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Abstract

Satisfaction of different QoS demands for various broadband services in wireless

networks requires that multi-user packet scheduling intelligently use both channel

state information (CSI) and queue state information (QSI). A combination of queue-

channel-aware scheduling and power/rate allocation on each transmit dimension is

known as “cross-layer resource allocation”. This thesis investigates various aspects of

cross-layer resource allocation to illustrate its important role in multi-user communi-

cation systems. Of particular interest are downlink and uplink wireless systems that

use orthogonal frequency division multiplexing (OFDM) modulation and multi-input

multi-output (MIMO) transmission with multiple antennas.

There are four major contributions in this thesis: First, queue-proportional schedul-

ing (QPS) is presented and is shown to exhibit superior throughput, delay, and fairness

properties. QPS provides a capability that can arbitrarily scale each user’s average

queueing delay relative to others, which makes QPS suitable for networks driven by

heterogeneous traffic. Second, geometric programming (GP) is applied for cross-layer

resource allocation in multi-user OFDM systems with CSI, where GP formulations

lead to numerical efficiency and strong scalability. Third, efficient power/rate opti-

mization algorithms are developed by using Lagrange dual decomposition for multi-

user MIMO-OFDMA (Orthogonal Frequency Division Multiple Access) systems with

CSI. Finally, cross-layer resource allocation in multi-user MIMO-OFDMA systems

with channel distribution information (CDI) is addressed. It is shown that outage

rate region for scheduling can be efficiently characterized by using a Gaussian approx-

imation of mutual information along with a successive feasibility check method. This

efficient approach is directly applicable to finding power/rate allocation for QPS as

iv



well. Stochastic simulations on a variety of situations demonstrate that QPS outper-

forms other well-known scheduling policies in terms of throughput, average queueing

delay, and delay fairness among the users.
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Chapter 1

Introduction

The evolution of wireless communication systems has been dramatic in the past

decade. The main application of traditional wireless cellular systems has been voice

communications, where one of major design goals is seamless conveyance of stable

voice signals to many users with low delay. Along with the rapid evolution of In-

ternet, the need of data communications has been significantly increasing, and the

wireless systems such as wireless local area network (WLAN) have been developed to

support packet data services such as web-browsing and file transfer protocol (FTP).

Future wireless networks, as illustrated in Fig. 1.1, will be driven by a variety of ubiq-

uitous broadband services such as portable telephony, mobile Internet, Voice over IP

(VoIP), and IPTV that require different Quality of Service (QoS). Hence, a key design

issue is satisfaction of different service classes’ QoS requirements. For example, if an

operator supports video, voice, and streaming, three different service classes can be

defined by the operator containing different sets of QoS parameters such as through-

put and delay. Table 1.1 presents an example for a pre-configured QoS requirement

of these service classes. In order to meet these distinct QoS demands, as well as

to guarantee fairness among the users, development of intelligent multi-user packet

schedulers is essential.

A recent breakthrough in wireless communications is the application of link adap-

tation to reduce the performance loss from channel fading. Channel fading is in-

evitable in a wireless environment and is caused by signal scattering of a number of

1
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Mobile Gaming

Base Station

Mobile Internet

IPTV VoIP

Portable 
Telephony

Figure 1.1: Wireless network driven by various ubiquitous broadband services

objects in the channel [25]. Traditionally, fading is considered as a detrimental effect

and the design focus was on circumventing this effect through the use of diversity

techniques. However, if channel state information (CSI) such as channel gains is

available at transmitter, fading can be exploited by adapting the transmit power and

data-rate allocation according to the channel conditions [26]. The receiver’s CSI can

be delivered to the transmitter via a reliable feedback link, or if TDD (Time Division

Duplex) mode is utilized, channel reciprocity∗ can be assumed and the transmitter

can equate downlink CSI with the estimated uplink CSI. By opportunistically using

the channel fluctuation, achievable throughput can be significantly increased [27, 72].

∗Channel reciprocity means that both downlink and uplink channels are identical. This property
can hold in the TDD mode if the channel coherence time is much longer than the half-duplex cycle
and the interference levels at both transmitter and receiver are assumed to be the same.
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The link-adaptation technique was first utilized in a stationary channel for DSL (Dig-

ital Subscriber Line) systems, where it is called loading [64]. Link adaptation can be

extended to wireless systems by carefully considering more rapid channel variations.

The multi-user scheduling issues in wireless systems have become more interesting

with the link-adaptation technique, which provides better capability to meet a vari-

ety of QoS requirements.

Table 1.1: Example for QoS requirement

Video Voice Streaming

Min Reserved Rate 500 kbps 12.2 kbps 50 kbps

Tolerated Delay Jitter 50 ms 20 ms 80 ms

Max Traffic Burst 2 Mbps 150 kbps

Max Sustained Rate 1 Mbps 100 kbps

Realization of link adaptation for multi-user communication systems requires opti-

mal allocation of communication resources, such as the transmit power and data rate.

The architecture of many communication networks falls into one of two categories: the

broadcast channel (BC) and the multiple-access channel (MAC) [20, 19]. Examples

of BC and MAC are the downlink and uplink of cellular networks, respectively. In

the uplink MAC, a number of mobile terminals send independent information to the

base-station (BS), and in the downlink BC, the BS broadcasts messages, which are

often independent, to all the mobile terminals. With perfect CSI at both the BS and

each mobile terminal (MT), each user’s transmit power and rate in the downlink and

uplink can be determined based on the capacity regions of BC and MAC, respectively.

Much research work has focused on this information-theoretic approach to resource

allocation. However, because these approaches ignore the randomness in packet ar-

rivals and queueing, they have difficulty in guaranteeing each user’s throughput or

delay requirement. Therefore, satisfaction of each user’s QoS requirement needs to

consider queue state information (QSI), such as the current queue backlog size, in

addition to CSI when the scheduler selects each user’s operating data rate. Once ser-

vice rates are determined by a scheduler in the medium access control layer (MACL),
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the physical layer (PHYL) determines the corresponding power and rate allocation in

each transmit dimension. Because of this interplay between MACL and PHYL, such

a combination of queue-channel-aware scheduling and power/rate allocation is known

as cross-layer resource allocation. This cross-layer approach to resource allocation to

account for queueing parameters has been recently studied in [5, 45, 3, 73, 65] and

the references therein.

Reference [45] defines network capacity region as a set of all packet arrival rate

vectors for which it is possible to keep every queue length finite. For bursty input

traffic, it is generally difficult to estimate the packet-arrival rates. Thus, resource

allocation solely based on CSI is unable to update rate allocation properly accord-

ing to the dynamics of the input traffic. As a result, even for a packet arrival rate

vector within the network capacity region, some users’ queue backlogs may become

unacceptably large, causing long queueing delay as well as buffer overflow. Certain

schedulers assume infinite queue backlog and simply consider CSI only. On the other

hand in the packet switching systems, the channel can be described by the circuit

connection, so the concept of CSI is irrelevant. The above two schedulers are called

‘channel-aware scheduler’ and ‘queue-aware-scheduler’, respectively, to distinguish

them from the queue-channel-aware scheduler†. The network capacity region may

not be achievable with channel-aware scheduler that ignores queueing dynamics. In

addition, each user’s queueing delay, which is an important QoS parameter, is uncon-

trollable without considering queue sizes in scheduling. Therefore, it is essential to

design an intelligent scheduler that considers both CSI and QSI. It has been shown

that the entire network capacity region can be achieved by using this approach in the

fading BC and MAC [45, 67, 77].

With increasing demand for high data-rate services, Orthogonal Frequency Di-

vision Multiplexing (OFDM) has drawn much attention as a promising technique.

OFDM has been widely applied to a variety of telecommunication systems such as

WLAN, DVB (Digital Video Broadcasting), and to DSL systems in DMT (Discrete

Multi-Tone) form. By converting a frequency selective fading channel into parallel

frequency-flat fading subchannels, OFDM achieves high spectral efficiency, as well as

†In this thesis, ‘scheduling’ often implies queue-channel-aware scheduling for simplicity.
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lower equalization complexity, for channels with large delay spread [18]. With perfect

CSI at both base station and mobile terminals, as the number of tones goes to infinity,

OFDM with link adaptation is shown to achieve the capacity of Gaussian BC and

MAC with inter-symbol interference (ISI), or with frequency selective fading. OFDM

inherently provides a variety of advantages such as FFT (Fast Fourier Transform) re-

alization, simple channel equalization, no ISI, and high degree of design flexibility. Its

application to multi-user systems, multi-user OFDM has been considered as a strong

candidate for the platform of the future wireless systems. In multi-user OFDM sys-

tems, multiple users are allowed to transmit simultaneously from the intelligent tone

assignment to each user, which has triggered much work on the power/rate allocation

issues in this system.

Achievable throughput can be further boosted by applying MIMO (Multiple Input

Multiple Output) techniques to OFDM systems where the transmitter and receiver are

equipped with multiple antennas. In a rich scattering environment with the antenna

separation in the order of a wave length, each component of channel matrix undergoes

independent and identically distributed (i.i.d.) fading. Thus, it is possible to enhance

the performance by exploiting spatial diversity effects through the application of

space-time channel coding [1, 66]. If CSI is available at the transmitter, the channel

capacity, which is shown to be proportional to the number of transmit antennas,

can be achieved by optimizing the transmit power across the transmit antennas,

after precoding at the transmitter and postprocessing at the receiver based on SVD

(Singular Value Decomposition). Thus, MIMO-OFDM, the combination of MIMO

with OFDM modulation, has been considered as a key feature for the future wireless

systems.

Scheduling in multi-user MIMO-OFDM systems is much more complex than that

in TDMA (Time Division Multiple Access) systems where only one MT is allowed to

communicate with the BS in each time slot. Because of its simplicity, TDMA is one of

the most widely deployed transmission methods in wireless communication. Assum-

ing a single-cell environment, there are no multi-user interactions in each time slot

with TDMA, so the achievable rate region can be simply defined from the maximum

achievable rate of each user. Therefore, once each user’s maximum achievable rate is



CHAPTER 1. INTRODUCTION 6

calculated, the scheduler at the BS can select which user communicates by considering

both the finite set of operation rates and QSI to meet delay, throughput, and fairness

criteria. Then, the power and rate on each transmit dimension are optimized for the

scheduled user. On the other hand, in multi-user MIMO-OFDM systems, multiple

users with different QoS demands can transmit at the same time; thus, characteri-

zation of the achievable rate region is much more complicated. It is also infeasible

to generate the finite number of operation points in PHYL and pass them over to

MACL. Thus, the queue-channel-aware scheduling and allocation of power/rate on

each tone and transmit antenna must be performed in a combined way.

This thesis comprehensively addresses various aspects of cross-layer resource al-

location in multi-user communication systems. The focus is on downlink and uplink

OFDM/MIMO-OFDM with or without CSI at the transmitter. Cross-layer resource

allocation shows significant improvement in throughput, delay, and fairness prop-

erties by intelligently utilizing both CSI and QSI. In particular, queue-proportional

scheduling (QPS) is presented, and its throughput, delay, and fairness properties are

shown to be superior to other well-known scheduling policies. In order to apply QPS

and other schedulers to downlink and uplink OFDM/MIMO-OFDM systems with

and without CSI, this thesis develops a variety of efficient power/rate optimization

algorithms. The rest of this chapter elaborates on practical motivations of this work

as well as overviews, and the main contributions of each chapter are outlined.

1.1 Motivation

With the increasing demands on multimedia services from applications such as video

streaming and IPTV, a variety of ubiquitous real-time and non-real-time broadband

services need to be simultaneously supported in the future wireless networks, where

each service demands a different QoS. Non-real-time best effort traffic such as web-

browsing and FTP service targets maximization of throughput while tolerating some

degree of packet delay. On the other hand, real-time traffic such as potable telephony

has a more strict delay constraint with much lower data rate. In order to satisfy these

diversified QoS demands, design of intelligent multi-user packet schedulers becomes
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a key issue in wireless systems. In particular, schedulers must carefully use both CSI

and QSI to achieve better throughput, delay, and fairness properties.

TDMA has been widely applied in wireless systems where only one user transmits

at each time slot. However, many promising wireless systems under development

such as mobile WiMAX (Worldwide Interoperability for Microwave Access) [34] and

3GPP LTE (The 3rd Generation Partnership Project Long Term Evolution) [69]

adopt OFDMA (Orthogonal Frequency Division Multiple Access). These applica-

tions’ OFDM modulation allows simultaneous transmission by multiple users where

each tone can be occupied by only one user. In addition, mobile WiMAX and 3GPP

LTE systems incorporate MIMO transmission technique with multiple transmit and

receive antennas for further enhancement of spectral efficiency. This MIMO-OFDM

platform is a strong candidate for future wireless systems.

By simultaneously supporting multiple users with different classes of traffic, higher

throughput as well as effective controllability of queueing delay can be achieved with

smart scheduling policies. Hence, scheduler design becomes more important and chal-

lenging in multi-user MIMO-OFDM systems. With simultaneous multi-user trans-

mission, the scheduling operation is more intertwined with resource allocation; thus,

it is desirable to combine them. Optimal power/rate allocation in multi-user systems

based on OFDM modulation and MIMO transmission is an active and non-trivial re-

search area. For various cases, optimal resource allocation is an open problem. Even

for the cases with known optimal solutions, the numerical complexity is often very

high, which makes the optimal solutions intractable with practical system settings.

The typical procedures of cross-layer resource allocation in downlink and uplink

MIMO-OFDM systems are illustrated in Fig. 1.2 and Fig. 1.3, respectively. In the

downlink case (Fig. 1.2), when the channel is slowly varying, the BS is able to secure

each user’s downlink CSI via a feedback channel, or by utilizing channel reciprocity

in case of a TDD mode. Also, the output queues for each service are located at

the BS; thus, perfect CQI at the BS is available for the downlink. Then, cross-layer

resource allocation is performed based on both CSI and QSI at the BS to control the

power and rate allocation on each user’s transmit dimension. Finally, the BS delivers

information on power/rate allocation to each corresponding user via control channels,
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Figure 1.2: Downlink MIMO-OFDM systems

possibly at the same time with data packet delivery.

In Fig. 1.3’s uplink with a slowly varying channel condition, the BS obtains uplink

CSI from channel estimation. Since the queues are distributed at each MT in the

uplink, each MT’s QSI needs to be delivered to BS via a reliable link. Then, by using

both CSI and QSI at the BS, cross-layer resource allocation calculates the transmit

power/rate allocation, which is then delivered to each corresponding user via control

channels. Each MT updates its power/rate allocation based on this information and

transmits a new packet accordingly. However, in a highly mobile environment with

fast channel variation, both the downlink and uplink can experience discrepancies

between the CSI at the BS used for scheduling and the channel conditions when

actual data transmission happens. Thus, the value of CSI would be limited, which

may significantly degrade the system performance.

This thesis is motivated by the challenges and limitations mentioned above. The
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Figure 1.3: Uplink MIMO-OFDM systems

main objectives of this thesis can be summarized as follows:

• Corroboration of the advantages of cross-layer resource allocation.

• Design of intelligent schedulers suitable for meeting heterogeneous QoS require-

ment.

• Development of efficient power/rate optimization algorithms for cross-layer re-

source allocation in multi-user systems with and without CSIT (CSI at the

Transmitter) that are based on OFDM modulation and MIMO transmission.



CHAPTER 1. INTRODUCTION 10

1.2 Overview of Thesis

This thesis is composed of seven chapters to cover the objectives listed in the previous

section. This section summarizes each chapter with its key contributions emphasized.

Chapter 2 introduces the fundamentals of queueing systems and schedulers. The

basics of queueing theory are essential to understand schedulers’ throughput and delay

performance. Considering a simple queueing system with Poisson packet arrivals and

exponentially distributed service time, average queue length is analytically derived,

and its relation to average queueing delay is addressed. Also, the stability analysis of

queueing systems is provided, which is crucial in characterizing achievable throughput

of schedulers. In addition, Chapter 2 illustrates models of the multi-user queueing

systems and schedulers that are used throughout this thesis. Basic concepts frequent

in the scheduling context such as a network capacity region and throughput optimality

are explained with simple illustrations. Finally, various well-known schedulers includ-

ing maximum weight matching scheduling (MWMS) are introduced, where they are

categorized into channel-aware, queue-aware, and queue-channel-aware schedulers.

With all the background built in Chapter 1 and 2, Chapter 3 presents another

scheduling policy called queue-proportional scheduling (QPS). The application of QPS

to stationary and time-varying channels is illustrated, and throughput, delay, and fair-

ness properties of QPS are analyzed in this chapter. It is discovered that the direction

of average queue length vector under QPS always converges to that of arrival rate

vector. Using this finding in addition to the queueing theories introduced in Section

2.1, QPS is proved to be throughput optimal. It is also shown that QPS has the capa-

bility of arbitrarily scaling the ratio of each user’s average queueing delay relative to

others. This unique delay-fairness property is desirable for satisfying diversified QoS

requirement in a network. Finally, stochastic simulation results with Poisson packet

arrivals and exponentially distributed packet lengths are presented for stationary and

fading Gaussian BCs. QPS and various scheduling policies introduced in Section 2.2

are considered in the simulation. The results demonstrate that queue-channel-aware

scheduling policies such as QPS and MWMS have much better throughput and delay

properties than other types of schedulers, which corroborates the cross-layer approach



CHAPTER 1. INTRODUCTION 11

to resource allocation. In addition, QPS is shown to outperform MWMS in terms of

average queueing delay and to provide a more desirable delay-fairness property for

QoS satisfaction. Part of the work in Chapter 3 is presented in [56, 54, 55].

Cross-layer resource allocation is defined as the combination of queue-channel-

aware scheduling and power/rate allocation in each transmit dimension. Therefore,

given schedulers, an essential part of cross-layer resource allocation develops efficient

algorithms for power/rate allocation to support the scheduled rate tuple. Chapter 4-6

present a variety of efficient power/rate optimization techniques for multi-user broad-

cast and multiple-access systems based on OFDM modulation and MIMO transmis-

sion. As well as perfect CSIT situations (Chapter 4, 5), cross-layer resource allocation

with no CSIT is addressed (Chapter 6).

First, Chapter 4 introduces a powerful optimization tool, geometric programming

(GP) to cross-layer resource allocation for the OFDM BC and MAC with CSIT. GP

is a special form of convex optimization problems for which very efficient solvers have

been developed [10]. In an OFDM Gaussian BC with sum-power constraint, a de-

graded broadcast channel is formed at each tone where its capacity can be achieved

by applying the superposition coding at the transmitter and successive interference

cancellation at the receivers [24]. Also, the optimal encoding and decoding order

is unique, given each tone’s channel signal-to-noise ratio (SNR) [20]. By converting

capacity equations with careful consideration of optimal orderings, it is shown that

major resource allocation problems in the OFDM Gaussian BC can be formulated via

GP. Also, the duality relation between the MAC and BC is used to extend the GP

formulations in the BC to the MAC. The extension to fading channels is straightfor-

ward. With any additional rate constraints of linear form, the GP structure is still

maintained in the derived equations, which makes GP a convenient tool for satisfy-

ing various throughput QoS demands in the network. After the introduction to GP,

Chapter 4 derives GP formulations of QPS as well as of some other scheduling po-

lices. Also, the results of stochastic simulations performed by solving the obtained GP

equations are presented. Numerical efficiency and strong scalability of GP make GP

suitable for cross-layer resource allocation in multi-user OFDM systems with CSIT

driven by heterogeneous QoS requirement. Part of the work in Chapter 4 is presented
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in [56, 54, 58].

Chapter 5 is devoted to cross-layer resource allocation in downlink and uplink

MIMO-OFDMA systems with CSIT. In MIMO-OFDMA, it is assumed that each

tone is taken by at most one user; thus, a one-to-one MIMO channel is formed at

each tone where its capacity is well-known [68]. However, the optimal allocation of

power and rate in MIMO-OFDMA requires optimally assigning tones to each user,

which is a non-convex combinatorial problem with the exponential complexity in

the number of tones. If the number of tones goes to infinity, the infinite frequency

dimensions allow arbitrary frequency sharing within the small bandwidth. Thus,

the original problem effectively becomes convex, which results in zero duality gap

[80]. With zero duality gap, it is possible to apply Lagrange dual decomposition in

efficient solution of the optimization problem. However, with only tens or hundreds

of tones in practical systems, this argument is inapplicable and zero duality gap may

not be guaranteed, which complicates development of efficient optimal algorithms.

Chapter 5 shows that in MIMO-OFDMA BCs and MACs with CSIT, the duality

gap vanishes with only tens of tones for weighted sum-rate maximization (WSRmax)

and weighted sum-power minimization (WSPmin) problems. From this observation,

Lagrange dual decomposition is applied to develop efficient algorithms for optimal

allocation of power/rate on each tone and at each transmit antenna. Using derived

algorithms, the optimal achievable rate and power regions of MIMO-OFDMA BCs

and MACs with CSIT are calculated with the polynomial complexity. Part of the

work related to Chapter 5 is presented in [53, 12].

If the channel variation is fast over time, the instantaneous CSI sent to the trans-

mitter via feedback channel becomes unreliable. In a fast-varying mobile environment,

scheduling can be performed by utilizing long-term channel statistics. Chapter 6 ad-

dresses the cross-layer resource allocation in uplink and downlink MIMO-OFDMA

systems with CDIT (Channel Distribution Information at the Transmitter). Under

CDIT only, schedulers are unable to update transmission rates according to the in-

stantaneous channel mutual information, which may result in packet outages. Hence,

schedulers can select a rate tuple from outage rate region, which is defined as the set

of maximum achievable rates while satisfying each user’s specified outage probability
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constraint [40, 29, 41]. However, characterizing outage rate region of MIMO-OFDMA

with CDIT involves very complicated numerical integration; thus, scheduling based

on the exact outage rate region becomes intractable.

Chapter 6 shows that the mutual information of the MIMO-OFDMA BC and

MAC can be well approximated using a Gaussian distribution. Also, reliable approx-

imations for the mean and variance of the mutual information appear, which can be

used to characterize the approximate Gaussian distribution. Based on the Gaussian

approximation, a successive feasibility check (SFC) efficiently characterizes the entire

outage rate region of MIMO-OFDMA BC and MAC with the linear complexity in the

number of users and tones. Also, the power/rate allocation under QPS can be effi-

ciently computed by directly applying this approach, i.e. the Gaussian approximation

of mutual information in conjunction with a SFC. On the other hand, other gradient-

type scheduling polices based on WSRmax, such as MWMS, exhibit the exponential

complexity in the number of users for resource allocation. Chapter 6 presents stochas-

tic simulations for the MIMO-OFDMA BC and MAC with CDIT that are performed

by using the outage rate region characterized by the Gaussian approximation. The

results corroborate superior throughput, delay, and fairness properties of QPS over

other scheduling polices. In addition to these fundamental advantages, QPS provides

high numerical efficiency that enables QPS to be a preferable scheduler for use in

cross-layer resource allocation when only CDIT is available. Part of the work related

to Chapter 6 is presented in [57].

Finally, Chapter 7 summarizes the key points in this thesis. Cross-layer approach

to resource allocation is essential in multi-user communication systems with hetero-

geneous QoS requirement. Considering its superior throughput, delay and fairness

properties as well as numerical efficiency, QPS is suitable for future wireless networks

driven by various ubiquitous broadband services.

1.3 Notations and Abbreviations

In this thesis, bold face letters are used to denote vectors and matrices where matrices

are always denoted by upper case letters. Rn denotes the set of real n-vectors and
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Rn
+ denotes the set of nonnegative real n-vectors. Given two column vectors x and y

of length n,
∑n

i=1 xiyi is expressed as an inner product x · y. The curled inequality

symbol º (and its strict form Â) denotes the generalized inequality [10]. It denotes

the component-wise inequality between vectors: x º y means xi ≥ yi, i = 1, 2, · · · , n.

A column vector with all entries being 1 is denoted as 1; the length of 1 will be clear

from context. Ex denotes expectation over the random variable x.

For a square matrix S, |S|, S−1 and Tr(S) denote its determinant, inverse matrix,

and trace, respectively. For any general matrix M, MH is its conjugate transpose. I

and 0 represent the identity matrix and the matrix with all zero elements, respectively.

The Gaussian distribution of a vector with the mean vector x and the covariance

matrix Σ is denoted by N (x,Σ). Cx×y is the space of x× y matrices with complex

entries. Rn denotes the set of real n-vectors and Rn
+ denotes the set of nonnegative

real n-vectors. For a square matrix S, S º 0 means S is positive semidefinite. 1{·}
is the indicator function, which takes the value of 1 if the argument is true, and zero

otherwise.

The abbreviations used in this thesis are summarized in the following table:

Table 1.2: Summary of abbreviations

BC Broadcast Channel

BCHPR Best Channel Highest Possible Rate

BS Base Station

CDI Channel Distribution Information

CDIT Channel Distribution Information at the Transmitter

CSI Channel State Information

CSIT Channel State Information at the Transmitter

CTMC Continuous Time Markov Chain

DSL Digital Subscriber Line

FDD Frequency Division Duplex

FDMA Frequency Division Multiple Access

FTP File Transfer Protocol
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GP Geometric Programming

ISI Inter-Symbol Interference

IWF Iterative Water-Filling

LQHPR Longest Queue Highest Possible Rate

LTE Long Term Evolution

MAC Multiple Access Channel

MACL Medium Access Control Layer

MDT Minimum Draining Time

MIMO Multiple Input Multiple Output

MT Mobile Terminal

MWMS Maximum Weight Matching Scheduling

OFDM Orthogonal Frequency Division Multiplexing

OFDMA Orthogonal Frequency Division Multiple Access

PFS Proportional Fair Scheduling

PHYL Physical Layer

PRmax Proportional Rate maximization

QoS Quality of Service

QPS Queue Proportional Scheduling

QSI Queue State Information

SDMA Spatial Division Multiple Access

SISO Single Input Single Output

SNR Signal-to-Noise Ratio

SRM Sum Rate Maximization

SVD Singular Value Decomposition

TDD Time Division Duplex

TDM Time Division Multiplexing

TDMA Time Division Multiple Access

VoIP Voice over IP

WiMAX Worldwide Interoperability for Microwave Access
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WLAN Wireless Local Area Network

WSP Weighted Sum Power

WSPmin Weighted Sum Power minimization

WSRmax Weighted Sum Rate maximization

ZMCSCG Zero Mean Circularly Symmetric Complex Gaussian

3GPP The 3rd Generation Partnership Project



Chapter 2

Queueing Systems and Schedulers

Performance of scheduling operation can be characterized by the properties such as

achievable throughput and queueing delay. With random packet arrivals, these prop-

erties are all related to the queueing behavior, which motivates full understanding of

queueing systems. The first section of this chapter presents fundamentals of queue-

ing theory. The most well-known queueing systems with Poisson packet arrivals and

exponentially distributed service time, called M/M/1 queue, is introduced and its av-

erage queue length is mathematically derived. In addition, Little’s law is explained,

which is one of the most powerful and general queueing theories that relates average

queue length to average queueing delay. Under some scheduling policy, a rate tuple is

declared achievable if the scheduler can keep the queue backlog size finite. Therefore,

in order to derive achievable throughput under certain schedulers, it is necessary to

find the stability condition of queueing systems. In this regard, the first section intro-

duces Lyapunov analysis and shows its application to finding the stability condition

of M/M/1 queue.

The second section elaborates on the models of multi-user queueing system and

scheduler that are used throughout this thesis. Also, the basic concepts required

for characterizing schedulers, such as the network capacity region and throughput

optimality, are defined in this section. The last section introduces a variety of well-

known schedulers categorized into three types: channel-aware, queue-aware, queue-

channel-aware schedulers.

17
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2.1 Queueing Theory Basics

This section introduces an M/M/1 queue, Little’s theorem for evaluating average

queueing delay, and a Lyapunov analysis technique for proving stability of queueing

systems [49].

