On Growing Better Decision Trees from Data

Kolluru Venkata Sreerama Murthy

A dissertation submitted to The Johns Hopkins University in conformity with the

requirement for the degree of Doctor of Philosophy.

Baltimore, Maryland
1995
Copyright © 1995 by Kolluru Venkata Sreerama Murthy,

All rights reserved.

Abstract

This thesis investigates the problem of growing decision trees from data, for the purposes
of classification and prediction.

After a comprehensive, multi-disciplinary survey of work on decision trees, some
algorithmic extensions to existing tree growing methods are considered. The implications
of using (1) less greedy search and (2) less restricted splits at tree nodes are systemati-
cally studied. Extending the traditional axis-parallel splits to oblique splits is shown to
be practical and beneficial for a variety of problems. However, the use of more extensive
search heuristics than the traditional greedy heuristic is argued to be unnecessary, and often
harmful.

Any effort to build good decision trees from real-world data involves “massag-
ing” the data into a suitable form. Two forms of data massaging, domain-independent
and domain-specific, are distinguished in this work. A new framework is outlined for the
former, and the importance of the latter is illustrated in the context of two new, complex
classification problems in astronomy. Highly accurate and small decision tree classifiers are

built for both these problems through a collaborative effort with astronomers.

ii

Dedicated to

Amma, Babaji

iii

v

Acknowledgements

My present status in life, this Ph.D. included, is a result of the extraordinary will,
efforts and sacrifices of my parents.

Steven Salzberg, my thesis adviser, taught me a lot about professional attitude
towards work in addition to guiding me through the nitty-gritties of research. Steven
translated my wish to write a thesis into a series of concrete, well-planned sub-goals. Simon
Kasif introduced me to decision trees and helped throughout my Ph.D work with his broad
knowledge of the literature. Working with Holland Ford on the astronomy classification
problems was a pleasure. Simon and Holland reassured me that a friendly, good-humoured
nature is not an antithesis to professional competence. Eric Brill read early drafts of this
thesis with great interest, and his suggestions significantly improved the thesis. I wish Eric
had come to Hopkins earlier-on during my stay.

My wife Sudha’s patience, encouragement, love and guidance were essential for
my joining and smooth-sailing through the Ph.D. program. My brother Dakshinamurthy
buffered my ups and downs with unquestioning support. Kala, Maxine and Bradley helped

create a home away from home. Abhay helped shape my perspectives about the responsi-

bilities of technology, the nature of research, etc.

Richard White and Rupali Chandar collaborated in building the astronomy clas-
sifiers, and were always friendly and helpful. Richard Beigel helped in designing OC1’s
randomized search. Wray Buntine, Carla Brodley, David Heath and Kristine Bennett pro-
vided software systems for experimental comparisons, and assisted in using them. Each and
every faculty member, graduate student and staff member in the computer science depart-
ment helped make my stay at Hopkins enjoyable and educational. In particular, I would like
to mention Michael Goodrich, Michael Brent, Elli Angelopoulou, Kumar Ramaiyer, Pisu-
pati Chandrasekhar, Lewis Stiller, John Sheppard, Paul Callahan, Jim Williams, Nancy
and Tensie.

While writing this thesis, I was financially supported by National Science Foun-

dation under Grant Nos. IRI-9116843 and IRI-9223591.

Variations of parts of this thesis have been published elsewhere. References to such publi-
cations are given below along with the Chapters or Sections in which the material appears
in the thesis.

Chapter 3:
SREERAMA K. MURTHY, S. KASIF, S. SALZBERG, AND R. BEIGEL. OCIl: Ran-
domized induction of oblique decision trees. In AAAI-93: Proceedings of the Eleventh
National Conference on Artificial Intelligence, Washington, DC, 11-15th, July 1993.
AAAT Press / The MIT Press. pages 322-327.

SREERAMA K. MURTHY, SIMON KASIF, AND STEVEN SALZBERG. A system for
induction of oblique decision trees. Journal of Artificial Intelligence Research, 2:1-33,
August 1994.

Chapter 4:
SREERAMA K. MURTHY AND STEVEN SALZBERG. Lookahead and pathology in de-
cision tree induction. In IJCAI-95: Proceedings of the Fourteenth International Joint
Conference on Artificial Intelligence, Montreal, Canada, 16th-21st, August 1995.
Morgan Kaufmann Publishers Inc., San Mateo, CA. Editor: Chris Mellish. pages
1025-1031.

Chapter 5:
SREERAMA K. MURTHY AND STEVEN SALZBERG. Decision tree induction: How
effective is the greedy heuristic? In Proceedings of the First International Conference
on Knowledge Discovery in Databases, Montreal, Canada, 20th-21st, August 1995.
AAAT Press. pages 222-227.

Section 6.1:
STEVEN SALZBERG, RUPALI CHANDAR, HOLLAND FORD, SREERAMA MURTHY, AND
Rick WHITE. Decision trees for automated identification of cosmic-ray hits in Hub-
ble Space Telescope images. Publications of the Astronomical Society of the Pacific,
107:1-10, March 1995.

Chapter 7:
SREERAMA K. MURTHY. Using structure to improve decision trees. In AI€Stats-95:
Fifth International Workshop on Artificial Intelligence and Statistics, Ft. Lauderdale,
FL, 4-Tth, January 1995. Society for Al and Statistics. pages 403—409.

vi

Contents

Table of Contents vii
1 Introduction 1
1.1 Contributions e 5
1.2 Overview of the thesis o 6

2 Existing work on decision trees: A multi-disciplinary survey 10
2.1 Introduction L e 10
2.1.1 Outline of the chapter 13

2.1.2 Basics of tree construction 14

2.2 High-level pointers e 17
221 Treatises o oo e e 17

222 SUIVEYS e e e e e 19

2.3 Finding splits oL 20
2.3.1 Feature evaluation rules Lo 21

2.3.2 Multivariate splits Lo 27

2.3.3 Ordered vs. unordered attributes 32

2.4 Obtaining the right sized trees 33
24.1 Pruningo 36

2.5 Otherissues e 38
2.5.1 Sample size vs. dimensionality 38

2.5.2 Incorporating costso 42

2.5.3 Missing attribute values L 43

2.5.4 Improving on greedy induction 44

255 Useoffuzziness L 45

2.5.6 Estimating probabilities 0oL 46

2.5.7 Multiple trees e 47

2.5.8 Incremental tree induction oL 47

2.5.9 Tree quality measures 48

vil

2.5.10 Miscellaneous e e e 49

2.6 Analyses e 51
2.6.1 NP-completeness 51
2.6.2 Other analytical results 0. 53
2.6.3 Tools 55
2.6.4 Assumptions and biases oo 56
2.7 Comparisons with other exploration methods 58
2.8 Selected real-world applications 61
2.9 Awordof caution 64
Oblique decision trees 66
3.1 Introduction e 66
3.1.1 Complexity of inducing oblique decision trees 70
3.2 Details of some existing methods 74
3.3 Oblique Classifier 1 (OCL) o it 81
3.3.1 Perturbation algorithm 00 0L, 82
3.3.2 Randomization Lo 87
3.3.3 Computational complexity, 91
3.3.4 Otherdetails 94
3.4 Experiments. e e e e 100
3.4.1 Thesetup e 101
3.4.2 OCI vs. existing tree methods 103
3.4.3 Randomization helps OC1 108
3.4.4 Different kinds of perturbations 116
3.5 Conclusions e e 120
Limited lookahead search 122
4.1 Related work oL 124
4.2 Experimental method oo 126
4.2.1 Syntheticdata 127
4.2.2 Real-worlddata. 128
4.3 Experiments with synthetic data 130
4.3.1 C: Aclassof simpledatasets 130
4.3.2 Cg: A more difficult class 137
4.3.3 An example of pathology L. 142
4.3.4 “Rebalancing” greedy trees 144
4.4 Experiments with real-world data 149
4.5 Conclusions e e e e 154

5 On the effectiveness of the greedy heuristic

5.1 Experimental setupo
5.2 Experiments.
5.3 Discussion e e

6 Domain specific data massaging: Two Illustrations from Astronomy
6.1 Cosmic ray hits in Hubble Space Telescope images
6.1.1 Thetask.

6.1.2 TIteration 1: Usingraw data

6.1.3 Iteration 2: An appropriate featureset

6.1.4 Tteration 3: Removing noise

6.1.5 TIteration 4: Reducing the featureset

6.1.6 Using decision trees to confirm labelling

6.1.7 The aberration-corrected images

6.2 Star/galaxy classification for Sloan Digital Sky Survey

6.21 Thetask.o
6.2.2 Iteration 1: A “borrowed” featureset
6.2.3 TIteration 2: Refining the featureset
6.2.4 Tteration 3: A multi-stage classifier
6.2.5 The final iteration
6.2.6 Confidence estimation

7 Domain-independent data massaging: Statistical Preprocessing
7.1 Three simple data sets
7.2 A Framework L
7.3 A Concrete Example oo

7.3.1 Minimum Spanning Tree Clustering
7.3.2 Experiments o

8 Conclusions

8.1 Summary e e e e e e
8.2 Research directions o

A Processing HST images

A.1 The aberrated images
A2 HotPixels o
A.3 The aberration-corrected images

Bibliography

X

157
160
165
175

178
181
182
186
187
189
191
192
194
197
199
200
203
205
210
212

218
220
223
225
225
227

231
231
234

239
239
242
246

249

Chapter 1

Introduction

This thesis explores a specific method for discovering mathematical regularities

underlying sets of observations using a computer program.

Consider the following examples. (1) An astronomer takes a set of images using
a telescope, and identifies the objects as stars and galaxies in each image. With a view
to automate the identification process, he/she wants to discover, from the existing images,
empirical rules governing how images of stars differ from images of galaxies. (2) A cancer
center has a set of medical records accumulated over a period of time. A portion of these
records belong to patients whose cancer has recurred. It is desirable to know well in advance
whether a particular patient’s cancer will recur, and empirical regularities in existing patient

records may be a key to this information.
We refer to the general process of discovering rules from data as “exploration”,
“learning”, or “classification”. Many areas of scientific enquiry address the problem of data

exploration. The science of statistics deals with assembling, classifying and tabulating data

or facts. Pattern recognition, an area of engineering, attempts to find patterns (commonali-
ties, definitive tendencies etc.) that exist in images or signals. Several areas of mathematics,
such as mathematical programming and function approximation, aim at fitting represen-
tations to data. Recent disciplines such as machine learning and artificial neural networks

largely concentrate on data exploration and classification techniques.

Advances in data collection methods, storage and processing technology provide
a unique challenge and opportunity for automated data exploration techniques. Major
scientific projects such as the Human Genome Project, the Hubble Space Telescope, and
the human brain mapping initiative are generating enormous amounts of data on a daily
basis. In addition, researchers and practitioners from more diverse disciplines than ever
before are attempting to use automated methods to analyze their data. As the quantity
and variety of data available to data exploration methods increases, there is a commensurate

need for robust, efficient and versatile data exploration methods.

