∗ is saturated w.r.t.PCL + (MP). All the properties of Fact 3 still hold
in B

′′∗. As far as (i), (iii) are concerned, this is obvious. For (ii), letx : φ ⇒ ψ ∈ B
′′∗.

Also x : φ ⇒ ψ ∈ B, and for allz, rule (T ⇒) has introduced inB eitherz : ¬φ
or z : ψ or z : ¬2x¬φ or z : ¬Vx. If z = x 6∈ B′′, the same formulas hold inB

′′∗,
hence the property holds. Ifz = x ∈ B′′, then alsoz = x ∈ B, and by (R- MP) the
branches containingz : ¬2x¬φ or z : ¬Vx would be closed (recall that in this case
Blocking Condition 2b would not be applied toz : ¬2x¬φ). In this case, we hence
know that eitherz : ¬φ or z : ψ are inB and hence inB

′′∗. We conclude that also in
this case the property holds. As far as (iv) is concerned, forx : ¬2zφ with z = x 6∈ B′′,
the property still holds; on the other hand, ifz = x ∈ B′′, thenx : ¬2zφ has been
removed. For what concerns (v), the sensitive case is ifx <x1 r has been introduced
at step 4 andr : 2x1φ ∈ B

′′∗. We distinguish two cases on the relationy <x1 r that
originated the insertion ofx <x1 r in B

′′∗: if y <x1 r ∈ B, then, given that (R-CV)
and (R-MP) have been applied toB, x <x1 r ∈ B, hencex : φ ∈ B

′′∗. If y <x1 r ∈ B
has been introduced at step 1, theny <x1 r0 ∈ B, with BoxB,x1,r ⊆ BoxB,x1,r0 . By
(R-CV) and (R - MP) applied toB, we conclude thatx <x1 r0 ∈ B, hencex : φ ∈ B,
andx : φ ∈ B

′′∗. We can repeat the same reasoning to conclude that the same holds if
y <x1 r has been inserted at step 2. If it has been inserted at step 2’, then for somer0

s.t. BoxB,x1,r = BoxB,x1,r0 , y <x1 r0 ∈ B. By (R-CV) and (R-MP) applied toB,
we conclude thatx <x1 r0 ∈ B, hencex : φ ∈ B, andx : φ ∈ B

′′∗. Last, if y <x1 r
has been inserted at step 3, then<x1 has been defined equal to some<z such that for all
ψ ∈ L, x1 : ψ ∈ B iff z : ψ ∈ B. If the relation has been introduced, theny <z r ∈ B

′∗

obtained from step 2’. By repeating the same reasoning done for the previous cases
(applied toz instead ofx1), we derive thatz : φ ∈ B, hence alsox1 : φ ∈ B, and by
(E − φ) applied toB alsox : φ ∈ B, i.e. x : φ ∈ B

′′∗, from which we conclude. As far
as (vi) is concerned, it can be easily shown that transitivity still holds: the sensitive case
is the one in whichx <x1 r has been inserted at step 4, andr <x1 r′ ∈ B

′′∗. In this
case by step 4 alsox <x1 r′ has been inserted, hence transitivity holds. Furthermore,
B
′′∗ is open: the only closure condition that could be inserted by step 4 isx <x1 x,

however it can be easily verified that this cannot happen. It can be easily shown that if
(R-CEM), (R-UNIV) belong to the calculus, thenB

′′∗ is saturated w.r.t (R-CEM) and
(R-UNIV) respectively. If the rules for equality belong to the calculusB

′′∗ is saturated
w.r.t. =. If (R-CV) belongs to the calculus: lety <x z ∈ B

′′∗. If y <x z ∈ B′′, by what
said for (R- CV), for all uy <x u ∈ B′′ or u <x z ∈ B′′. In the first case, it could be
y <x u 6∈ B

′′∗ in casex = u. However, in this case,u <x z has been introduced at step
4. In the second case, it might beu <x z 6∈ B

′′∗ becausex = z ∈ B′′. However this
case is not possible since alsoy <x z would have been removed fromB′′. If y <x z
has been inserted at step 4, theny = x ∈ B and for somer, r <x z ∈ B

′′∗ (without
being inserted at step 4). By what said above, eitherr <x u ∈ B

′′∗ or u <x z ∈ B
′′∗.