2.1.1 M/M/1 Queue

A queueing system is often described by the notation of A/S/s/k. A stands for the

arrival process such as Poisson, geometric, and deterministic, and S stands for the

service distribution such as exponential, geometric, and deterministic. s denotes the

number of servers and k stands for the buffer size where k = ∞ when k is absent. In

addition, full characterization of the queueing system behavior requires description

of the service discipline.

M/M/1 queue is a continuous-time queueing system that is widely applied in

modeling queueing systems. In the M/M/1 queue, the arrivals occur according to

a rate λ Poisson process where the number of arrivals within a time interval has a

Poisson distribution.

P{N(t1, t2) = k} =
e−λt(λt)k

k!
, (2.1)

where N(t1, t2) denotes the number of arrivals in an interval (t1, t2) and t = t2 − t1.

Let X1 denote the time of the first arrival. Further, for n ≥ 1, let Xn denote the

time between the (n − 1)st and the nth arrival. The sequence {Xn, n ≥ 1} is called

the sequence of interarrival times. The event {X1 > t} takes place if and only if no

arrivals occur in the interval [0, t]. Thus,

P{X1 > t} = P{N(t) = 0} = e−λt. (2.2)

Also, the distribution of X2 conditioned on X1 is

P{X2 > t|X1 = s} = P{No arrivals in (s, s + t]|X1 = s}
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Figure 2.1: M/M/1 queue

= P{No arrivals in (s, s + t]}
= e−λt. (2.3)

Therefore, from the above two equations, interarrival times are i.i.d. exponentially

distributed with the mean of 1/λ. Service is also based on the Poisson process in

M/M/1 queue; thus, service times are i.i.d. rate µ exponentials, and independent of

arrivals: P (S > t) = e−µt. The M/M/1 queue model is illustrated in Fig. 2.1.

Let Q(t) denote the number of information units in the queue at time t. Without

loss of generality, Q(t) is assumed to have nonnegative integer values. For 0 ≤ t1 <

t2 ≤ t3, the queue-size process Q(t) has the following Markovian property:

P{Q(t3) = k|Q(t1) = i, Q(t2) = j} = P{Q(t3) = k|Q(t2) = j}. (2.4)

Thus, Q(t) forms a continuous-time Markov chain (CTMC), where the past has no
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influence on the future if the present is specified [52]. The queueing behavior can

be fully characterized once the transition rate from state i to j, which is the state

transition probability divided by the average time in state i, is obtained.

qi,j =
pi,j

E[Ti]
, (2.5)

where qi,j is the transition rate from state i to j, pi,j denotes the state transition

probability, and the average time in state i is denoted by E[Ti].

For CTMCs, pi,i = 0; thus, p0,1 = 1. When i ≥ 1, pi,i+1 is equal to the probability

that an arrival occurs before the service. Therefore, the following equations can be

derived:

pi,i+1 =

∫ ∞

0

P [A < t, S ∈ (t, t + dt)] dt =

∫ ∞

0

(1− e−λt)µe−µt dt =
λ

λ + µ
,(2.6)

pi,i−1 = 1− pi,i+1 =
µ

λ + µ
.

For i = 0, the queue state changes only if there is an arrival. Thus, the average time

in state 0 is given by

E[T0] = E[arrival time] =

∫ ∞

0

P [A > t] dt =
1

λ
. (2.7)

For i ≥ 1, the state change is triggered by an arrival or a departure. Therefore, the

average time in each state is

E[Ti] = E[min{arrival time, service time}] =

∫ ∞

0

P [min{A, S} > t] dt (2.8)

=

∫ ∞

0

P [A > t]P [S > t] dt =

∫ ∞

0

e−(λ+µ)t dt =
1

λ + µ
.

Finally, from (2.5)-(2.8), the state-transition rate is

q0,1 = λ, (2.9)

qi,i+1 = λ, for i ≥ 1,

qi,i−1 = µ, for i ≥ 1.
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Denote the equilibrium queue-length distribution by πi = limt→+∞ P (Q(t) = i),

where
∑∞

i=0 πi = 1. Since the rate at which the process enters and leaves state j is

equal, the following global-balance relations must be satisfied.

πj

∞∑
i=0

qj,i =
∞∑
i=0

πiqi,j. (2.10)

Thus, πjλ = πj+1µ for j = 0, 1, 2, · · · , which results in

πj =

(
λ

µ

)j

π0, for j = 0, 1, 2, · · · . (2.11)

If the arrival rate is greater than the service rate, i.e. λ > µ, then πj → ∞ and the

queueing system becomes unstable. If λ = µ, πj = π0 for every j. Since 0 ≤ πj ≤ 1

and
∑∞

j=0 πj = 1, there is no equilibrium and the queueing system is critically stable.

On the other hand, when λ < µ, π0 = (1 − λ/µ) and πj = (1 − λ/µ)(λ/µ)j. Since

πj is exponentially decreasing, the queue backlog remains finite; thus, the queueing

system is stable.

Define ρ = λ/µ as the traffic intensity. For ρ < 1, πj = (1 − ρ)ρj; thus, the

expected queue length,

E[Q] = Σjjπj =
ρ

(1− ρ)
. (2.12)

2.1.2 Little’s Law

In queueing theory, Little’s law states that the average queue size is equal to the

average arrival rate multiplied by the average waiting time in the queueing system.

This statement is quite general in that it is valid for any probability distributions

on arrivals and services as long as the system operates in a first-come-first-served

manner.

Suppose that a stable queue is empty at time 0. Denote the number of arrivals in

[0, t] by A(t), and let λ = E[A(1)] be the arrival rate and Di be the delay of the ith

packet such that Di = Wi + Si where Wi and Si are waiting time and service time
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of the ith packet, respectively. Fig. 2.2 illustrates the progression of queue size with

time t.

From Fig. 2.2, the following equation can be derived.

∑T
t=0 Q(t)

T
=

∑A(T )
k=1 Dk

T
=

A(T )

T

∑A(T )
k=1 Dk

A(T )
. (2.13)

By letting T →∞, the equation for Little’s law is obtained,

E[Q] = λE[D]. (2.14)

For example, the average length of the M/M/1 queue is shown to be E[Q] = ρ/(1−ρ)

in (2.12). Hence, by Little’s theorem, the average packet delay in the M/M/1 queue

becomes

E[D] =
E[Q]

λ
=

1

µ(1− ρ)
=

1

(µ− λ)
. (2.15)

In addition, the average waiting time is given by

E[W ] = E[D]− E[S] =
λ

µ(µ− λ)
. (2.16)

2.1.3 Stability and Lyapunov Analysis

This subsection addresses the stability of M/M/1 queue and presents its stability

proof based on Lyapunov analysis. Let Xn denote a discrete-time Markov chain on

the countable state space S. Define a positive valued function L : S → R+, which

is also called Lyapunov function. If limn→∞ L(Xn) is finite with probability one,

Xn is declared to have weak stability. On the other hand, strong stability of Xn is

equivalent to that limn→∞ E[L(Xn)] is finite. Strong stability implies weak stability,

but the reverse is not always true.

Assume that Xn is aperiodic and irreducible, and from any state, Xn can only

transition to a finitely many states. Also, L(Xn+1) is assumed to be finite if L(Xn)
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Figure 2.2: Progression of queue backlog size over time

is finite. Define the set C = {x ∈ S : L(x) ≤ B} such that L(x) is bounded in C.

Then, the strong stability of Xn can be described by the following theorem.

Theorem 1. If there exists a monotonically increasing positive function f such that

E[L(Xn+1)− L(Xn)|L(Xn) 6∈ C] ≤ −εf(L(Xn)), lim supn→∞ E[f(L(Xn))] < ∞.

Therefore, the stability of Xn is proved if a Lyapunov function L that satisfies the

above condition can be found. Consider M/M/1 queue and apply Lyapunov analysis

to prove its stability. Since the queue size is constant during the period when there

is no packet arrival or departure, time can be discretized to when either an arrival or

a potential service occurs. Then, the queue size is denoted by Q(n) for n = 0, 1, · · · ,
which is a Markov chain. With the arrival rate λ and service rate µ, the probability

of Q(n+1) = Q(n)+1 is λ/(λ+µ), and that of Q(n+1) = Q(n)− 1 when Q(n) > 0

is µ/(λ + µ).

Assume the Lyapunov function L(n) is equal to the queue size Q(n). Then, for

Q(n) > 0, the expected value of conditional discrete derivative of the Lyapunov
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function can be derived as follows.

E[L(n + 1)− L(n)|L(n)] = E[Q(n + 1)−Q(n)|Q(n)] (2.17)

= E[Q(n + 1)|Q(n)]−Q(n)

= E[
λ

λ + µ
(Q(n) + 1) +

µ

λ + µ
(Q(n)− 1) |Q(n)]−Q(n)

=

(
λ− µ

λ + µ

)
< 0 if λ < µ.

Hence, from Theorem 1, the M/M/1 queue is stable as long as the arrival rate is

lower than the service rate. In general, multiple Lyapunov functions can be used to

prove the stability of the same queueing system. If Q2(n) is chosen as the Lyapunov

function, then for Q(n) > 0,

E[L(n + 1)− L(n)|L(n)] = E[Q2(n + 1)−Q2(n)|Q2(n)] (2.18)

= E[
λ

λ + µ
(Q(n) + 1)2 +

µ

λ + µ
(Q(n)− 1)2 −Q2(n)|Q2(n)]

= Q2(n)

(
λ

λ + µ
+

µ

λ + µ
− 1

)
+ 2Q(n)

(
λ− µ

λ + µ

)
+ 1

= 2
√

L(n)

(
λ− µ

λ + µ

)
+ 1 < 0 if λ < µ and L(n) >

(
λ + µ

2(µ− λ)

)2

.

Thus, for L(n) is large enough, E[L(n + 1) − L(n)|L(n)] is negative if λ < µ, which

means the M/M/1 queue is stable.

2.2 Multi-User Queueing System and Scheduler

Model

This section describes the models of the multi-user queueing system and the packet

scheduler considered throughout this thesis. Also, the important concept of net-

work capacity region and throughput optimality is introduced. Figure 2.3 presents

the queueing system and scheduler model for the downlink. The transmitter has

K output queues and the packets destined to receiver k enter queue k and wait
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until they are served. {Ak(t), k = 1, ···, K} denotes the arrival process, and user

k’s average bit arrival rate is denoted by λk. The queue-state vector at time t is

Q(t) = [Q1(t) Q2(t) · · · QK(t)]T where Qk(t) denotes the number of bits waiting to

be sent to user k. In a very slow fading, instantaneous CSI for each downlink is ob-

tainable at the transmitter by using a reliable CSI feedback link in FDD (Frequency

Division Duplex) transmission mode or by utilizing the channel reciprocity in case

of TDD transmission. However, if the channel variation is fast, the instantaneous

CSIT becomes unreliable and only the long-term channel statistics may be available

at transmitter. Based on both CSI and QSI, the scheduler determines the rate allo-

cation on each user where user k’s rate is denoted by Rk(t). In the uplink case, the

queueing system is distributed over the users and QSI needs to be reported to the BS

via a feedback link. Also, the BS can obtain uplink CSI from the channel estimation.

Other than these changes, the scheduling operation is basically the same as that for

the downlink.

In this thesis, the detailed assumptions on the above model are as follows: K

output queues are assumed to have infinite capacity, and K data sources generate

packets according to independent Poisson arrival processes {Ai(t), i = 1, ···, K}, which

are stationary counting processes with limt→∞ Ai(t)/t = ai < ∞, and var(Ai(t +

T ) − Ai(t)) < ∞ for T < ∞. Packet lengths in bits {Bi} are i.i.d. exponentially

distributed with E[Bi] = γi < ∞ and E[Bi
2] < ∞. We assume packet lengths are

independent of packet arrival processes; thus, user i’s average arrival rate in bits is

given by λi = aiγi. Packets from source i enter queue i and wait until they are served

to receiver i. The scheduling period is denoted by Ts. A time interval [lTs, (l + 1)Ts)

where l = 0, 1, 2, · · · is denoted by the time slot l . At time t, the fading state is

represented as n(t) = [n1(t) n2(t) · · · nK(t)]T , and the allocated rate vector at time

t is represented as R(n(t),Q(t)) = [R1(n(t),Q(t)) · · · RK(n(t),Q(t))]T , which is

determined by the scheduler based on both fading and queue states. For simplicity,

R(t) and R (n(t),Q(t)) are interchangeably used.

This thesis considers a quasi-static fading channel where the channel condition

remains stationary within a time slot, and it changes over time slots based on inde-

pendent and identically distributed (i.i.d.) fading statistics. In addition, it is assumed
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Figure 2.3: Queueing system and scheduler for the downlink

that the rate allocation is determined at the beginning of each time slot and remains

unchanged until a new time slot begins. Thus, TsR(lTs) for l = 0, 1, 2, · · · is equivalent

to a vector denoting the number of bits supported by each user over the time slot l. If

Ri(lTs) > 0, after the time slot l, a new packet is created for user i with the payload

size of TsRi(lTs) and modulated for transmission. Define Zi(t) as the number of ar-

rived bits at user i’s queue over the time interval [t, t+Ts). Then, after a scheduling pe-

riod, user i’s queue-state vector is equal to Qi(t+Ts) = max{Qi(t)−TsRi(t), 0}+Zi(t).

In this thesis, each scheduling policy has an explicit constraint of TsR(t) ¹ Q(t); thus,

max{·, 0} operation can be simply removed. Without loss of generality, Ts = 1 is as-

sumed throughout this thesis. Thus, a time interval [t, t + 1) with t = 0, 1, 2, · · · is

denoted by the time slot t, and R(t) for t = 0, 1, 2, · · · becomes a vector denoting the

number of bits supported by each user in the time slot t.

The stability definition of queueing systems given in [45] is adopted in this thesis.
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Figure 2.4: Network capacity region for two users

Thus, with the overflow function defined by g(M) = lim supt→∞
1
t

∫ t

0
1[Qi(τ) > M ] dτ ,

queue i is said to be stable if g(M) → 0 as M → ∞. An arrival rate vector λ is

stabilizable if there exists a feasible power-and-rate-allocation policy that keeps all

queues stable. A set of stabilizable arrival rate vectors forms the network capacity

region [45], and a scheduling method that achieves the entire network capacity region

is called throughput optimal.

Figure 2.4 illustrates the network capacity region for two user example. A bit

arrival rate vector with the unit of bits per time slot, [λ1 λ2]
T is declared to be within

the network capacity region if there exists some scheduler that is able to keep each

queue’s backlog size finite. Assuming that perfect CSIT is available and the total

transmit power is constrained in the downlink∗, the instantaneous capacity region is

∗For the uplink, the individual power is constrained
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defined on each time slot. If an infinite-length Gaussian codeword is assumed, the

entire capacity region can be achieved by applying capacity-achieving transmission

and reception schemes with the optimal power and rate allocation [61, 20]. Ergodic

channel capacity region with the sum-power constraint is defined as the instantaneous

capacity region averaged over all the fading states [7, 39]. Thus, with the assump-

tion of perfect CSIT and infinite-length Gaussian codewords, any arrival rate vectors

within the ergodic capacity region are stabilizable. On the other hand, the queue

backlog size eventually grows infinite for any arrival rate vectors outside the ergodic

capacity region. Therefore, the network capacity region becomes equivalent to the

ergodic capacity region for this case. In practical systems, the packet duration is

limited to the finite time-slot duration, which results in the finite codeword length;

thus, the deviation of achievable rate from the channel capacity is inevitable. This

deviation from the capacity can be addressed by using the gap parameter that prop-

erly scales down the received signal-to-noise ration (SNR) in capacity equations [17].

With imperfect CSIT or no CSIT, the network capacity region becomes completely

different from the ergodic capacity region.

2.3 Type of Packet Schedulers

This thesis divides schedulers into three types: channel-aware, queue-aware, and

queue-channel-aware schedulers. In this section, a variety of well-known schedulers

are introduced for each category.

2.3.1 Channel-Aware Scheduler

Channel-aware schedulers consider CSI in performing scheduling and tend to allocate

higher data rate on the user with a better channel condition. From this opportunistic

transmission, higher system throughput can be achieved by the multi-user diversity

effects [37, 72]. QSI is only considered in such a way that the allocated rate is kept no

more than the current queue backlog size. Thus, the user with a larger queue backlog

size is not guaranteed to be assigned a higher data, which may result in the instability
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of queueing system even when the arrival rate vector is within the network capacity

region. Three schedulers in this category are introduced in the following subsections.

Best Channel Highest Possible Rate Scheduling

Under the Best Channel Highest Possible Rate (BCHPR) scheduling policy, a user

with the better channel condition takes higher priority in resource allocation. Also,

user i is served only if some transmit power remains after clearing queue backlogs

of users with higher priorities than user i. When the queue backlog size is large

for every user, BCHPR operates as a type of TDM (Time Division Multiplexing)

scheduler that allocates the full power to the user with the best condition. BCHPR

is not a throughput-optimal scheduling policy since the queue size for the user with

bad channel conditions can grow infinitely even for the arrival rate vector within the

network capacity region. This algorithm is mathematically equivalent to allocating

a data-rate vector that minimizes the l1-norm distance from the current queue state

vector. The l1-norm of a vector x ∈ Rn is defined as ‖x‖1 = |x1|+ · · ·+ |xn|. At time

slot t, the BCHPR policy for the downlink supports the rate vector RBCHPR(t) that

is a solution of the following optimization problem.

min ‖Q(t)− r‖1 subject to r ∈ C (h(t), P ) . (2.19)

where C (h(t), P ) denotes the capacity region of a broadcast channel when the channel

gain vector is h(t), and where the sum transmit power is constrained to P .

Sum-Rate Maximization Scheduling

The Sum-Rate Maximization (SRM) scheduling policy allocates a data rate vector

such that the sum rate of each time slot is maximized. Under SRM, it is possible to

support multiple users at the same time slot. SRM supports the rate vector RSRM(t)

at time slot t, which is a solution of the optimization problem given below.

max
K∑

k=1

rk subject to r ∈ C (h(t), P ) and r ¹ Q(t). (2.20)
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Fig. 2.5 demonstrates the set of stabilizable arrival rate vectors under SRM for a two-

user fading BC. By definition of SRM, the expected rate vector supported by SRM

is a single boundary point of the network capacity region. Therefore, the arrival rate

vectors are stabilizable only if they are inside the shaded region B in Fig. 2.5. For

any arrival rate vectors outside the region B, which includes the region A within the

network capacity region, the queueing system becomes unstable. This illustration

shows the necessity of dynamic rate scheduling based on both CSI and QSI.

Proportional Fair Scheduling

In the practical scenario where each user has non-symmetric fading statistics, BCHPR

and SRM are unable to guarantee or control the fairness among the users in terms of

average throughput. For example, the users closer to the BS with a better average

SNR may enjoy higher throughput than others, which is uncontrollable under the

strategy. Therefore, for the case that the performance metric is defined as the average

throughput over certain time horizon, BCHPR and SRM are unable to satisfy the

condition.

Proportional Fair Scheduling (PFS) has been designed to meet the requirements

on average throughput over the delay time scale in addition to utilizing multi-user

diversity effects [72]. PFS converts SRM into the weighted sum-rate maximization

problem where user k’s weight at time slot t, wk(t), is defined as the inverse of user

k’s average throughput, Tk(t), in a past window of length tc. At time slot t, PFS

allocates the rate vector RPFS(t) which solves the next optimization problem.

max
K∑

k=1

rk

Tk(t)
subject to r ∈ C (h(t), P ) and r ¹ Q(t). (2.21)

Tk(t) can be updated by using an exponentially weighted low-pass filter

Tk(t + 1) =





(
1− 1

tc

)
Tk(t) + 1

tc
Rk,PFS(t), if user k is served at time slot t(

1− 1
tc

)
Tk(t) otherwise.

(2.22)

The parameter tc is related to the latency time scale of the application. While still
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Figure 2.5: Stabilizable arrival rate vectors under SRM for a two-user fading BC
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extracting the multi-user diversity benefit, PFS can also guarantee the proportional

fairness of average throughput. Nonetheless, PFS cannot guarantee throughput op-

timality nor provide the controllability of queueing delay since QSI is not properly

considered in this scheduling policy.

2.3.2 Queue-Aware Scheduler

Contrary to channel-aware scheduler, queue-aware scheduler mostly considers QSI

such that the user with larger queue backlog is guaranteed to have higher rate alloca-

tion. The consideration of CSI is merely for deciding the rate amount for the selected

users, and the better fading channel condition is never opportunistically exploited

to achieve the multi-user diversity effects. One good example is the Longest Queue

Highest Possible Rate (LQHPR) policy which schedules a data-rate vector such that

the longest queue length is minimized. LQHPR scheduling is equivalent to selecting

a rate vector minimizing the l∞-norm distance from the current queue-state vector.

The l∞-norm of a vector x ∈ Rn is defined as ‖x‖∞ = max{|x1|, · · · , |xn|}. Hence, at

time slot t, the LQHPR policy assigns the rate vector RLQHPR(t) that is a solution

of the following optimization problem.

min ‖Q(t)− r‖∞ subject to r ∈ C (h(t), P ) . (2.23)

Inherently, LQHPR tries to equalize every queue’s backlog size, but the absence

of multi-user diversity effects results in much smaller achievable rate region; thus,

LQHPR is not a throughput optimal scheduling policy.

2.3.3 Queue-Channel-Aware Scheduler

Queue-channel-aware scheduler is the combination of channel-aware and queue-aware

schedulers. By intelligently considering both CSI and QSI in scheduling, throughput

optimality can be achieved as well as the individual queueing delay can be controlled

to satisfy QoS requirement. This subsection introduces two well-known scheduling

policies in this category: maximum weight matching scheduling and exponential rule.
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Maximum Weight Matching Scheduling

Maximum weight matching scheduling (MWMS) maximizes the inner product of the

queue-state vector and the achievable rate vector [67, 42]. At time slot t, MWMS

assigns the following data-rate vector

RMWMS(t) = arg max
r

Q′(t)T r

such that r ∈ C (h(t), P ) , (2.24)

where Q′(t) = [β1Q1(t) · · · βKQK(t)]T . βi is the user i’s priority weight which is set

to 1 for all users if everyone has the same priority. This algorithm tends to allocate

higher data rate to the user with longer backlog or better channel conditions. By

jointly considering queue and channel states, this MWMS policy is proved to achieve

throughput optimality in the fading broadcast and multiple access channels [45, 5].

The proof of throughput optimality for MWMS is provided in Appendix by using

Lyapunov stability analysis introduced in Section 2.1.

Recent applications of MWMS can be also found in OFDM downlink systems [63]

and MIMO downlink systems [73], [65]. Sometimes, a scheduling policy is called delay

optimal if it minimizes average queueing delay over all K users, which is defined as

limt→∞ E[ 1
K

∑K
i=1 Qi(t)] [77]. For the fading MAC, [77] shows that MWMS indeed

minimizes the average queueing delay over all users if symmetric channels and equal

packet arrival rates are assumed. This property is a consequence of the polymatroidal

structure of the MAC capacity region [71]. However, there are no such structural

properties in the fading BC capacity region so that even with symmetry assumptions,

MWMS cannot guarantee the minimum average queueing delay.

Exponential Rule

Exponential (EXP) rule is another queue-channel-aware scheduling policy introduced

in [2] whose throughput optimality is analytically proved in [60]. Both MWMS and

EXP rule solve the weighted sum-rate maximization problem. While the weight vector

is linearly proportional to the queue-state vector under MWMS, it is a exponential
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function of the queue-state vector under EXP rule. In [59], the simulation study shows

that EXP rule provides better packet delays and guaranteed throughput compared

to SRM or PFS.

At time slot t, EXP rule assigns the following data-rate vector †

REXP (t) = arg max
r

K∑

k=1

γiri exp

(
aiQi(t)

β + [Q(t)]η

)

such that r ∈ C (h(t), P ) , (2.25)

where Q(t) = (1/K)ΣkaiQi(t), and the positive constants γ1, · · · , γK ,a1, · · · , aK , β,

and η ∈ (0, 1) are fixed. With EXP rule, the right selection of these listed positive

constants is crucial in the satisfaction of QoS requirement.

2.4 Summary

This chapter provides the fundamentals of queueing systems and schedulers that are

prerequisite for understanding queueing behavior and scheduling performance. First,

Little’s theorem and Lyapunov analysis are introduced. They are widely used for

calculating average queueing delay and for proving stability of the queueing system,

respectively. Also, the models of multi-user queueing systems and schedulers are

presented, and two important concepts required to understand scheduling perfor-

mance, network capacity region and throughput optimality, are elaborated. Multi-

user packet schedulers can be categorized into three types: channel-aware, queue-

aware, and queue-channel-aware scheduling policies. This chapter introduces various

well-known schedulers in each category.

†TDM constraints in original papers are relaxed in this formulation so that multiple users are
allowed to simultaneously transmit.



Chapter 3

Queue Proportional Scheduling

This chapter presents another throughput-optimal scheduling policy called queue-

proportional scheduling (QPS), which has more desirable delay and fairness proper-

ties than MWMS. Given the current queue state, QPS allocates a data-rate vector

such that the expected rate vector averaged over all fading states is proportional

to the current queue-state vector and is on the boundary of network capacity re-

gion. Reference [38] introduced the minimum draining time (MDT) policy, which

was shown to be throughput optimal and shown to minimize the draining time of the

queue backlogs in a fluid model with no further arrivals. Our work was performed

independent of [38], and QPS has the properties of the MDT policy. We present an-

other approach for proving the throughput optimality of QPS, which is different from

[38]. Also, using the new proof, QPS is shown to have the capability of arbitrarily

scaling the ratio of each user’s average queueing delay. This fairness property of QPS

is desirable for satisfying different Quality of Service (QoS) requirement of each user.

The queueing delay for Poisson packet arrivals and exponentially distributed packet

lengths is simulated under various scheduling policies. Numerical results corrobo-

rate the throughput optimality of QPS and indicate that QPS provides significantly

smaller average queueing delay than MWMS. Moreover, it is observed that with the

QPS policy, the fairness in terms of average queueing delay can be guaranteed for

any arrival rate vectors.

35
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3.1 Definition

In the stationary broadcast channels (BC), QPS assigns a maximum data-rate vector

that is proportional to the current queue-state vector. Assuming that every user has

equal priority and independent Gaussian noise with unit variance is added at each

receiver, the formulation of QPS is given by∗

RQPS(t) = Q(t)(max x)

subject to Q(t)x ∈ C(h, P ) and x ≤ 1. (3.1)

where C(h, P ) is the BC capacity region with the channel gain vector h = [h1, · · · , hK ]T

and total transmit power P . At time slot t, RQPS(t) is the rate vector scheduled by

QPS, and the queue-state vector in bits is denoted by Q(t) = [Q1(t) Q2(t) · · · QK(t)]T .

The application of QPS to Gaussian BC is addressed in [21, 55]. By using the de-

gradedness of a Gaussian BC, the next chapter shows that (3.1) can be converted

into geometric programming (GP), which is a special form of convex optimization

problems with very efficient interior-point methods. In the stationary multiple-access

channel (MAC), the formulation of QPS is the same as (3.1) except that the BC ca-

pacity region, C(h, P ) is replaced by MAC capacity region denoted by C(P1, · · · , PK)

where Pi is user i’s maximum transmit power.

For the queue-state vector Q(t), Figure 3.1 illustrates two distinct rate vectors

supported by MWMS and QPS. The two-user Gaussian BC is considered where user

1’s average signal-to-noise ratio (SNR) is 19dB and user 2’s average SNR is 13dB.

Since both bandwidth and scheduling period are assumed 1, bps/Hz is equivalent to

bits/slot. In other words, the rate region in Figure 3.1 shows how many bits can be

supported in each time slot. The given queue-state vector satisfies Q2(t) = 0.5Q1(t),

which results in RQPS(t) = [4.1 2.05]T and RMWMS(t) = [6.34 0]T . From Fig.