This thesis considers decision trees, which are a way to represent rules underly-
ing data. Decision trees are hierarchical, sequential classification structures that recursively
partition the set of observations (data). In this thesis, we are interested in constructing de-
cision trees automatically from data. A hypothetical data set for a star/galaxy classification
problem, and a decision tree which could have been constructed from it are given in Fig. 1.1.
In the figure, the attributes w,x,y and z might represent any useful information, such as the
brightness of the object, its size etc. Each node of the decision tree consists of either a test

that partitions the data, or a decision about the object. Once a tree is constructed from

data, it can be used to classify objects of unknown category (star or galaxy).

Automatic construction of rules in the form of decision trees has been attempted in
almost all disciplines in which data exploration methods have been developed. Though the
terminology and emphases differ from discipline to discipline, there are many similarities in
the methodology (see Chapter 2). Several advantages of decision tree-based classification

have been pointed out in the literature.

e Knowledge acquisition from pre-classified examples circumvents the bottleneck of ac-

quiring knowledge from a domain expert.

e Tree methods are exploratory (non-parametric) as opposed to inferential (parametric).
As only a few assumptions are made about the model and the data distribution, trees

can model a wide range of data distributions.

e Hierarchical decomposition implies better use of available features and computational

efficiency in classification.

e Tree classifiers can treat uni-modal as well as multi-modal data in the same fashion

(as opposed to some statistical methods).

e Trees can be used with the same ease in deterministic as well as incomplete problems.
(In deterministic domains, the dependent variable (class) can be determined perfectly

from the independent variables, whereas in incomplete problems, it cannot.)

e Trees perform classification by a sequence of simple, easy-to-understand tests whose

semantics are intuitively clear to domain experts. The decision tree formalism itself

Figure 1.1: A hypothetical astronomy data set and a tree generated from it. Nodes in bold
face are decision nodes.

1.1

is intuitively appealing.

Contributions

The main contributions of this thesis, in the author’s opinion, are the following.

e “Oblique” decision trees are clearly preferable to the standard axis-parallel trees for

some domains. So, it is desirable to have a system capable of efficiently inducing
oblique trees. This thesis (Chapter 3) proposes and evaluates one such system, OC1.
The OCI1 software, written by the author, has been available in the public domain
since 1993. Hundreds of researchers from multiple disciplines from all over the world

have retrieved this software.

Two new, complex classification problems in astronomy are successfully solved.

(Chapter 6)

A systematic attempt is made to quantify the effect of lookahead search for decision
tree induction (Chapter 4). The existence of pathology [360] in the context of decision
trees is reported for the first time, and several real and synthetic data sets for which

lookahead hurts tree quality are presented.

A comprehensive, multidisciplinary survey of work on decision trees is presented whose

coverage is broader than that of the existing surveys in the field. (Chapter 2)

Most of this thesis (except Chapter 2) is from the point of view of machine learn-

ing, a subfield of artificial intelligence (AI). Almost all of this thesis has an experimental

flavor. The investigations are empirical in nature, where carefully designed and controlled
experiments form the basis of observations and conclusions. Experimental analysis has
historically been a predominant form of AI research [447].

One of the grand goals of AI has been to emulate and comprehend human intelli-
gence. A reader with such a perspective might expect machine learning systems to imitate
human learning. Adaptive processes in humans in particular, and biological organisms in
general, are fascinating. However, this thesis neither explores biological learning nor at-
tempts to justify machine learning techniques using biological analogies. Tt is possible that
automated techniques to learn from data enhance our understanding of biological learning,
or vice versa. Nevertheless, this thesis is based on the belief that biological justification is
neither necessary nor sufficient for a successful machine learning system. We believe that
an attempt to evaluate aircrafts by comparing them with birds is futile [200]. Throughout
this thesis, machine learning techniques are viewed as helpful tools, and not as techniques

that attempt to emulate natural intelligence.

1.2 Overview of the thesis

This thesis can be roughly divided into three parts. Chapter 2 is the first part, which
presents in detail the existing work on decision trees. The second part deals with one way
of building “better” decision trees: through algorithmic extensions. This part comprises of
Chapters 3, 4 and 5. The third part addresses another, not necessarily an alternative, way

of building better trees: by re-representing or massaging the data into an appropriate form.

Chapters 6 and 7 form the third part. We outline the contents of each of the three parts

below.

Existing work: Chapter 2 presents a concise multi-disciplinary survey of decision tree
related work. The main emphasis is on tree construction methodology, but pointers are also
given to comparisons of decision trees with other (statistical and neural) data exploration
methods, and to some recent, real-world applications. The effort is to trace the directions
decision tree work has taken over the years, rather than to provide a tutorial of specific
topics. Chapter 2 is intended to accomplish two things: (1) as there exist no comprehensive,
multi-disciplinary surveys of decision tree work, it attempts to fill an important gap in the
literature; (2) it shows the reader where in the big picture the rest of the results in this

thesis fit.

Algorithmic extensions

Less restricted splits: Chapter 3 considers the problem of inducing “oblique”
decision trees. Oblique decision trees can contain tests that use linear combinations of
features. (Fig. 1.1 is an oblique decision tree.) These are a generalization of the more
popular univariate, or axis-parallel, decision trees. (See Section 2.1.2 for decision tree
terminology and basics.) In Chapter 3, we discuss the difficulties in inducing oblique trees,
present an efficient algorithm and thoroughly evaluate it. We demonstrate that stochastic

search is an effective and efficient tool for building oblique trees.

Less greedy gearch: Most existing methods for tree construction use greedy
search for determining the splits at tree nodes — splits that are optimal locally (i.e., at
a node) according to some criterion are used to partition each node. As greedy search is
known to produce necessarily suboptimal trees, the advantages of replacing greedy search
by one-level lookahead search are investigated in Chapter 4. In this method, the best
split at a tree node is taken to be the one that can eventually produce the best < 4-way
partitioning. Systematic experimentation with artificial and real world data reveals that
limited lookahead search does not offer significant advantages over the greedy approach.
In addition, limited lookahead search produces worse trees than greedy search in several

" in the context of game trees, and, to

situations. This latter trend is known as “pathology’
our knowledge, has not been reported in the context of decision trees.

The counter-intuitive result that lookahead search does not improve over greedy
search would stand to reason if the latter itself constructs near-optimal trees. Chapter 5
describes experiments that attempt to quantify how close the greedily induced trees are to
the optimal ones. For hundreds of thousands of data sets, we compare the greedily induced
trees to the optimal ones, under varying training data characteristics. The results of these

experiments suggest that the greedy heuristic, together with pruning (Section 2.4.1), indeed

produces trees with near-optimal expected depth.

Data Massaging

Domain-specific data massaging: Chapter 6 describes two projects in which

decision trees are used to solve new astronomical classification problems. The first involves
identifying cosmic rays (a type of noise) in Hubble Space Telescope images, and the second
involves classifying stars and galaxies in Sloan Digital Sky Survey images. Both problems are
characterized by data streams (images) that are directly not useful for classification. There
are high noise levels and a very large variety of parameters that can be measured. The
enormous sizes of the data streams make it essential that the classifiers be highly accurate
and efficient. The author worked with a group of four other researchers for approximately
3.5 years to successfully develop decision tree classifiers for both these problems. A large

portion of our effort involved re-representing the data in an appropriate form.

Domain-independent data massaging: The basis for choosing splits at deci-
sion tree nodes are goodness measures (Section 2.3.1), which assign a numeric “goodness”
to each split. Most existing goodness measures cannot take into account the distribution
or structure of the data in numeric attribute spaces. Because some statistical methods can
extract this information, Chapter 7 proposes a framework to massage the data using sta-
tistical methods prior to tree induction. As an example, clustering is demonstrated to be a
useful preprocessing step for several univariate and multi-variate decision tree methods.

Finally, Chapter 8 provides general conclusions and outlines interesting directions

for further research.

10

Chapter 2

Existing work on decision trees: A
multi-disciplinary survey

2.1 Introduction

A decision tree can be used for data exploration in one or more of the following ways: 1

e To reduce a volume of data by transforming it into a more compact form which

preserves the essential characteristics and provides an accurate summary.

e Discovering whether the data contains well-separated clusters of objects, such that

the clusters can be interpreted meaningfully in the context of a substantive theory.

e Uncovering a mapping from independent to dependent variables that is useful for

predicting the value of the dependent variable in the future.

1 Adapted from [369], where a similar taxonomy was suggested in the general framework of search-
ing for structure in data.

11

Work related to automatically constructing and using decision trees for data de-
scription, classification and generalization exists in a wide variety of disciplines. It has been
traditionally developed in the fields of statistics, engineering (logic synthesis, pattern recog-
nition) and decision theory (decision table programming). Recently renewed interest has
been generated by research in artificial intelligence (machine learning) and the neurosciences
(neural networks). In spite of a diverse body of literature on automatic construction of de-
cision trees, there exist no comprehensive, multi-disciplinary surveys of up-to-date results

on this topic (see Section 2.2 for discussion of existing surveys [379, 338, 417]).

A characteristic of existing decision tree work seems to be a lack of directed
progress. As most research on this subject is (perhaps needs to be) empirical, researchers
and system developers typically try ad hoc variations of the basic methodology. However,
such a practice can lead to redundant effort, particularly because researchers from very
diverse disciplines are interested in decision trees. It is not unusual to find many papers

proposing almost identical heuristics/analyses of tree construction.

As a step towards rectifying the above situation, the current chapter undertakes
a concise survey of decision tree related work. We summarize significant results related
to automatically constructing decision trees from data, from fields such as logic synthesis,
machine learning, mathematical programming, neural networks, pattern recognition, signal
processing and statistics. Although it is not the intent of the current chapter to point out
specific instances of redundant results, a careful reader may notice several such examples.

The main distinctive features of the current chapter, compared to existing surveys are:

12

A substantial body of work that has been done after the existing surveys were written
(e.g., almost all of the machine learning work) is covered. Many topics that were not

discussed in the existing surveys (e.g., multivariate trees) are also covered.

e This chapter considers decision tree work in multiple disciplines in contrast to existing
surveys that concentrated on specific disciplines (e.g., Safavin and Langrebe’s survey

[417] covers work mostly from the pattern recognition literature).

e Our main emphasis is on automatically constructing decision trees for parsimonious
descriptions of, and generalization from, data. (In contrast, Moret’s [338] main em-

phasis was on representing Boolean functions as decision trees.)

e A significant portion of this survey is devoted to comparisons of tree-based data
exploration with other (e.g., statistical and neural) methods, and to recent real-world

applications of decision trees.

Because there is a vast body of work on automatic construction of decision trees,

we maintain the conciseness of this survey using the following guidelines and limitations.

e We do not attempt a tutorial overview of any specific topics. Our main emphasis is

to trace the directions that decision tree work has taken.

e We avoid repeating many of the references from [379, 338, 417]. This is partly because

the above surveys had different emphases than ours, as outlined in Section 2.2.

e We limit our references primarily to refereed journals, published books and recent

conferences.

13

e Our coverage of decision tree applications falls far short of being comprehensive; it is

merely illustrative.

Work Not Covered: Work not covered includes automatic construction of hierarchical
structures using data in which the categories of objects are not known (unsupervised learn-
ing), present in fields such as cluster analysis [127] and machine learning (e.g., [141, 165]).
A body of work using decision trees as a representational paradigm, existing in fields such
as programming languages and analysis of algorithms, is not included. Work on decision

trees constructed by hand (prevalent in the medical domain) is also not considered.

