
BerlinTainment - An Agent-Based Serviceware
Framework for Context-Aware Services

Jens Wohltorf, Richard Cissée, Andreas Rieger, Heiko Scheunemann
DAI-Labor

Technische Universität Berlin
Berlin, Germany

{Jens.Wohltorf, Richard.Cissee, Andreas.Rieger, Heiko.Scheunemann}@dai-labor.de

Abstract—In the near future, providers of mobile services will
face increasing competition. Therefore, the ability to design,
develop and deploy reliable context-aware services fast and easily
will become essential. We introduce an agent-based Serviceware
Framework assisting service providers in developing innovative
services, thus reducing the time-to-market of the respective
applications. The realized Serviceware Framework offers
personalization, location awareness and device independence
within each single service. We describe the utilization of the
different modules of the framework as well as prototypical
application services in the entertainment domain based on the
framework developed within the BerlinTainment project.

Serviceware Framework, multi-agent systems, mobile services,
session management, device independence, personalization,
context-awareness

I. INTRODUCTION
The ability to design, develop and deploy reliable context-

aware services efficiently is becoming of central importance
for providers of mobile services, who face increasing
competition in the telecommunications market. In this paper,
we introduce an agent-based Serviceware Framework
supporting the development of context-aware services and
describe prototypical services developed on the basis of the
framework. There are several related projects in this area
focusing on specific aspects of context-aware services, but our
approach is novel in the sense that it combines functionality
from different areas and provides additional services
integrating information from various domains.

This paper is structured as follows: The following chapter
describes the problems arising from developing context-aware
services. Chapter III lists requirements of frameworks
addressing these problems. Chapters IV and V describe our
approach and implementation of an agent-based framework for
ubiquitous context-aware services, with a special focus on
reusability. Chapter VI describes related work. Chapter VII
concludes the paper and outlines further work.

II. PROBLEM DESCRIPTION
Currently, it is infeasible to develop context-aware services

and applications efficiently, mainly because in addition to the

service itself a large overhead of functionality is required, as
shown in Figure 1:

• Context-aware services require solutions for three main
issues in mobile computing: Ubiquitous and device-
independent access, provision of personalized
information and location-based services (LBS)
functionality (I);

• Additionally, infrastructure functionality for user
management, AAA (authentication, authorization,
accounting) and additional management tasks is
required (II);

• Finally, to increase the usability and value of the
context-aware service, further secondary services
offering assistance to the user e.g. in the form of
calendar or community services may be required to add
value to the overall application (III).

Consider the following use case: The user wants to receive
recommendations of restaurants, based on his current location
as well as his user profile containing his preferences regarding
cuisine, district, price range, etc. He intends to interact with the
respective service via different technologies, such as mobile
phones, PDAs, PCs and speech. Additionally, the user would
prefer to use this service seamlessly on different devices,
without having to restart the interaction on a new device.

Developing a service based on these requirements may be
split up into developing the service itself (in this case, mainly

(I) Context Awareness Module (II) Infrastructure

(III) Secondary Services

Application
Service

Figure 1. Functionality required in addition to a context-aware application
service itself. The arrows indicate dependencies between the modules.

This work has been funded by the German Federal Ministry of Education
and Research (BMBF).

the user interaction and the management of restaurant
information) and developing the required overhead
functionality, as described above.

In this scenario as well as in many other cases, developing
all needed functionality is obviously not very efficient because
of the time required and the costs involved. It may be noticed,
however, that different scenarios require largely the same
overhead functionality, i.e. the given use case may change, e.g.
from recommendations of restaurants to a shopping guide,
while the additional functionality and secondary services
remain the same.

III. REQUIREMENTS
To overcome the problems described above, a framework-

oriented approach integrating a toolkit for context-aware
services, a framework providing infrastructure functionality
and services providing secondary functionality is required.
Using such a framework, the developer may concentrate on the
context aware-service itself, without having to go into many
details of the overhead functionality.

A framework for context-aware services has the following
additional requirements:

• Modularity: Typically, not all functionality is required
in any given scenario. It should be possible to use only
those parts of the framework that are actually required.

• Scalability: The framework should be usable for small,
non-public systems as well as for applications with a
large target audience.