3.1, it can be anticipated that as the queue state changes, MWMS will exhibit more

fluctuation in the supported rate vector compared to QPS. According to queueing

∗Scheduling period and bandwidth are assumed to be 1. Thus, the capacity unit, bps/Hz becomes
equivalent to bits per time slot. In general, C(h, P ) needs to be defined as the scaled version of
capacity region with the scaling factor TsW .
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Figure 3.1: Capacity region of two user Gaussian BC, and rate vectors of QPS
and MWMS when the queue-state vector is Q(t) (User 1’s SNR=19dB and user
2’s SNR=13dB).

theory, lower variance in service rate or arrival rate results in smaller queueing delay

[4]. Therefore, QPS can be expected to have smaller average queueing delay than

MWMS, upon which the next sections will elaborate.

On the other hand, in a time-varying BC, the QPS algorithm allocates the follow-

ing data-rate vector at time slot t.

RQPS(t) ∈ C (h(t), P ) such that

Eh(t) [RQPS(t)] = Q′(t)
(

max
Q′(t)x∈Cerg(P )

x

)
. (3.2)

where x is a scalar. Q′(t) = [β1Q1(t) · · · βKQK(t)]T . βi is the user i’s priority

weight which is set to 1 for all users if everyone has the same priority. It is assumed
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Figure 3.2: Ergodic capacity region of a two-user Rayleigh fading BC, and expected
rate vectors of QPS and MWMS when the queue-state vector is Q(t) (P = 2, user
1’s average SNR=13dB and user 2’s average SNR=7dB).

in (4.13) that independent Gaussian noise with unit variance is added at each re-

ceiver. C(h(t), P ) is the instantaneous BC capacity region at time t with the channel

gain vector h(t) = [h1(t), · · · , hK(t)]T and total transmit power P . Also, Cerg(P )

denotes the ergodic BC capacity region with the total transmit power constrained to

P . Chapter 4 details the analytic expressions for C(h(t), P ) and Cerg(P ).

Assuming equal priority on each user, Q′(t) = Q(t). Then, the average rate vector

under the QPS policy, Eh(t)[RQPS(t)] is proportional to the queue-state vector and

also lies on the boundary surface of the ergodic capacity region. As shown in [70], each

boundary point of Cerg(P ) in a fading BC is a solution to the optimization problem

maxr µ · r where r ∈ Cerg(P ) for some µ ∈ RK
+ . When such µ is given, RQPS(t) is a

solution to the optimization problem maxr µ · r where r ∈ C (h(t), P ) for any fading
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state h(t). Therefore, the data-rate vector assigned by QPS at time slot t can be

expressed as

RQPS(t) = arg max
r

µT r

such that r ∈ C (h(t), P ) . (3.3)

Under the QPS policy, µ is determined based on the current queue-state vector as

well as the ergodic capacity region of a fading BC. On the other hand, as shown in

(2.24), MWMS only considers the queue-state vector in deriving the weight vector.

Figure 3.2 illustrates two distinct expected rate vectors supported by MWMS and

QPS for the queue-state vector Q(t). A two-user Rayleigh fading BC is considered

where P = 2, user 1’s average signal-to-noise ratio (SNR) is 13dB and user 2’s average

SNR is 7dB. Each user’s average SNR is defined as the average received SNR when the

total transmit power is allocated to that user. Since W = Ts = 1 is assumed, bps/Hz

is equivalent to bits/scheduling period. Thus, the ergodic capacity region in Fig. 3.2

represents the set of vectors denoting each user’s expected number of bits served in

one scheduling period. Also, note that with W = Ts = 1, the network capacity region

is the same as the ergodic capacity region. From Fig. 3.2, as the queue state changes,

QPS is expected to exhibit smaller variations in the average rate vector compared to

MWMS, which may result in a smaller average queueing delay as demonstrated in

Section 3.3.

3.2 QPS Properties

This section proves QPS to be throughput optimal in a fading BC†. Further, this

proof extends to show that QPS has the capability of arbitrarily scaling the ratio of

each user’s average queueing delay. This unique scaling/fairness property of QPS is

desirable for satisfying different QoS requirement of each user.

†Every proof in this section is directly applicable to any time-varying BC or MAC with the convex
achievable rate region.
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3.2.1 Throughput Optimality of QPS

The next theorem shows the convergence property of the expected queue-state vector

under QPS, which is crucial in showing throughput optimality and fairness properties.

Theorem 2. Under the QPS policy in a fading BC, as t → ∞, the expected queue-

state vector conditioned on any initial queue state, converges to a vector proportional

to the arrival rate vector.

Proof. Let q0 ∈ RK
+ be the initial queue-state vector, and denote the bit arrival rate

vector by λ = [λ1 · · · λK ]T where λ1 > 0. Consider time slot t when some queues have

backlogs, and let Q(t) be equal to qt = [qt,1 qt,2 · · · qt,K ]T . Without loss of generality,

assume qt,1 > 0. Then, qt can be represented as qt = w(t)[λ1, λ2 + ∆λ2, · · · , λK +

∆λK ]T where w(t) = qt,1/λ1 and ∆λi ∈ R such that w(t)(λi + ∆λi) = qt,i for i =

2, · · · , K. The expectation of Q(t + 1) conditioned on Q(t) = qt becomes

E [Q(t + 1)|Q(t) = qt] = qt + λ− E [RQPS(t)|Q(t) = qt] . (3.4)

Under QPS, E [RQPS(t)|Q(t) = qt] = r(t) (qt/w(t)) where r(t) equals max x subject

to x (qt/w(t)) ∈ Cerg(P ). (3.4) can be converted into the following form.

E [Q(t + 1)|Q(t) = qt] = (w(t)− r(t) + 1)×
[λ1, λ2 + γ(t)∆λ2, · · · , λK + γ(t)∆λK ]T , (3.5)

where γ(t) = 1−1/(w(t)−r(t)+1). If qt ∈ Cerg(P ), then w(t) = r(t); hence, γ(t) = 0

and E[Q(t + 1)|Q(t) = qt] = λ. Otherwise, w(t) > r(t) and γ(t) is strictly less than

1. Let the angle between λ ∈ RK
+ and x ∈ RK

+ be denoted by θλ(x) that is

θλ(x) = cos−1

(
λTx

‖λ‖2‖x‖2

)
, 0 ≤ θλ(x) ≤ π

2
. (3.6)

Since γ(t) < 1, θλ(qt) ≥ θλ(E[Q(t + 1)|Q(t) = qt]). This chapter assumes i.i.d.

block fading and Poisson packet arrivals. Therefore, each user’s queue state is the
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1st-order Markov process, which allows the following relation to hold from Chapman-

Kolmogorov equations [52].

E [Q(t + 1)|Q(0) = q0] =

E [E [Q(t + 1)|Q(t)] |Q(0) = q0 ] for t = 1, 2, · · · . (3.7)

Since θλ(Q(t)) ≥ θλ(E[Q(t + 1)|Q(t)]), the right-hand side (RHS) of (3.7) has a

direction closer to λ than E[Q(t)|Q(0) = q0]. Consequently, the following relation is

obtained.

θλ (E[Q(t)|Q(0) = q0]) ≥ θλ (E[Q(t + 1)|Q(0) = q0])

for t = 1, 2, · · · . (3.8)

Define an infinite sequence θt = θλ(E[Q(t)|Q(0) = q0]) for t = 1, 2, · · · . Since θt is

monotonically decreasing and nonnegative, θt is a converging sequence. In the RHS

of (3.7), E[Q(t + 1)|Q(t)] = Q(t) + λ − E[RQPS(t)|Q(t)] = (1 − c)Q(t) + λ where

c = max r such that rQ(t) ∈ Cerg(P ). Therefore, (3.7) can be expressed as

E [Q(t + 1)|Q(0) = q0] =

(1− c)E [Q(t) |Q(0) = q0 ] + λ, for t = 1, 2, · · · . (3.9)

By the convergence property, as t → ∞, the angle between E[Q(t)|Q(0) = q0] and

E[Q(t + 1)|Q(0) = q0] becomes zero. Therefore, to satisfy the equality in (3.9) when

t →∞, the direction of these two vectors should converge to that of λ. As a result, it

can be concluded that limt→∞ θt = 0, which completes the proof of the theorem.

Based on Theorem 2, the throughput optimality of QPS can be proved by using

Lyapunov stability analysis technique introduced in Chapter 2.1.3.

Theorem 3. In a fading BC, the QPS policy is throughput optimal.

Proof. With W = Ts = 1, the network capacity region is equivalent to Cerg(P ). Thus,

we need to show that for any λ ∈ int Cerg(P ) where int S denotes the interior of a
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set S, the queue lengths for all users can be kept finite. First, choose the Lyapunov

function L (Q(t)) =
∑K

i=1 Qi(t). The evolution of L (Q(t)) in one scheduling interval

is L (Q(t + 1)) =
∑K

i=1 Qi(t + 1) =
∑K

i=1 (Qi(t) + Zi(t)−Ri(t)). Conditioned on

Q(t) = qt, the expected drift of the Lyapunov function is

E [L (Q(t + 1))− L (Q(t))|Q(t) = qt] =
K∑

i=1

(λi − E [Ri(t)|Q(t) = qt]) . (3.10)

To prove the throughput optimality of QPS, it is required to show that as queue

lengths grow sufficiently large, (3.10) becomes strictly negative for any λ ∈ int Cerg(P )

[74]. By Theorem 2, in the stationary regime, E [Q(t)] = w(t)λ for some w(t) ≥
0. Thus, Q(t) can be represented as Q(t) = E [Q(t)] + N(t) = w(t)λ + N(t)

where N(t) = [N1(t) · · · NK(t)]T and E [Ni(t)] = 0 for i = 1, · · · , K. As w(t)

increases, Q(t) = w(t)(λ + N(t)/w(t)) → w(t)λ with probability 1, which results in

E [RQPS(t)|Q(t) = qt] → E [RQPS(t)|Q(t) = w(t)λ] with probability 1.

E[RQPS(t)|Q(t) = w(t)λ] = λ(max r) such that λr ∈ Cerg(P ). If λ ∈ int Cerg(P ),

then max r > 1. Thus, when ‖qt‖∞ grows sufficiently large, the Lyapunov drift in

(3.10) becomes strictly negative for any λ ∈ int Cerg(P ).

3.2.2 Fairness and Delay Properties of QPS

This subsection shows that for any set of arrival rates, QPS can arbitrarily scale the

ratio of each user’s average queueing delay. Also, it is shown that without new packet

arrivals, QPS minimizes the expected time to empty all the backlogs. First, the next

theorem shows that QPS has a capability of guaranteeing fairness among users in

terms of average queueing delay.

Theorem 4. In a fading BC under the QPS policy, as t → ∞, each user’s average

queueing delay becomes equalized.

Proof. From Theorem 2, the average queue-state vector becomes proportional to the

arrival rate vector as t → ∞. By Little’s theorem introduced in Chapter 2.1.2, the

average queue length is the same as a product of the arrival rate and average queueing
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delay [6]. Therefore, with QPS policy, each user’s average queueing delay is equalized

after the convergence.

In general, QPS can satisfy a different QoS for each user in terms of average

queueing delay. This property is shown in the following corollary to Theorem 4.

Corollary 1. Let β denote the priority vector on average queueing delay. For exam-

ple, β1 = 2β2 means that the average delay of user 1 should be half of user 2’s average

delay. This priority can be satisfied with the QPS policy by replacing Q(t) with the

modified queue-state vector Q′(t) = [β1Q1(t) β2Q2(t) · · · βKQK(t)]T .

Proof. From Theorem 2, the average of a modified queue state vector Q′(t) converges

to λx for some x ∈ R+. Thus, user i’s average queue length converges to (λix) /βi,

and by Little’s theorem, user i’s average queueing delay becomes x/βi.

One reasonable way of choosing the priority vector β is to find a vector propor-

tional to each user’s maximum achievable average rate when no other users transmit.

The next theorem shows that without new packet arrivals, QPS minimizes the ex-

pected time to empty all the queue backlogs.

Theorem 5. Let the initial queue-state vector be Q(0) = q0 ∈ RK
+ , and assume that

there are no more packet arrivals after t = 0. Then, in a fading BC, the QPS policy

presuming the constant queue-state vector of q0 for all t ≥ 0 minimizes the expected

time until all the queue backlogs are cleared.

Proof. Let E[TX ] denote the expected time until a scheduling algorithm X empties

all the queue backlogs q0. The total supported data vector is q0. Thus, given

E[TX ], the average data vector allocated per each scheduling period can be expressed

as E [RX ] = q0

E[TX ]
. Since Cerg(P ) is convex, E[RX ] ∈ Cerg(P ) is always satisfied.

Therefore, E[TX ] is minimized by assigning Ropt (h(t),Q(t)) ∈ C (h(t), P ) at time

slot t such that

Eh(t) [Ropt (h(t),Q(t))] = q0

(
max

q0r∈Cerg(P )
r

)
. (3.11)
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From the definition of QPS, it can be easily seen that Ropt (h(t),Q(t)) is equal to

RQPS (h(t),q0), which completes the proof of the theorem.

In actual systems with random packet arrivals, the property in Theorem 5 can be

approximated by replacing q0 with the current queue-state vector Q(t). Therefore,

at each scheduling time, QPS tries to minimize the expected time to empty current

queue backlogs. This property of QPS results in low average queueing delay, which

will be demonstrated to be much smaller than MWMS in the next section.

3.3 Numerical Results

This section presents simulation results with Poisson packet arrivals and exponen-

tially distributed packet lengths for both the stationary Gaussian BC and the fading

Gaussian BC, in order to demonstrate stability, delay, and fairness properties of the

QPS algorithm. In the simulation, average packet length for each user, scheduling

period, and signal bandwidth are all equal to 1. Also, the average queue length over

all users is defined as limt→∞ E[ 1
K

∑K
i=1 Qi(t)]. Stochastic simulation results in Gaus-

sian BC are presented in Fig. 3.3-3.5. In these simulations, noise power is assumed

to be 0.1. In Fig. 3.3 and Fig. 3.4, the average queue length is evaluated for different

values of λ1 with two users and ten users, respectively. Four scheduling algorithms

are compared in both figures: QPS, MWMS, Longest Queue Highest Possible Rate

(LQHPR) and Best Channel Highest Possible Rate (BCHPR). As explained in Chap-

ter 2.3, LQHPR allocates a data-rate vector such that the longest queue length is

minimized. Under the BCHPR policy, a user with the better channel condition takes

higher priority in resource allocation, user i is served only if some transmit power

remains after clearing queue backlogs of users with higher priorities than user i.

For the two user case in Fig. 3.3, a Gaussian BC channel presented in Fig. 3.1 is

considered where the power constraint P = 2 and the channel gain vector is h = [2 1]T ;

thus, user 1’s SNR=19dB, and user 2’s SNR=13dB. Also, the bit-arrival rate vector

satisfies λ = λ1[1 0.5]T . From Fig. 3.1, λ ∈ int C(h, P ) if and only if λ1 < 4.1. Fig.

3.3 demonstrates that the average queue length of QPS is about 30% smaller than



CHAPTER 3. QUEUE PROPORTIONAL SCHEDULING 45

3.65 3.7 3.75 3.8 3.85 3.9 3.95 4 4.05 4.1
0

50

100

150

User 1’s average bit arrival rate

A
ve

ra
ge

 q
ue

ue
 le

ng
th

 in
 b

its
LQHPR

BCHPR

MWMS

QPS

Figure 3.3: Average queue length vs user 1’s bit arrival rate under LQHPR, BCHPR,
MWMS and QPS (2 users, user 1’s SNR=13dB and user 2’s SNR=7dB, λ2 = 0.5λ1).

that of MWMS for any λ1 < 4.1. Since MWMS is a throughput optimal policy, this

observation corroborates the throughput optimality of QPS. LQHPR and BCHPR,

which are not throughput optimal, have much longer average queue lengths than

MWMS. Simulation results with 10 users are shown in Fig. 3.4. The total transmit

power is P = 10 and user i’s channel gain hi = 2 − 0.1(i − 1) and λi = λ1(0.9)i−1

for i = 1, · · · , 10. QPS provides about 40-50% smaller average queue length than

MWMS, which is a more prominent difference than in the two user case. BCHPR

is also observed to have around 20% smaller average queue length than MWMS at

small λ1. However, as λ1 approaches to the boundary of a network capacity region,

the average queue length of BCHPR grows faster than MWMS.

The fairness properties of QPS, MWMS and BCHPR with 10 users are illustrated

in Fig. 3.5. The simulation environment is identical with Fig. 3.4 and λ1 = 1.32

is considered. Fig. 3.5 shows the arrival rate vector as well as each user’s average
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Figure 3.4: Average queue length vs user 1’s bit arrival rate under LQHPR, BCHPR,
MWMS and QPS (10 users, user i’s channel gain hi = 2−0.1(i−1) and λi = λ1(0.9)i−1

for i = 1, · · · , 10).

queueing delay in slots for above three scheduling policies. It is observed that fairness

among users is not satisfied under the BCHPR, which results in intolerably long

average queue length for users with worse channel conditions. In this simulation

result, MWMS tends to equalize each user’s average queue length. Since each user has

a different arrival rate, by Little’s theorem, MWMS shows smaller average queueing

delay for the user with higher arrival rate. On the other hand, the average queue

length of QPS is shown to be almost proportional to the arrival rate vector so that

each user’s average queueing delay is equalized. Therefore, under the QPS policy,

fairness among users is guaranteed in terms of average queueing delay.

Fig. 3.6-3.8 provides the simulation results in the fading BC. For the two user

case in Fig. 3.6, the Rayleigh fading BC channel presented in Fig. 3.2 is considered

where the total power constraint P = 2, user 1’s average SNR=13dB, and user 2’s
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Figure 3.5: Each user’s bit arrival rate and each user’s average queueing delay under
BCHPR, MWMS and QPS (10 users, user i’s channel gain hi = 2 − 0.1(i − 1) and
λi = 1.32(0.9)i−1 for i = 1, · · · , 10).

average SNR=7dB. Also, the bit arrival rate of user 2 is assumed to be the half of

user 1’s. Thus, the bit arrival rate vector can be represented as λ = λ1[1 0.5]T . From

Fig. 3.2, λ ∈ int Cerg(P ) if and only if λ1 < 3.9.

In Fig. 3.6 and Fig. 3.7, average queue lengths are evaluated for different values

of λ1 when K = 2 and K = 10, respectively. In both figures, QPS, MWMS, BCHPR,

and LQHPR are compared. Fig. 3.6 shows that the average queue length under

QPS is about 30% smaller than that of MWMS for any λ1 < 3.9. Since MWMS is a

throughput optimal policy, this observation corroborates the throughput optimality

of QPS in a fading BC. LQHPR and BCHPR, which are not throughput optimal, have

about 12% and 5% throughput loss, respectively. Simulation results with 10 users are

presented in Fig. 3.7. P = 10 and user i’s average SNR is equal to 20−(i−1) (dB) for

i = 1, · · · , 10. Also, the bit arrival rate is identical for all users. QPS provides about
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Figure 3.6: Average queue length vs user 1’s bit arrival rate under five scheduling
policies (K = P = 2, M = 10, user 1’s average SNR=13dB, and user 2’s average
SNR=7dB, λ2 = 0.5λ1).

a 40-50% reduction in average queue length compared to MWMS, a larger difference

than in the two user case. The throughput loss of LQHPR and BCHPR is around

30% and 10%, respectively, which is also much greater than in Fig. 3.6.

Delay fairness properties for the above four scheduling policies are illustrated in

Fig. 3.8 where K = 10, P = 10, user i’s average SNR is 20 − 0.5(i − 1) (dB),

and λi = 1.55(0.9)i−1 for i = 1, · · · , 10. Fig. 3.8 demonstrates each user’s average

queueing delay in slots. It is observed that fairness among the users is not satisfied

under BCHPR, which provides intolerably long average queueing delay for the users

with worse channel conditions. Also, in Fig. 3.8, MWMS tends to provide smaller

average queueing delay for the users with higher bit arrival rates. On the other hand,

QPS guarantees fairness by equalizing every user’s average queueing delay. Moreover,

from Corollary 1 in Chapter 3.2, the ratio of each user’s average queueing delay is
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Figure 3.7: Average queue length vs user 1’s bit arrival rate under five scheduling
policies (K = P = 10, M = 10, user i’s average SNR (dB) = 20− (i−1), and λi = λ1

for i = 1, · · · , 10).

arbitrarily scalable by applying a modified queue-state vector to the QPS algorithm.

3.4 Summary

This chapter presents queue-proportional scheduling (QPS) and investigates its inter-

esting properties. The throughput optimality of QPS is proved and it is shown that

QPS can arbitrarily scale each user’s average queueing delay relative to others, which

is essential in satisfying each user’s different QoS demand. Stochastic simulation re-

sults in both stationary and fading broadcast channels demonstrate the advantages of

QPS over other schedulers such as maximum weight matching scheduling (MWMS),

in terms of throughput, delay, and fairness. QPS is a promising queue-channel-aware

scheduling policy for use in cross-layer resource allocation.
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Figure 3.8: Each user’s average queueing delay under four scheduling policies (K =
P = 10, M = 10, user i’s average SNR (dB) = 20− 0.5(i− 1), and λi = 1.55(0.9)i−1

for i = 1, · · · , 10).



Chapter 4

Application of Geometric

Programming

This chapter introduces yet another powerful tool, geometric programming (GP),

into the family of numerical algorithms for cross-layer resource allocation problems

in OFDM MAC and BC with CSIT. GP is a special case in convex optimization for

which very efficient interior-point methods have been developed [10]. Reference [15]

presents many interesting applications of GP in communication systems.

To achieve the channel capacity, superposition coding and successive decoding at

the base-station can be used on each OFDM tone for downlink and uplink systems,

respectively [32, 71]. With the application of such techniques, OFDM systems can

dynamically allocate power and rate to each tone such that various QoS requirement

of each user is satisfied. If each user’s target data rate is fixed, minimization of

transmit power reduces inter-cell interference levels in both up and down links as well

as extends the battery life of each mobile terminal in the uplink.

Much progress has been made on resource allocation for the scalar Gaussian MAC

and BC with ISI, where each user and the base-station are equipped with a single

antenna. Cheng and Verdu [13] characterized the capacity region of Gaussian MAC

with ISI and showed that the optimal input power spectral densities can be viewed

as a generalization of the single-user water-filling spectrum. However, the lack of

efficient numerical algorithms triggered much research for efficient resource allocation

51
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by using the inherent structure of Gaussian MAC. A breakthrough was made by Tse

and Hanly [71], where polymatroid structure was used to characterize the capacity

region of fading MAC, and marginal utility functions were introduced to develop

algorithms that have strong greedy flavors. These results can be directly extended to

Gaussian MAC and BC with ISI [70].

Recently, [81] proposed an efficient algorithm applicable to sum-rate maximization

in the Gaussian OFDM MAC by using iterative water-filling (IWF) technique, which

was first introduced for power control in interference channels [79]. The application

of IWF has been further extended to the sum-power minimization problem in the

Gaussian OFDM MAC by [46]. However, for general weighted sum-rate maximization

or weighted sum-power minimization problems in the Gaussian OFDM MAC and BC,

finding numerical algorithms with lower complexity still remains non-trivial. Also,

because of the increasing demand in multi-media services such as video and audio

streaming, real-time and non real-time traffic often coexist in the network. Thus, the

constraints of resource allocation problems become more complicated, which requires

the development of new algorithms.

This chapter first shows that, in the fading broadcast channel (BC) with CSIT,

many schedulers including QPS and MWMS can be formulated via GP by using the

degradedness of BC. This formulation simply extends to SISO-OFDM systems. A

derived GP formulation allows simulation of the queueing delay for Poisson packet

arrivals and exponentially distributed packet lengths under various scheduling poli-

cies. Numerical results corroborate the throughput optimality of QPS and indicate

that QPS provides significantly smaller average queueing delay than MWMS. More-

over, QPS guarantees fairness in terms of average queueing delay for any arrival rate

vectors. Compared to other schedulers, QPS has more variables and constraints,

which may increase the complexity. This chapter also presents a scheme to sim-

plify QPS by approximating the ergodic BC capacity region to a hypersphere. This

method achieves the complexity of QPS comparable to other policies with a very

small increase in the queueing delay.

With more generalization, GP formulation completely characterizes the achiev-

able rate region as well as the achievable power region for both the OFDM broadcast
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and multiple access channels with CSIT. The GP perspective of multi-user OFDM

resource allocation provides numerical efficiency as well as strong scalability for any

additional constraints of GP form. First, the next subsection presents brief introduc-

tion of GP.

4.1 Geometric Programming

GP is a class of nonlinear optimization problems with a special form. Although GP in

the standard form is a non-convex optimization problem, simple change in variables

can convert it to a convex optimization problem that provides strong numerical effi-

ciency [10]. A variety of recent algorithms allow efficient and reliable solution of GP

[9]. GP applications can be found in many communication fields such as information

theory, coding and signal processing, resource allocation, and queueing theory [15].

GP uses monomial and posynomial functions. A monomial function has the form

of hj(x) = cjx
aj,1

1 x
aj,2

2 · · · xaj,n
n , where x Â 0, cj > 0 and aj,l ∈ R. A posynomial is a

sum of monomials fi(x) =
∑

k cikx
aik,1

1 x
aik,2

2 · · ·xaik,n
n . Then, GP is

minimize f0(x)

subject to fi(x) ≤ 1 (4.1)

hj(x) = 1,

where f0 and fi are posynomials and hj are monomials. Although this is not a convex

optimization problem, a change of variables: yi = log xi and bik = log cik converts it

into a convex form:

minimize p0(y) = log Σk exp(aT
0ky + b0k)

subject to pi(y) = log Σk exp(aT
iky + bik) ≤ 0 (4.2)

qj(y) = aT
j y + bj = 0.

The solution of this problem can be readily found by using well-developed efficient

GP algorithms [9, 15].



CHAPTER 4. APPLICATION OF GEOMETRIC PROGRAMMING 54

As an example of GP formulation, consider the problem

maximize x2/y

subject to 1 ≤ x ≤ 5 (4.3)

x3 + 2z2/y ≤ √
z

x/z = y2,

where x, y, z > 0. This problem can be readily turned into GP in the standard form

as follows:

minimize x−2y

subject to x−1 ≤ 1 (4.4)
1

5
x ≤ 1

x3z−1/2 + 2y−1z3/2 ≤ 1

xy−2z−1 = 1.

This standard GP formulation can be transformed into a convex optimization

problem in x̃ = log x, ỹ = log y, and z̃ = log z:

minimize −2x̃ + ỹ

subject to −x̃ ≤ 0 (4.5)

x̃− log 5 ≤ 0

log (exp(3x̃− 1/2z̃) + exp(−ỹ + 3/2z̃ + log 2)) ≤ 0

x̃− 2ỹ − z̃ = 0.