2.1.1 Outline of the chapter

Section 2.1.2 is intended to clarify the basics and terminology of decision trees. The next four
sections provide pointers to tree construction methods. Section 2.2 gives high level pointers,
mentioning existing surveys, text books and historical origins. Section 2.3 discusses work
on determining splits at tree nodes. Section 2.4 discusses techniques, such as pruning, used
to obtain the right sized trees. Section 2.5 ties into one section several disparate topics
relevant to tree construction, such as sample size and dimensionality considerations, work
on improving greedy induction, incorporating costs, estimating probabilities from decision
trees etc.

Several researchers have analyzed, theoretically and empirically, the process of
tree construction itself. Section 2.6 discusses NP-completeness results in the context of tree

construction, work analyzing biases and assumptions, etc. Section 2.7 gives pointers to

14

work comparing tree based data exploration to alternatives, such as multivariate statistical
methods, neural networks, etc. Section 2.8 lists some recent, real-world applications of
decision trees, to give the reader a feel for the versatality of the decision tree paradigm.

Section 2.9 concludes the chapter.

2.1.2 Basics of tree construction

This section gives a quick (and dirty) overview of the process of decision tree construction.
We assume that the reader is familiar with some form of decision trees, and only try to
clarify terminology. Readers not familiar with decision trees are directed to ([417], Section
IT) for a good summary of basic definitions.

A decision tree is induced on a training set, which consists of objects. Each object
is completely described by a set of attributes and a class label. Attributes can have ordered
or unordered values. For example, integer values are ordered whereas Boolean values are
not. The concept underlying a data set is the true mapping between the attribute set and
the class label. A noise-free training set is one in which all the objects are generated using
the underlying concept.

A decision tree contains zero or more internal nodes and one or more leaf nodes
(see Fig. 1.1). All internal nodes have two or more child nodes. 2 All non-terminal nodes
contain splits, which test the value of a mathematical or logical expression of the attributes.

Edges from an internal node T to its children are labelled with distinct outcomes of the test

2 Lubinsky [300] considered trees that can have internal nodes with just one child. At these nodes,
the data are not split, but residuals are taken from a single variable regression.

15

at T. Each leaf node has a class label associated with it. 3 The number of classes is finite.
A leaf node t is said to be pure if all the training samples at ¢ belong to the same class.
The task of constructing a tree from the training set is called tree induction. Most
existing tree induction systems proceed in a greedy top-down fashion (see Section 2.5.10 for
exceptions). Starting with an empty tree and the entire training set, the following algorithm

is applied until no more splits are possible.

e If all the training examples at the current node ¢ belong to category c, create a leaf

node with the class ¢ and halt.

e Otherwise, score each one of the set of possible splits S, using a goodness measure

(Section 2.3.1).

e Choose the best split s* as the test at the current node, and create as many child

nodes as there are distinct outcomes of s*.

e Label edges between the parent and child nodes with outcomes of s*, and partition

the training data using s* into the child nodes.

There are several reasons why one might construct a decision tree from data, such
as concise data description, discrimination or classification. Discrimination is the process of
deriving classification rules from samples of classified objects, and classification is applying
the rules to new objects of unknown class [190]. In other words, classification is computing

the class label of an object given its attribute values. 4 An object X is classified by passing

3 While converting decision tables to trees, it is common to have leaf nodes that have a “no
decision” label.

4 More precisely, a decision tree is said to perform classification if the class labels are discrete

16

it through the tree starting at the root node. The test at each internal node along the
path is applied to the attributes of X, to determine the next edge along which X should go
down. The label at the leaf node at which X ends up is outputted as its classification. An
object is musclassified by a tree if the classification outputted by the tree is not the same as
the object’s class label. The proportion of objects correctly classified by a decision tree is
known as its accuracy, whereas the proportion of misclassified objects is the error.

A wunivariate decision tree is one in which the test at each internal node uses
a single attribute. A multivariate decision tree may use as splits expressions containing
multiple attributes. A special case of multivariate trees that we are particularly interested

in is oblique decision trees. The tests in oblique trees use linear combinations of attributes.

Alternative Terminology

Structures very similar to decision trees have been referred to as classification trees,
branched testing sequences, discriminant trees, tree structured vector quantizers and iden-
tification keys. Tree induction is also referred to as tree construction, building or growing.
Training sets or samples consists of objects (also known as observations, examples or in-
stances). Attributes are also known as features, predictors or independent variables. A
decision tree imposes a partitioning in an ordered attribute space that can be geometrically
represented as a collection of hyperplanes and regions. For this reason, splits are often

referred to as hyperplanes, attributes as dimensions and objects as points.

values, and regression if the class labels are continuous. We restrict almost entirely to classification
trees in this chapter.

17

A class label is also referred to as category or dependent variable. Ordered domains
are equivalent to or comprise of continuous, integer, real-valued and monotonous domains.
Unordered domains have categorical, discrete or free variables. Internal nodes are the same
as non-terminals or test nodes. Leaf nodes are the terminal nodes or decision nodes. Splits
are the same as cuts or tests. Goodness measures are also known as feature evaluation
criterion, feature selection criterion, impurity measure or splitting rule. A leaf node is pure
when it is homogeneous. A univariate tree is also axis-parallel, and an oblique tree is the

same as a linear tree.

2.2 High-level pointers

A decision tree performs mutistage hierarchical decision making. For a general rationale for

multistage classification schemes and a categorization of such schemes, see [237].

2.2.1 Treatises

The work on decision tree construction in statistics has its origins in methods for exploring
survey data. For a review of earlier statistical work on hierarchical classification, see [139].
Statistical programs such as AID [454], MAID [170], THAID [339] and CHAID [240] built
binary segmentation trees aimed towards unearthing the interactions between predictor and
dependent variables. A standard reference for the current work on decision trees from a sta-
tistical perspective is Breiman et al.’s excellent monograph on classification and regression

trees [44].

18

Pattern recognition work on decision trees was motivated by the need to interpret
images from remote sensing satellites such as LANDSAT in the 1970s [464]. An overview of
work on decision trees in the patter recognition literature can be found in [106]. A high level
comparative perspective on the classification literature in pattern recognition and artificial

intelligence can be found in [76].

Decision trees in particular, and induction methods in general, arose in machine
learning to avoid the knowledge acquisition bottleneck [137] for expert systems. A majority
of work on decision trees in machine learning is an offshoot of Breiman et al.’s CART work
[44] and Quinlan’s ID3 algorithm [391]. Quinlan’s book on C4.5 [398], although specific to
his tree building program, is perhaps the best available overview of tree methodology from

a machine learning perspective.

In sequential fault diagnosis, a set of possible tests with associated costs and a
set of system states with associated prior probabilities are given. One of the states is a
“fault-free” state and the other states represent distinct faults. The aim is to build a test
algorithm that unambiguously identifies the occurrence of any system state using the given
tests, while minimizing the total cost. The testing algorithms normally take the form of
decision trees or AND/OR trees [488, 378]. Many heuristics used to construct decision trees

are used for test sequencing also.

Vector quantization (VQ) [167] is a data compression technique that has proved
useful for image coding. Tree structured vector quantizers (TSVQ) [65] are structures very

similar to decision trees. A lot of work exists in the speech and signal processing literature,

19

on building and analyzing TSVQs.

A Binary Decision Diagram (BDD) represents a Boolean function as a rooted,
directed acyclic graph [279, 441]. Ordered binary decision diagrams (OBDD) [52, 53] im-
pose restrictions on the ordering of variables at the nodes of a BDD. OBDDs have been
used for digital system design, verification and testing. OBDDs are similar to decision
trees, % and there exist several issues of common concern such as finding the minimal-sized

representations.

2.2.2 Surveys

Payne and Preece [379] surveyed results on constructing identification keys, in a paper
that attempted “a synthesis of a large and widely-dispersed literature” from fields such as
biology, pattern recognition, decision table programming, machine fault location, coding
theory and questionnaire design. Taxonomic identification keys are tree structures that
have one object per leaf and for which the set of available tests (splits) is prespecified. The
problem of constructing identification keys is not the same as the problem of constructing
decision trees from data, but many common concerns exist (e.g: optimal key construction,
choosing good tests at tree nodes etc.).

Moret [338] provided a tutorial overview of the work on representing Boolean
functions as decision trees and diagrams. He summarized results on constructing decision

trees in discrete variable domains. Though Moret does mention some pattern recognition

5 Oblivious decision trees [257] from the machine learning literature are nearly identical in struc-
ture to OBDDs.

20

work on constructing decision trees from data, this was not his main emphasis. Safavin and
Landgrebe [417] more recently summarized decision tree construction methodology, almost
entirely from a pattern recognition perspective. Bryant [53] surveyed the methodology and

applications of ordered binary decision diagrams.

2.3 Finding splits

To build a decision tree, it is necessary to find, at each internal node, a split for the data.
In case of univariate trees, finding a split amounts to finding an attribute which is the most
“useful” in discriminating the input data, and finding a decision rule using the attribute.
In case of multivariate trees, finding a split can be seen as finding a “composite” feature,
a combination of (some of the) existing attributes that has good discriminatory power. In
either of these cases, a basic task in tree building is to rank features (single or composite)
according to their usefulness in discriminating the classes in the data.

The manner of growing a tree differs slightly from discipline to discipline, but
several underlying concerns are the same. In pattern recognition and statistics literature,
features are typically ranked using feature evaluation rules, and the single best feature
or a good feature subset are chosen from the ranked list. In the context of ordered binary
decision diagrams (OBDDs), the order in which variables are chosen at tree nodes determines
the complexity of the OBDD, and many heuristics have been evaluated for variable order
selection (eg., [457, 154]). In machine learning, feature evaluation rules are used mainly for

picking the single best feature at every node of the decision tree. Methods used for selecting

21

a good subset of features are typically quite different and are used as preprocessing steps to
tree induction. (We will discuss feature subset selection methods separately in Section 2.5.1.)
Tree structure vector quantizers, when they were proposed [65], were grown one layer at
a time, by splitting all nodes in the previous layer. Makhoul et al.[306] introduced an
unbalanced tree algorithm that grew the tree a node at a time. Riskin and Gray [409]

proposed a greedy method for TSVQs, which is directly related to decision tree growing. 6

2.3.1 Feature evaluation rules

When used for classification or generalization, decision trees are essentially probability
estimators. Feature evaluation rules are heuristics whose aim is to produce as reliable
probability estimates from training data as possible. A taxonomy, proposed by Ben-Bassat
[23], is helpful in understanding the large number of existing feature evaluation criteria. Ben-
Basset divides feature evaluation rules into three, not necessarily distinct, categories: rules
derived from information theory, rules derived from distance measures and rules derived

from dependence measures.

¢ Rules derived from information theory: Examples of this variety are rules based
on Shannon’s entropy. 7 Tree construction by maximizing global mutual information,

i.e., by expanding tree nodes that contribute to the largest gain in average mutual

6 Chou et al.[85] suggested a pruning method, based on [44], for optimally pruning a balanced
TSVQ. The TSVQ growing procedure suggested by Riskin and Gray [409] can be viewed as an
inverse to Chou’s pruning procedure.