• Adaptability: The functionality provided by the
framework should not be static, or it would be outdated
soon. Therefore it should be possible to add, remove,
or replace parts of the framework, even within
deployed systems during runtime, without requiring
changes on the framework user’s side.

• Distributedness: It should be possible to distribute the
framework e.g. in order to enable load balancing, or to
increase the overall security.

• Security: The framework should contain various
security features to prevent unauthorized use of its
functionality and resources, and to protect systems
based on the framework against attacks.

• Privacy: In order to enhance the acceptance and
trustworthiness of the respective systems from the
intended users’ point of view, privacy-enhancing
technologies should be built into the framework.

All of these requirements should be met by a framework
aiming at providing support not only for specific, but for any
kind of context-aware services.

IV. APPROACH
Our approach of a Serviceware Framework for context-

aware services is based on Multi-Agent System (MAS)
technology. For an introduction to MAS technology, we refer
to [1]. Basically, MAS architectures consist of agents
encapsulating specific functionality and offering services to

exchange information with other agents. All agents exist in a
specific environments, the agent platforms. The interaction of
agents is based on ontologies defining a common vocabulary.
MAS architectures are especially suitable for realizing
frameworks for context-aware services, because they fulfil the
requirements given in the previous section:

• Modularity: MAS-based applications are mainly
configured by selecting and defining the participating
agents. Therefore different modules made up by groups
of agents may be changed easily.

• Scalability: Scalability is mainly achieved by
duplicated the agents responsible for critical tasks, thus
distributing the load between multiple identical agents
and removing bottlenecks.

• Adaptability: MAS-based applications may be
reconfigured at runtime, i.e. agents may be added or
removed to adapt the functionality provided. The
newly offered services may be used immediately.

• Distributedness: Mobile agents have the ability to
migrate between platforms which may be located on
different servers, e.g. for reasons of load-balancing.

• Security: MAS architectures include security features
preventing unauthorized service usage and prohibiting
agents from attacking other agents or platforms.

• Privacy: Privacy aspects regarding personal
information are addressed by encapsulating sensitive
information within dedicated personal user agents.

There are other approaches for distributed systems
addressing these requirements similarly. The OSA/ Parlay
approach [8] has its main focus on supporting the design and
development of mobile applications by offering standardized
interfaces for many services offered by mobile networks. Jini
network technology [9] is an open architecture that enables
developers to create network-centric services. We have chosen
MAS technology as the broadest approach, which is not
restricted by a focus on any kind of networks.

The Serviceware Framework for context-aware services
consists of several modules made up by agents providing
functionality related to the areas described in Chapter II. The
core of the framework consists of agents providing interfaces to
functionality required for context-awareness, and of additional
agents providing infrastructure functionality, in the form of the
following modules:

• The Personalization module provides techniques for
Information Filtering used to process large amounts of
information, returning to users only individually
relevant data. Depending on the character of the
information to be recommended, different techniques
may be utilized via this module, such as Collaborative
Filtering, Knowledge-Based Filtering, Feature-Based
Filtering, or combinations thereof.

• The Location-Based Services module supports the
localization of users, and additionally provides
ontologies for processing location information. It

provides functionality for mapping and routing
between different locations, and suggests specific
Points of Interest (e.g. tourist attractions or
pharmacies) within a given region.

• The Device-Independence module provides services
utilized to generate User Interfaces for different
devices without having to change the underlying
functionality of the respective services. This is mainly
achieved by separating the device-dependent layout
aspects from the user interaction aspects in each dialog.
Layout aspects are specified in an abstract format by
the service developer and mapped to the current device
display by the framework.

• The Infrastructure module supports, among other
aspects, the management of users, sessions, and
services. With regard to ubiquitous computing, the user
management is of special relevance: Each user is
assigned a specific user agent managing all personal
information. For privacy and security reasons, personal
information is only accessible via this user agent. Thus
the user may protect his personal information by
removing the user agent from the system when he is
not logged in. On the other hand, he may keep his user
agent connected to the system even when he is logged
out. In this case, the user agent decides, based on rules
specified by the user, when to allow access to personal
information, e.g. in order to notify the user via email,
SMS or voice messages that new recommendations are
available. By storing no information on the user’s
device, seamless session handover between different
devices is enabled: When the user connects to the
system via a new device, he is offered to continue
previous sessions, or to start a new session.