4.2 QPS via GP in a Fading BC with CSIT

This section presents GP formulations of QPS as well as other scheduling methods

such as MWMS, BCHPR and LQHPR for the fading BC with CSIT. First, the next

subsection describes the model of a fading BC.
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4.2.1 Fading Broadcast Channel Model

A block fading channel is assumed where the fading state is constant over one schedul-

ing period and each scheduling period undergoes independent and identically dis-

tributed (i.i.d.) fading. Also, both the transmitter and receivers are assumed to have

perfect knowledge of CSI. The capacity region of a Gaussian BC can be achieved by

using superposition coding at the transmitter in conjunction with successive inter-

ference cancellation at each receiver [20]. With this optimal scheme, one user can

remove the interference caused by other users’ messages encoded earlier. Consider

a Gaussian BC with a single transmitter sending independent messages to K users

over two-sided bandwidth 2W . It is assumed that the transmitter has a peak power

constraint of P on each transmission. At time t, the received signal of user i is

Yi(t) = hi(t)X(t) + zi(t), i = 1, · · · , K, (4.6)

where the transmitted signal X(t) is composed of K independent messages, the com-

plex channel gain of user i is denoted by hi(t), and zi(t)’s are i.i.d. zero-mean Gaussian

band-limited noises with power N0W . The models of fading broadcast channels and

queueing systems that are used in this section are summarized in Fig. 4.1. As in [39],

the channel gain can be combined with the noise component by defining an effective

noise z̃i(t) = zi(t)/hi(t). Then, the equivalent received signal is given by

Ỹi(t) = X(t) + z̃i(t), i = 1, · · · , K, (4.7)

where the power of z̃i(t) conditioned on the channel gain is defined as ni(t) =

N0W/|hi(t)|2. Without loss of generality, W = 1 is assumed for simplicity. The

effective noise power n = [n1 n2 · · · nK ]T is used to denote a fading state. The er-

godic capacity region of a fading BC is the set of all long-term average rate vectors

achievable in a fading BC with arbitrarily small probability of error. A power control

policy P over all possible fading states is defined as a function that maps from any

fading state n to each user’s transmit power Pi(n). Let Ω denote the set of all power

policies satisfying the sum-power constraint P , which is given by
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Figure 4.1: (a) Block diagram of the queueing system and scheduler. (b) Fading
broadcast channel models.
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Ω =

{
P :

K∑
i=1

Pi(n) ≤ P, for all n

}
. (4.8)

For each fading state, the channel is a degraded Gaussian BC where the capacity

region is achieved by later encoding a message of the user with smaller effective noise

power. With this optimal ordering, user i’s capacity for a fading state n is

Ri (P(n)) = log2

(
1 +

Pi(n)

ni +
∑K

k=1 Pk(n)1 [ni > nk]

)
(4.9)

where P(n) = [P1(n) P2(n) · · · PK(n)]T and 1[·] is the indicator function, which

equals 1 if its argument is satisfied; 0 otherwise. Then, the capacity region of a

Gaussian BC for the fading state n and transmit power P is

C(n, P ) = {Ri : Ri ≤ Ri (P(n)) , i = 1, 2, · · · , K,

where
∑

i

Pi(n) = P}. (4.10)

Let CBC(P) denote the set of achievable rates averaged over all fading states for a

power policy P

CBC(P) = {Ri : Ri ≤ En [Ri (P(n))] , i = 1, · · · , K} . (4.11)

With the sum-power constraint P and perfect CSI at the transmitter and receivers,

the ergodic capacity region of a fading BC is given by [39]

Cerg(P ) =
⋃
P∈Ω

CBC(P) (4.12)

where the region Cerg(P ) is convex.

4.2.2 GP Formulation of QPS

The QPS algorithm presented in Chapter 3 allocates the following data-rate vector

at time slot t:
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RQPS (n(t),Q(t)) ∈ C (n(t), P ) such that

En(t) [RQPS (n(t),Q(t))] = Q′(t)
(

max
Q′(t)x∈Cerg(P )

x

)
, (4.13)

where x is a scalar. Assuming equal priority on each user, Q′(t) = Q(t). Then, the

average rate vector under the QPS policy, En(t)[RQPS(n(t),Q(t))] is proportional to

the queue-state vector and also lies on the boundary surface of the ergodic capacity

region. As shown in [70], each boundary point of Cerg(P ) in a fading BC is a solution

to the optimization problem maxr µ · r where r ∈ Cerg(P ) for some µ ∈ RK
+ . When

such µ is given, RQPS(n(t),Q(t)) is a solution to the optimization problem maxr µ ·r
where r ∈ C (n(t), P ) for any fading state n(t). Therefore, the data-rate vector

assigned by QPS at time slot t can be expressed as

RQPS (n(t),Q(t)) = arg max
r

µT r

such that r ∈ C (n(t), P ) . (4.14)

Under the QPS policy, µ is determined based on the current queue-state vector as

well as on the ergodic capacity region of the fading BC. By contrast, as shown in

(2.24), MWMS only considers the queue-state vector in deriving the weight vector.

By utilizing the degradedness of the BC for each fading state, the rate allocation

of QPS can be formulated via GP. Assume that the M most recent fading states are

sampled, which are denoted by
{
n(1), · · · ,n(M)

}
. To reduce the correlation among

samples, the sampling period needs to be extended in consideration of fading coher-

ence time. The sampling period is simply assumed equal to one scheduling period

because of i.i.d. block fading over each scheduling time. Without loss of generality,

n(M) is assumed to denote the current fading state n(t). Then, consider a family of M

parallel Gaussian broadcast channels, such that in the mth component channel, user

i has effective noise variance n
(m)
i , rate R

(m)
i , and power P

(m)
i . Each BC has a power

constraint of P . At time slot t, QPS allocates the data-rate vector RQPS(n(M),Q(t))

that is a solution of the following optimization problem.
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1

M

M∑
m=1

RQPS

(
n(m),Q(t)

)
= Q(t)

(
max

Q(t)x∈Cerg(P )
x

)

RQPS

(
n(m),Q(t)

) ∈ C
(
n(m), P

)
for all m. (4.15)

From (4.9) and (4.10), the capacity region of the mth Gaussian BC is given by

C
(
n(m), P

)
= {R(m)

πm(i) : R
(m)
πm(i) ≤

log2

(
1 +

α
(m)
πm(i)P

n
(m)
πm(i) +

∑
j<i α

(m)
πm(j)P

)
,

i = 1, 2, · · · , K where
∑

i

α
(m)
πm(i) = 1}, (4.16)

where πm(·) is the permutation such that n
(m)
πm(1) < n

(m)
πm(2) < · · · < n

(m)
πm(K), and α

(m)
πm(i)

is the fraction of the total transmit power used for user πm(i)’s signal in the mth

Gaussian BC. When R(m) is on the boundary of the capacity region, solving the

α
(m)
πm(i)’s in terms of the rate vector R(m) yields the following equations.

l∑
i=1

α
(m)
πm(i)P =

l∑
i=1

(
n

(m)
πm(i) − n

(m)
πm(i−1)

)

× exp

(
log 2

l∑
j=i

R
(m)
πm(j)

)
− n

(m)
πm(l), l = 1, · · · , K, (4.17)

where n
(m)
πm(0) ≡ 0. As shown in [39], (4.16) is equivalent to

C(n(m), P ) = {R(m)
πm(i) :

K∑
i=1

(
n

(m)
πm(i) − n

(m)
πm(i−1)

)

× exp

(
log 2

K∑
j=i

R
(m)
πm(j)

)
− n

(m)
πm(K) ≤ P

and R
(m)
πm(i) ≥ 0, i = 1, 2, · · · , K}. (4.18)
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Using this relation, (4.15) can be converted into

minimize log (exp(−x))

subject to log
(
exp

(
−R

(m)
i

))
≤ 0, ∀ i and m

log
(
exp (−Qi(t)) exp

(
R

(M)
i

))
≤ 0, ∀ i

log
K∑

i=1

(
n

(m)
πm(i) − n

(m)
πm(i−1)

P + n
(m)
πm(K)

)

× exp

(
log 2

K∑
j=i

R
(m)
πm(j)

)
≤ 0, ∀ m

Q(t)x− 1

M

M∑
m=1

R(m) = 0, (4.19)

where the second set of constraints is added to avoid allocating redundant power

to some users with short queue lengths. If the optimization variable is defined as

y = [x (R(1))T · · · (R(M))T ]T ∈ R(KM+1)
+ , (4.19) is a standard geometric program

with the globally optimal solution y∗ = [x∗ (R∗(1))T · · · (R∗(M))T ]T . Then, the data-

rate vector supported under the QPS policy is RQPS(n(M),Q(t)) = R∗(M), and the

corresponding power allocation can be obtained by solving (4.33) for m = M . This

GP formulation of QPS can be extended to OFDM systems, as discussed in the next

subsection.

4.2.3 Extension to OFDM Systems

In a fading BC with inter-symbol interference (ISI), the ISI can be completely removed

by exploiting OFDM techniques with sufficient number of tones, i.e. the frequency

response can be made flat within each tone [18]. OFDM systems will have K users

and L tones. On each tone, the channel is equivalent to a fading BC without ISI,

which becomes a degraded Gaussian BC for the fixed fading state. Therefore, by

extending the results from Section 4.2, QPS for OFDM systems in a fading BC can

be also converted into GP. At tone l, M sampled fading state vectors are denoted by
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{
n(l,1), · · · ,n(l,M)

}
where n(l,m) = [n

(l,m)
1 · · · n

(l,m)
K ]T . For the mth sampled fading

state, n
(l,m)
i , R

(l,m)
i , and P

(l,m)
i denote the effective noise variance, rate, and power on

user i’s tone l, respectively. Without loss of generality, the Mth sample is assumed

to denote the current fading state. Also, a total-power constraint of P is imposed

on each transmission of OFDM symbols. Define πl,m(·) as the permutation such that

n
(l,m)
πl,m(1) < n

(l,m)
πl,m(2) < · · · < n

(l,m)
πl,m(K). By carefully applying above updates to (4.18) and

(4.19), QPS in OFDM systems can be converted into the following GP:

minimize log (exp(−x))

subject to log
(
exp

(
−R

(l,m)
i

))
≤ 0, ∀ i, l, and m

log

(
exp (−Qi(t)) exp

(
L∑

l=1

R
(l,M)
i

))
≤ 0, ∀ i

log
L∑

l=1

K∑
i=1


n

(l,m)
πl,m(i) − n

(l,m)
πl,m(i−1)

P +
∑L

s=1 n
(s,m)
πs,m(K)




× exp

(
log 2

K∑
j=i

R
(l,m)
πl,m(j)

)
≤ 0, ∀ m

Q(t)x− 1

M

M∑
m=1

L∑

l=1

R(l,m) = 0, (4.20)

where n
(l,m)
πl,m(0) ≡ 0. Denote the optimization variable by y = [x (R(1,1))T · · · (R(L,M))T ]T

∈ R(KLM+1)
+ . Then, (4.20) is a standard geometric program with the globally optimal

solution y∗ = [x∗ (R∗(1,1))T · · · (R∗(L,M))T ]T . Consequent rate allocation on tone

l under the QPS policy is R
(l)
QPS(n(l,M),Q(t)) = R∗(l,M) for l = 1, · · · , L, and the

corresponding power allocation can be obtained by applying (4.33) on each tone with

m = M .

4.2.4 Other Scheduling Policies via GP

This subsection provides GP formulations of three other scheduling methods in a

fading BC: Maximum Weight Matching Scheduling (MWMS), Best Channel Highest
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Possible Rate (BCHPR), and Longest Queue Highest Possible Rate (LQHPR).

Maximum Weight Matching Scheduling via GP

At time slot t, the rate allocation under MWMS can be found by solving (2.24), which

is the weighted sum-rate maximization problem over C(n(t), P ) considering the queue

state vector Q(t) as the weight vector. Using (4.18), MWMS can be formulated as

the following GP:

minimize log
(
exp(−Q(t)T r)

)

subject to log (exp(−ri)) ≤ 0, ∀ i

log (exp (−Qi(t)) exp (ri)) ≤ 0, ∀ i

log
K∑

i=1

(
nπ(i)(t)− nπ(i−1)(t)

P + nπ(K)(t)

)

× exp

(
log 2

K∑
j=i

rπ(j)

)
≤ 0, (4.21)

where π(·) is the permutation such that nπ(1)(t) < nπ(2)(t) < · · · < nπ(K)(t). Let r∗

be the solution of (4.21), then RMWMS (n(t),Q(t)) = r∗.

Best Channel Highest Possible Rate via GP

Under the BCHPR policy, a user with the better channel condition takes higher

priority in resource allocation. Also, user i is served only if some transmit power

remains after clearing queue backlogs of users with higher priorities than user i. This

algorithm is equivalent to allocating a data-rate vector that minimizes the l1-norm

distance from the current queue-state vector. The l1-norm of a vector x ∈ Rn is

defined as ‖x‖1 = |x1| + · · · + |xn|. At time slot t, the BCHPR policy supports

the rate vector RBCHPR (n(t),Q(t)) that is a solution of the following optimization

problem.

min ‖Q(t)− r‖1 subject to r ∈ C (n(t), P ) . (4.22)
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With the constraint of r ¹ Q(t), the solution of the above problem is unaffected

by
∑K

i=1 Qi(t). After removing this summation from the objective, (4.22) can be

converted into the following GP.

minimize log
(
exp

(−1T r
))

subject to log (exp(−ri)) ≤ 0, ∀ i

log (exp (−Qi(t)) exp (ri)) ≤ 0, ∀ i

log
K∑

i=1

(
nπ(i)(t)− nπ(i−1)(t)

P + nπ(K)(t)

)

× exp

(
log 2

K∑
j=i

rπ(j)

)
≤ 0. (4.23)

Let r∗ be the solution of (4.23), then RBCHPR (n(t),Q(t)) = r∗. When Q(t) º r

for any r ∈ C (n(t), P ), the BCHPR policy solely depends on channel conditions. At

each scheduling time, it allocates total power to the single user with the best channel

condition, which is a sum-rate maximizing scheme in a fading BC [72].

Longest Queue Highest Possible Rate via GP

LQHPR schedules a data-rate vector to minimize the longest queue length, which is

equivalent to selecting a rate vector that minimizes the l∞-norm distance from the

current queue-state vector. The l∞-norm of a vector x ∈ Rn is defined as ‖x‖∞ =

max{|x1|, · · · , |xn|}. Hence, at time slot t, the LQHPR policy assigns the rate vector

RLQHPR (n(t),Q(t)) that is a solution of the following optimization problem.

min ‖Q(t)− r‖∞ subject to r ∈ C (n(t), P ) . (4.24)

Let x denote the upper bound on ‖Q(t)− r‖∞ such that −x1 ≺ Q(t) − r ≺ x1.

Then, the above equation can be represented as

minimize log (exp (x))
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subject to log (exp(−ri)) ≤ 0, ∀ i

log (exp (−Qi(t)) exp(−x + ri)) ≤ 0, ∀ i

log (exp (Qi(t)) exp(−x− ri)) ≤ 0, ∀ i

log
K∑

i=1

(
nπ(i)(t)− nπ(i−1)(t)

P + nπ(K)(t)

)

× exp

(
log 2

K∑
j=i

rπ(j)

)
≤ 0. (4.25)

Define the optimization variable as y = [x rT ]T then, (4.25) is a standard geometric

program with the globally optimal point y∗ = [x∗ r∗T ]T . The data-rate vector

supported under LQHPR is RLQHPR (n(t),Q(t)) = r∗.

4.2.5 Hypersphere Approximation of the Ergodic Capacity

Region of a Fading BC

At each scheduling time, QPS solves (4.19) which has KM +1 optimization variables

and KM + 2K + M constraints∗. In order to capture the fading statistics, QPS

requires the number of sampled fading states, M À 1. Even though GP can be

efficiently solved and the constraint matrix of (4.19) is sparse, M À 1 implies that

the computational complexity of QPS can be higher than other scheduling polices such

as MWMS, which has K variables and 2K + 1 constraints. The expected rate vector

under QPS is a boundary point of the ergodic capacity region that is proportional

to the current queue-state vector. The rate allocation satisfying this condition can

be obtained by solving (4.14) with a proper weight vector µ determined from the

current queue-state vector and ergodic capacity region. With the QPS policy, µ is a

normal vector of the tangent plane, which is drawn at the boundary point of Cerg(P )

supported by QPS. Thus, if the boundary surface of Cerg(P ) can be characterized with

a simple function, finding µ becomes much easier, and the computational complexity

of QPS becomes comparable to other scheduling policies.

∗In OFDM systems with L tones, QPS solves (4.20) that has KML + 1 optimization variables
and KML + 2K + M constraints.
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This section proposes a simple method to approximate the boundary surface of

Cerg(P ) by a hypersphere. By allowing a small increase in the average queueing delay,

this hypersphere-approximation method solves the complexity issue of QPS. First,

K + 1 boundary points on Cerg(P ) are sampled to characterize the K-dimensional

hypersphere. K points correspond to each user’s average rate when total transmit

power is allocated to that user. They are equivalent to the intercept of each user’s

rate axis with Cerg(P ). The remaining point is the maximum average sum-rate vector

achieved by transmitting only to the best user at each scheduling period. The next

lemma provides the uniqueness of K-dimensional hypersphere constructed by using

these K + 1 rate vectors.

Lemma 1. In a fading BC with K users, there exists a unique K-dimensional hyper-

sphere characterized with each user’s maximum average rate vector and the maximum

average sum-rate vector.

Proof. Let user i’s maximum average rate vector be denoted by xi = aiei ∈ RK
+ where

ei is a unit vector whose ith element is 1 and the others are 0’s. Also, denote the

maximum average sum-rate vector by xs ∈ RK
+ . In a fading BC, the sum rate is

maximized by allocating full power to the best user. When excluding the trivial case

where the best user is always identical, xs exists outside the K − 1 dimensional hy-

perplane that passes through xi’s for i = 1, · · · , K. The center of the K-dimensional

hypersphere is denoted by xc ∈ RK . Then, ‖xc− xs‖2 = ‖xc− xi‖2 for i = 1, · · · , K.

Therefore, the following linear equation is obtained.

Axc = b where A =




2(x1 − xs)
T

2(x2 − xs)
T

...

2(xK − xs)
T



∈ RK×K

and b =




xT
1 x1 − xT

s xs

xT
2 x2 − xT

s xs

...

xT
KxK − xT

s xs



∈ RK×1. (4.26)
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Figure 4.2: Average queue length under QPS vs user 1’s bit arrival rate for M=2, 5,
10, and 20 (K = P = 2, user 1’s average SNR=13dB, and user 2’s average SNR=7dB,
λ2 = 0.5λ1).

A is nonsingular since every row of A is independent of the other rows. Thus, xc has

a unique solution, which is xc = A−1b.

Let xb denote a boundary point of the hypersphere that is proportional to the

current queue-state vector. Then, xb = kQ(t), where k ≥ 0. The value of k can be

found by solving ‖xc − x1‖2 = ‖xc − kQ(t)‖2. If the weight vector for QPS acquired

from the hypersphere approximation is denoted by µ′, then µ′ = xb − xc.

4.2.6 Numerical Results and Discussion

By using the GP formulations derived in the previous subsections, this subsection

presents simulation results with Poisson packet arrivals and exponentially distributed
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packet lengths to demonstrate stability, delay, and fairness properties of the QPS

algorithm. In the simulations, the average packet length for each user, the scheduling

period, and the signal bandwidth are all equal to 1. Also, the average queue length

over all users is defined as limt→∞ E[ 1
K

∑K
i=1 Qi(t)]. First, Fig. 4.2 demonstrates the

effect of the number of sampled fading states, M on the average queue length under

QPS. A Rayleigh fading BC presented in Fig. 3.2 is considered where P = 2, user

1’s average SNR=13dB, and user 2’s average SNR=7dB. Also, the bit-arrival rate

of user 2 is assumed to be half that of user 1’s. Thus, the bit-arrival rate vector

can be represented as λ = λ1[1 0.5]T . From Fig. 3.2, λ ∈ int Cerg(P ) if and only

if λ1 < 3.9. The average queue lengths are for different values of λ1 when M=2,

5, 10, and 20. Fig. 4.2 shows that as M increases, larger throughput and smaller

average queue length can be achieved with QPS. About 10% throughput loss occurs

with M = 2, compared to the maximum achievable throughput. However, this loss

quickly vanishes with larger M , which becomes much less than 1% for M = 5. Also,

it is shown that for M > 10, the additional decrease in average queue length is quite

small, which suggests that about 10 independent fading samples are sufficient in using

QPS.

Fig. 4.3 and Fig. 4.4 present average queue lengths for different values of λ1 when

K = 2 and K = 10, respectively. Both figures use M = 10 and compare five schedul-

ing algorithms: QPS, QPS with the hypersphere approximation, MWMS, BCHPR

and LQHPR. For the two user case in Fig. 4.3, the channel and input traffic condi-

tions are assumed to be the same as in Fig. 4.2. Fig. 4.3 shows that the average queue

length of QPS is about 30% smaller than that of MWMS for any λ1 < 3.9. Since

MWMS is a throughput optimal policy, this observation corroborates the throughput

optimality of QPS. LQHPR and BCHPR, which are not throughput optimal, have

about 12% and 5% throughput loss, respectively. QPS using the hypersphere ap-

proximation of Cerg(P ) slightly increases the average queue length compared to QPS.

However, its average queue length is still much smaller than MWMS. Simulation re-

sults with 10 users are presented in Fig. 4.4. P = 10 and user i’s average SNR is

equal to 20−(i−1) (dB) for i = 1, · · · , 10. Also, the bit arrival rate is identical for all

users. QPS is observed to provide about a 40-50% reduction in average queue length
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Figure 4.3: Average queue length vs user 1’s bit arrival rate under five scheduling
policies (K = P = 2, M = 10, user 1’s average SNR=13dB, and user 2’s average
SNR=7dB, λ2 = 0.5λ1).

compared to MWMS, a larger difference than in the two user case. The throughput

loss of LQHPR and BCHPR is around 30% and 10%, respectively, which is also much

greater than in Fig. 4.3. Accuracy of the hypersphere approximation is somewhat

lower than in the two user case, but this method still gives about a 30% decrease in

the average queue length compared to MWMS.

The fairness properties of QPS, QPS with the hypersphere approximation, MWMS

and BCHPR with 10 users are illustrated in Fig. 4.5 and Fig. 4.6. P = 10, M = 10,

user i’s average SNR is equal to 20 − 0.5(i − 1) (dB), and λi = 1.55(0.9)i−1 for

i = 1, · · · , 10. First, Fig. 4.5 demonstrates each user’s average queue length in bits

for the above four scheduling policies. It is observed that fairness among users is

not satisfied under the BCHPR, which provides intolerably long average queueing
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Figure 4.4: Average queue length vs user 1’s bit arrival rate under five scheduling
policies (K = P = 10, M = 10, user i’s average SNR (dB) = 20− (i−1), and λi = λ1

for i = 1, · · · , 10).

delay for users with worse channel conditions. MWMS approximately equalizes every

user’s average queue length. Since each user has a different arrival rate, by Little’s

theorem, MWMS provides smaller average queueing delay for the user with higher

bit arrival rate. On the other hand, each user’s average queue length under QPS

is shown to be proportional to the bit arrival rate vector so that average queueing

delay of every user is equalized. Therefore, under the QPS policy, fairness among

users is guaranteed in terms of average queueing delay. QPS with the hypersphere

approximation also shows a similar tendency with QPS, but some deviation from the

arrival rate vector is observed because of the approximation error. Fig. 4.6 presents

each user’s average queueing delay in slots, which indicates that QPS equalizes every

user’s average queueing delay.
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Figure 4.5: Each user’s average queue length under four scheduling policies (K =
P = 10, M = 10, user i’s average SNR (dB) = 20− 0.5(i− 1), and λi = 1.55(0.9)i−1

for i = 1, · · · , 10).

4.3 GP for OFDM BC and MAC with CSIT

This section further extends the GP formulation to various resource allocation prob-

lems for the OFDM MAC and BC with CSIT. The primary focus is on the following

three major resource allocation problems in OFDM MAC and BC: weighted sum-

rate maximization (WSRmax), weighted sum-power minimization (WSPmin) and

proportional-rate maximization (PRmax). These problems are essential in perform-

ing cross-layer resource allocation to guarantee each user’s QoS satisfaction. With

the appropriate choice of the weight vector, WSRmax can be used to support any

gradient-based scheduling policies such as MWMS and PFS. For services requesting

constant-rate, WSPmin is useful in minimizing the inter-cell interference as well as

maximizing the battery power of mobile terminals while allowing different priorities

on each user. PRmax can be used for guaranteeing proportional fairness among users
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Figure 4.6: Each user’s average queueing delay under four scheduling policies (K =
P = 10, M = 10, user i’s average SNR (dB) = 20− 0.5(i− 1), and λi = 1.55(0.9)i−1

for i = 1, · · · , 10).

or to perform QPS that provides desirable delay and fairness properties as shown in

Chapter 3. By using the degradedness of the BC on each tone, as well as duality

relation between MAC and BC [35], this section shows that all these resource alloca-

tion problems in the OFDM MAC and BC can be formulated as GP problems. This

GP perspective of multi-user OFDM resource allocation problems provides numerical

efficiency as well as strong scalability for any additional constraints of GP form.

4.3.1 System Model and Problem Formulation

In this subsection, OFDM downlink and uplink system models are described, and the

WSRmax, WSPmin, and PRmax problems are mathematically formulated. Consid-

ering a transmission system with K users and N tones where the base-station (BS)

and each user are equipped with a single antenna, it is assumed that inter-symbol
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interference (ISI) is completely removed by exploiting OFDM techniques, i.e. the

frequency response is flat within each tone. In the downlink case, total transmit

power is constrained to Ptot, and in the uplink case, each user’s individual power is

constrained to Pi where i is the user index.

On user k’s tone n, the channel gain is denoted by Hk(n), and a zero-mean in-

dependent and identically distributed (i.i.d.) Gaussian noise with variance σ2
k(n)

is added at the receiver. For the uplink case, σk(n) is replaced with σ(n) since

the BS is the only receiver. The channel SNR for user k’s tone n is defined as

gk(n) = |Hk(n)|2/σ2
k(n), and rk(n) and pk(n) denote rate and power allocation on

user k’s tone n. Perfect CSI is assumed at both the BS and each user, which enables

dynamic allocation of power and rate on each tone according to channel conditions.

Multiple users are allowed to share each tone, and the base-station performs super-

position coding in the downlink and successive decoding in the uplink. Fig. 4.7

summarizes OFDM BC and MAC models. Formulations of each resource allocation

problem in OFDM BC and MAC are presented in the next two subsections.

Resource Allocation Problems for OFDM BC

In the downlink, the base station encodes multi-user messages using superposition

coding with a proper encoding order. Also, each receiver performs successive decoding

with a decoding order identical to the encoding order. It can be assumed that the

ordering is the same on every tone, which is shown to be sufficient for achieving the

overall capacity region [44]. Let π(·) denote the message-encoding order at the base-

station, where π(i) < π(j) means that user i’s message is encoded earlier than user

j’s message. With superposition coding, one user can remove the interference caused

by other users’ messages encoded earlier. Therefore, the rate for user k’s tone n is

represented as

rk(n) =
1

2
log2

(
1 +

pk(n)gk(n)

1 + gk(n)
∑

i:π(i)>π(k) pi(n)

)
. (4.27)

First, WSRmax problem can be formulated as follows.
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Figure 4.7: (a) OFDM BC model. (b) OFDM MAC model.
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maximize
K∑

k=1

µk

N∑
n=1

rk(n)

subject to
K∑

k=1

N∑
n=1

pk(n) ≤ Ptot

pk(n) ≥ 0 ∀k and ∀n, (4.28)

where µk ≥ 0 is the weight on rates assigned to user k. Under the total power

constraint, this problem finds the optimal power and rate allocation maximizing the

weighted sum rate. The boundary surface of achievable rate region in BC or MAC

can be traced by solving WSRmax for all possible weight vectors. WSRmax becomes

equivalent to MWMS if the weight vector is replaced by the current queue-state vector.