7 The desirable properties of a measure of entropy include symmetry, expandability, decisivity,
additivity and recursivity. Shannon’s entropy [439] possesses all of these properties [2]. For an
insightful treatment of entropy reduction as a common theme underlying several pattern recognition
problems, see [498].

22

information of the whole tree, is explored in pattern recognition [172, 437, 465]. 8 Tree
construction by locally optimizing information gain, the reduction in entropy due to
splitting each individual node, is explored in pattern recognition [197, 493, 70, 192], in
sequential fault diagnosis [488] and in machine learning [391]. Mingers [323] suggested
the G-statistic, an information theoretic measure that is a close approximation to x?
distribution, for tree construction as well as for deciding when to stop. De Merckt
[486] suggested an attribute selection measure that combined geometric distance with
information gain, and argued that such measures are more appropriate for numeric

attribute spaces.

¢ Rules derived from distance measures: “Distance” here refers to the distance
between class probability distributions. The feature evaluation criteria in this class
measure separability, divergence or discrimination between classes. A popular distance
measure is the Gini index of diversity, named after the Italian economist Corrado Gini
(1884-1965). Gini index has been used for tree construction in statistics [44], pattern
recognition [162] and sequential fault diagnosis [378]. Breiman et al. pointed out that
the Gini index has difficulty when there are a relatively large number of classes, and
suggested the twoing rule [44, 351] as a remedy. Taylor and Silverman [470] pointed
out that the Gini index emphasizes equal sized offspring and purity of both children.
They suggested a splitting criterion, called mean posterior improvement (MPT), that

emphasizes exclusivity between offspring class subsets instead.

8 Goodman and Smyth [174] report that the idea of using the mutual information between features
and classes to select the best feature was originally put forward by Lewis [285].

23

Bhattacharya distance [290], Kolmogorov-Smirnoff distance [152, 413, 198] and the
\? statistic [21, 195, 323, 515, 503] are some other distance-based measures that have
been used for tree induction. Class separation-based metrics developed in the machine
learning literature [133, 514] are also distance measures. A relatively simplistic method
for estimating class separation, which assumes that the values of each feature follow

a Gaussian distribution in each class, was used for tree construction in [302].

e Rules derived from dependence measures: These measure the statistical de-
pendence between two random variables. All dependence-bassed measures can be

interpreted as belonging to one of the above two categories [23].

There exist several attribute selection criteria that do not clearly belong to any
category in Ben-Basset’s taxonomy. Gleser and Collen [172] and Talmon [465] used a com-
bination of mutual information and y? measures. They first measured the gain in average
mutual information I(7;) due to a new split 73, and then quantified the probability P(I(7;))
that this gain is due to chance, using y? tables. The split that minimized P(I(T})) was
chosen by these methods. A permutation statistic was used for univariate tree construction
for 2-class problems in [286]. The main advantage of this statistic is that, unlike most of
the other measures, its distribution is independent of the number of training instances. As
will be seen in Section 2.4, this property provides a natural measure of when to stop tree
growth.

Measures that use the activity of an attribute have been explored for tree con-

struction [337, 329]. The activity of a variable is equal to the testing cost of the variable

24

times the a prior: probability that it will be tested. The computational requirements for
computing activity are the same as those for the information-based measures. Quinlan and
Rivest [402] suggested the use of Risannen’s minimum description length [408] for deciding
which splits to prefer over others and also for pruning. Kalkanis [235] pointed out that
measures like information gain and Gini index are all concave (i.e., they never report a
worse goodness value after trying a split than before splitting), so there is no natural way
of assessing where to stop further expansion of a node. As a remedy, Kalkanis suggested
the use of the upper bounds in the confidence intervals for the misclassification error as an

attribute selection criterion. ?

Heath et al.[204] used the simplest possible attribute selection criteria, based on
the number of misclassified objects, for oblique decision tree induction. Their measures
were called max minority and sum minority, respectively denoting the maximum and the
sum of the number of misclassified points on either side of a binary split. Max minority has
the theoretical advantage that the depth of the tree constructed using this measure is at
worst logarithmic in the number of examples. Lubinsky [297, 298] also used the number of
misclassified points as a splitting criterion, calling it inaccuracy. The performance of these
measures does not seem to be in general as good as the information theory or distance
based measures, and additional tricks are needed to make these measures robust [297, 351].
Another measure suggested by Heath et al., called the sum of impurities, assigns an integer

to each class and measures the variance between class numbers in each partition [204, 351].

9 Quinlan’s C4.5 [398] uses a naive version of the confidence intervals for doing pessimistic pruning.

25

An almost identical measure was used earlier in the Automatic Interaction Detection (AID)
program [139].

Most of the above feature evaluation criteria assume no knowledge of the proba-
bility distribution of the training objects. The optimal decision rule at each tree node, a
rule that minimizes the overall error probability, is considered in [270, 271, 272] assuming

that complete probabilistic information about the data is known.

Comparisons

Given the large number of feature evaluation rules, a natural concern is to decide their rel-
ative effectiveness in constructing “good” trees. Evaluations in this direction, in statistics,
pattern recognition and machine learning, have been predominantly empirical in nature,
though there have been a few theoretical evaluations. We will discuss the empirical com-
parisons here, and defer the discussion of the latter to Section 2.6.

In spite of a large number of comparative studies, very few so far have concluded
that a particular feature evaluation rule is significantly better than others. A majority of
studies have concluded that there is not much difference between different measures. This
is to be expected as induction per se can not rigorously justify performance on unseen
instances. Any strategy that results in superior generalization accuracy on some problems

is bound to have inferior performance on some other problems. 10 of course, comparisons

10 gchaffer [429] stated and proved a conservation theorem that states, essentially, that positive
performance in some learning situations must be offset by an equal degree of negative performance in
others. To clarify the, sometimes non-intuitive, consequences of the conservation theorem, Schaffer
[430] gave an example of a concept for which information loss gives better generalization accuracy
than information gain.

26

of individual methods are still interesting because they throw light on which method can

be used in what situations.

Baker and Jain [18] reported experiments comparing eleven feature evaluation
criteria and concluded that the feature rankings induced by various rules are very similar.
Several feature evaluation criteria, including Shannon’s entropy and divergence measures,
are compared using simulated data in [22], on a sequential, multi-class classification problem.
The conclusions are that no feature selection rule is consistently superior to the others,
and that no specific strategy for alternating different rules seems to be significantly more
effective. Breiman et al. [44] conjectured that decision tree design is rather insensitive to any
one from a large class of splitting rules, and it is the stopping rule that is crucial. Mingers
[325] compared several attribute selection criteria, and concluded that tree quality doesn’t
seem to depend on the specific criterion used. He even claimed that random attribute
selection criteria are as good as measures like information gain [391]. This later claim was
refuted in [292], where the authors argued that random attribute selection criteria are prone

to overfitting, and also fail when there are several noisy attributes.

Babic et al. [15] compared ID3 [391] and CART [44], for two clinical diagnosis
problems. Miyakawa [329] compared three activity-based measures, @, O and loss, both
analytically and empirically. He showed that @@ and O do not chose non-essential variables
at tree nodes, and that they produce trees that are 1/4th the size of the trees produced by
loss. Fayyad and Irani [133] showed that their measure C-SEP, performs better than Gini

index [44] and information gain [391] for specific types of problems.

27

Several researchers [195, 391] pointed out that information gain is biased towards
attributes with a large number of possible values. Mingers [323] compared information gain
and the y? statistic for growing the tree as well as for stop-splitting. He concluded that y?
corrected information gain’s bias towards multivalued attributes, however to such an extent
that they were never chosen, and the latter produced trees that were extremely deep and
hard to interpret. Quinlan suggested gain ratio [398] as a remedy for the bias of informa-
tion gain. Mantaras [310] argued that gain ratio had its own set of problems, and suggested
using information theory-based distance between partitions for tree construction. He for-
mally proved that his measure is not biased towards multiple-valued attributes. However,
White and Liu [503] present experiments to conclude that information gain, gain ratio and
Mantaras’ measure are worse than a y? based statistical measure, in terms of their bias to-
wards multiple-valued attributes. A hypergeometric distribution is proposed as a means to
avoid the biases of information gain, gain ratio and y? metrics in [312]. Kononenko recently
pointed out that [260] Minimum Description Length based feature evaluation criteria have

the least bias towards multi-valued attributes.

2.3.2 Multivariate splits

Decision trees most commonly are univariate, i.e., they use splits based on a single attribute
at each internal node. Multivariate decision trees can use splits that contain more than
one attribute at each internal node. Though several methods have been developed in the

literature for constructing multivariate trees, this body of work is not as well-known as that

28

on univariate trees. We summarize below the directions work on automatically constructing
multivariate trees has taken.

Most of the work on multivariate splits considered linear (oblique) trees. These
are trees which have tests based on a linear combination of the attributes at some internal
nodes. The problem of finding an optimal linear split (optimal with respect to any of
the feature evaluation measures in Section 2.3.1) is more difficult that that of finding the
optimal univariate split. In fact, finding optimal linear splits is known to be intractable
for some feature evaluation rules (see Section 2.6.1 for pointers), so heuristic methods are
required for finding good, albeit suboptimal, linear splits. Methods used in the literature
for finding good linear tests include linear discriminant analysis, hill climbing search, linear

programming, perceptron training and others.

Linear Discriminant Trees: Several authors have considered the problem of construct-
ing tree-structured classifiers that have linear discriminants [117] at each node. You and Fu
[511] used a linear discriminant at each node in the decision tree, computing the hyperplane
coefficients using the Fletcher-Powell descent method [144]. Their method requires that the
best set of features at each node be prespecified by a human. Friedman [152] reported that
applying Fisher’s linear discriminants, instead of atomic features, at some internal nodes
was useful in building better trees. Qing-Yun and Fu [387] also describe a method to build
linear discriminant trees. Their method uses multivariate stepwise regression to optimize
the structure of the decision tree as well as to choose subsets of features to be used in the

linear discriminants. More recently, use of linear discriminants at each node is considered by

29

Loh and Vanichsetakul [294]. Unlike in [511], the variables at each stage are appropriately
chosen in [294] according to the data and the type of splits desired. Other features of the
tree building algorithm in [294] are: (1) it yields trees with univariate, linear combination
or linear combination of polar coordinate splits, and (2) allows both ordered and unordered
variables in the same linear split. Use of linear discriminants in a decision tree is considered
in the remote sensing literature in [218]. A method for building linear discriminant classi-
fication trees, in which the user can decide at each node what classes need to be split, is
described in [472]. John [229] recently considered linear discriminant trees in the machine
learning literature.

An extension of linear discriminants are linear machines [364], which are linear
structures that can discriminate between multiple classes. In the machine learning liter-
ature, Utgoff et al. explored decision trees that used linear machines at internal nodes

49, 115].