In the second case, the property holds. In the first case,y <x u has been inserted at step
4, and we can conclude.

2

In the proof of Theorem 6.1, we have already observed that the number different labels
to which rule(F ⇒) can be applied on a branch isO(2n), wheren is the size of the
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initial input formula. As there areO(n) distinct negative conditionals¬(φ ⇒ ψ) to which
(F ⇒) can be applied in a label, the overall number of(F ⇒) applications on a branch is
O(2n).

Concerning rule(F2), we have seen that it can be applied to a formulax : ¬2yφ on
a branch:O(2n) times, for the different choices of the labely, andO(2n) times, for the
different choices of labelx. The number of labels that can be introduced on a branch is
thereforeO(2n).

In order to establish an upper bound on the complexity of the systematic procedure
above, we need to estimate the overall number of rule applications, including those ones
in step (a). To this purpose, we can observe that the number of pseudo-formulas which
can be built fromO(n) formulas andO(2n) labels isO(2n). As we do not admit redun-
dant applications of rules, on each branch the overall number of tableau rule applications
determined by the systematic procedure isO(2n). Thus, our systematic procedure allows
a non-deterministic algorithm for testing satisfiability inPCL to be defined: at each step
the algorithm first saturates with respect to the static rules (step a), then guesses a branch
and applies a dynamic rule (step b). By what said just above, the algorithm eventually
terminates, and returns ”satisfiable” if it finds an open branch and ”unsatisfiable” if it does
not. Since the number of rules applied on the branch isO(2n), we can conclude that:

THEOREM 6.3. For all extensionsPCL+Σ of PCL, the systematic procedure decides
the satisfiability of a formula in non-deterministic exponential time with respect to the size
of the input.

The above result seems to be in partial accordance with [Friedman and Halpern 1994],
where the authors show that a formula is satisfiable iff it is satisfiable in an exponentially
sized structure. Moreover, the authors argue that deciding satisfiability can be done in
EXPTIME (that we understand as Deterministic Exponential Time), even if the algorithm
they suggest is not described in full details (Theorem 0.13). In future investigation we will
study whether we can obtain adeterministicEXPTIME decision procedure based on our
tableau calculus, thus matching the known upper bound for these logics.

7. RELATED WORK

To put our tableau method in a context, we briefly recall and compare related works on
proof methods for conditional logics.

[Giordano et al. 2003] and [Giordano et al. 2005] contain preliminary versions of some
of the results contained in this paper.

De Swart [de Swart 1983] and Gent [Gent 1992] give sequent/tableau calculi for con-
ditional logicsVC (= PCL +CV+MP+CS) andVCS. The kind of systems they propose
are based on the entrenchment connective≤, from which the conditional operator can be
defined. Their systems are analytic and comprise an infinite set of rules≤ F (n,m), with a
uniform pattern, to decompose each sequent withm negative andn positive entrenchment
formulas.

Crocco and Fariñas [Crocco and Fariñas del Cerro 1995] present sequent calculi for
some conditional logics including minimalCK , C2, CO (= PCL without CA) and others.
Their calculi comprise two levels of sequents: principal sequents with`P correspond to the
basic deduction relation, whereas auxiliary sequents with`a correspond to the conditional
operator: thus the constituents ofΓ `P ∆ are sequents of the formX `a Y , whereX, Y
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are sets of formulas. However, their calculi are not analytic, and do not give a decision
procedure.

Artosi, Governatori, and Rotolo [Artosi et al. 2002] develop labelled tableau for the
flat fragment of conditional logicCO (they call it CU and it corresponds to cumulative
KLM logic C). Formulas are labelled by path of worlds containing also variable worlds.
Since they adopt a selection function semantics, they have to cope with thenormality
condition: if [[A]]M = [[A′]]M then f(A, w) = f(A′, w). To this purpose, they use
an efficient unification procedure to propagate positive conditionals, and the unification
procedure takes care of checking the equivalence of antecedents. Their tableau contains
a cut-rule, called PB, which is not eliminable. They also discuss the extension of their
method toPCL and stronger systems on the one hand, and to nested conditionals, on the
other; however the feasibility of these extensions is rather problematic.