A dual version of WSRmax is WSPmin, which finds the rate and power allocation

minimizing the weighted sum power with minimum rate constraints on each user. In

the downlink, transmit power comes from a single source at the base station. Thus,

sum-power minimization (SPmin) problem is of particular interest in BC, which is

formulated as

minimize
K∑

k=1

N∑
n=1

pk(n)

subject to
N∑

n=1

rk(n) ≥ Rk ∀k

pk(n) ≥ 0 ∀k and ∀n, (4.29)

where Rk is user k’s minimum rate constraint. The third problem is PRmax that

maximizes the sum rate while maintaining a preset ratio of each user’s data rate:

maximize
K∑

k=1

N∑
n=1

rk(n)
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subject to
K∑

k=1

N∑
n=1

pk(n) ≤ Ptot

pk(n) ≥ 0 ∀k and ∀n (4.30)
N∑

n=1

r1(n) : · · · :
N∑

n=1

rK(n) = γ1 : · · · : γK ,

where {γi}K
i=1 is a set of non-negative values that defines the proportional fairness

among users. Under a total power constraint, the boundary point of achievable rate

region that satisfies the given proportional fairness is found by solving PRmax. If

γk is replaced with the current queue length of user k for k = 1, · · · , K, PRmax is

equivalent to QPS for the stationary channel, and its extension to the time-varying

channels is straightforward from Section 4.2.

Resource Allocation Problems for OFDM MAC

In the uplink case, the base station performs successive decoding with interference

cancellation, in which each user’s message is successively decoded and subtracted

from the received signal. As in the downlink, the same ordering can be assumed over

the tones without reducing achievable rates. Let π(·) denote the decoding order at

the base-station, where π(i) < π(j) means that user i’s message is decoded earlier

than user j’s message. Then, the rate for user k’s tone n is represented as

rk(n) =
1

2
log2

(
1 +

pk(n)gk(n)

1 +
∑

i:π(i)>π(k) pi(n)gi(n)

)
. (4.31)

Using this definition of rk(n), formulations of WSRmax and PRmax in the MAC are

the same as those in the BC except for the power constraint. In the BC, the total

power constraint is considered, but each user has an individual power constraint in

the MAC. Thus, the total power constraint,
∑K

k=1

∑N
n=1 pk(n) ≤ Ptot, is replaced with

individual power constraints,
∑N

n=1 pk(n) ≤ Pk for all k in WSRmax and PRmax for

the MAC.

Compared with SPmin in the BC, WSPmin in the MAC includes the weight on

each user’s power in the objective. Therefore,
∑K

k=1

∑N
n=1 pk(n) in (4.29) is replaced
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with
∑K

k=1 λk

∑N
n=1 pk(n) where λk ≥ 0 is the weight on power assigned to user k.

Other than this change in the objective, all the constraints are identical in both cases.

4.3.2 Optimal Resource Allocation via GP

In this subsection, WSRmax, WSPmin and PRmax problems for the OFDM BC

and MAC are formulated as GP problems. The GP formulation of OFDM resource-

allocation problems is closely related to the message encoding and decoding order.

According to [44], the optimal ordering for various OFDM resource-allocation prob-

lems is identical across every tone, which implies that K! possible orderings exist

regardless of the number of tones. In the downlink, each tone’s channel forms a

degraded BC where the largest rate region is achieved by encoding the user with a

higher channel SNR later [20]. The next subsection shows that after determining

tone-dependent optimal orderings on every tone, WSRmax, SPmin, and PRmax in

the BC can be converted into GP problems. The optimal power/rate allocation ob-

tained by solving GP must conform to the optimal ordering that is one of the K!

tone-independent orderings. From the duality relation between the BC and its dual

MAC, WSRmax, WSPmin, and PRmax in the MAC can also be solved via GP.

GP Formulations for OFDM BC

In the OFDM BC, the achievable rate region of tone n can be represented as

CBC

(
m(n),

K∑

k=1

pk(n)

)
= {rπn(i)(n) : rπn(i)(n) ≤

1

2
log

(
1 +

pπn(i)(n)

mπn(i)(n) +
∑

j<i pπn(j)(n)

)
, i = 1, · · · , K}, (4.32)

where the effective noise variance of user k’s tone n, mk(n) = 1/gk(n), m(n) =

[m1(n), · · · ,mK(n)]T , and πn(·) is the permutation at tone n such that mπn(1)(n) <

mπn(2)(n) < · · · < mπn(K)(n). That is, πn(·) is in order of decreasing channel SNRs

on tone n, which is reverse to the encoding order providing the largest rate region.

When r(n) = [r1(n), · · · , rK(n)]T is on the boundary of the capacity region, solving
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pπn(i)(n)’s in terms of the rate vector r(n) yields the following equations:

l∑
i=1

pπn(i)(n) =
l∑

i=1

(
mπn(i)(n)−mπn(i−1)(n)

)
(4.33)

× exp

(
2 ln 2

l∑
j=i

rπn(j)(n)

)
−mπn(l)(n), l = 1, · · · , K,

where mπn(0)(n) ≡ 0. As shown in [39], (4.32) becomes equivalent to

CBC

(
m(n),

K∑

k=1

pk(n)

)
= {rπn(i)(n) :

K∑
i=1

(
mπn(i)(n)−mπn(i−1)(n)

)
exp

(
2 ln 2

K∑
j=i

rπn(j)(n)

)

≤
K∑

k=1

pk(n) + mπn(K)(n), ri(n) ≥ 0, i = 1, · · · , K}. (4.34)

From the above relations, the WSRmax problem given in (4.28) can be converted

into the following GP:

minimize log exp

(
−

K∑

k=1

µk

N∑
n=1

rk(n)

)

subject to log exp (−rk(n)) ≤ 0, ∀ k, n

log
N∑

n=1

K∑

k=1

(
mπn(k)(n)−mπn(k−1)(n)

Ptot +
∑N

l=1 mπl(K)(l)

)

× exp

(
2 ln 2

K∑

i=k

rπn(i)(n)

)
≤ 0, (4.35)

where the optimization variables are rk(n)’s. Once the optimal rate allocation is

found, the corresponding power allocation can be derived using (4.33).

The SPmin in (4.29) can also be formulated via GP since the optimal ordering on

each tone is the one achieving the largest rate region.
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minimize log
N∑

n=1

K∑

k=1

(
mπn(k)(n)−mπn(k−1)(n)

)

× exp

(
2 ln 2

K∑

i=k

rπn(i)(n)

)

subject to log exp (−rk(n)) ≤ 0, ∀ k, n (4.36)

log

(
exp(Rk) exp(−

N∑
n=1

rk(n))

)
≤ 0 ∀ k.

Similarly, PRmax in (4.30) can be converted into the following GP form:

minimize log exp

(
−

K∑

k=1

N∑
n=1

rk(n)

)

subject to log exp (−rk(n)) ≤ 0, ∀ k, n

log
N∑

n=1

K∑

k=1

(
mπn(k)(n)−mπn(k−1)(n)

Ptot +
∑N

l=1 mπl(K)(l)

)

× exp

(
2 ln 2

K∑

i=k

rπn(i)(n)

)
≤ 0

xγ −
N∑

n=1

r(n) = 0, (4.37)

where γ = [γ1, · · · , γK ]T . Define the optimization variable as y = [x r(1)T · · · r(N)T ]T

∈ R(KN+1)×1. With the optimal solution y∗ = [x∗ r∗(1)T · · · r∗(N)T ]T , the vector

x∗γ denotes each user’s allocated data rate.

GP Formulations for OFDM MAC

By using duality relationship between BC and MAC, the results obtained for the

downlink can be extended for GP formulations of WSRmax, WSPmin and PRmax

in the uplink. Given a BC, its dual MAC has the channel SNRs and a total power

constraint that are the same as in the original BC. [35] showed that any points in
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the BC capacity region can be also achieved in its dual MAC if the decoding order

of the dual MAC receiver is reversed with respect to the encoding order in the BC

transmitter. Since the total power for both channels is identical, the rate allocation

that minimizes sum power in the MAC can be solved via GP of the dual BC by using

(4.36). From the above argument on ordering, the decoding order on tone n in the

MAC is equal to the permutation πn(·) defined in the previous subsection. Once the

optimal rate allocation for SPmin is obtained by solving GP, the corresponding power

allocation in the MAC can be determined from the following equation.

pπn(k)(n) =
(22rπn(k)(n) − 1) · 22

∑K
i=k+1 rπn(i)(n)

gπn(k)(n)
, ∀ k, n, (4.38)

where rπn(K+1)(n) ≡ 0 for all n. This equation is derived by applying the tone-

dependent optimal ordering to (4.31).

In the uplink case, each user has different power source so that the WSPmin prob-

lem is more useful than SPmin. With general non-equal weights, the tone-dependent

optimal ordering can be different from that defined in SPmin. However, by utilizing

channel scaling method, the optimal ordering for WSPmin in the MAC can be easily

determined, and this problem becomes solvable via GP as well. The scaled power is

p′k(n) = λkpk(n), where λk is the weight on user k’s power. Then, close observation of

(4.31) reveals that if the channel SNR is also scaled such that g′k(n) = gk(n)/λk, the

mutual information in terms of scaled powers and channel SNRs remains the same

as that before scaling [13]. Therefore, WSPmin in the MAC converts into SPmin in

terms of p′k(n) and g′k(n), which is solved via GP.

GP formulation of WSRmax in the MAC is not straightforward compared to other

problems so far. The optimal tone-independent ordering is automatically determined

from the given weight vector, but this ordering doesn’t guarantee the feasibility of

GP formulations because of the individual power constraints. By employing Lagrange

dual decomposition, it is shown that WSRmax can be solved via iterative GP. First,

WSRmax in the MAC converts into the minimization problem by multiplying −1

and then taking the exponential of the objective. The Lagrangian of this problem is

defined over domain D as



CHAPTER 4. APPLICATION OF GEOMETRIC PROGRAMMING 80

L({pk(n)}, {rk(n)},λ) = exp

(
−

K∑

k=1

µk

N∑
n=1

rk(n)

)

+
K∑

k=1

λk

(
N∑

n=1

pk(n)− Pk

)
, (4.39)

where λ º 0 and the domain D is defined as the set of all non-negative pk(n)’s for all

k and n. Then, the Lagrange dual function is represented as

f(λ) = min
{pk(n)},{rk(n)}∈D

L({pk(n)}, {rk(n)}, λ). (4.40)

For a fixed λ, the minimization problem in (4.40) can be formulated via GP as the

following: First, the scaled power is p′k(n) = λkpk(n) and the scaled channel SNR is

g′k(n) = gk(n)/λk. Then, in terms of p′k(n) and g′k(n), the minimization of Lagrangian

in (4.39) is equivalent to maximizing the weighted sum rate and minimizing the sum

power simultaneously. In the dual BC, the optimal encoding order on each tone for

WSRmax and SPmin is equal to the order of increasing scaled channel SNR. From

this reasoning, (4.40) can be converted into GP as follows.

minimize log

(
exp

(
−

K∑

k=1

µk

N∑
n=1

rk(n)

)

+
N∑

n=1

K∑

k=1

(
m′

π′n(k)(n)−m′
π′n(k−1)(n)

)

× exp

(
2 ln 2

K∑

i=k

rπ′n(i)(n)

))

subject to log exp (−rk(n)) ≤ 0, ∀ k, n, (4.41)

where m′
k(n) = 1/g′k(n), and π′n(·) is the permutation at tone n such that m′

π′n(1)(n) <

m′
π′n(2)(n) < · · · < m′

π′n(K)(n), or π′n(·) is in order of decreasing scaled channel SNRs

on tone n. With the optimal rate and power allocation obtained by this GP, f(λ)

can be derived from (4.39).
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Finally, the dual optimal solution is obtained by maximizing f(λ) over λ º 0.

The original WSRmax in the MAC is a convex optimization problem with zero duality

gap; thus, the dual optimal objective always equals the primal optimal objective [10].

This maximization can be done by iterating the following steps until each user’s power

converges to individual power constraint: find f(λ) via GP for a fixed λ, and update λ

to the direction of increasing f(λ). λ can be efficiently updated by using an ellipsoid

method, a type of sub-gradient search methods for non-differentiable functions. This

method converges in O(n2) iterations where n is the number of variables [10]. The

details of the ellipsoid method are provided in Appendix C. A sub-gradient for f(λ)

required in the ellipsoid method is dk =
∑N

n=1 p∗k(n) − Pk for all k, where {p∗k(n)}
optimizes the minimization problem in the definition of f(λ).

PRmax in the MAC can be also converted into iterative GP following similar steps

as in WSRmax. For PRmax, the weighted sum rate is replaced with the sum rate, and

the constraint on proportional fairness is added when the Lagrangian is minimized.

Considering these changes, GP formulation of PRmax in the MAC becomes

minimize log

(
exp

(
−

K∑

k=1

N∑
n=1

rk(n)

)

+
N∑

n=1

K∑

k=1

(
m′

π′n(k)(n)−m′
π′n(k−1)(n)

)

× exp

(
2 ln 2

K∑

i=k

rπ′n(i)(n)

))

subject to log exp (−rk(n)) ≤ 0, ∀ k, n

xγ −
N∑

n=1

r(n) = 0, (4.42)

where the optimization variable is the same as in (4.37).

4.3.3 Numerical Results and Discussion

This subsection provides some simulation results generated using GP formulations

for multi-user OFDM resource-allocation problems. Fig. 4.8 presents two achievable



CHAPTER 4. APPLICATION OF GEOMETRIC PROGRAMMING 82

0 0.5 1 1.5 2 2.5 3 3.5
0

0.5

1

1.5

2

2.5

3

3.5

R
1
 (bits/dimension)

R
2 (

bi
ts

/d
im

en
si

on
)

Rate region of OFDM BC
Rate region of OFDM MAC

Figure 4.8: Rate regions of OFDM BC and MAC (N = 64, K = 2, Ptot = NK = 128
in BC, P1 = P2 = Ptot

2
= 64 in MAC. Each user’s average channel SNR per tone = 10

dB)

rate regions of OFDM BC and MAC where N = 64, K = 2, Ptot = NK = 128 in BC,

P1 = P2 = Ptot

2
= 64 in MAC. Channel SNRs are assumed to be i.i.d. exponentially

distributed with each tone’s average SNR of 10 dB. The same set of channel SNRs are

used for both BC and MAC. In Fig. 4.8, boundary points of rate regions are obtained

by solving WSRmax via GP for all possible weight vectors. Since P1 + P2 = Ptot and

since both OFDM BC and MAC have the same channel SNRs, the duality relation

holds between these two channels. Therefore, both rate regions always share at least

one boundary point, which can be observed in Fig. 4.8.

Fig. 4.9 illustrates the power region for the same OFDM MAC as in Fig. 4.8,

with the target rate vector of R = [2.05 2.19]T bits per dimension. Boundary points

of power region are characterized by solving WSPmin via GP for all possible weight

vectors. The given target rate vector is a boundary point shared by both OFDM BC
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Figure 4.9: Power region of OFDM MAC (N = 64, K = 2, target rates R =
[2.05 2.19]T (bits/dim), and the channel SNRs are the same as in Fig. 4.8.)

and MAC in Fig. 4.8. Thus, as can be seen in Fig. 4.9, the minimum sum power

required to support these target rates is equal to the total power used in Fig. 4.8.

4.4 Summary

In fading broadcast channels, the geometric programming (GP) formulation of QPS,

which is also applicable to OFDM systems, is presented. GP is a special form of

convex optimization problems with well-developed efficient algorithms. Stochastic

simulations performed by solving formulated GP problems demonstrate that QPS

provides significantly smaller average queueing delay compared to other scheduling

policies such as MWMS for any arrival rate vector within the network capacity region,

and it exhibits more desirable fairness property.

Furthermore, three major resource allocation problems in both downlink and
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uplink OFDM systems are formulated via GP: weighted sum-rate maximization,

weighted sum-power minimization, and proportional-rate maximization. Without vi-

olating GP structure, a variety of rate constraints can be added, which is essential in

performing cross-layer resource allocation to satisfy each user’s various QoS require-

ment. In multi-user OFDM systems, GP emerges as a powerful tool that provides

high numerical efficiency as well as strong scalability.



Chapter 5

Lagrange Dual Decomposition for

MIMO-OFDMA

One popular realization of multi-user OFDM systems is called orthogonal frequency

division multiple access (OFDMA), which assigns each subchannel or tone to at most

one user [31]-[14]. When a single cell environment is assumed, there is no multi-

user interference at each tone owing to this FDMA (Frequency Division Multiple

Access) constraint inherent in OFDMA systems. The spectral efficiency can be fur-

ther increased by employing multiple antennas at base stations and terminals in

rich-scattering environments [68, 22]. Such multiple-input multiple-output (MIMO)

systems enable a dramatic increase in capacity known as spatial multiplexing gain.

This chapter addresses MIMO-OFDMA systems where each tone is occupied by at

most one user, and the assigned user occupies the MIMO channel formed at the

corresponding tone as a one-to-one communication link.

If the instantaneous CSI is available at the transmitter via a reliable feedback link,

the transmitter of MIMO-OFDMA systems can dynamically allocate power and rate

on each tone and each transmit antenna to satisfy each user’s QoS demand, which is

essential in multi-user communication systems. For a single-user, single-tone MIMO

systems with CSIT, the MIMO channel capacity is achieved by multiplying precod-

ing and post-processing matrices at transmitter and receiver, respectively, based on

85
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SVD (Singular Value Decomposition) of channel matrix. The effective MIMO chan-

nel becomes equivalent to orthogonal parallel channels where each channel gain takes

the singular value. Thus, the capacity is achieved by waterfilling the transmit power

across these parallel effective channels [68, 50]. On the other hand, MIMO-OFDMA

systems have FDMA constraints that make the optimal tone assignment a combi-

natorial problem with the exponential complexity in the number of tones [31]. For

the single-input single-output (SISO) OFDMA systems, much previous work has con-

sidered convex relaxation methods by introducing time-sharing or frequency-sharing

variables for efficient suboptimal solution [51, 14]. However, this approach employs

a different system model from the original OFDMA system. Thus, it eventually re-

quires a heuristic approximation that might lead to a significant suboptimality in

some cases.

On the other hand, Yu and Lui [80] showed that in multi-carrier applications, even

though the original resource allocation problems are non-convex, the duality gap be-

comes zero as the number of tones goes to infinity. Therefore, with a very large

number of tones, Lagrange dual-decomposition methods can be used to find the opti-

mal solutions accurately. This argument is based on the fact that if the optimal value

of an optimization problem is a concave (or convex) function of the constraint vector,

the duality gap is zero regardless of convexity of the original problem. With infinite

dimensions, arbitrary time-sharing or frequency-sharing become feasible in resource

allocation, which enables this condition to be satisfied. In this chapter, motivated

by these results, downlink and uplink MIMO-OFDMA resource allocation problems

are solved in the dual domain by using Lagrange dual decomposition, and efficient

algorithms are developed for the following two major problems: weighted sum-rate

maximization (WSRmax) and weighted sum-power minimization (WSPmin). The ex-

isting duality gap is actually evaluated, and the results show that with the practical

number of tones, the optimal objective is virtually concave in terms of the constraint

vector, which validates the proposed dual approach.

The organization of this chapter is as follows: Section 5.1 presents the system

model and problem formulation. In Section 5.2, general theory on the duality gap of

non-convex optimizations is introduced, and duality gap of MIMO-OFDMA problems
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is closely investigated in Section 5.3. Section 5.4 presents efficient resource allocation

algorithms for downlink and uplink MIMO-OFDMA systems. Finally, numerical

results are discussed in Section 5.5 and Section 5.6 summarizes this chapter.

5.1 System Model and Problem Formulation

This section describes downlink and uplink MIMO-OFDMA system models and for-

mulates two resource allocation problems.

5.1.1 Downlink MIMO-OFDMA Systems

First, consider a downlink MIMO-OFDMA system with K users and N tones where

the base station (BS) is equipped with t transmit antennas and K mobile terminals

with r1, · · · , rK receive antennas, respectively. It is assumed that the inter-symbol

interference (ISI) is completely removed by the cyclic prefix in OFDM techniques,

i.e. the frequency response is flat within each tone. The total transmit power is

constrained to Ptot. At user k’s tone n, a MIMO channel is formed, which is given by

yk(n) = Hk(n)xk(n) + zk(n), (5.1)

where yk(n) ∈ Crk×1, Hk(n) ∈ Crk×t, and xk(n) ∈ Ct×1 denote, respectively, the

received signal vector, the channel matrix, and the transmitted signal vector at user

k’s tone n. zk(n) ∈ Crk×1 is a vector of independent zero-mean complex Gaussian

noise entries with variance 1/2 per real component at user k’s receiver, i.e. zk(n) ∼
N (0, I). The MIMO matrix channel Hk(n) is assumed to be perfectly known to the

transmitter and user k’s receiver. Let Si denote the set of tones allocated to user i.

Because of the FDMA constraint in MIMO-OFDMA systems, each tone is allowed to

be used by at most one user; hence, Si∩Sj = ∅ for i 6= j and
⋃K

i=1 Si ⊆ {1, 2, · · · , N}.
Also, let the covariance matrix of the transmitted signal of user k’s tone n be denoted

by Sk(n) = E[xk(n)xk(n)H ]. Then, the total power constraint can be expressed as

the following:



CHAPTER 5. LAGRANGE DUAL DECOMPOSITION FOR MIMO-OFDMA 88

Tone 1
Tone N
Transmitted signal at BS ( ))1(),1( 11 rp

)1(1H

),(~)1(1 I0z CN User 1’sTone 1
( ))1(),1( KK rp

)1(KH User K’sTone 1
( ))(),( 11 NN rp

)(1 NH User 1’sTone N
( ))(),( NN KK rp

)(NKH
User K’sTone N

1×t

1×t

11×r

1×Kr

11×r

1×Kr

),(~)1( I0z CNK

),(~)(1 I0z CNN

),(~)( I0z CNNK

Figure 5.1: Block diagram of MIMO-OFDMA BC

K∑

k=1

N∑
n=1

Tr (Sk(n)) =
K∑

k=1

N∑
n=1

t∑

l=1

pk,l(n) ≤ Ptot, (5.2)

where pk,l(n) denotes user k’s power allocation on tone n and transmit antenna l.

Given Sk(n), let rk,l(n) denote user k’s rate allocation on tone n and transmit antenna

l such that
∑t

l=1 rk,l(n) is equal to or less than the mutual information I(xk(n);yk(n))

over the choice of the distribution of xk(n). The block diagram of MIMO-OFDMA

BC is illustrated in Fig. 5.1.

As shown in [68] and [50], the maximization of this MIMO mutual information

can be achieved by using singular value decomposition (SVD). By applying SVD, the
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channel matrix Hk(n) can be written as

Hk(n) = Uk(n)Σk(n)Vk(n)H , (5.3)

where Uk(n) and Vk(n) are unitary matrices with dimension rk×rk and t× t, respec-

tively, and Σk(n) is a non-negative diagonal matrix with dimension rk × t. The diag-

onal entries of Σk(n) are σk,1(n)1/2, . . . , σk,Lk
(n)1/2, the non-negative square roots of

the eigenvalues of Hk(n)Hk(n)H , where Lk = min(rk, t). Let ỹk(n) = Uk(n)Hyk(n),

x̃k(n) = Vk(n)Hxk(n) and z̃k(n) = Uk(n)Hzk(n). Then, the original channel is

equivalent to the following channel.

ỹk(n) = Σk(n)x̃k(n) + z̃k(n), (5.4)

where z̃k(n) has the same distribution as zk(n) and E[x̃k(n)x̃k(n)H ] = E[xk(n)xk(n)H ].

Thus, the one-to-one MIMO channel is decomposed to Lk independent subchannels:

ỹk,l(n) = σk,l(n)1/2x̃k,l(n) + z̃k,l(n), 1 ≤ l ≤ Lk. (5.5)

Consequently, the rate allocation rk,l(n) satisfies the following equality

t∑

l=1

rk,l(n) =

Lk∑

l=1

log2(1 + pk,l(n)σk,l(n)). (5.6)

If Tr (Sk(n)) is assumed to be constrained to Psum,k(n), the maximum value of∑t
l=1 rk,l(n) is

max
pk,l(n)≥0,

∑t
l=1 pk,l(n)≤Psum,k(n)

t∑

l=1

rk,l(n) =

Lk∑

l=1

[log2(µk,l(n)σk,l(n))]+, (5.7)

where (x)+ denotes max{x, 0}, the optimal power allocation p∗k,l(n) = (µk(n) −
σk,l(n)−1)+, and µk(n) satisfies

∑Lk

l=1(µk(n)−σk,l(n)−1)+ = Psum,k(n). In other words,

when Tr (Sk(n)) is given, the optimal power allocation on each transmit antenna of

user k’s tone n is water-filling over the channel eigenvalues.
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Utilizing the above results, the WSRmax problem in downlink MIMO-OFDMA

systems can be formulated as

maximize
K∑

k=1

µk

∑
n∈Sk

t∑

l=1

rk,l(n)

subject to
K∑

k=1

∑
n∈Sk

t∑

l=1

pk,l(n) ≤ Ptot,

Si ∩ Sj = ∅ ∀i 6= j,
K⋃

k=1

Sk ⊆ {1, 2, · · · , N},

pk,l(n) ≥ 0 ∀k, n, and l, (5.8)

where the relation between the rate and power allocation is as defined in (5.13), and

µk ≥ 0 is the weight assigned to user k. Given the weight vector and the channel

matrices, the solution of this problem finds the power allocation that maximizes the

weighted sum rate with total power constraint. The boundary of the achievable rate

region can be traced by solving this problem for all possible weight vectors µ. In

general, (5.8) is not a convex optimization problem since it finds the optimal set of

tones for each user, which is a combinatorial problem whose complexity increases

exponentially with N . This argument also holds for the following WSPmin problem

which is a dual problem of WSRmax:

minimize
K∑

k=1

λk

∑
n∈Sk

t∑

l=1

pk,l(n)

subject to
∑
n∈Sk

t∑

l=1

rk,l(n) ≥ Rk ∀k,

Si ∩ Sj = ∅ ∀i 6= j,
K⋃

k=1

Sk ⊆ {1, 2, · · · , N},

pk,l(n) ≥ 0 ∀k, n, and l, (5.9)
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where λk ≥ 0 is the weight assigned to user k. Given the weight vector and the channel

matrices, this problem finds a power distribution that minimizes the weighted sum

power with minimum rate constraint on each user. In the downlink, the inter-cell

interference can be reduced by solving the WSPmin problem. This problem is of

particular interest in the uplink case since the battery life of the mobile terminal

is critical. Because of the FDMA nature of MIMO-OFDMA systems, the optimal

solution of WSPmin in the broadcast channel (BC) is equivalent to that in its dual

multiple access channel (MAC) where the role of transmitter and receivers in the BC

is reversed.

5.1.2 Uplink MIMO-OFDMA Systems

This subsection presents the system model and problem formulation for uplink MIMO-

OFDMA systems. The major differences from downlink MIMO-OFDMA systems are

that each mobile terminal has its own power constraint Pk. Consider an uplink MIMO-

OFDMA system with K users and N tones where the base station (BS) is equipped

with r receive antennas and K mobile terminals with t1, · · · , tK transmit antennas,

respectively. At user k’s tone n, a MIMO channel is formed, which is represented as

yk(n) = Hk(n)xk(n) + zk(n), (5.10)

where yk(n) ∈ Cr×1, Hk(n) ∈ Cr×tk , and xk(n) ∈ Ctk×1 denote, respectively, the

received signal vector, the channel matrix, and the transmitted signal vector at user

k’s tone n. zk(n) ∈ Cr×1 is a vector of independent zero-mean complex Gaussian

noise entries with variance 1/2 per real component at the BS, i.e. zk(n) ∼ N (0, I).