Locally Opposed Clusters of Objects: Sklansky and his students developed several
piecewise linear discriminants based on the principle of locally opposed clusters of objects.
Wassel and Sklansky [496, 450] suggested a procedure to train a linear split to minimize
the error probability. Using this procedure, Sklansky and Michelotti [449] developed a
system to induce a piece-wise linear classifier. Their method identifies the closest-opposed
pairs of clusters in the data, and trains each linear discriminant locally. The final classifier
produced by this method is a piecewise linear decision surface, not a tree. Foroutan [147]

discovered that the resubstitution error rate of optimized piece-wise linear classifiers is

30

nearly monotonic with respect to the number of features. Based on this result, Foroutan
and Sklansky [148] suggest an effective feature selection procedure for linear splits that uses
zero-one integer programming. Park and Sklansky [375, 376] describe methods to induce
linear tree classifiers and piece-wise linear discriminators. The main idea in these methods
is to find hyperplanes that cut a maximal number of Tomek links. Tomek links of a data
set connect opposed pairs of data points for which the circle of influence between the points

doesn’t contain any other points.

Hill Climbing Methods: CART’s use of linear combinations of attributes ([44], Chap-
ter 5) is well-known. This algorithm uses heuristic hill climbing and backward feature
elimination to find good linear combinations at each node. Murthy et al. [350, 351] de-
scribed significant extensions to CART’s linear combinations algorithm, using randomized

techniques. (See Chapter 3)

Perceptron Learning: A perceptron is a linear function neuron [326, 188] which can be
trained to optimize the sum of distances of the misclassified objects to it, using a convergent
procedure for adjusting its coefficients. Perceptron trees, which are decision trees with per-
ceptrons just above the leaf nodes, were discussed in [480]. Decision trees with perceptrons

at all internal nodes were described in [482, 438].

Mathematical Programming: Linear programming has been used for building adap-

tive classifiers since late 1960s [216]. Given two possibly interesecting sets of points, Duda

31

and Hart [117] proposed a linear programming formulation for finding the split whose dis-
tance from the misclassified points is minimized. More recently, Mangasarian and Bennett
used linear and quadratic programming techniques to build machine learning systems in
general and decision trees in particular [309, 28, 25, 307, 26]. Use of zero-one integer pro-
gramming for designing vector quantizers can be found in [289]. Brown and Pittard [51]
also employed linear programming for finding optimal multivariate splits at classification
tree nodes. Almost all the above papers attempt to minimize the distance of the misclas-
sified points from the decision boundary. In that sense, these methods are more similar
to perceptron training methods [326], than to decision tree splitting criteria. Mangasarian
[308] describes a linear programming formulation to minimize the number of misclassified

points instead of the geometric distance.

Neural Trees: In the neural networks community, many researchers have recently con-
sidered hybrid structures between decision trees and neural nets. Though these techniques
were developed as neural networks whose structure could be automatically determined,
their outcome can be interpreted as decision trees with nonlinear splits. Examples of this
work include [173, 448, 46, 87, 207, 425, 102]. Techniques very similar to those used in
tree construction, such as information theoretic splitting criteria and pruning, can be found
in neural tree construction also. In addition to these methods, there exist other hybrid
techniques between decision trees and neural networks. Sethi [435] described a method
for converting a univariate decision tree into a neural net and then retraining it, resulting

in tree structured entropy nets with sigmoidal splits. An extension of entropy nets, that

32

converts linear decision trees into neural nets was described in [374]. Decision trees with
small multilayer networks at each node, implementing nonlinear, multivariate splits, were
described in [184]. Jordan and Jacobs [233] described hierarchical parametric classifiers
with small “experts” at internal nodes. Training methods for tree structured Boltzmann

machines are described in [427].

Other Methods: Use of polynomial splits at tree nodes is explored in decision theory
in [432]. In information theory, Gelfand and Ravishanker [161] describe a method to build
a tree structured filter that has linear processing elements at internal nodes. Heath et al.
[204, 202] used simulated annealing to find the best oblique split at each tree node. Lubinsky
[299, 298] attempted bivariate trees, trees in which some functions of two variables can be
used as tests at internal nodes. Lubinsky considered the use of linear cuts, corner cuts and

rectangular cuts, using ordered and unordered variables.

2.3.3 Ordered vs. unordered attributes

The fields of pattern recognition and statistics historically have considered ordered or nu-
meric attributes as the default. This seems natural considering application domains such as
spectral analysis and remote sensing [464]. In these fields, special techniques [436] were de-
veloped to accommodate discrete attributes into what are primarily algorithms for ordered
attributes. Fast methods for splitting multiple valued categorical variables are described in
[83].

In machine learning, a subfield of Artificial Intelligence, which in turn has been

33

dominated by symbolic processing, many tree induction methods (e.g. [388] were originally
developed for categorical attributes. The problem of incorporating continuous attributes
into these algorithms is considered subsequently. The problem of meaningfully discretizing
a continuous dimension is considered in [134, 245, 486, 343]. Methods of discretization that
operate on a single continuous attribute at a time can be said to be “local” discretization
methods. In contrast, “global” discretization methods simultaneously convert all continuous
attributes [81].

Fast methods for splitting a continuous dimension into more than two ranges is
considered in the machine learning literature [135, 157]. Trees in which an internal node can
have more than 2 children, have also been considered in the vector quantization literature
[431]. An extension to ID3 [391] that distinguishes between attributes with unordered

domains and attributes with linearly ordered domains is suggested in [88].

2.4 Obtaining the right sized trees

One of the main difficulties of inducing a recursive partitioning structure is knowing when to
stop. Obtaining the “right” sized trees may be important for several reasons, which depend
on the size of the classification problem [162]. For moderate sized problems, the critical

11 and gaining insight into

issues are generalization accuracy, honest error rate estimation
the predictive and generalization structure of the data. For very large tree classifiers, the

critical issue is optimizing structural properties (height, balance etc.) [493, 71].

H For a general discussion about the relationship between complexity and predictive accuracy of
classifiers, see [380].

34

Breiman et al. [44] pointed out that tree quality depends more on good stopping
rules than on splitting rules. Effects of noise on generalization are discussed in [363, 253].
Overfitting avoidance as a specific bias is studied in [507, 428]. Effect of noise on classifica-
tion tree construction methods is studied in the pattern recognition literature in [468].

Several techniques have been suggested for obtaining the right sized trees. The
most popular of these is pruning, whose discussion we will defer to Section 2.4.1. The

following are some alternatives to pruning that have been attempted in the literature.

e Restrictions on minimum node size: A node is not split if it has smaller than k objects,
where k is a parameter to the tree induction algorithm. This strategy, which is known

to be not robust, is used in some early methods [152].

e Two stage search: In this variant, tree induction is divided into two subtasks: first,

a good structure for the tree is determined; then splits are found at all the nodes. 12
The optimization method in the first stage may or may not be related to that used in
the second stage. Lin and Fu [290] use K-means clustering for both stages, whereas

Qing-Yun and Fu [387] use multi-variate stepwise regression for the first stage and

linear discriminant analysis for the second stage.

e Thresholds on Impurity: In this method, a threshold is imposed on the value of the
splitting criterion, such that if the splitting criterion falls below (above) the threshold,

tree growth is aborted. Thresholds can be imposed on local (i.e., individual node)

12 Techniques that start with a sufficient partitioning and then optimize the structure (e.g., [318])
can be thought of as being a converse to this approach.

35

goodness measures or on global (i.e., entire tree) goodness. The former alternative is
used in [172, 413, 390, 312] and the latter in [437]. A problem with the former method
is that the value of most splitting criteria (Section 2.3.1) varies with the size of the
training sample. Imposing a single threshold that is meaningful at all nodes in the
tree is not easy and may not even be possible. Some feature evaluation rules, whose
distribution does not depend on the number of training samples (i.e., a goodness value
of k£ would have the same significance anywhere in the tree) have been suggested in

the literature [286, 515, 235].

Trees to rules conversion: Quinlan [393, 398] gave efficient procedures for converting
a decision tree into a set of production rules. Simple heuristics to generalize and
combine the rules generated from trees can act as a substitute for pruning for Quinlan’s

univariate trees.

Other: Cockett and Herrera [90] suggested a method to reduce an arbitrary binary
decision tree to an “irreducible” form, using discrete decision theory principles. Every
irreducible tree is optimal with respect to some expected testing cost criterion, and
the tree reduction algorithm has the same worst-case complexity as most greedy tree
induction methods. In the context of ordered binary decision diagrams, tree com-
paction has been attempted using operations that merge, delete and exchange nodes

[53].

36

2.4.1 Pruning

Pruning, the method most widely used for obtaining right sized trees, was proposed by
Breiman et al. ([44], Chapter 3). They suggested the following procedure: build the com-
plete tree (a tree in which splitting no leaf node further will improve the accuracy on the
training data) and then remove subtrees that are not contributing significantly towards
generalization accuracy. It is argued that this method is better than stop-splitting rules,
because it can compensate, to some extent, for the suboptimality of greedy tree induction.
For instance, if there is very good node T a few levels below a not-so-good node Ti, a
stop-splitting rule will stop tree growth at T, whereas pruning may give a high rating for,
and retain, the whole subtree at 7;. Kim and Koehler [249] analytically investigate the
conditions under which pruning is beneficial for accuracy. Their main result states pruning
is more beneficial with increasing skewness in class distribution and/or increasing sample

size.

Breiman et al.’s pruning method [44], cost complezity pruning (a.k.a. weakest link
pruning or error complexity pruning) proceeds in two stages. In the first stage, a sequence
of increasingly smaller trees are built on the training data. In the second stage, one of
these trees is chosen as the pruned tree, based on its classification accuracy on a pruning
set. Pruning set is a portion of the training data that is set aside exclusively for pruning
alone. Use of a separate pruning set is a fairly common practice. A method other than cost
complexity pruning that needs a separate pruning set is Quinlan’s reduced error pruning

[393]. This method, unlike cost complexity pruning, does not build a sequence of trees and

37

hence is claimed to be faster. Chou et al.[85] extended Breiman et al.’s pruning method to

tree structured vector quantizers.

The requirement for an independent pruning set might be problematic especially
when small training samples are involved. Several solutions have been suggested to get
around this problem. Breiman et al. [44] describe a cross validation procedure that avoids
reserving part of training data for pruning, but has a large computational complexity.
Quinlan’s pessimistic pruning [393, 398] does away with the need for a separate pruning set

by using a statistical correlation test.

Crawford [99] analyzed Breiman et al.’s cross validation procedure, and pointed
out that it has a large variance, especially for small training samples. He suggested a .632

d 13 as an effective alternative. Gelfand et al. [162] claimed that the

bootstrap metho
cross validation method is both inefficient and possibly ineffective in finding the optimally
pruned tree. They suggested an efficient iterative tree growing and pruning algorithm that
is guaranteed to converge. This algorithm divides the training sample into two halves and
iteratively grows the tree using one half and prunes using the other half, exchanging the
roles of the halves in each iteration.

Several other pruning methods exist. Quinlan and Rivest [402] used minimum

description length [408] for tree construction as well as for pruning. An error in their

1y bootstrapping, B independent learning samples, each of size N are created by random sam-
pling with replacement from the original learning sample L. In cross validation, L is divided ran-
domly into B mutually exclusive, equal sized partitions. Efron [120] showed that, although cross
validation closely approximates the true result, bootstrap has much less variance, especially for small
samples. However, there exist arguments that cross validation is clearly preferable to bootstrap in
practice [256].

38

coding method (which did not have an effect on their main conclusions) was pointed out in
[491]. Forsyth et al. [149] recently suggested a pruning method that is based on viewing the
decision tree as an encoding for the training data. Use of dynamic programming to prune
trees optimally and efficiently has been explored recently in [33].