Personalization AAA User/ Session
Management

Additional
Management

(I) Context Awareness Module (II) Infrastructure

(III) Secondary Services

Calendar RoutingApplication
Service

Mapping &
Route Rlanning

Feature-Based
Filtering

External Utilities

LBSDevice Inde-
pendence

Device Independent Access

Figure 2. Architecture of the Serviceware Framework for context-aware
services.

Specific functionality used by these interface agents, e.g.
filtering techniques for the provision of personalized
information, is provided via External Utilities which are easily
exchangeable. The main advantage for the developer in using
interface agents for accessing the External Utilities lies in the
fact that the functionality may be accessed uniformly and
transparently without the developer having to deal with
technical details of the underlying functionality.

Additionally, various secondary services are provided
supporting the user in managing his personal information,
scheduling his appointments, or planning routes between
different locations.

Using the Serviceware Framework, different application
services can easily be build and deployed. Figure 2 shows the
architecture of the Serviceware Framework. Developers of
application services may use functionality provided by the
Context Awareness Module. This module combines the three
modules for Personalization, Location-Based Services (LBS)
and Device Independence described above. Together with the
Management Module and the secondary services, the Context
awareness Module forms the basis of the Serviceware
Framework.

V. IMPLEMENTATION
The Implementation of the framework has been carried out

based on the FIPA-compliant MAS-architecture Java
Intelligent Agent Componentware (JIAC) [2][3]. JIAC
integrates fundamental aspects of autonomous agents regarding
pro-activeness, intelligence, communication capabilities and
mobility by providing a scalable component-based architecture.
Additionally, JIAC offers components realizing management
and security functionality, and provides a methodology for
Agent-Oriented Software Engineering (AOSE).

Figure 3. Portal of the BerlinTainment Demonstrator.

Figure 4. Agent Platform Monitor of a platform of the deployed prototype.

Certain aspects of the framework are addressed by JIAC
itself: Regarding e.g. device-independent access to services,
JIAC provides Multi-Access Agents (MAA) capable of
adapting user interfaces, based on the user’s current device.
Basically, the CC/PP profile [4] of a device is used to
determine the language the abstract user interfaces are to be
transformed into (such as HTML/WML for browser-based
interfaces, or VXML for voice-based interfaces), and to
determine the way graphics are to be presented, based on the
device’s display size. Privacy and security aspects regarding
personal information are addressed by encapsulating sensitive
information, such as user profiles, within dedicated user agents.
These agents are under control of the respective users and
protected from unauthorized access by mechanisms inherent to
JIAC.

Based on the implemented framework, we have developed
several prototypical context-aware services comprising the
BerlinTainment demonstrator, an application for entertainment
planning in Berlin [10]. Figure 3 shows a screenshot of the
portal of the BerlinTainment demonstrator. The application is
accessible via different devices and channels, such as voice,
mobile phones, PDAs and PCs. An additional secondary
service, the Intelligent Day Planner, integrates the different
context-aware services, allowing the user to schedule his
activities for a given day and receiving personalized and
location-based recommendations for each activity, such as
restaurant, cinema or theatre visits. Based on these
recommendations, the user is given the possibility to make
reservations for the various activities and plan his route
between the different locations.

The quality of a framework is mainly dependent on its
reusability. The implemented framework consists of several
specific agents implementing functionality which can be reused
in other frameworks or in order to speed up the development of
application services.

For the management of services and users, functionality is
provided by several agents, which form a special secondary
service, the Basic Service. This service handles for example
registration and login procedures for users and is also
responsible for registration of application services and
secondary services. Additional secondary services are available
to enhance the functionality of application services. Examples
for functionalities of secondary services which can be used

within application services are calendar services as well as
routing and mapping. These functionalities from secondary
services are immediately available for new application services
once they register to the Serviceware Framework.

The implemented prototype is deployed as a distributed
system containing several agent platforms and a large number
of single agents. The administration of the system is supported
by several tools, such as the agent platform monitor shown in
Figure 4, allowing the supervision, configuration and migration
of agents. Thus, the system may be adapted by adding
additional agents, and re-distributed on a different server
configuration, if necessary even at run-time.