The channel matrix Hk(n) is assumed to be perfectly known to the receiver and

corresponding user’s transmitter. Then, user k’s power constraint can be given as

N∑
n=1

Tr (Sk(n)) =
N∑

n=1

tk∑

l=1

pk,l(n) ≤ Pk. (5.11)

The block diagram of MIMO-OFDMA MAC is illustrated in Fig. 5.2.
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Figure 5.2: Block diagram of MIMO-OFDMA MAC

By using SVD as in the downlink case, the uplink one-to-one MIMO channel is

decomposed to Mk independent subchannels as

ỹk,l(n) = σk,l(n)1/2x̃k,l(n) + z̃k,l(n), 1 ≤ l ≤ Mk, (5.12)

where Mk = min(tk, r) and other symbols denote the same quantities as in the down-

link case with only changes in dimension: Lk → Mk, t → tk, and rk → r. Conse-

quently, the rate allocation rk,l(n) satisfies the following equality

tk∑

l=1

rk,l(n) =

Mk∑

l=1

log2(1 + pk,l(n)σk,l(n)). (5.13)

If Tr (Sk(n)) is assumed to be constrained to a certain value, the optimal power

allocation on each transmit antenna of user k’s tone n is water-filling over the channel

eigenvalues as shown in the previous subsection.
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Formulation of WSRmax in the MAC is the same as in the BC except for power

constraints. Total power constraint,
∑K

k=1

∑
n∈Sk

∑t
l=1 pk,l(n) ≤ Ptot, is considered in

the BC. On the other hand, in the MAC, each user has an individual power constraint,∑
n∈Sk

∑tk
l=1 pk,l(n) ≤ Pk for all k. As mentioned in the previous subsection, the

optimal solution of WSPmin in the MAC is equivalent to that in its dual BC where the

roles of transmitters and receiver in the MAC are reversed. Therefore, by solving (5.9)

with the number of transmit and user k’s receive antenna, r and tk, respectively, the

power and rate allocation for WSPmin can be obtained in the uplink MIMO-OFDMA

systems.

The next section shows that the duality gap for each of the aforementioned non-

convex problems is virtually negligible with realistic number of tones, which makes it

possible to develop efficient algorithms by using Lagrange dual decomposition.

5.2 General Theory on Duality Gap

This section introduces some conditions under which the duality gap is zero for general

non-convex optimization problems in multi-tone systems. With N tones and K users,

the optimization problem has the following general form.

maximize
N∑

n=1

fn(xn)

subject to
N∑

n=1

hn(xn) ¹ P, (5.14)

where xn ∈ RK are vectors of optimization variables; fn(·) are RK → R functions,

which are not necessarily concave; and hn(·) are RK → RL functions that are not

necessarily convex. Constant P is an L-vector of constraints. The Lagrangian of

(5.14) is defined as

L({xn},λ) =
N∑

n=1

fn(xn) + λT

(
P−

N∑
n=1

hn(xn)

)
, (5.15)
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where λ is a vector of Lagrange dual variables. The dual objective g(λ) is defined as an

unconstrained maximization of the Lagrangian such that g(λ) = max{xn} L({xn}, λ).

Then, the dual optimization problem becomes

minimize g(λ)

subject to λ º 0. (5.16)

From duality theory, g∗ ≥ f ∗ where f ∗ and g∗ are primal and dual optimal values,

respectively. The duality gap d∗ is defined as d∗ = g∗−f ∗. When fn(xn)’s are concave

and hn(xn)’s are convex, (5.15) is a convex optimization problem, which guarantees

zero duality gap. Zero duality gap implies that the globally optimal solution can

be obtained by using Lagrange dual decomposition. More fundamentals of Lagrange

dual decomposition and duality gap are provided in Appendix B. Though the above

optimization problem in (5.15) is non-convex, duality gap is zero if either of the

following two conditions is satisfied [80, 16].

Theorem 6. If x∗n(λ) = arg maxxn L({xn}, λ), as a function of λ, is continuous at

λ∗, the duality gap equals zero.

Theorem 7. Concavity of the optimal Σnfn in P implies zero duality gap.

The condition in Theorem 6 is sufficient for that in Theorem 7 but the converse is

not always true. Recently, [80] shows that in non-convex multi-carrier optimization

problems with the general form of (5.15), the concavity condition in Theorem 7 is

always satisfied when the number of tones goes to infinity. However, existing duality

gap for a problem with practical number of tones cannot be estimated from this

argument. In the next section, duality gap of MIMO-OFDMA resource allocation

problems is closely investigated.
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5.3 Duality Gap of Non-convex Optimizations

According to [80], more dimensions in resource-allocation problems for multi-carrier

systems result in higher likelihood of satisfying the time-sharing condition that guar-

antees zero duality gap. The extension from SISO-OFDMA to MIMO-OFDMA in-

troduces spatial multiplexing capability, which is effectively similar to adding more

parallel channels. Thus, the duality gap for MIMO-OFDMA is generally smaller than

that for SISO-OFDMA. Also, from the dual relation between the BC and MAC [35],

the solutions of WSRmax and WSPmin in the BC are directly linked to those in the

MAC∗. This section analyzes the duality gap for the WSRmax and WSPmin problems

in downlink SISO-OFDMA systems.

First, consider the downlink WSRmax problem given in (5.8). For any fixed

subchannel assignment, {Sk}, the optimal solution of this problem can be obtained

by multi-level water-filling [31] that is given as follows.

pk,l(n) =





(
µkY − 1

σk,l(n)

)+

if n ∈ Sk,

0 if n 6∈ Sk.

Y =
Ptot +

∑K
k=1

∑
n∈Sk

∑Lk

{l:pk,l(n)>0}
1

σk,l(n)∑K
k=1

∑
n∈Sk

∑Lk

{l:pk,l(n)>0} µk

. (5.17)

Finding the optimal subchannel assignment requires KN searches. Hence, in terms

of K and N , the overall optimization requires O(NKN) operations†, which is expo-

nentially complex. In general, the optimal subchannel allocation can change as total

power varies, which may destroy the concavity of the optimal objective function in

terms of total power. A simple example for this argument is illustrated for downlink

SISO-OFDMA systems in Fig. 5.3 when N = 2, K = 2, µ = [1 2]T , and each user’s

channel SNR vectors are [10 160]T and [160 10]T . The maximum weighted sum rate

∗For MIMO-OFDMA BC and MAC, WSPmin is basically an identical problem.
†The complexity order for performing SVD on an r× t channel matrix is O(min(rt2, tr2)). Thus,

the overall complexity order becomes O(min(rt2, tr2)NKN ). This SVD complexity in terms of the
number of transmit and receive antennas is ignored throughout this chapter since it is commonly
applied to every case.
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Figure 5.3: Maximum weighted sum rate in SISO-OFDMA BC versus Ptot (K = 2,
N = 2, µ = [1 2]T and channel SNR vectors are [10 160]T and [160 10]T )

is plotted for Ptot = 3.3 ∼ 3.5. At Ptot = 3.39, the optimal subchannel assignment

changes from S1 = {2}, S2 = {1} to S1 = ∅, S2 = {1, 2}. Since each user’s water-level

is different, a discrete change in the slope occurs at the transition point, which breaks

down the concavity at Ptot = 3.39. With the same subchannel allocation, the optimal

weighted sum rate is concave in total power. However, whenever the optimal set

of tones changes, a sudden jump in the slope appears, which might make the curve

non-concave with that total power. As the number of tones grows, changes in the

optimal subchannel allocation occur more frequently when the sum power varies.

On the other hand, the degree of the discrete slope change tends to decrease with

more tones since the bandwidth affected by each set change becomes narrower. Thus,

the overall curve is expected to be more concave as the number of tones increases.

Fig. 5.4 illustrates the maximum weighted sum rate versus total power in the SISO-

OFDMA BC when N = 8, K = 2, µ = [1 2]T , and each user’s channel SNR vectors

are 1
σ2 [1

2 22 · · · N2]T and 1
σ2 [N

2 (N − 1)2 · · · 12]T . σ2 denotes the noise power at

each tone. As Ptot sweeps from 0 to 16, changes in the optimal subchannel allocation

occur at least five times on each of three plots in Fig. 5.4. However, discrete slope

changes are almost undetectable in this figure. Hence, in practical downlink MIMO-

OFDMA systems with more than a hundred tones, the duality gap of WSRmax in
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Figure 5.4: Maximum weighted sum rate in SISO-OFDMA BC versus Ptot (K = 2,
N = 8, µ = [1 2]T and channel SNR vectors are 1
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2 22 · · · N2]T and 1

σ2 [N
2 (N −

1)2 · · · 12]T )

the MIMO-OFDMA BC is expected to be virtually zero, and the optimal solution

can be derived in the dual domain.

The optimal solution for the WSPmin problem in (5.9) can be obtained by the

following steps: First, choose a subchannel assignment, and for each user, distribute

enough power over its assigned tones in a water-filling fashion to satisfy its rate

constraint Rk. User k’s power distribution for the given tone assignment, Sk, can be

formulated as follows:

pk,l(n) =





(
Mk − 1

σk,l(n)

)+

if n ∈ Sk,

0 if n 6∈ Sk.

Mk =

(
2Rk

∏
n∈Sk

∏Lk

{l:pk,l(n)>0} σk,l(n)

)1/

(∑
n∈Sk

∑Lk
{l:pk,l(n)>0} 1

)

. (5.18)

Second, after iterating the first step for all KN possible set selections, pick one of them

that minimizes the weighted sum power (WSP). Therefore, WSPmin also requires

O(NKN) operations. If the optimal WSP is a convex function of the constraint vector

R, the duality gap will be zero from the condition in Theorem 7. Similar to WSRmax
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Figure 5.5: Minimum weighted sum power in SISO-OFDMA BC versus rate con-
straints (K = 2, N = 2, λ = [1 2]T ,R = α[2 1]T (bits/symbol) and channel SNR
vectors are [40 160]T and [10 90]T )

case, Fig. 5.5 shows that the convexity of the minimum WSP for SISO-OFDMA BC

may no longer hold when the optimal subchannel assignment changes. In this figure,

N = 2, K = 2, λ = [1 2]T , the rate constraint vector is R = α[2 1]T (bits/symbol),

and user 1 and 2’s channel SNR vectors are [40 160]T and [10 90]T . When α varies

from 1.5 to 1.6, the optimal subchannel allocation changes from S1 = {1}, S2 = {2}
to S1 = {2}, S2 = {1}. This change causes sudden jump in the slope of the curve,

which results in non-convexity at this transition point of α = 1.54. However, from

the same argument provided in WSRmax case, the amount of slope change decreases

when the number of tones rises as demonstrated in Fig. 5.6 where N = 8, K = 2,

λ = [1 2]T ,R = α[2 1]T (bits/symbol), and channel SNR vectors are the same as

those defined in Fig. 5.4. When α sweeps from 1 to 10, discrete slope changes seem

to be negligible in this figure. Therefore, in practice, the WSPmin problem in the

downlink and uplink MIMO-OFDMA systems can be solved in the dual domain with

much less computational complexity.

Based on the results in this section, Lagrange dual decomposition can be used to

derive efficient algorithms for both WSRmax and WSPmin problems as shown in the

following section.
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5.4 Efficient Resource Allocation Algorithms

In this section, very efficient power and rate allocation algorithms are developed

by using Lagrange dual decomposition for solution of the WSRmax and WSPmin

problems in downlink and uplink MIMO-OFDMA systems.

5.4.1 Downlink MIMO-OFDMA Systems

The Lagrangian of WSRmax problem in (5.8) is defined over domain D as

L({pk,l(n)}, {rk,l(n)}, λ) =
K∑

k=1

µk

N∑
n=1

t∑

l=1

rk,l(n)

−λ

(
K∑

k=1

N∑
n=1

t∑

l=1

pk,l(n)− Ptot

)
, (5.19)

where the domain D is defined as the set of all non-negative pk,l(n)’s for k = 1, · · · , K,

n = 1, · · · , N , and l = 1, · · · , t such that for each n, only one user can have positive

power allocation from the FDMA constraint. Then, the Lagrange dual function is

g(λ) = max
{pk,l(n)}∈D

L({pk,l(n)}, {rk,l(n)}, λ). (5.20)

Equation (5.19) suggests that the maximization of L can be decomposed into the

following N independent optimization problems

g′n(λ) = max
{pk,l(n)}∈D

{
K∑

k=1

µk

t∑

l=1

rk,l(n)− λ

K∑

k=1

t∑

l=1

pk,l(n)

}
, (5.21)

for n = 1, · · · , N . Then, the Lagrange dual function becomes

g(λ) =
N∑

n=1

g′n(λ) + λPtot. (5.22)

Assume user k is active on tone n. With a fixed λ, the object of the max operation

in (5.21) is a concave function of pk,l(n). By taking the derivative of this object
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regarding pk,l(n), the next optimality condition is obtained, which maximizes g′n(λ).

pk,l(n) =

(
Kk − 1

σk,l(n)

)+

, l = 1, 2, · · · , Lk, (5.23)

where Kk = µk/(λ log 2) and Lk = min(t, rk). In case of Lk < t, pk,l(n) = 0 for

Lk < l ≤ t. Initialize Sk = ∅ for k = 1, · · · , K. By searching over all K possible user

assignments for tone n, g′n(λ) can be obtained as

g′n(λ) = max
k

{
µk

Lk∑

l=1

log2

(
1 +

(
Kk − 1

σk,l(n)

)+

σk,l(n)

)

−λ

Lk∑

l=1

(
Kk − 1

σk,l(n)

)+
}

, n = 1, · · · , N. (5.24)

For tone n, if user u is associated with the value of g′n(λ) in (5.24), Su ∪ {n} → Su,

and pk,l(n) for k 6= u is set to zero.

Once the above equation is solved for all n, the overall Lagrange dual function

g(λ) is derived from (5.22). Finally, it is required to find λ∗ ≥ 0 that minimizes g(λ).

The update of λ can be done by using a simple bisection method until the sum power

converges [10]. Hence, in terms of the number of users and tones, O(NK) executions

are required to find the optimal solution, which shows the linear complexity of the

proposed algorithm in N . If the converged sum power is equal to the total power

constraint, the duality gap is zero and this solution is in fact globally optimal. From

(5.24), the user selection at tone n can change at some level of λ where a quantum leap

may occur in the sum power. Thus, if Ptot is within this gap, the sum power cannot

converge to Ptot by using above bisection method on λ. However, the previous section

shows that the duality gap quickly vanishes as the number of tones increases, and the

solution obtained in the dual domain becomes a globally optimal solution. Therefore,

the subchannel assignment at λ = λ∗ can be assumed to be optimal, and the global

optimal solution can be found by doing multi-level water-filling with this set. The

algorithm for solution of the WSRmax problem can be summarized as follows:



CHAPTER 5. LAGRANGE DUAL DECOMPOSITION FOR MIMO-OFDMA 102

Algorithm 1: WSRmax in downlink MIMO-OFDMA with CSIT

1: λmin = 0, λmax = δN where δ is sufficiently large

2: While λmax − λmin > ε1

3: λ = (λmax + λmin)/2

4: Find {pk,l(n)} and {Sk} by solving (5.23) and (5.24).

5: If
∑K

k=1

∑N
n=1

∑t
l=1 pk,l(n) ≤ Ptot, then

6: λmax = λ

7: Else, λmin = λ

8: End If

9: End While

10: If Ptot −
∑K

k=1

∑N
n=1

∑t
l=1 pk,l(n) > ε2, then

11: With the obtained {Sk}, perform multi-level water-filling by (5.17).

12: End If

13: Return {pk,l(n)} and {Sk}

Similarly, the WSPmin problem can be also solved by using dual decomposition.

The Lagrangian of WSPmin problem in (5.9) is defined over domain D as

L({pk,l(n)}, {rk,l(n)}, µ) =
K∑

k=1

λk

N∑
n=1

t∑

l=1

pk,l(n)

−
K∑

k=1

µk

(
N∑

n=1

t∑

l=1

rk,l(n)−Rk

)
. (5.25)

Then, the Lagrange dual function is represented as

g(µ) = min
{pk,l(n)}∈D

L({pk,l(n)}, {rk,l(n)},µ). (5.26)

From (5.25), the minimization of L can be decomposed into N independent optimiza-

tion problems as follows
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g′n(µ) = min
{pk,l(n)}∈D

{
K∑

k=1

λk

t∑

l=1

pk,l(n)−
K∑

k=1

µk

t∑

l=1

rk,l(n)

}
, (5.27)

for n = 1, · · · , N . Thus, the Lagrange dual function is

g(µ) =
N∑

n=1

g′n(µ) +
K∑

k=1

µkRk. (5.28)

With a fixed µ, the object of min operation in (5.27) is a convex function of pk,l(n).

Hence, taking the derivative of this object regarding pk,l(n) results in the following

condition, which minimizes g′n(µ):

pk,l(n) =

(
Mk − 1

σk,l(n)

)+

, l = 1, 2, · · · , Lk, (5.29)

where Mk = µk/(λk log 2). In case of Lk < t, pk,l(n) = 0 for Lk < l ≤ t. Initialize

Sk = ∅ for k = 1, · · · , K. By searching over all K possible user assignments for tone

n, g′n(µ) is obtained as

g′n(µ) = min
k

{
λk

Lk∑

l=1

(
Mk − 1

σk,l(n)

)+

−µk

Lk∑

l=1

log2

(
1 +

(
Mk − 1

σk,l(n)

)+

σk,l(n)

)}
, (5.30)

for n = 1, · · · , N . At tone n, if user u is associated with the value of g′n(µ) in (5.30),

Su ∪ {n} → Su, and pk,l(n) for k 6= u is set to zero.

After solving (5.30) for all n, g(µ) is derived from (5.28). Finally, the dual optimal

solution is obtained by maximizing g(µ) over non-negative µk’s. Though g(µ) is

concave, a search method based on gradient is infeasible since the dual function is

not differentiable. However, the search direction for non-differentiable functions can

be found by using subgradient-type methods. Suppose µ∗ maximizes g(µ)‡, a vector

‡In case the goal of optimization is to maximize the objective function like WSRmax, suppose
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d is called a subgradient of g(µ) at µ if and only if µ∗ can not lie in the half-space

{µ′ :
∑K

k=1 dk(µ
′
k−µk) ≥ 0}. For the WSPmin problem, the subgradient must satisfy

g(µ′) ≤ g(µ) −∑K
k=1 dk(µ

′
k − µk) for any µ′ º 0. A subgradient of this problem is

derived in the following proposition.

Proposition 1. For the WSPmin problem with a dual objective g(µ) defined in

(5.26), the following choice of d is a subgradient for g(µ):

dk =
N∑

n=1

t∑

l=1

r∗k,l(n)−Rk k = 1, · · · , K, (5.31)

where {r∗k,l(n)} and {p∗k,l(n)} optimize the minimization problem in the definition of

g(µ).

Proof. Since {r∗k,l(n)} and {p∗k,l(n)} are already in D, for any δ º 0,

g(δ) ≤ L({p∗k,l(n)}, {r∗k,l(n)}, δ)

= g(µ)−
K∑

k=1

(δk − µk)

(
N∑

n=1

t∑

l=1

r∗k,l(n)−Rk

)
. (5.32)

The update of µ is efficiently performed with the ellipsoid method until every

user’s rate converges [80, 44]. The ellipsoid method is one efficient sub-gradient

search method for updating the dual variables, and it is known to converge in O(n2)

iterations where n is the number of variables [10]. The details of ellipsoid method

appear in Appendix C.

In terms of K and N , the overall optimization needs O(K2) runs of optimization

problem with the complexity of O(NK). Hence, O(NK3) executions are required to

find the optimal solution of WSPmin by using the proposed algorithm. As discussed

in WSRmax case, the discontinuity in power allocation can happen at µ∗ for the

WSPmin problem as well. In this situation, a solution finds the subchannel assign-

ment at µ∗, and allocates power in a water-filling fashion to satisfy the rate constraint

µ∗ minimizes g(µ).
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for each user. By doing so, the global optimal solution is derived from a dual domain

in downlink MIMO-OFDMA systems. The algorithm for solution of the WSPmin

problem can be summarized as follows:

Algorithm 2: WSPmin in downlink MIMO-OFDMA with CSIT

1: Select a large ellipsoid and assign µ as the center of the initial ellipsoid

2: While (the volume of the ellipsoid) > ε1

3: Find {pk,l(n)} and {Sk} by solving (5.29) and (5.30).

4: Update µ by the ellipsoid method

5: End While

6: If
∑K

k=1

∣∣∣∑n∈Sk

∑Lk

{l:pk,l(n)>0} log2

(
µkσk,l(n)

λk log 2

)
−Rk

∣∣∣
2

> ε2, then

7: With the obtained {Sk}, perform multi-level water-filling by (5.18).

8: End If

9: Return {pk,l(n)} and {Sk}

5.4.2 Uplink MIMO-OFDMA Systems

The Lagrangian of WSRmax problem for the uplink MIMO-OFDMA systems is de-

fined over domain D as

L({pk,l(n)}, {rk,l(n)},λ) =
K∑

k=1

µk

N∑
n=1

tk∑

l=1

rk,l(n)

−
K∑

k=1

(
λk

N∑
n=1

tk∑

l=1

pk,l(n)− Pk

)
, (5.33)

where the domain D is defined as the set of all non-negative pk,l(n)’s for k = 1, · · · , K,

n = 1, · · · , N , and l = 1, · · · , tk such that for each n, only one user can have positive

power allocation from the FDMA constraint. Then, the Lagrange dual function is

g(λ) = max
{pk,l(n)}∈D

L({pk,l(n)}, {rk,l(n)},λ). (5.34)
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Equation (5.33) suggests that the maximization of L can be decomposed into the

following N independent optimization problems

g′n(λ) = max
{pk,l(n)}∈D

{
K∑

k=1

µk

tk∑

l=1

rk,l(n)−
K∑

k=1

λk

tk∑

l=1

pk,l(n)

}
, (5.35)

for n = 1, · · · , N . Then, the Lagrange dual function becomes

g(λ) =
N∑

n=1

g′n(λ) +
K∑

k=1

λkPk. (5.36)

Under the constraints that user k is active on tone n and that λ is fixed, the objective

of the max operation in (5.35) is a concave function of pk,l(n). By taking the derivative

of this objective with respect to pk,l(n), the next optimality condition is obtained,

which maximizes g′n(λ):

pk,l(n) =

(
Kup,k − 1

σk,l(n)

)+

, l = 1, 2, · · · ,Mk, (5.37)

where Kup,k = µk/(λk log 2) and Mk = min(tk, r). In case of Mk < tk, pk,l(n) = 0 for

Mk < l ≤ tk. Initialize Sk = ∅ for k = 1, · · · , K. By searching over all K possible

user assignments for tone n, g′n(λ) can be obtained as

g′n(λ) = max
k

{
µk

Mk∑

l=1

log2

(
1 +

(
Kup,k − 1

σk,l(n)

)+

σk,l(n)

)

−λk

Mk∑

l=1

(
Kup,k − 1

σk,l(n)

)+
}

, n = 1, · · · , N. (5.38)

For tone n, if user u is associated with the value of g′n(λ) in (5.38), Su ∪ {n} → Su,

and pk,l(n) for k 6= u is set to zero.

Once the above equation (5.38) is solved for all n, the overall Lagrange dual

function g(λ) is derived from (5.36). Final solution requires determination of λ∗ º 0

that maximizes g(λ). As in the previous subsection, an efficient update of λ uses the

ellipsoid method until every user’s power converges. A sub-gradient of this problem
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required for ellipsoid method is provided in the following proposition.

Proposition 2. For the uplink WSRmax problem with a dual objective g(λ) defined

in (5.34), the following choice of d is a subgradient for g(λ):

dk = Pk −
N∑

n=1

tk∑

l=1

p∗k,l(n) k = 1, · · · , K, (5.39)

where {r∗k,l(n)} and {p∗k,l(n)} optimize the minimization problem in the definition of

g(λ).

Proof. Since {r∗k,l(n)} and {p∗k,l(n)} are already in D, for any δ º 0,

g(δ) ≥ L({p∗k,l(n)}, {r∗k,l(n)}, δ)

= g(λ) +
K∑

k=1

(δk − λk)

(
Pk −

N∑
n=1

tk∑

l=1

p∗k,l(n)

)
. (5.40)

Thus, suppose λ∗ minimizes g(λ), λ∗ can not lie in the half-space {δ :
∑K

k=1 dk(δk−
λk) ≥ 0}. In terms of K and N , the overall optimization needs O(K2) runs of op-

timization problem with the complexity of O(NK). Hence, the proposed algorithm

requires O(NK3) executions to find the optimal solution of WSRmax in the uplink.

As discussed in the downlink case, the discontinuity in power allocation can happen

at λ∗ for this problem as well. In this situation, a solution finds the subchannel

assignment, {Sk}, at λ∗ and allocates power in a water-filling fashion to satisfy each

user’s power constraint. This multi-level water-filling can be expressed as

pk,l(n) =





(
Yk − 1

σk,l(n)

)+

if n ∈ Sk,

0 if n 6∈ Sk.

Yk =
Pk +

∑
n∈Sk

∑Lk

{l:pk,l(n)>0}
1

σk,l(n)∑
n∈Sk

∑Lk

{l:pk,l(n)>0} 1
. (5.41)

As a result, the global optimal solution is derived from a dual domain in uplink
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MIMO-OFDMA systems. The algorithm for solution of the WSRmax problem in the

uplink can be summarized as follows:

Algorithm 3: WSRmax in uplink MIMO-OFDMA with CSIT

1: Select a large ellipsoid and assign λ as the center of the initial ellipsoid

2: While (the volume of the ellipsoid) > ε1

3: Find {pk,l(n)} and {Sk} by solving (5.37) and (5.38).

4: Update λ by the ellipsoid method

5: End While

6: If
∑K

k=1

∣∣∣Pk −
∑

n∈Sk

∑Lk

{l:pk,l(n)>0} pk,l(n)
∣∣∣
2

> ε2, then

7: With the obtained {Sk}, perform multi-level water-filling by (5.41).

8: End If

9: Return {pk,l(n)} and {Sk}

As noted in 5.1, WSPmin in the MAC is equivalent to that in its dual BC where the

only difference is the reversed role between transmitters and receiver.

5.5 Numerical Results and Discussion

This section provides some simulation results generated by using proposed efficient

resource allocation algorithms for MIMO-OFDMA BC and MAC. Fig. 5.7 and Fig.

5.8 show achievable rate and power regions of SISO-OFDMA BC with N = 8 and

K = 2. The user 1 and 2’s channel SNR vectors are 10[12 22 · · · N2]T and 10[N2 (N−
1)2 · · · 12]T , respectively. Each region is generated by using both optimal exhaustive

search and Lagrange dual-decomposition methods. Fig. 5.7 illustrates the achievable

rate region when Ptot = NK = 16. The boundary points are characterized by solving

WSRmax for all possible weight vectors. In this figure, the rate region obtained by

employing Lagrange dual decomposition is indistinguishable from the optimal rate

region, which implies zero duality gap in this case. Fig. 5.8 shows the achievable power



CHAPTER 5. LAGRANGE DUAL DECOMPOSITION FOR MIMO-OFDMA 109

0 2 4 6 8 10
0

2

4

6

8

10

R
1
 (bits/complex dimension)

R
2 (

bi
ts

/c
om

pl
ex

 d
im

en
si

on
)

 

 

Lagrange dual decomposition
Optimal exhaustive search

Figure 5.7: Rate region of SISO-OFDMA BC obtained by using Optimal exhaustive
search versus Lagrange dual decomposition methods (N = 8, K = 2, channel SNR
vectors are 10[12 22 · · · N2]T and 10[N2 (N − 1)2 · · · 12]T . Ptot = NK = 16)

region when the target rate vector R = [4.84 4.84]T bits per complex dimension§. The

boundary points are characterized by solving WSPmin for all possible weight vectors.

It can be observed that optimal exhaustive search and Lagrange dual decomposition

achieve the identical power region. Since the target rate vector lies on the boundary

of rate region in Fig. 5.7, the minimum sum power to achieve this rate vector must

equal Ptot = 16, which can be verified in Fig. 5.8. The results in Fig. 5.7 and Fig. 5.8

suggest that in practical MIMO-OFDMA systems with much more than eight tones,

the proposed dual approach can find optimal solutions with the significantly lower

computational complexity than the optimal exhaustive search.