A few studies have been done to study the relative effectiveness of pruning methods
[324, 91, 125]. Just as in the case of splitting criteria, no single pruning method has been
adjudged to be superior to the others. The choice of a pruning method depends on the size

of the training set, availability of extra data for pruning etc.

2.5 Other issues

Tree construction involves many issues other than finding good splits and knowing when to
stop recursive splitting. In this section, we tie together several issues. The issues discussed
in this section include feature subset selection, feature construction, chosing good subsam-
ples, improving on greedy induction, use of fuzziness to remove data fragmentation and
class overlap, incorporating attribute measurement costs and misclassification costs into
tree construction, estimating class probabilities from trees, use of multiple trees to reduce

variance and incremental induction of trees.

2.5.1 Sample size vs. dimensionality

The relationship between the size of the training set and the dimensionality of the problem

is studied extensively in the pattern recognition literature. (For some pointers, see [212,

39

238, 145, 77, 236, 268, 227, 156].) Researchers considered the problem of how sample size
should vary according to dimensionality and vice versa. Intuitively, an imbalance between
the number of samples and the number of features (i.e., too many samples with too few
attributes, or too few samples with too many attributes) can make induction more difficult.

Some conclusions from the above papers can be summarized, informally, as follows:

e For a finite sized data with little or no a prior: information, the ratio of the sample
size to dimensionality must be as large as possible to suppress optimistically biased

evaluations of the performance of the classifier.

e For a given sample size used in training a classifier, there exists an optimum feature size
and quantization complexity (the latter refers to the number of ranges a dimension is

split into). This result is true for both two-class problems and multi-class problems. 14

e The ratio of the sample size to dimensionality should vary inversely proportional to

the amount of available knowledge about the class conditional densities.

In tasks where more features than the “optimal” are available, decision tree quality
is known to be affected by the redundant and irrelevant attributes [6, 424]. To avoid this
problem, either a feature subset selection method (Section 2.5.1) or a method to form a
small set of composite features (Section 2.5.1) can be used as a preprocessing step to tree

induction. On the other hand, if the training sample has too many objects, a subsample

14 yan Campenhout [67] argues that increasing the amount of information in a measurement subset
through enlarging its size or complexity never worsens the error probability of a truly Bayesian
classifier. Even after this guarantee, the cost and complexity due to additional measurements may
not be worth the slight (if any) improvement in accuracy. Moreover, most real world classifiers are
not truly Bayesian.

40

selection method (Section 2.5.1) can be employed to filter out the unnecessary observations.

Feature subset selection

There is a large body of work on choosing relevant subsets of features (for example, see the
texts [116, 35, 322]). Most of this work was not developed in the context of tree induction,
but a lot of it has direct applicability. There are two components to any method that
attempts to choose the best subset of features. The first is a metric using which two feature
subsets can be compared to determine which is better. Feature subsets have been compared
in the literature using either a feature evaluation criterion discussed in Section 2.3.1 (e.g.
Bhattacharya distance was used for comparing subsets of features in [358]), or using direct
error estimation [148, 230].

The second component of feature subset selection methods is a search algorithm
through the space of possible feature subsets. Most existing search procedures are heuristic

15 as exhaustive search for the best feature subset is typically prohibitively

in nature,
expensive. A heuristic commonly used is the greedy heuristic. In stepwise forward selection,
we start with an empty feature set, and add, at each stage, the best feature according to
some criterion. In stepwise backward elimination, we start with the full feature set and
remove, at each step, the worst feature. When more than one feature is greedily added or

removed, beam search is said to have been performed [445, 69]. A combination of forward

selection and backward elimination, a bidirectional search, was attempted in [445].

15 An exception is the optimal feature subset selection method using zero-one integer programming,
suggested by Ichino and Sklansky [217].

41

Comparisons of heuristic feature subset selection methods resound the conclusions
of studies comparing feature evaluation criteria and studies comparing pruning methods —
no feature subset selection heuristic is far superior to the others. Cover et al. [94, 484] showed
that heuristic sequential feature selection methods can do arbitrarily worse than the optimal
strategy. Mucciardi and Gose [342] compared seven feature subset selection techniques
empirically and concluded that no technique was uniformly superior to the others. There has
been a recent surge of interest in feature subset selection methods in the machine learning
community, resulting in several empirical evaluations. Some of these studies produced
interesting insights on how to increase the efficiency and effectiveness of the heuristic search

for good feature subsets. For examples of this work, see [251, 276, 69, 113, 336, 3].

Composite features

Sometimes the aim is not to choose a good subset of features, but instead to find a few good
“composite” features, which are arithmetic or logical combinations of the atomic features.
In the decision tree literature, Henrichon and Fu [206] were probably the first to discuss
“transgenerated” features, features generated from the original attributes. Friedman’s tree
induction method [152] could consider with equal ease atomic and composite features. Tech-
niques to search for multivariate splits (Section 2.3.2) can be seen as ways for constructing
composite features. Use of linear regression to find good feature combinations is explored
recently in [36].

Discovery of good combinations of Boolean features to be used as tests at tree

42

nodes is explored in the machine learning literature in [372] as well as in signal processing
[17]. Ragavan and Rendell [403] describe a method that constructs Boolean features using
lookahead, and uses the constructed feature combinations as tests at tree nodes. Looka-
head for construction of Boolean feature combinations is also considered in [515]. Linear
threshold unit trees for Boolean functions are described in [418]. Decision trees having first
order predicate calculus representations, with Horn clauses as tests at internal nodes, are

considered in [497].

Subsample selection

Feature subset selection attempts to choose useful features. Similarly, subsample selection
attempts to choose appropriate training samples for induction. Quinlan suggested “win-
dowing”, a random training set sampling method, for his programs ID3 and C4.5 [398, 506].
A initially randomly chosen window can be iteratively expanded to include only the “im-
portant” training samples. Several ways of choosing representative samples for Nearest
Neighbor learning methods exist (see [104, 105], for examples). Some of these may be help-

ful for inducing trees efficiently on large samples, if it is possible to choose good subsamples

efficiently.

2.5.2 Incorporating costs

In most real-world domains, attributes can have costs of measurement, and objects can have

misclassification costs. If the measurement (misclassification) costs are not identical between

43

different attributes (classes), decision tree algorithms need to be designed explicitly to prefer
cheaper trees. Several attempts have been made to make tree construction cost-sensitive.
These involve incorporating attribute measurement costs (see [365, 366, 469, 478] in machine
learning literature, [107, 340] in pattern recognition and [250] in statistics) and incorporating
misclassification costs [44, 96, 115, 72, 478]. Methods to incorporate attribute measurement
costs typically include a cost term into the feature evaluation criterion, whereas variable

misclassification costs are accounted for by using prior probabilities or cost matrices.

2.5.3 Missing attribute values

In real world data sets, it is often the case that some attribute values are missing from
the data. Several researchers have addressed the problem of dealing with missing attribute
values in the training as well as testing sets. For training data, Friedman [152] suggested
that all objects with missing attribute values can be ignored while forming the split at each
node. If it is feared that too much discrimination information will be lost due to ignoring,
missing values may be substituted by the mean value of the particular feature in the training
subsample in question. Once a split is formed, all objects with missing values can be passed
down to all child nodes, both in the training and testing stages. The classification of an
object with missing attribute values will be the largest represented class in the union of all
the leaf nodes at which the object ends up. Breiman et al.’s CART system [44] more or
less implemented Friedman’s suggestions. Quinlan also considered the problem of missing

attribute values [395].

44

2.5.4 Improving on greedy induction

Most tree induction systems use a greedy approach — trees are induced top-down, a node
at a time. Several authors (e.g., [159, 405]) pointed out the inadequacy of greedy induction
for difficult concepts. The problem of inducing globally optimal decision trees has been
addressed time and again. For early work using dynamic programming and branch-and-
bound techniques to convert decision tables to optimal trees, see [338].

Tree construction using partial or exhaustive lookahead has been considered in
statistics [139, 122], in pattern recognition [197], for tree structured vector quantizers [410],
for Bayesian class probability trees [62], for neural trees [102] and in machine learning
[365, 403, 354]. Most of these studies indicate that lookahead does not cause considerable
improvements over greedy induction. Murthy and Salzberg [354] argued that one-level
lookahead does not help build significantly better trees, and that lookahead may actually
worsen the quality of trees, causing pathology [360].

Constructing optimal or near-optimal decision trees using a two-stage approach has
been attempted by many authors. In the first stage, a sufficient partitioning is induced using
any reasonably good (greedy) method. In the second stage, the tree is refined to be as close
to optimal as possible. Refinement techniques attempted include dynamic programming
[318], fuzzy logic search [494] and multi-linear programming [30].

The build-and-refine strategy can be seen as a search through the space of all
possible decision trees, starting at the greedily built suboptimal tree. In order to escape

local minima in the search space, randomized search techniques such as genetic programming

45

[264] and simulated annealing [55, 303] have been attempted. These methods search the
space of all decision trees using random perturbations, additions and deletions of the splits.
A deterministic hill-climbing search procedure has also been suggested for searching for

optimal trees, in the context of sequential fault diagnosis [463].

Inducing topologically minimal trees, trees in which the number of occurrences of
each attribute along each path are minimized, is the topic of [489]. Suen and Wang [462]
described an algorithm that attempted to minimize the entropy of the whole tree and the
class overlap simultaneously. (Class overlap is measured by the number of terminal nodes

that represent the same class.)

2.5.5 Use of fuzziness

Two common criticisms of decision trees are the following: (1) As decisions in the lower
levels of a tree are based on increasingly smaller fragments of the data, some of them may
not have much probabilistic significance (data fragmentation). (2) As several leaf nodes can
represent the same class, unnecessarily large trees may result, especially when the number
of classes is large (high class overlap). It has been shown that the use of fuzzy reasoning
can help reduce both the above problems.

Several researchers have considered using soft splits of data for decision trees. A
hard split divides the data into mutually exclusive partitions. A soft split, on the other
hand, assigns a probability that each point belongs to a partition, thus allowing points to

belong to multiple partitions. C4.5 [398] uses a simple form of soft splitting (chapter 8).

46

Use of fuzzy splits in pattern recognition literature can be found in [432, 494]. Jordan
and Jacobs [233] describe a parametric, hierarchical classifier with soft splits. Multivariate
regression trees using fuzzy, soft splitting criteria, are considered [146]. Induction of fuzzy

decision trees has also been considered in [281, 512].

2.5.6 Estimating probabilities

Decision trees have crisp decisions at leaf nodes. On the contrary, class probability trees
assign a probability distribution for all classes at the terminal nodes. Breiman et al. ([44],
Chapter 4) proposed a method for building class probability trees. Quinlan discussed meth-
ods of extracting probabilities from decision trees in [397]. Buntine [62] described Bayesian
methods for building, smoothing and averaging class probability trees. 16 Smoothing in the
context of tree structured vector quantizers is described in [17]. An approach, which refines
the class probability estimates in a greedily induced decision tree using local kernel density

estimates has been suggested recently in [453].

Assignment of probabilistic goodness to splits in a decision tree is described in
[187]. A unified methodology for combining uncertainties associated with attributes into
that of a given test, which can then be systematically propagated down the decision tree,

is given in [335].