Broda, Gabbay, Lamb, and Russo develop an elegant natural deduction system for
Boutilier’s conditional logic of normality and some variants of it [Boutilier 1994], [Broda
et al. 2002]. Their proof system uses labels following the methodology ofLabelled De-
ductive Systems[Broda et al. 2002], where the objects involved in the proofs are structured
configurations of formulas, worlds, and relations thereof. In this respect, their approach
is rather similar to ours. However, as we already observed, Boutilier’s conditional logic
has a simpler semantics defined in terms of standard modal logic without world-indexed
relations or modalities (and thus it cannot handle nested and iterated conditionals). More-
over, it is not evident if one can extract a decision procedure for Boutilier’s logic from their
natural deduction system.

Lamarre [Lamarre 1993] presents tableau systems for conditional logicsV(= PCL +CV),
VN, VC andVW (= PCL +CV+MP). Lamarre’s method is a consistency-checking proce-
dure which tries to build a system of spheres falsifying the input formulas. The method
makes use of a subroutine to compute thecore, that is defined as the set of formulas char-
acterizing the minimal sphere. The computation of the core needs in turn the consistency
checking procedure. Thus, there is a mutual recursive definition between the procedure for
checking consistency and the one to compute the core.

Groeneboer and Delgrande [Groeneboer and Delgrande 1988; Delgrande and Groeneboer
1990] have developed a tableau method for conditional logicVN which is based on the
translation of this logic into modal logicS4.3.

In [Olivetti et al. 2007], sequent calculi for the minimal conditional logicCK and some
extensions of it are presented (namely almost all extensions ofCK combining (ID), (CS),
(CEM), and (MP)). The calculi are based on the selection function semantics for these
logics and make use of labels. It is shown that, by means of these calculi, one can obtain
complexity bounds, sometimes tighter than what was previously known, for the respective
logics.

Finally, in [Giordano et al. 2005], the authors present tableau calculi for the logics for
default reasoning proposed by Kraus, Lehmann and Magidor in [Kraus et al. 1990]. In
particular, [Giordano et al. 2005] provides calculi for the systemsP, C, CL and R by
Kraus Lehmann and Magidor. The systemsP andR can be seen as the flat fragment of the
logics PCL andPCL +CV studied here, whereas the other two are weaker and do not
fit directly into the preferential semantics. The two mentioned logicsP andR of the KLM
framework are hence simpler than the logics studied in the present work, whose language
is not restricted to the flat fragment. Therefore it is not surprising that the calculus for the
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latter systems (presented in this work) is more complex than the calculi for the former,
although they are based on similar ideas: namely expressing by modal rules the Limit
Assumption or, in the context of KLM systems, the so-calledsmoothness condition. For
the same reason, the complexity of the calculi proposed in [Giordano et al. 2005] is lower
than the complexity we argue for the logics studied here.

8. CONCLUSION

In this work we have studied the conditional logics of preferential structures, namelyPCL
and its most important extensions. First, we have given a general and direct completeness
result for a wide range of logics (with and without the universality condition) with respect
to preferential structures under the Limit Assumption. This result extends the seminal re-
sult presented by Burgess [Burgess 1981] for a semantics without the Limit Assumption.
Then we have presented a tableau proof procedure for these logics. The proposed tableau
system is uniform and modular in the sense that each specific semantic condition is cap-
tured by a tableau rule. Moreover, our proof method makes use of labels and is based on
the use of hybrid modal formulas, where the modalities are indexed by worlds. We have
been able to obtain a terminating procedure by a loop-checking mechanism similar to stan-
dardblocking. Our method gives a practical decision procedure for the class of conditional
logics investigated in this work. Moreover, by the proof method we constructively obtain
a complexity upper bound for these logics.

In future work, we intend to carry on a finer grained complexity analysis ofPCL ex-
tensions by means of our tableau method. Moreover, we intend to investigate several im-
provements on the tableau system, including loop-checking mechanisms, a better treatment
of equality via label-substitution and specific proof-search strategies. We also plan to im-
plement this method along the lines of [Giordano et al. 2007]. Finally, we think that our
methods can be adapted to provide reasoning methods forconcept comparative similarity
in description logics presented in [Sheremet et al. 2005], as this notion is strongly related
to the systems of conditional logics studied in this work.
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