VI. RELATED PROJECTS
Several projects providing services to end-users have been

developed that are similar to BerlinTainment. One of them is
the German DOM project, which aims at providing
personalized and location-based services for end-users [5]. The
approach of DOM consists of four layers: Content, Basic
Functions, Transactions and General Service layer. The DOM
approach is further structured in functional components but
lacks in contrast to agent-based approaches in terms of
scalability and flexibility.

The same disadvantage applies to the LoVEUS project [6].
LoVEUS aims to provide ubiquitous services for personalized
and tourism-oriented multimedia information. It follows a
client-server approach incorporating a server with numerous
clients.

The CRUMPET approach deals with the creation of user-
friendly, personalized and mobile tourism services [7]. The
architecture is based on a multi-agent system. The user or
terminal agents are hosted on the end-users’ terminal devices
and provide service GUIs. A brokerage function enables the
user agents to declare interest in particular services and receive
information about services that meet special criteria, such as
proximity constraints. For example, when the users’ location
changes, local services may then meet the specified service
constraints and are offered to the user. While personal agents
are generally suitable for context-aware services, hosting
agents on users’ devices has the drawback that special software
is required on the device. Thus the range of usable devices is
limited and device independence cannot be achieved.

VII. CONCLUSION AND FURTHER WORK
We have developed a Serviceware Framework for context-

aware services based on MAS technology. By developing
prototypical applications based on the framework, we have
shown that it may in fact be utilized to develop context-aware
services efficiently. Various modules for different tasks and
services allowed the development of the entertainment
prototype within a short time.

As shown, non-agent-based approaches, lack the
capabilities inherent to agent-based approaches with regard to
requirements such as modularity and adaptability. In contrast to
approaches requiring specific software (e.g. for hosting user
agents) on the user’s device, thus limiting the set of possible
devices, our approach does not require any additional software
(apart from a browser) on the user’s device.

Further work will focus mainly on providing additional
functionality via External Utilities, such as knowledge-based
filtering techniques for improved personalization, and on
providing additional interfaces, e.g. for location tracking.
Eventually, an application based on the framework might be
deployed as part of a commercial service.

REFERENCES
[1] S. Albayrak: Introduction to Agent Oriented Technology for

Telecommunications. In: S. Albayrak (ed.): Intelligent Agents for
Telecommunications Applications, IOS Press, p. 1 – 18, 1998

[2] Stefan Fricke, Karsten Bsufka, Jan Keiser, Torge Schmidt, Ralf Sesseler,
Sahin Albayrak: Agent-based Telematic Services and Telecom
Applications. Communications of the ACM, April 2001

[3] Ralf Sesseler, Sahin Albayrak: Service-ware Framework for Developing
3G Mobile Services. The Sixteenth International Symposium on
Computer and Information Sciences, ICSIS XVI, 2001

[4] W3C Recommendation: Composite Capability/Preference Profiles
(CC/PP): Structure and Vocabularies 1.0, 15 January 2004,
http://www.w3.org/TR/2004/REC-CCPP-struct-vocab-20040115/ (28
June 2004)

[5] DOM – Der Orientierte Mensch, project funded by German Federal
Ministry of Education and Research (2002), http://www.der-orientierte-
mensch.de/ (28 June 2004)

[6] LoVEUS - Location aware Visually Enhanced Ubiquitous Services
(2003), http://loveus.intranet.gr/ (28 June 2004)

[7] CRUMPET - Creation of User-friendly Mobile services Personalised for
Tourism (2003), http://www.ist-crumpet.org/ (28 June 2004)

[8] ETSI ES 202 915-1: Open Service Access (OSA); Application
Programming Interface (API); Part 1: Overview (Parlay 4), August 2003

[9] Sun Microsystems: Jini Architecture Specification, Version 2.0, June
2003

[10] J. Wohltorf, R. Cissee, A. Rieger, H. Scheunemann: An Agent-Based
Serviceware Framework for Ubiquitous Context-Aware Services.
AAMAS 2004 Demonstration Session, New York, USA