16 Smoothing is the process of adjusting probabilities at a node in the tree based on the probabilities
at other nodes on the same path. Averaging improves probability estimates by considering multiple
trees.

47

2.5.7 Multiple trees

A known peril of decision tree construction is its variance, especially when the samples are
small and the features are many [111]. Variance can be caused by random choice of training
and pruning samples, by many equally good attributes only one of which can be chosen
at a node, due to cross validation or because of other reasons. A few authors suggested
using a collection of decision trees, instead of just one, to reduce the variance in classification
performance [274, 443, 444, 62, 203]. The idea is to build a set of (correlated or uncorrelated)
trees for the same training sample, and then combine their results. 17 Multiple trees have
been built using randomness [203] or using different subsets of attributes for each tree
[443, 444]. Classification results of the trees have been combined using either simplistic

voting methods [203] or using statistical methods for combining evidence [443].

2.5.8 Incremental tree induction

Most tree induction algorithms use batch training — the entire tree needs to be recomputed
to accommodate a new training example. A crucial property of neural network training
methods is that they are incremental — network weights can be continually adjusted to
accommodate training examples. Incremental induction of decision trees is considered by

several authors. Friedman’s binary tree induction method [152] could use “adaptive” fea-

17 A lot of work exists in the neural networks literature on using committees or ensembles of
networks to improve classification performance. See [193] for example. An alternative to multiple
trees is a hybrid classifier that uses several small classifiers as parts of a larger classifier. Brodley [47]
describes a system that automatically selects the most suitable among a univariate decision tree, a
linear discriminant and an instance based classifier at each node of a hierarchical, recursive classifier.

48

tures for some splits. An adaptive split depends on the training subsample it is splitting.
(An overly simple example of an adaptive split is a test on the mean value of a feature.)
Utgoff et al. proposed incremental tree induction methods in the context of univariate deci-
sion trees [479, 481] as well as multivariate trees [482]. Crawford [99] shows that approaches
like Utgoft’s, which attempt to update the tree so that the “best” split according to the
updated sample is taken at each node, suffer from repeated restructuring. This occurs be-
cause the best split at a node vacillates widely while the sample at the node is still small.
An incremental version of CART [44] that uses significance thresholds to avoid the above

problem is described in [99].

2.5.9 Tree quality measures

The fact that several trees can correctly represent the same data raises the question of how
to decide that one tree is better than another. Several measures have been suggested to
quantify tree quality. Moret [338] summarizes work on measures such as tree size, expected
testing cost and worst-case testing cost. He shows that these three measures are pairwise
incompatible, which implies that an algorithm minimizing one measure is guaranteed not to
minimize the others, for some tree. Fayyad and Irani [132] argue that, by concentrating on
optimizing one measure, number of leaf nodes, one can achieve performance improvement

along other measures.

Generalization accuracy is a popular measure for quantifying the goodness learning

systems. The accuracy of the tree is computed using a testing set that is independent of

49

the training set or using estimation techniques like cross-validation or bootstrap, and more
accurate trees are preferred to the less accurate ones. Kononenko and Bratko [261] pointed
out that comparisons on the basis of classification accuracy are unreliable, because different
classifiers produce different types of estimates (e.g., some produce yes-or-no classifications,
some output class probabilities) and accuracy values can vary with prior probabilities of
the classes. They suggested an information based metric to evaluate a classifier, as a
remedy to the above problems. Martin [311] argued that information theoretic measures
of classifier complexity are not practically computable except within severely restricted
families of classifiers, and suggested a generalized version of CART’s [44] 1-standard error
rule as a means of achieving a tradeoff between classifier complexity and accuracy.
Description length, the number of bits required to “code” the tree and the data
using some compact encoding, has been suggested as a means to combine the accuracy and

complexity of a classifier [402, 149] .

2.5.10 Miscellaneous

Most existing tree induction systems proceed in a greedy top-down fashion [464, 44, 391].
Bottom up induction of trees is considered in [275]. Bottom up tree induction is also
common [378] in problems such as building identification keys and optimal test sequences. 18

A hybrid approach to tree construction, that combined top-down and bottom-up induction

can be found in [247].

18 Hierarchical unsupervised clustering can construct, using bottom-up or top-down methods, tree-
structured classifiers. As mentioned in Section 2.1, these methods are beyond the scope of the current
chapter.

20

We concentrate in this chapter on decision trees that are constructed from la-
belled examples. The problem of learning trees from decision rules instead of examples is
addressed in [224]. The problem of learning trees solely from prior probability distributions
is considered in [10]. Learning decision trees from qualitative causal models acquired from

domain experts is the topic of [382].

Several attempts at generalizing the decision tree representation exist. Chou [82]
considered decision trellises, where trellises are directed acyclic graphs with class probabil-
ity vectors at the leaves and tests at internal nodes (i.e., trellises are trees in which internal
nodes may have multiple parents). Option trees, in which every internal node holds sev-
eral optional tests along with their respective subtrees, are discussed in [61, 62]. Oliver
[368] suggested a method to build decision graphs, which are similar to Chou’s decision
trellises, using minimum length encoding principles [490]. Rymon [415] suggested SE-trees,

set enumeration structures each of which can embed several decision trees.

All standard decision tree methods are applicable when rules are to be induced
about one aspect, say, the presence or absence of a disease. However, it is sometimes
necessary to infer rules on separate, but related aspects of a problem using identical or
overlapping data sets. For example, as part of a scheduling process, decisions need to be
made regarding the release of new orders into the system as well as the assignment of work
pieces to available workstations. Chaturvedi and Nazareth [80] discuss possible solutions

for this problem and provide algorithms for conditional classification.

Cox [95] argues that classification tree technology, as implemented in commercially

ol

available systems, is often more useful for pattern recognition than it is for decision support.
He suggests several ways of modifying existing methods to be prescriptive rather than
descriptive.

An interesting method for displaying decision trees on multidimensional data, using
block diagrams, is proposed in [470]. Block diagrams can point out features of the data as
well as the deficiencies in the classification method. Issues in preprocessing data to be in a
form suitable to decision tree induction are discussed in some detail in [475]. Parallelization
of tree induction algorithms is considered in [381]. Hardware architectures to implement

decision trees are described in [226].

2.6 Analyses

Several researchers have tried to evaluate the tree induction method itself, to precisely
answer questions such as is it possible to build optimal trees?, how good are particular
heuristics (feature evaluation rules or pruning methods)? Most of these investigations are

theoretical, though there have been a few recent empirical ones.

2.6.1 NP-completeness

Several aspects of optimal tree construction are known to be intractable [160]. Hyafil and
Rivest [215] proved that the problem of building optimal decision trees from decision tables,
optimal in the sense of minimizing the expected number of tests required to classify an

unknown sample is NP-Complete. In the sequential fault diagnosis literature, Cox et al.[97]

52

showed that, for an arbitrary distribution of attribute costs and for an arbitrary distribution
of input vectors, the problem of constructing a minimum expected cost classification tree
to represent a simple function, the linear threshold function, is NP-complete. They show
that even the problem of identifying the root node in an optimal strategy is NP-hard.
Building optimal trees from decision tables, in terms of the size of the tree (number of
nodes), is considered by Murphy and McCraw in [344], who proved that for most cases,
construction of storage optimal trees is NP-complete. Naumov [361] proved that optimal
decision tree construction from decision tables is NP-complete under a variety of measures.
The measures considered by the earlier papers on NP-completeness appear to be a subset of
Naumov’s measures, though he does not reference any of the existing work. The problem of
constructing the smallest decision tree which best distinguishes characteristics of multiple

distinct groups is shown to be NP-complete in [476].

Comer and Sethi [92] studied the asymptotic complexity of trie index construction
in the document retrieval literature. Megiddo [317] investigated the problem of polyhedral
separability (separating two sets of points using k hyperplanes), and proved that several
variants of this problem are NP-complete. Results in the above three papers throw light on
the complexity of decision tree induction. Lin et al.[288, 287] disussed NP-hardness of the

problem of designing optimal pruned tree structured vector quantizers (TSVQ).

Most of the above results consider only univariate decision tree construction. In-
tuitively, linear or multivariate tree construction should be more difficult than univariate

tree construction, as there is a much larger space of splits to be searched. More precisely,

53

hyperplanes can dichotomize a set of n d-dimensional vectors in at most 2 ZZ:U (("gl))
ways if n > d 4+ 1 and 2" ways if n < d + 1, and for any given n and d, one can find
a set of vectors for which this bound is achieved ([473]). 19 Heath [202] proved that the
problem of finding the split that minimizes the number of misclassified points, given two
sets of mutually exclusive points, is NP-complete. Hoeffgen et al. [208] proved that a more
general problem is NP-hard — they proved that, for any C' > 1, the problem of finding a
hyperplane that misclassifies no more than C * opt examples, where opt is the minimum
number of misclassifications possible using a hyperplane, is also NP-hard.

As the problem of finding a single linear split is NP-hard, it is no surprise that
the problem of building the optimal linear decision trees is NP-hard. However, one might
hope that, by reducing the size of the decision tree, or the dimensionality of the data, it
might be possible to make the problem tractable. This does not seem to be the case either
. Blum and Rivest [32] showed that the problem of constructing an optimal 3-node neural

network is NP-complete. Goodrich [176] proved that optimal (smallest) linear decision tree

construction is NP-complete even in three dimensions.

2.6.2 Other analytical results

Goodman and Smyth [174] showed that greedy top-down induction of decision trees is
directly equivalent to a form of Shannon-Fano prefix coding [131]. A consequence of this

result is that top-down tree induction (using mutual information) is necessarily suboptimal

19 Thanks to Kevin Van Horn for pointing this out.

54

in terms of average tree depth. Trees of maximal size generated by the CART algorithm
[44] have been shown to have an error rate bounded by twice the Bayes error rate, and to
be asymptotically Bayes optimal [177]. Miyakawa [328] considered the problem of coverting
decision tables to optimal trees, and studied the properties of optimal variables, the class

of attributes only members of which can be used at the root of an optimal tree.

Eades and Staples [119] showed that the optimality in search trees, in terms of
worst-case depth, is very closely related to regularity. A c-regular tree is a tree in which all
nodes have ¢ children, and if one child of an internal node is a leaf, then so are all other
children. A tree is regular is it is c-regular for any c. As irregular trees are not likely to be
optimal, splitting rules (Section 2.3.1) that tend to slice off small corners of the attribute

space building highly unbalanced trees are less likely to find optimal trees.

Computational Learning Theory is a young discipline that studies the “learn-
ability” of specific concepts or concept classes. For a good introduction to the theory of
learnability, see [242]. We summarize below significant learnability results for decision trees.
Ehrenfeucht and Haussler [121] gave an algorithm for PAC-learning (without membership
queries) decision trees of constant rank in polynomial time. They also gave a PAC-learning
algorithm for general polynomial size decision trees in time O(n®(°8™)), Kushilevitz and
Mansour [273] gave a polynomial time PAC-learning algorithm with membership queries
for decision trees under the uniform distribution. Hancock [189] gave a polynomial time
algorithm for PAC-learning read-k decision trees. Bshouty [54] showed that decision trees

are learnable under the model of exact learning with membership queries and unrestricted

95

equivalence queries. Recently, agnostic PAC-learning [13] and pruning [205] have been

studied by the learnability theory community.