Fig. 5.9 presents the rate and power regions for two user MIMO-OFDMA BC

and MAC with 1024 tones, two transmit and two receive antennas. These results

§Bits/complex dimension is equivalent to bits/tone/antenna
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Figure 5.8: Power region of SISO-OFDMA BC obtained by using Optimal exhaustive
search versus Lagrange dual decomposition methods (N = 8, K = 2, channel SNR
vectors are the same as those in Fig. 5.7, R = [4.84 4.84]T bits/complex dimension)

are obtained by applying the proposed efficient algorithms based on Lagrange dual

decomposition. It is assumed that the average channel SNR on each tone is 10dB

for user 1 and 20dB for user 2. Also, the channel matrix Hk(n) is assumed to have

independent zero-mean complex-Gaussian entries with the same variance and undergo

independent fading across the tones. Fig. 5.9(a) shows the rate region of BC and

MAC where the total power constraint for BC is Ptot = 2048, and where the individual

power constraint for MAC is P1 = P2 = 1024. Since P1 + P2 = Ptot, at least one rate

tuple must be common in both BC and MAC rate regions, which can be observed

in this subfigure. Fig. 5.9(b) presents the power region when the target data rate

is R = [1.08 4.12]T bits/complex dimension. This power region is identical for

BC and MAC since it is characterized by solving WSPmin for every possible weight
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Figure 5.9: Rate and power regions for MIMO-OFDMA BC and MAC (N = 1024,
K = 2, Two transmit and two receive antennas)

vector. The target rate vector is on the boundary of achievable rate region for MIMO-

OFDMA BC in Fig. 5.9(a). Thus, the minimum achievable sum power should be

equal to the total power constraint for this MIMO-OFDMA BC, which is indicated

by the dashed line in Fig. 5.9(b).

5.6 Summary

In downlink and uplink MIMO-OFDMA systems with CSIT, efficient algorithms are

developed for weighted sum-rate maximization and weighted sum-power minimization

problems. Though these are originally non-convex problems with the exponential

complexity, the duality gap of each problem is shown to quickly vanish as the number

of tones grows. From this observation, Lagrange dual decomposition is employed to

efficiently solve both problems. Simulation results show that with only eight tones,

virtually optimal solutions are obtained by using the proposed dual approach.



Chapter 6

Scheduling in MIMO-OFDMA

with No CSIT

Previous chapters assumed that perfect instantaneous CSI is available at the trans-

mitter for use in cross-layer resource allocation. However, if the coherence time of

fading channels is not sufficiently long, the current channel state may be quite differ-

ent from the CSI delivered through the feedback channel, which would limit the value

of CSIT. Thus, in a highly mobile environment, instantaneous perfect CSIT becomes

infeasible, and the transmitter may only have long-term channel distribution informa-

tion (CDI) of fading states. In multi-user MIMO systems, if the instantaneous CSI is

available at the transmitter via a reliable feedback link, it is possible to apply spatial

division multiple access (SDMA) where data streams sent through multiple transmit

antennas simultaneously can be destined to multiple users rather than a single user

[11, 78, 62]. Without instantaneous CSIT, not only is the application of SDMA quite

difficult, but also SDMA’s throughput gain might become insignificant.

This chapter considers cross-layer resource allocation in MIMO-OFDMA systems

with CDI at the transmitter (CDIT) where only the long-term statistics of fading

states are available at the transmitter. MIMO-OFDMA implies that each tone is

occupied by at most one user, and the assigned user makes use of the MIMO channel

formed at the corresponding tone as a one-to-one communication link. With only

CDIT, an outage event inevitably occurs since the transmitter is unable to adapt the

112
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data rate to the current channel mutual information. An outage is declared when

the mutual information of the instantaneous channel is below the transmission data

rate. In this situation, the receiver cannot successfully decode the original data, and

a packet error occurs. Thus, the outage probability can be generally considered as

the packet-error probability, and in practical systems, the base station selects the

maximum transmission rate to achieve the target packet-error rate. If the target

outage probability is given for each user, and the transmitter knows the statistics of

fading channels, it is possible to characterize the maximum achievable rate region,

called the outage rate region [40, 29, 41]. All rate tuples within this region can be

supported while satisfying the target outage probabilities.

Characterization of the outage rate region for MIMO-OFDMA systems is non-

trivial since the statistics of the mutual information lack closed-form expressions and

require complicated numerical integrals. In [30, 47, 75], it is shown that the mutual

information of MIMO channels can be well approximated as having a Gaussian distri-

bution, an approximation that becomes more accurate as the number of transmit and

receive antennas increases. Since the mutual information of MIMO-OFDMA chan-

nels takes the form of a summation of the mutual information of MIMO channels

on each tone, the Gaussian approximation can be extended to MIMO-OFDMA sys-

tems. Based on the Gaussian approximation method, this chapter presents efficient

numerical algorithms to characterize the outage rate region of downlink and uplink

MIMO-OFDMA systems. Given a rate tuple and outage probabilities, this algorithm

checks the feasibility of the given rate vector, and if feasible, finds the tone assignment

for each user in an efficient manner. Thus, the data rate of each user can be quickly

updated without violating the target outage probabilities.

In addition to characterizing the outage rate region of MIMO-OFDMA BC and

MAC, the Gaussian approximation in conjunction with a successive feasibility check

can be directly used in efficiently finding the rate and power allocation on each tone

under queue-proportional scheduling (QPS), which makes it easy to apply QPS to

MIMO-OFDMA BC and MAC with CDIT. On the other hand, it is generally difficult

to apply other gradient-based scheduling policies∗ such as maximum weight matching

∗Gradient-based scheduling policies require maximization of weighted sum rate.
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scheduling (MWMS) to MIMO-OFDMA with CDIT because of the high numerical

complexity. Stochastic simulation results demonstrate that QPS provides much more

desirable delay and fairness properties compared to other well-known schedulers.

The organization of this chapter is as follows: Section 6.1 describes the overall

system models, and Section 6.2 provides a discussion on the mutual information of

MIMO-OFDMA channels and its Gaussian approximation. Section 6.3 presents an

efficient numerical algorithm for characterizing the outage rate region as well as its

application to QPS. Finally, Section 6.4 presents numerical results and a discussion,

and concluding remarks appear in Section 6.5.

6.1 System Models

This section presents the models of downlink and uplink MIMO-OFDMA systems as

well as queueing systems for use in cross-layer resource allocation.

6.1.1 Downlink MIMO-OFDMA Systems

First, consider a downlink MIMO-OFDMA system with K users and N tones where

the base station (BS) is equipped with t transmit antennas and K mobile terminals

with r1, · · · , rK receive antennas, respectively. It is assumed that the inter-symbol

interference (ISI) is completely removed by the cyclic prefix in OFDM techniques,

i.e. the frequency response is flat within each tone. The total transmit power is

constrained to Ptot. At user k’s tone n, a MIMO channel is formed, which is given as

yk(n) = Hk(n)xk(n) + zk(n) =

√
ρk

t
H′

k(n)xk(n) + zk(n), (6.1)

where yk(n) ∈ Crk×1, Hk(n) ∈ Crk×t, and xk(n) ∈ Ct×1 denote, respectively, the

received signal vector, the channel matrix, and the transmitted signal vector at user

k’s tone n. zk(n) ∈ Crk×1 is a vector of independent zero-mean complex Gaussian

noise entries with variance 1/2 per real component at user k’s receiver. The block

diagram of MIMO-OFDMA BC is provided in Fig. 5.1.
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The channel matrix, Hk(n), is assumed to be perfectly known to the receiver and

unknown to the transmitter; thus, it is impossible to adapt the transmission strategy

in response to the instantaneous channel matrix. ρk denotes user k’s channel SNR

per receive antenna at each tone. Hk(n) =
√

ρk/tH
′
k(n), and the elements of H′

k(n)

are assumed to be independent zero-mean circularly symmetric complex Gaussian

(ZMCSCG) random variables† with variance 1/2 per real dimension. The channel

SNR ρk is only a function of the user index k, and for each user, it is assumed to be

the same across every tone. This is not exactly true if the propagation loss increases at

higher frequencies. However, the increment in loss depends on the ratio of the carrier

frequency to the signal bandwidth; a larger ratio reduces the difference in propagation

loss across the tones. In practice, the carrier frequency is much larger than the

signal bandwidth‡, a fact that validates the constant variance assumption over every

tone. Across each user’s tones, the MIMO channels are correlated depending on the

coherence bandwidth.

From the ZMCSCG property of channel matrices, every antenna is assumed to

transmit independent Gaussian distributed signals with equal average power as in

[30]. Also, it is assumed that each user allocates equal power on assigned tones to

that user. Since the channel statistics on the same user’s tones are identical, this equal

power allocation is optimal for uplink OFDMA systems with CDIT. In addition to

the uplink, [33] shows that the equal power allocation over the whole bandwidth is

the best strategy for downlink OFDMA systems with CDIT. Thus, when the total

transmit power is constrained to Ptot, the allocated power on one transmit antenna of

each tone is equal to Ptot

tN
, and user k’s SNR per receive antenna at each tone is given

by ρ′k = ρk
Ptot

tN
. Consequently, the mutual information between xk(n) and yk(n) with

a given Hk(n) is represented as the following [68].

Ik(n) = log2

∣∣∣∣I +
ρ′k
t
H′

k(n)H′
k(n)H

∣∣∣∣ (bits/sec/Hz). (6.2)

†A complex Gaussian random variable Z = X + jY is ZMCSCG if X and Y are independent
real Gaussian random variables with zero mean and equal variance [48].

‡For example, mobile WiMAX systems have carrier frequency greater than 2 GHz and system
bandwidth of 1.25∼20 MHz.
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Let Si denote the set of tones allocated to user i. Because of the FDMA con-

straint in OFDMA systems, each tone is allowed to be used by at most one user;

hence, Si ∩ Sj = ∅ for i 6= j and
⋃K

i=1 Si ⊆ {1, 2, · · · , N}. Then, the mutual informa-

tion for user k, i.e. between {xk(1), · · · ,xk(N)} and {yk(1), · · · ,yk(N)} with given

{Hk(1), · · · ,Hk(N)} is

Ik =
1

N

∑
n∈Sk

Ik(n) =
1

N

∑
n∈Sk

log2

∣∣∣∣I +
ρ′k
t
H′

k(n)H′
k(n)H

∣∣∣∣ (bits/sec/Hz). (6.3)

If the channel matrix is approximately constant during a transmission interval, given a

target rate Rk, an outage is declared for user k when {Ik < Rk}§, and the probability

of this event is called outage probability of user k. It is difficult to express the

distribution of Ik in a simple closed form, and characterizing the relation between the

target rate and the outage probability may require complicated numerical integrals,

which are intractable even for the single-user case. The next section shows that the

mutual information can be well approximated by a Gaussian distribution, and using

this result, efficient algorithms are presented to characterize the outage rate region

given each user’s outage probability.

The models of queueing system and scheduler in this chapter are basically the

same as those described in Chapter 2.2 except for the additional consideration of

outage events. The rate vector at time slot t, R(t) is determined by the scheduler

based on the outage rate region and perfect QSI. Because of the outage events, user

i’s queue-state vector after one scheduling period¶ is expressed as

Qi(t + 1) =

{
max{Qi(t)−Ri(t), 0}+ Zi(t) w.p. 1−Prob{Ri(t) is in outage};
Qi(t) + Zi(t) w.p. Prob{Ri(t) is in outage}.

(6.4)

where w.p. means ‘with probability’. In practice, the outage event is detected at

the receiver, and notification of the outage to the transmitter may result in some

delay effects. For simplicity, those effects are ignored by assuming that the outage is

§During each scheduling period, one codeword is assumed to be sent across user k’s tones with
the transmission rate of Rk bps/Hz

¶Ts is assumed to be 1
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immediately known at the transmitter.

6.1.2 Uplink MIMO-OFDMA Systems

In uplink MIMO-OFDMA systems, the major differences from downlink MIMO-

OFDMA systems are that each mobile terminal (MT) has its own power constraint,

and the queueing systems are distributed across the users. Thus, as noted in the

introduction, a feedback link is required to send each user’s queue backlog to the BS.

Consider an uplink MIMO-OFDMA system with K users and N tones where the BS

is equipped with r receive antennas and K mobile terminals with t1, · · · , tK transmit

antennas, respectively. At user k’s tone n, the following MIMO channel is formed:

yk(n) = Hk(n)xk(n) + zk(n) =

√
ρk

tk
H′

k(n)xk(n) + zk(n), (6.5)

where yk(n) ∈ Cr×1, Hk(n) ∈ Cr×tk , and xk(n) ∈ Ctk×1 denote, respectively, the

received signal vector, the channel matrix, and the transmitted signal vector at user

k’s tone n. zk(n) ∈ Cr×1 is a vector of independent zero-mean complex Gaussian

noise entries with variance 1/2 per real component at the BS. As in downlink case,

the MIMO matrix channel is assumed to be perfectly known to the receiver and

unknown to the transmitter. ρk denotes user k’s channel SNR per receive antenna at

each tone. The block diagram of MIMO-OFDMA MAC is presented in Fig. 5.2.

The entries of H′
k(n) are ZMCSCG random variables with variance 1/2 per real

dimension. In addition, the channel SNR on each tone, ρk is only a function of the

user index k. Therefore, each mobile terminal transmits an independent Gaussian

distributed signal with equal average power on each antenna per allocated tone. If

tone n is occupied by user k, the allocated power on one transmit antenna at tone

n is equal to Pk

tk|Sk| , where Pk represents user k’s power constraint and |Sk| denotes

the cardinality of the set Sk, i.e. the number of tones assigned to user k. There-

fore, user k’s SNR per receive antenna at each tone is given by ρ′k = ρk
Pk

tk|Sk| . As

a result, the mutual information for user k, i.e. between {xk(1), · · · ,xk(N)} and

{yk(1), · · · ,yk(N)} with given {Hk(1), · · · ,Hk(N)} is represented as
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Ik =
1

N

∑
n∈Sk

Ik(n) =
1

N

∑
n∈Sk

log2

∣∣∣∣I +
ρ′k
tk

H′
k(n)H′

k(n)H

∣∣∣∣ (bits/sec/Hz). (6.6)

The stochastic properties and models of queueing systems and schedulers are the

same as in the downlink case. The only difference is that in the uplink, each MT has

one output queue assumed to have infinite capacity. Thus, each MT’s QSI needs to

be sent to the BS through a reliable feedback channel. The delay in reporting QSI to

the BS may cause some degradation in scheduling performance such as the increase of

queueing delay. As long as the packet arrival rate is not intensively high, the change

in queue states from new packet arrivals remains very slow. Also, previous rate

allocations can be tracked at the scheduler, which makes it feasible to compensate

the inaccuracy of QSI in case of large feedback delay. For simplicity, this chapter

assumes that perfect instantaneous QSI is available at the BS. The next section

presents efficient algorithms to characterize the outage rate region given each user’s

outage probability, based on a Gaussian approximation of the MIMO channel mutual

information.

6.2 Gaussian Approximation of Mutual Informa-

tion

Efficient evaluation of the mutual information is essential in characterizing the out-

age rate region given each user’s outage probability. However, the distribution for

the mutual information presented in the previous section takes a very complicated

form, and the evaluation of outage probability involves the integration of Laguerre

polynomials, a procedure that is numerically complex. Recently, [30, 75] show that

the mutual information of MIMO channels is close to a Gaussian distribution. In

MIMO-OFDMA systems, the MIMO mutual information is summed over multiple

tones as shown in (6.3) and (6.6). The sum of jointly Gaussian random variables also

has a Gaussian distribution. In addition, by central limit theorem, the sum of i.i.d.
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random variables with arbitrary distribution will have a distribution more like Gaus-

sian. Thus, as the correlation among the tones allocated to user k becomes smaller,

the mutual information for user k in MIMO-OFDMA systems can be better approx-

imated by a Gaussian distribution compared to that of single MIMO channels. Fig.

6.1 illustrates the experimental distribution of the mutual information for multi-tone

MIMO channels as well as a Gaussian distribution with the same mean and variance

when N = 5, t = 2, and r = 2. Each tone is assumed to fade independently. In this

figure, it can be observed that the Gaussian distribution shows a very good match to

the exact distribution at both low and high SNR ranges.

Therefore, if the mean and variance of the overall channel mutual information

is reliably estimated, the outage probability can be characterized by using Gaussian

approximation methods. However, it is difficult to exactly estimate the mean and

variance of the mutual information of MIMO channels. [36] provides a closed-form

analytical expression for approximate mean and variance values of the MIMO mutual

information. These are derived by characterizing the asymptotic probability distri-

bution of MIMO mutual information. In spite of the asymptotic nature, [36] shows

that the derived variance is quite accurate at all SNR ranges even for a small num-

ber of transmit and receive antennas. These results are presented and extended to

MIMO-OFDMA systems in the following two propositions.

Proposition 3. The mean of mutual information of user k’s channel in downlink

MIMO-OFDMA systems can be approximated as follows:

E[Ik] ≈ t|Sk|
N

[c log2 (1 + ρ′k − ρ′kv(c, ρ′k))

+ log2 (1 + ρ′kc− ρ′kv(c, ρ′k))− (loge 2)v(c, ρ′k)], (6.7)

where c = rk

t
, ρ′k = ρk

Ptot

tN
, |Sk| is the number of tones assigned to user k, and

v(c, ρ′k) =
1

2


1 + c +

1

ρ′k
−

√(
1 + c +

1

ρ′k

)2

− 4c


 . (6.8)

This equation is also valid for the uplink MIMO-OFDMA systems with the following
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Figure 6.1: Probability distribution of the mutual information for MIMO-OFDMA
channels (N = 5, t = r = 2, and Ptot = tN = 10)
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changes: t → tk, rk → r, and ρ′k = ρk
Pk

tk|Sk| .

Proof. Each tone is assume to have the same distribution and the expectation of the

sum of random variables is equal to the sum of the individual expectations. Thus,

the approximation of the mean value is simply the right hand side of (11) in [36]

multiplied by |Sk|/N .

Proposition 4. The variance of mutual information for user k’s channel in downlink

MIMO-OFDMA systems can be approximated as

V ar[Ik] ≈ −(log2 e)
∑|Sk|

i=1

∑|Sk|
j=1 σ

(k)
i,j

N2
log2

(
1− v(c, ρ′k)

2

c

)
, (6.9)

where the definition of each variable is the same as that in Proposition 3. σ
(k)
i,j denotes

the entry at the ith row and the jth column of Σ(k) ∈ C|Sk|×|Sk|. Σ(k) is the normalized

covariance matrix for mutual information of each tone assigned to user k, which has

unit diagonal entries. This equation is also valid for the uplink MIMO-OFDMA

systems with the same variable changes as in the previous proposition.

Proof. Let Ik = 1/N
∑|Sk|

i=1 xi where x = [x1 · · · x|Sk|]
T denotes a vector for the mutual

information of each tone assigned to user k which has the mean of µ = [µ1 · · · µ|Sk|]
T .

Then, the normalized covariance matrix of x is defined as Σ(k) = E[(x − µ)(x −
µ)T ]/E[(x1 − µ1)

2] ∈ C|Sk|×|Sk|‖. Hence, the variance of Ik = 1/N1Tx becomes equal

to E[(x1−µ1)
2]/N21TΣ(k)1. 1TΣ(k)1 =

∑|Sk|
i=1

∑|Sk|
j=1 σ

(k)
i,j where σ

(k)
i,j denotes the entry

at the ith row and the jth column of Σ(k). As a result, the approximation of V ar[Ik]

becomes the one in (13) in [36] multiplied by
∑|Sk|

i=1

∑|Sk|
j=1 σ

(k)
i,j /N2.

If all the tones assigned to user k fade independently, σ
(k)
i,j = 0 for i 6= j. Thus,∑|Sk|

i=1

∑|Sk|
j=1 σ

(k)
i,j in (6.9) takes a value of |Sk|. When the tones are correlated, some

off-diagonal entries of Σ(k) become positive, which results in higher variance of mutual

information. The outage rate is defined as the maximum achievable rate to satisfy

the target outage probability. With larger variance in mutual information, the outage

‖Note that every tone is assumed to have the same fading statistics; thus, the same variance of
mutual information.
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Figure 6.2: Outage rate versus SNR per receive antenna (N = 5, Ptot = tN , and
outage probability=10%)

rate becomes lower for the same target outage probability. Therefore, it is desirable to

maximize the tone spacing by using distributed tone allocation in order to minimize

fading correlation among the adjacent tones.

Fig. 6.2 and Fig. 6.3 illustrate accuracy of the Gaussian approximation by using

derived mean and variance values. In these figures, the outage rate in MIMO-OFDMA

systems is evaluated for target outage probability of 10% and 1%, respectively, by

using the exact distribution of mutual information as well as the approximated Gaus-

sian distribution. N = 5 and a variety of antenna configurations are considered:

2×1, 2×2, 4×2, and 4×4 where m×n denotes m transmit and n receive antennas.

It is assumed that each tone undergoes independent fading. Both figures show that

the outage rate obtained by using the Gaussian approximation is almost the same as

the exact outage rate for any channel SNR ranging from 0 to 20dB, even when there

are only two transmit or receive antennas. As the number of antennas increases, the
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Figure 6.3: Outage rate versus SNR per receive antenna (N = 5, Ptot = tN , and
outage probability=1%)

Gaussian approximation becomes more accurate, which will further reduce the gap

in outage rates.

6.3 Efficient Algorithms for Outage Rate Region

and QPS

Based on the Gaussian approximation derived in the previous section, this section

presents efficient algorithms to characterize the outage rate region of the MIMO-

OFDMA BC and MAC. In addition, it is shown that these algorithms can be directly

used in finding the rate and power allocation for QPS in MIMO-OFDMA systems. By

using the Gaussian approximation, the outage probability can be reliably estimated
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in a very efficient way. Furthermore, given the outage probability of each user, it

is possible to check the feasibility of a certain rate tuple, i.e. the rate tuple can be

checked if it is within the outage rate region with the given outage probabilities. The

outage probability constraint on user k is denoted by ok. Also, denote Nk = |Sk| where∑K
k=1 Nk = N . The estimated mean and variance of user k’s mutual information are

denoted by Nkak and (Nk + γk)b
2
k, respectively, where γk =

∑
i6=j σ

(k)
i,j . The quantities

ak and bk are not related to Nk in the downlink, but they are so related in the uplink

since the channel SNR, ρk is inversely proportional to Nk. Also, the value of γk

reflects the fading correlation among the allocated tones, which is dependent on the

tone separation. It is assumed that given Nk, Nk tones are distributively selected

from the set of available tones such that γk is minimized. If user k’s target rate is

denoted by Rk, with an approximate distribution Ik ∼ N (Nkak, (Nk + γk)b
2
k), the

outage probability is represented as follows.

pk = P{Ik < Rk} = 1− 1

2
erfc

(
Rk −Nkak√
2(Nk + γk)bk

)
, (6.10)

where the complementary error function is defined as erfc(x) = 2/
√

π
∫∞

x
e−t2 dt. Since

pk ≤ ok from the constraint, for the fixed Nk, the maximum achievable data rate of

user k is given by

Rk,max = Nkak +
√

2(Nk + γk)bkerfc
−1(2− 2ok). (6.11)

In (6.11), Rk,max always increases with a larger Nk. In multi-user systems, the

outage rate region is defined as the set of achievable rate vectors without violating

any given constraint on each user’s outage probability. The boundary of the outage

rate region generally can be characterized by solving either of the following two prob-

lems: weighted sum-rate maximization (WSRmax) or proportional-rate maximization

(PRmax) problems. First, WSRmax problem can be formulated as

maximize
K∑

k=1

wkRk
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subject to Rk = Nkak +
√

2(Nk + γk)bkerfc
−1(2− 2ok), k = 1, 2, · · · , K

K∑

k=1

Nk = N, and Nk is a nonnegative integer, (6.12)

where wk ≥ 0 is the weight assigned to user k such that
∑K

k=1 wk = 1. The boundary

of the outage rate region can be traced by solving this problem for all possible weight

vectors. Because of the integer constraints on Nk, (6.12) may require an exhaustive

search to find the optimal solution for both uplink and downlink. The number of every

possible choice for {N1, · · · , NK} is equal to the number of ways obtaining an ordered

subset of K− 1 elements from {1, 2, · · · , N}. If each ordered element in the obtained

subset is labeled by {A1, A2, · · · , AK−1}, Nk = Ak −Ak−1 for all k = 1, · · · , K where

A0 = 0 and AK = N . Thus, the number of all the possible cases for {N1, · · · , NK} is

NPK−1 = N !/(N −K +1)! and O(N !/(N −K +1)!) ≈ O(NK) executions are needed

to solve (6.12). This exponential complexity makes this problem intractable with the

large number of users or tones. Even when the integer constraint on Nk is assumed to

be relaxed, this problem is not a convex optimization problem, since the objective for

maximization is not concave in the practical situations where the outage probability

is less than 50%. Therefore, it is hard to solve (6.12) with the polynomial complexity.

On the other hand, the formulation of PRmax problem is as follows.

maximize x

subject to wkx ≤ Nkak +
√

2(Nk + γk)bkerfc
−1(2− 2ok), k = 1, 2, · · · , K

K∑

k=1

Nk = N, and Nk is a nonnegative integer. (6.13)

where wk ≥ 0 denotes the weight assigned to user k such that
∑K

k=1 wk = 1. Solving

(6.13) provides a rate tuple on the boundary of the outage rate region that is pro-

portional to the weight vector w = [w1, · · · , wK ]T . Therefore, the boundary can be

characterized by solving this problem for all possible weight vectors. This problem

can be solved very efficiently by using the following successive feasibility check (SFC)

algorithm, which is the combination of bisection search and rate feasibility check.
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Algorithm 4: Successive Feasibility Check

1: Main Function

2: λmin = 0, λmax = δN where δ is sufficiently large

3: Calculate ak and bk for all k by (6.3) for the downlink (or (6.6) for the uplink)

4: While λmax − λmin > ε

5: λ = (λmax + λmin)/2

6: Ro = wλ where w is a given weight vector

7: [No,1, · · · , No,K ] = Check Feasibility(Ro)

8: If feasible, then

9: λmin = λ

10: Else, λmax = λ

11: End If

12: End While

13: Return Ro and [No,1, · · · , No,K ]

14: Function [No,1, · · · , No,K ] = Check Feasibility(Ro)

15: Nremain = N

16: For k = 1, · · · , K

17: For n = 1, · · · , Nremain

18: Nk = n

19: Update ak and bk using (6.7) and (6.9), respectively

20: Rk = Nkak +
√

2(Nk + γk)bkerfc
−1(2− 2ok)

21: If Rk >= Ro,k, then

22: Nremain = Nremain − n, No,k = n and break

23: Else If n = Nremain, then

24: Return “Infeasible”

25: End If

26: End For

27: End For

28: Return “Feasible” and [No,1, · · · , No,K ]
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Figure 6.4: Successive feasibility check for QPS

The parameter δ used in initializing λmax needs to be large enough to guarantee that

λmaxw = Nδw is outside the outage rate region.

If the weight vector is replaced with the current queue-state vector Q(t), the

PRmax problem becomes equivalent to finding the rate tuple supported by QPS and

its corresponding tone and power allocation. Fig. 6.4 illustrates the SFC algorithm

for use in applying QPS to two user MIMO-OFDMA systems. First, λmin is set to

zero and λmax is initialized with a large value such that the rate tuple, Q(t)λmax

is guaranteed to be infeasible. Then, the target rate tuple is chosen to be Ro =

Q(t)(λmax +λmin)/2 and its feasibility is checked as shown in Algorithm 4. If feasible,

λmin ← (λmax + λmin)/2; otherwise, λmax ← (λmax + λmin)/2. This procedure is

repeated until the difference between λmin and λmax becomes sufficiently small. As a
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result, SFC provides the rate tuple RQPS = Ro as well as each user’s tone and power

allocation for QPS.

Each feasibility check requires O(NK) executions and one-dimensional bisection

search only adds constant scaling to the complexity order. Therefore, the overall

complexity order of the above SFC algorithm is O(NK). The characterization of

outage rate region as well as application of QPS in MIMO-OFDMA BC and MAC

with CDIT can be efficiently achieved by using the SFC algorithm. On the other

hand, in order to apply the gradient-type scheduling polices such as MWMS to MIMO-

OFDMA with CDIT, WSRmax in (6.12) needs to be solved, which has the exponential

complexity in the number of users. Hence, in terms of complexity, QPS has the

advantages over the gradient-type schedulers for use in MIMO-OFDMA BC and MAC

with CDIT.

With the application of a Gaussian approximation and a SFC, the next section

presents a variety of numerical results to compare the performance of different sched-

ulers in both up and down links MIMO-OFDMA systems with CDIT.

6.4 Numerical Results and Discussion

In MIMO-OFDMA systems with CDIT, stochastic simulations with Poisson packet

arrivals are performed to evaluate the average queueing delays achieved by different

schedulers. The outage rate regions for MIMO-OFDMA BC and MAC are charac-

terized by using the Gaussian approximation in conjunction with the SFC, and four

scheduling methods are applied: a fixed rate allocation, MWMS, LQHPR, and QPS.

The simulation parameters common to all the simulation results in this section are

as follows: 64 tones, two transmit and one receive antennas, 4 µsec OFDM symbol

period, tone spacing = 312.5 kHz, scheduling period = 10 msec, each user’s target

outage probability = 10%, and average packet size = 1 Kbyte. The packet length

is exponentially distributed and packet arrivals to each user have i.i.d. Poisson dis-

tributions. Over scheduling periods, i.i.d. block fading is assumed, and each tone

allocated to the same user is assumed to undergo i.i.d. Rayleigh fading.
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Figure 6.5: Outage rate region of two-user MIMO-OFDMA BC

6.4.1 Downlink MIMO-OFDMA with CDIT

This subsection presents the numerical results for MIMO-OFDMA BC with CDIT.

Fig. 6.5 shows the outage rate region of two-user MIMO-OFDMA BC obtained from

the exact distribution of mutual information and by employing the approximated

Gaussian distribution with SFC. The total transmit power, Ptot is assumed to be

equal to N = 64, and user 1 and 2’s channel SNR per receive antenna at each tone

are set to 10 and 16 dB, respectively. This figure shows that the outage region derived

by using the proposed approach is quite close to the exact one. It is also observed

that the outage rate region of MIMO-OFDMA BC takes a triangular shape with some

non-convexity, which makes this region slightly smaller than that achieved by TDM

transmission. However, if the effect of correlation among the tones is considered,

each user’s maximum outage rate will be significantly reduced since with every tone

assigned to the single user, adjacent tones may exhibit high correlation that increases
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Figure 6.6: Average queueing delay vs User 1’s average data rate for MIMO-OFDMA
BC with K = 2

the variance in channel mutual information. On the other hand, when each user takes

significant portion of total bandwidth, the correlation among each user’s tones can be

kept relatively low by applying the distributed tone allocation. Therefore, the outage

rate region of MIMO-OFDMA BC will have more convex shape if the assumption of

i.i.d. fading across the tones is removed.

Fig. 6.6 and Fig. 6.7 present the stochastic simulation results for MIMO-OFDMA

BC with CDIT. The average queueing delay with Poisson packet arrivals is evaluated

for QPS, MWMS, LQHPR, and a fixed operation point. By Little’s theorem intro-

duced in Chapter 2.1.2, the average queueing delay over all users can be defined as

limt→∞ 1
K

∑K
i=1 E[Qi(t)]/λi where λi denotes user i’s average bit arrival rate or aver-

age data rate. In Fig. 6.6, two-user MIMO-OFDMA BC in Fig. 6.5 is considered.

In the simulation, the average queueing delay is evaluated when each user’s average

data rate increases while satisfying λ2 = 1.04λ1. The fixed operation point is set to
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Figure 6.7: Average queueing delay vs User 1’s average data rate for MIMO-OFDMA
BC with K = 10

[20 40]T Mbps, which is on the boundary of outage rate region. Fig. 6.6 shows that

with this fixed operation point, user 1’s achieved throughput is 17.8 Mbps. Thus,

about 10% throughput loss from the target data rate is observed, which is caused by

the packet outage events. On the other hand, user 1’s achievable throughput is as

large as 24 Mbps under QPS, MWMS, and LQHPR. [27 28]T Mbps is the boundary

point of outage rate region satisfying the condition, λ2 = 1.04λ1. With about 10%

throughput loss from this boundary point, 24 Mbps corresponds to user 1’s maxi-

mum achievable throughput, which corroborates the throughput optimality of QPS

and MWMS. One of TDM scheduling policies, LQHPR also happens to achieve this

maximum throughput since the outage rate region in Fig. 6.5 is very close to the

TDM rate region. In Fig. 6.6, it can also be observed that QPS provides smaller

average queueing delay than other schedulers.

In Fig. 6.7, ten-user MIMO-OFDMA BC is considered where Ptot = N = 64,
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Figure 6.8: Average queueing delay profile for MIMO-OFDMA BC with K = 10

and each user’s channel SNR per receive antenna at each tone is [10 11 · · · 19]T

dB, respectively. The average queueing delay is evaluated when each user’s average

data rate increases while satisfying λk = λ1 for k = 2, · · · , 5, and λk = 2λ1 for

k = 6, · · · , 10. The fixed operation point is chosen from the boundary of outage

rate region such that user 1’s target rate is 2.8 Mbps. Fig. 6.7 shows that with this

fixed operation point, user 1’s achieved throughput is about 2.4 Mbps, which can be

boosted up to 4 Mbps by applying QPS, MWMS, or LQHPR. Fig. 6.7 also shows

that QPS provides much smaller average queueing delay than MWMS and LQHPR.

This is because with the TDM rate region, only QPS supports multiple users at the

same time.

Fig. 6.8 presents each user’s average queueing delay for the same ten-user MIMO-

OFDMA BC as in Fig. 6.7. It can be seen that every user’s average queueing

delay is perfectly equalized under QPS. Furthermore, as shown in Chapter 3, QPS

can arbitrarily scale the ratio of each user’s average queueing delay to satisfy QoS
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Figure 6.9: Outage rate region of MIMO-OFDMA MAC with K = 2

parameters.

6.4.2 Uplink MIMO-OFDMA with CDIT

This subsection presents the numerical results for MIMO-OFDMA MAC with CDIT.

Fig. 6.9 provides the outage rate region of two-user MIMO-OFDMA MAC obtained

from both the exact distribution of mutual information and approximated Gaussian

distribution combined with SFC. Each user’s total transmit power, Pk is assumed

to be N = 64 for k = 1, 2, and user 1 and 2’s channel SNR per receive antenna

at each tone are set to 10 and 16 dB, respectively. As in the downlink case, the

proposed approach is shown to provide a very good approximation of the actual

outage rate region. The outage rate region presented in Fig. 6.9 is much larger than

the outage rate region achieved by TDM transmission. As explained in the previous

subsection, the convexity of the outage rate region will be more pronounced if the



CHAPTER 6. SCHEDULING IN MIMO-OFDMA WITH NO CSIT 134

16 17 18 19 20 21 22 23 24 25 26
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

User 1’s average data rate (Mbps)

A
ve

ra
ge

 q
ue

ue
in

g 
de

la
y 

(s
ec

)

 

 
MWMS
QPS
Fixed: SRM
LQHPR

Figure 6.10: Average queueing delay vs User 1’s average data rate for MIMO-OFDMA
MAC with K = 2

effect of correlation among the tones is considered.

Fig. 6.10 and Fig. 6.11 present the stochastic simulation results for MIMO-

OFDMA MAC with CDIT. In Fig. 6.10, two-user MIMO-OFDMA MAC in Fig. 6.9

is considered. Each user’s average data rate increases while maintaining λ2 = 1.84λ1.

The fixed operation point is set to [16.6 64.8]T Mbps, which is on the boundary of

outage rate region. Fig. 6.10 shows that user 1’s achieved throughput is slightly less

than 16 Mbps with the fixed operation point and about 18.5 Mbps with LQHPR. The

throughput can be enhanced up to 24 Mbps by using throughput optimal schedulers,

QPS or MWMS. In Fig. 6.10, it can also be observed that QPS provides 30-40%

smaller average queueing delay than MWMS.

In Fig. 6.11, ten-user MIMO-OFDMA MAC is considered where Pk = N = 64

for k = 1, · · · , 10, and each user’s channel SNR per receive antenna at each tone

is [10 11 · · · 19]T dB, respectively. Each user’s average data rate increases while
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Figure 6.11: Average queueing delay vs User 1’s average data rate for MIMO-OFDMA
MAC with K = 10

satisfying λk = λ1 for k = 2, · · · , 5, and λk = 2λ1 for k = 6, · · · , 10. The fixed

operation point is chosen from the boundary of outage rate region such that user 1’s

target rate is 5.5 Mbps. In Fig. 6.11, user 1’s achieved throughput is shown to be

4.8 Mbps with this fixed operation point, 4 Mbps with LQHPR, and 7.2 Mbps with

QPS. Hence, around 80% throughput gain is achieved by QPS compared to LQHPR.

The numerical results for MWMS are excluded in Fig. 6.11 because of its exponential

complexity in the number of users. On the other hand, the rate allocation under

QPS can be efficiently searched with the linear complexity by using SFC. Fig. 6.12

provides each user’s average queueing delay for the same ten-user MIMO-OFDMA

MAC as in Fig. 6.11. It can be observed that every user’s average queueing delay is

kept much smaller as well as perfectly equalized under QPS.
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Figure 6.12: Average queueing delay profile for MIMO-OFDMA MAC with K = 10

6.5 Summary

When only CDIT is available, characterization of the outage rate region is essential

for cross-layer resource allocation. This chapter efficiently characterizes the outage

rate regions of the MIMO-OFDMA BC and MAC with CDIT, by using a Gaussian

approximation of channel mutual information combined with a successive feasibility

check. The proposed approach is also directly applicable to the solution of power/rate

optimizations for QPS with the linear complexity in the number of tones and users.

On the other hand, power/rate optimizations for gradient-type schedulers such as

MWMS require the exponential complexity in the number of users. Stochastic sim-

ulations to evaluate average queueing delay are performed by using the proposed

method, which demonstrate superior delay and fairness properties of QPS to other

scheduling policies. With numerical efficiency as well as good delay and fairness prop-

erties, QPS is a promising scheduling policy for use in cross-layer resource allocation

for MIMO-OFDMA systems with CDIT.



Chapter 7

Conclusion and Future Work

With the dramatic increase in multimedia services, future wireless networks will have

more diversified QoS demands to support a variety of ubiquitous broadband services

such as portable telephony, mobile Internet, VoIP, and IPTV. In order to guarantee

QoS satisfaction, proper design of dynamic resource allocation will become one of the

key issues in the future wireless networks. This thesis illustrates the important role

of cross-layer approach to resource allocation in multi-user communication systems.

7.1 Conclusion

In Chapter 3, queue-proportional scheduling (QPS) is suggested as a promising queue-

channel-aware scheduler with good throughput, delay, and fairness properties. QPS

is shown to be a throughput optimal scheduling policy, and the stochastic simulations

demonstrate that QPS achieves smaller average queueing delay than other scheduling

policies such as maximum weight matching scheduling (MWMS). Furthermore, QPS

is capable of arbitrarily scaling the ratio of each user’s average queueing delay, which

is essential for satisfying various QoS requirement at the same time.

This thesis also investigates the application of QPS and other schedulers to the

multi-user systems based on OFDM modulation as well as MIMO transmission.

By using various optimization techniques, efficient power/rate allocation algorithms

are developed to employ those schedulers in downlink and uplink SISO-OFDM and

137
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MIMO-OFDMA systems with CSIT. In Chapter 4, geometric programming (GP) is

introduced and applied to cross-layer resource allocation for SISO-OFDM BC and

MAC with CSIT. With strong numerical efficiency and scalability, GP emerges as a

powerful tool for this application.

In MIMO-OFDMA BC and MAC with CSIT, finding the optimal power/rate

allocation on each tone is basically a combinatorial problem with the exponential

complexity. The analysis in Chapter 5 suggests that in resource allocation problems

for MIMO-OFDMA with CSIT, the duality gap vanishes with the practical number of

tones. From this observation, efficient algorithms based on Lagrange dual decompo-

sition are derived to solve weighted sum-rate maximization and weighted sum-power

minimization problems with the polynomial complexity.

In highly mobile environments, the value of CSI feedback is limited and the base

station needs to perform resource allocation only using channel distribution informa-

tion (CDI). In Chapter 6, cross-layer resource allocation in MIMO-OFDMA BC and

MAC with CDIT is investigated. A simple method to accurately characterize outage

rate region is presented, based on a Gaussian approximation of mutual information in

conjunction with a successive feasibility check. This method is directly applicable to

efficiently finding power/rate allocation under QPS with the linear complexity, while

supporting other gradient-type schedulers such as MWMS requires the exponential

complexity. In multi-user systems with only CDIT, QPS has clear advantages over

other schedulers in terms of numerical efficiency in addition to good delay and fairness

properties.

This thesis presents stochastic simulation results in a variety of situations by us-

ing the proposed efficient cross-layer resource allocation algorithms. In typical wire-

less networks based on MIMO-OFDM transmission, queue-channel-aware scheduling

achieves about 20-50% throughput gain over channel-aware scheduling, and it pro-

vides better queueing delay and fairness properties. Particularly, QPS enables precise

control of each user’s average queueing delay relative to others, which is crucial in sat-

isfying different QoS demands. Cross-layer resource allocation is essential for future

wireless networks driven by various ubiquitous broadband services.
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7.2 Future Work

Further analytical and experimental study on queueing delay property is recom-

mended to better understand performance of the QPS and other scheduling policies.

Stochastic simulations in this thesis mostly present the average queueing delay of each

scheduler. However, it is of great interest to characterize each user’s packet delay dis-

tributions. With specific QoS parameters imposed on each service, the probability

of violating delay constraints can be evaluated to provide more realistic comparison

of scheduling policies. Further, it is important as well as challenging to define the

fundamental limits on achievable queueing delay by multi-user packet schedulers.

Also, efficient power/rate optimization algorithms for cross-layer resource alloca-

tion in MIMO-OFDM BC and MAC with CSIT need to be developed. This thesis

focuses on the MIMO-OFDMA system without SDMA capability, where its system

throughput can be further increased by using SDMA. Though the capacity regions of

Gaussian MIMO-OFDM BC and MAC have been completely characterized [76, 43],

the complexity of finding the optimal solution is still prohibitively high. In practice,

it is required to find near-optimal solutions that can be easily found. Application of

zero-forcing beamforming (ZF-BF) [78] or zero-forcing generalized decision feedback

equalizer (ZF-GDFE) [12] can be good candidates for suboptimal multi-user MIMO

systems. Efficient power/rate optimization algorithms for these suboptimal systems

are required for schedulers to support any rate tuple in the achievable rate region.

Chapter 6 assumes that the packet outage is known at the transmitter and re-

transmission of the failed packet is ignored. New wireless systems such as 3GPP

LTE [69] and mobile WiMAX [34] employ an advanced retransmission strategy based

on hybrid automatic repeat request (H-ARQ) to achieve robustness and high spec-

tral efficiency [23]. It is an interesting topic to investigate the effects of H-ARQ on

scheduling performance and to design intelligent schedulers when H-ARQ is used.

This thesis mainly considers broadcast channels and multiple-access channels

where the full coordination at the base-station is feasible. Of great interest is to
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study cross-layer resource allocation in interference channels or relay channels with-

out full coordination. Interference channels can be encountered in many applications

such as multi-cell wireless networks and DSL networks. Also, relay channels can be

found in a multi-hop ad hoc wireless network where multiple hops are required for

efficient communication between mobile nodes far apart [28]. With no or partial co-

ordination, it becomes more challenging to satisfy each user’s different QoS demand

and to develop efficient power/rate optimization algorithms.



Appendix A

Throughput Optimality of MWMS

Throughput optimality of maximum weight matching scheduling (MWMS) can be

proved by applying the Lyapunov analysis introduced in Chapter 2.1.3. Without loss

of generality, such proof assumes that the scheduling period and system bandwidth

are equal to 1. A time interval [t, t + 1) with t = 0, 1, 2, · · · is denoted by the

time slot t . The rate allocation is determined at the beginning of each time slot

and remains unchanged until the new time slot begins. R(t) for t = 0, 1, 2, · · · is a

vector denoting the number of bits supported by each user in the time slot t. At time

slot t, MWMS assigns the data-rate vector that maximizes the inner product of the

queue-state vector and the achievable rate vector as formulated below.

RMWMS(t) = arg max
r

Q′(t)T r

such that r ∈ C(t), (A.1)

where r = [r1 r2 · · · rK ]T , C(t) denotes the instantaneous achievable rate region at

time t, and Q′(t) = [β1Q1(t) · · · βKQK(t)]T . βi is the user i’s priority weight which

is set to 1 for all users if everyone has the same priority. Define Zi(t) as the number

of arrived bits at user i’s queue in the time slot t. Then, after a scheduling period,

user i’s queue-state vector is equal to Qi(t + 1) = Qi(t) − Ri(t) + Zi(t). With the

network capacity region denoted by Cnet, proving throughput optimality of MWMS

is equivalent to showing that for any λ ∈ int Cnet, the queue lengths for all users can
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be kept finite under MWMS.

First, choose the Lyapunov function L(Q(t)) =
∑K

i=1 βiQ
2
i (t). The evolution of

L(Q(t)) after one scheduling interval is

L(Q(t + 1)) =
K∑

i=1

βiQ
2
i (t + 1) =

K∑
i=1

βi (Qi(t)−Ri(t) + Zi(t))
2 (A.2)

≤ L(Q(t))− 2
K∑

i=1

βiQi(t) (Ri(t)− Zi(t)) +
K∑

i=1

βi

(
Z2

i (t) + R2
i (t)

)
.

Conditioned on Q(t) = qt, the expected drift of the Lyapunov function is

E [L(Q(t + 1))− L(Q(t))|Q(t) = qt] ≤ −2
K∑

i=1

βiqt,i (E[Ri(t)|Q(t) = qt]− λi)

+
K∑

i=1

βi

(
E[Z2

i (t)] + E[R2
i (t)|Q(t) = qt]

)
. (A.3)

E[Z2
i (t)] and E[R2

i (t)|Q(t) = qt] are bounded since the bit arrival process Zi(t) has a

finite mean and variance and the size of network capacity region is finite. Hence, for

some positive Θ < ∞,

K∑
i=1

βi

(
E[Z2

i (t)] + E[R2
i (t)|Q(t) = qt]

) ≤ Θ. (A.4)

From definition of MWMS in (A.1),
∑K

i=1 βiqt,iγi is maximized over all the vectors

γ = [γ1 · · · γK ]T in the network capacity region Cnet. Therefore, for any arrival rate

vector λ ∈ Cnet, the following inequality holds.

K∑
i=1

βiqt,iE[Ri(t)|Q(t) = qt] ≥
K∑

i=1

βiqt,iλi. (A.5)

Since λ is assumed to be strictly in the interior of the network capacity region, a

positive vector ε = [ε · · · ε]T can be added to produce another vector λ + ε in the

network capacity region. Thus, from (A.5),
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K∑
i=1

βiqt,i (E[Ri(t)|Q(t) = qt]− λi) ≥ ε

K∑
i=1

βiqt,i. (A.6)

By applying (A.4) and (A.6) in (A.3), the expected drift of the Lyapunov function

can be expressed as

E [L(Q(t + 1))− L(Q(t))|Q(t) = qt] ≤ Θ− 2ε
K∑

i=1

βiqt,i. (A.7)

By choosing any α > 0 and defining the compact region, then

Λ =

{
qt ∈ RK | qt,i ≥ 0,

K∑
i=1

βiqt,i ≤
(

Θ + α

2ε

)}
. (A.8)

For qt 6∈ Λ, the expected drift of the Lyapunov function is less than −α; thus, MWMS

is throughput optimal.



Appendix B

Lagrange Dual Decomposition

An optimization problem in the standard form can be represented as

minimize f0(x)

subject to fi(x) ≤ 0, i = 1, · · · ,m (B.1)

hi(x) = 0, i = 1, · · · , p,

with variable x ∈ Rn. The domain D =
⋂m

i=0 domfi ∩
⋂p

i=1 domhi where domf

denotes the domain of the function f is assumed nonempty and the optimal value of

(B.1) is denoted by p∗.

The main idea of Lagrange dual decomposition is to include the constraints in the

objective function by using the Lagrange multipliers associated with each constraint.

The Lagrangian L : Rn × Rm × Rp → R of the problem (B.1) is

L(x,λ,µ) = f0(x) +
m∑

i=1

λifi(x) +

p∑
i=1

µihi(x), (B.2)

where λi and µi are the Lagrange multipliers associated with the ith inequality and

the ith equality constraints, respectively. The vectors λ and µ are called the dual

variables.

Then, the Lagrange dual function g : Rm × Rp → R is defined as the minimum
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value of the Lagrangian over x.

g(λ,µ) = inf
x∈D

L(x,λ,µ) = inf
x∈D

(
f0(x) +

m∑
i=1

λifi(x) +

p∑
i=1

µihi(x)

)
. (B.3)

When the Lagrangian is unbounded below in x, the dual function takes on the minus

infinite value. The dual function is always concave since it is the pointwise infimum

of a family of affine functions in (λ, µ).

Because of the constraints, for any λ º 0 and any µ, the following condition holds

g(λ,µ) = inf
x∈D

L(x,λ,µ) ≤ L(x̃,λ,µ) ≤ f0(x̃), (B.4)

where x̃ denotes any feasible point.

Therefore, g(λ, µ) ≤ p∗ for any λ º 0 and any µ. The Lagrange dual problem

associated with (B.1) is defined as

maximize g(λ,µ)

subject to λ º 0. (B.5)

The original problem (B.1) is sometimes called the primal problem. If (λ∗, µ∗) are

optimal for (B.5), they are called dual optimal variables. Regardless of convexity of

the primal problem, the above dual problem is always a convex optimization problem

since the objective and constraint are convex.

By definition, the optimal objective value of the Lagrange dual problem, d∗ is

the best lower bound on p∗ that can be obtained from the Lagrange dual function.

The optimal duality gap is defined as p∗ − d∗, the difference between primal and

dual optimal values. If the primal optimization problem is a convex optimization

problem where the objective and constraints form convex sets, the zero duality gap

is guaranteed; thus, the optimal solution to the original problem can be obtained

by solving the Lagrange dual problem. However, for non-convex primal optimization

problems, the nonzero duality gap may exist.

The Lagrange dual decomposition can be given a simple geometric interpretation
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in terms of the set

G = {(f1(x), · · · , fm(x), h1(x), · · · , hp(x), f0(x)) ∈ Rm × Rp × R|x ∈ D} , (B.6)

which is the set of values taken on by the constraints and objective functions. Then,

p∗ can be expressed as

p∗ = inf {t|(u,v, t) ∈ G,u ¹ 0,v = 0} . (B.7)

The dual function at (λ,µ) is given by

g(λ,µ) = inf
{
(λ,µ, 1)T (u,v, t)|(u,v, t) ∈ G}

. (B.8)

The maximization of this dual function over λ º 0 provides the dual optimal value,

d∗. Geometric interpretation of the primal and dual optimal values with only one

inequality constraint is illustrated in Fig. B.1, which shows that the duality gap

becomes zero when G is a convex set. It is shown that this statement holds when

multiple constraints are present. The convexity of G does not necessarily imply that

the primal problem is a convex optimization problem though the opposite argument

is always true. Thus, the convexity of G is a more general condition to guarantee the

zero duality gap.
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G

u

t

∗d
)( 11 λλ gtu =+

)( ∗∗ =+ λλ gtu

0

∗p

)( 22 λλ gtu =+

(a) G is a nonconvex set

G

u

t

∗∗ = dp

)(λg

)(λλ gtu =+

)( ∗∗ =+ λλ gtu

0

(b) G is a convex set

Figure B.1: Geometric interpretation of dual function with one inequality constraint.
Given λ, λu + t is minimized over G = {(f1(x), f0(x))|x ∈ D}, which provides a
supporting hyperplane with a slope of −λ. g(λ) is the intersection of this hyperplane
with the t-axis.



Appendix C

Dual Update Methods

In order to solve the dual optimization problem, minimize g(λ) for λ ≥ 0, efficient

updates of the dual variable λ plays a critical role. All the components of λ can be

updated simultaneously along some search direction, and because of the convexity of

g(λ), this gradient-type search of optimal dual variable is guaranteed to converge to

the global optimum. Unfortunately, the gradient of g(λ) is unavailable when the dual

function is not differentiable. However, it is always feasible to use the sub-gradient

in finding a search direction. A vector d is called a subgradient of g(λ) at λ, if the

following condition is satisfied for all λ′.

g(λ′) ≥ g(λ) + dT (λ′ − λ). (C.1)

Subgradient is a generalization of gradient, which can be also applied to the non-

differentiable functions. d is a subgradient if the linear function with slope d passing

through (λ, g(λ)) lies entirely below g(λ).

The updates of dual variables can also be based on the cutting-plane methods.

The main idea is to localize the set of candidate λ’s within some closed and bounded

set, and eliminate about the half of the region from the candidate set by evaluating

the subgradient of g(λ) at an properly chosen center of such a region. The iterations

continue until the size of the candidate set converges to an optimal λ. From the

definition of the subgradient in (C.1), g(λ′) ≥ g(λ) for all λ′ satisfying the following
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condition.

dT (λ′ − λ) ≥ 0. (C.2)

Thus, all λ′’s in the half-plane defined by (C.2) can be removed at each step. This

cutting-plane method is a generalization of the single-variable bisection method to

multiple dimensions.

The ellipsoid method is a very efficient cutting-plane dual update method, where

the candidate region is defined as the minimized ellipsoid that includes all the candi-

date λ’s. The key idea in the ellipsoid method is to localize λ∗, the optimal solution,

in a sequence of ellipsoids E (k) with vanishing volumes so that λ(k), the centers of

these ellipsoids, eventually converge to λ∗ [8].

This iterative algorithm starts with an initial ellipsoid E (0) that contains λ∗. At

each iteration, λ(k) is chosen as the center of ellipsoid E (k) and a subgradient of g(λ)

at λ(k) denoted by d(k) is determined. By definition of subgradient, d(k) satisfies

g(λ(k) +∆λ) ≥ g(λ(k))+∆λT d(k) for any ∆λ, which means that λ∗ should be in the

half-ellipsoid as follows.

E (k)
⋂ {

λ : d(k)T
(
λ− λ(k)

)
≤ 0

}
. (C.3)

In the next iteration, E (k+1) is defined as the minimum volume ellipsoid covering the

half-ellipsoid in (C.4). Suppose A(k) is the matrix describing E (k) as

E (k) =

{
λ :

(
λ− λ(k)

)T

A(k)−1
(
λ− λ(k)

)
≤ 1

}
. (C.4)

Given E (k) and d(k), λ(k+1) and E (k+1) can be expressed as

λ(k+1) = λ(k) − 1

n + 1
A(k)d̃(k), (C.5)

A(k+1) =
n2

n2 − 1

(
A(k) − 2

n + 1
A(k)d̃(k)d̃(k)TA(k)

)
, (C.6)

where d̃(k) = d(k)/
√

d(k)TA(k)d(k) and n is the dimension of λ. The volumes of these
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ellipsoids can be shown to decrease exponentially, i.e. Vol(E (k+1)) < e−(1/2n)Vol(E (k))

and converge in O(n2) iterations. The iteration stops when
√

d(k)TA(k)d(k) < ε.
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