In the context of ordered binary decision diagrams (OBDD), the bounds on the
tree size have been investigated, as a function of the tree compaction operators and the

specific Boolean functions being represented (eg., [315, 457, 201]).

2.6.3 Tools

Some authors pointed out the similarity or equivalence between the problem of constructing
decision trees and existing, seemingly unrelated, problems. Such view points provide valu-
able tools for analyzing decision trees. Wang and Suen [493] show that entropy-reduction
point of view is powerful in theoretically bounding search depth and classification error.
Chou and Gray [84] view decision trees as variable-length encoder-decoder pairs, and show

that rate is equivalent to tree depth while distortion is the probability of misclassification.

Goodman and Smyth [174] establish the equivalence between decision tree in-
duction and a form of Shannon-Fano prefix coding, and show that this comparison leads
to several interesting insights. Brandman et al. [37] suggested a universal technique to
lower bound the size and other characteristics of decision trees for arbitrary Boolean func-
tions. This technique is based on the power spectrum coefficients of the n-dimensional
Fourier transform of the function. Turksen and Zhao [477] proved the equivalence between

a pseudo-Boolean analysis and the ID3 algorithm [391].

2.6.4 Assumptions and biases

56

Most tree induction methods are heuristic in nature. They use several assumptions and bi-

ases, hoping that together the heuristics produce good trees. Some authors have attempted

to evaluate the validity and relevance of the assumptions and biases in tree induction.

20

o Assumption: Multi-stage classifiers may be more accurate than single stage classifiers.

Analysis: However, the data fragmentation caused by multi-stage hierarchical clas-

sifiers may compensate for the gain in accuracy. Michie [320] argues that top-down

induction algorithms may provide overly complex classifiers that have no real concep-

tual structure in encoding relevant knowledge. As a solution to this problem, Gray

[179] suggested an induction method that generates a single disjuncts of conjuncts

rule, using the same time complexity as tree induction. The efficacy of multi-level

decision trees is compared by Holte [209] to simple, one-level classification rules.

He

concluded that, on most real world data sets commonly used by the machine learn-

ing community [346], decision trees do not perform significantly better than one level

rules. These conclusions, however, were refuted by Elomaa [123] on several grounds.

Elomaa argued that Holte’s observations may have been the peculiarities of the data

he used, and that the slight differences in accuracy that Holte observed were still

significant.

20 1t is argued empirically [111] that the variance in decision tree methods is more a reason than

bias for their poor performance on some domains.

57

e Bias: Smaller consistent decision trees have higher generalization accuracy than larger
consistent trees (Occam’s Razor). Analysis: Murphy and Pazzani [347] empirically
investigated the truth of this bias. Their experiments indicate that this conjecture
seems to be true. However, their experiments indicate that the smallest decision trees
typically have lesser generalization accuracy than trees that are slightly larger. In an
extension of this study, Murphy [345] evaluated the size bias as a function of concept
size. He concluded that (1) bias for smaller trees is generally beneficial in terms of
accuracy and that (2) though larger trees perform better than smaller ones for high-
complexity concepts, it is better to guess the correct size randomly than to have a

prespecified size bias.

e Assumption: Locally optimizing information or distance based splitting criteria, (Sec-
tion 2.3.1) tends to produce small, shallow, accurate trees. Analysis: Aclass of binary
splits S for a data set is said to be complete if, informally, for every partition of
the data, there exists a member of S that induces the partition. Zimmerman [516]
considered the problem of building identification keys for complete classes of splits,
given arbitrary class distributions. Garey and Graham [159] analyze the properties
of recursive greedy splitting on the quality of trees induced from decision tables, and
showed that greedy algorithms using information theoretic splitting criteria can be
made to perform arbitrarily worse than the optimal. Kurzynski [270] showed that, for
globally optimum performance, decisions made at each node should “emphasize the

decision that leads to a greater joint probability of correct classification at the next

o8

level”, i.e., decisions made at different nodes in the tree should not be independent.
Loveland [296] analyzed the performance of variants of Gini index in the context of

sequential fault diagnosis.

Goodman and Smyth [174, 175] analyzed mutual information based greedy tree induc-
tion from an information theoretic view point. They proved that mutual information-
based induction is equivalent to a form of Shannon-Fano prefix coding, and through
this insight argued that greedily induced trees are nearly optimal in terms of depth.
This conjecture is substantiated empirically in [353], where it is shown that the ex-
pected depth of trees greedily induced using information gain [391] and Gini index
[44] is very close to that of the optimal, under a variety of experimental conditions.
Relationship between feature evaluation by Shannon’s entropy and the probability of

error is investigated in [263, 406].

2.7 Comparisons with other exploration methods

There exist several alternatives to decision trees for data exploration, such as neural net-
works, nearest neighbor methods and regression analysis. Several researchers have compared
trees to these other methods on specific problems.

An early study comparing machine learning methods for learning from examples
can be found in [112]. Comparisons of symbolic and connectionist methods can be found
in [501, 440]. Quinlan empirically compared decision trees to genetic classifiers [394] and to

neural networks [400]. Thrun et al. [471] compared several learning algorithms on simulated

29

Monk’s problems. Palvia and Gordon [373] compared decision tables, decision trees and

decision rules, to determine which formalism is best for decision analysis.

Multilayer perceptrons and CART (with and without linear combinations) [44] are
compared in [12] to find that there is not much difference in accuracy. Similar conclusions
were reached in [142] when ID3 [391] and backpropagation were compared. Talmon et al.
[467] compared classification trees and neural networks for analyzing electrocardiograms
(ECG) and concluded that no technique is superior to the other. In contrast, ID3 is adjudged
to be slightly better than connectionist and Bayesian methods in [458]. Brown et al. [50]
compared backpropagation neural networks with decision trees on three problems that are
known to be multimodal. Their analysis indicated that there was not much difference

“vanilla” state.

between both methods, and that neither method performed very well in its
The performance of decision trees improved in [50] when multivariate splits were used, and

backpropagation networks did better with feature selection.

Giplin et al. [171] compared stepwise linear discriminant analysis, stepwise logistic
regression and CART [44] to three senior cardiologists, for predicting the problem of predict-
ing whether a patient would die within a year of being discharged after an acute myocardial
infarction. Their results showed that there was no difference between the physicians and
the computers, in terms of the prediction accuracy. Kors and Van Bemmel [262] compared
statistical multivariate methods with heuristic decision tree methods, in the domain of elec-
trocardiogram (ECGQ) analysis. Their comparisons show that decision tree classifiers are

more comprehensible and flexible to incorporate or change existing categories. Pizzi and

60

Jackson [384] compare an expert systems developed using traditional knowledge engineering
methods to Quinlan’s ID3 [391] in the domain of tonsillectormy. Comparisons of CART to
multiple linear regression and discriminant analysis can be found in [66] where it is argued
that CART is more suitable than the other methods for very noisy domains with lots of

missing values.

Comparisons between decision trees and statistical methods like linear discriminant
function analysis and automatic interaction detection (AID) are given in [313], where it
is argued that machine learning methods sometimes outperform the statistical methods
and so should not be ignored. Feng et al. [138] present a comparison of several machine
learning methods (including decision trees, neural networks and statistical classifiers) as a
part of the European Statlog 21 project. Their main conclusions are that (1) no method
seems uniformly superior to others, (2) machine learning methods seem to be superior for

multimodal distributions, and (3) statistical methods are computationally the most efficient.

Long et al. [295] compared Quinlan’s C4 [398] to logistic regression on the problem
of diagnosing acute cardiac ischemia, and concluded that both methods came fairly close
to the expertise of the physicians. In their experiments, logistic regression outperformed
C4. Curram and Mingers [100] compare decision trees, neural networks and discriminant
analysis on several real world data sets. Their comparisons reveal that linear discriminant

analysis is the fastest of the methods, when the underlying assumptions are met, and that

21 The Statlog project is initiated by the European Commission, and its full title is “The Compar-
ative Testing of Statistical and Logical Learning Algorithms on Large-Scale Applications to Classi-
fication, Prediction and Control”.

61

decision trees methods overfit in the presence of noise. Dietterich et al. [110] argue that
the inadequacy of trees for certain domains may be due to the fact that trees are unable to
take into account some statistical information that is available to other methods like neural
networks. They show that decision trees perform significantly better on the text-to-speech

conversion problem when extra statistical knowledge is provided.

2.8 Selected real-world applications

This section lists a few recent real-world applications of decision trees. The aim is to give
the reader a “feel” for the versatility and usefulness of decision tree methods for data explo-
ration, and not to be useful for readers interested in finding the potential of tree classifiers
in specific domains. Our coverage of applications is, by necessity, very limited. All the
application papers cited below were published between 1993 and 1995 in refer-
eed journals. We also restrict to application domains where the domain scientists tried to
use decision trees, rather than where decision tree researchers tested their algorithm(s) on

several application domains. The application areas are listed below in alphabetical order.
e Agriculture: Application of a range of machine learning methods to problems in
agriculture and horticulture is described in [316].

e Astronomy: Astronomy has been an active domain for using automated classifica-

tion techniques. 22 Use of decision trees for filtering noise from Hubble Space Tele-

22 For a general description of modern classification problems in astronomy, which prompt the use
of pattern recognition and machine learning techniques, see [269].

62

scope images was reported recently in [424]. Decision trees have helped in star-galaxy
classification [500], determining galaxy counts [499] and discovering quasars [244] in
the Second Palomar Sky Survey. Use of neural trees for ultraviolet stellar spectral

classification is described in [183].

Biomedical Engineering: Use of decision trees for identifying features to be used

in implantable devices can be found in [169].

Control Systems: Automatic induction of decision trees was recently used for con-

trol of nonlinear dynamical systems [213].

Financial analysis: Use of CART [44] for asserting the attractiveness of buy-writes

is reported in [319].

Manufacturing and Production: Decision trees have been recently used to non-
destructively test welding quality [124], for semiconductor manufacturing [225], for
increasing productivity [243], for material procurement method selection [103], to
accelerate rotogravure printing [126], for process optimization in electrochemical ma-
chining [130], to schedule printed circuit board assembly lines [383], to uncover flaws
in a Boeing manufacturing process [407] and for quality control [185]. For a recent re-
view of the use of machine learning (decision trees and other techniques) in scheduling,

see [14].

Medicine: Medical research and practice have long been important areas of appli-

cation for decision tree techniques. Recent uses of automatic induction of decision

63

trees can be found in diagnosis [259], cardiology [295, 129, 258], psychiatry [314],
gastroenterology [234], for detecting microcalcifications in mammography [508], to
analyze Sudden Infant Death (SID) syndrome [504] and for diagnosing thyroid disor-

ders [140].

Molecular biology: Initiatives such as the Human Genome Project and the Gen-
Bank database offer fascinating opportunities for machine learning and other data
exploration methods in molecular biology. Recent use of decision trees for analyzing

amino acid sequences can be found in [442] and [423].

Object recognition: Tree based classification has been used recently for recognizing

three dimensional objects [456, 57] and for high level vision [255].

Pharmacology: Use of tree based classification for drug analysis can be found in
[101].
Physics: Decision trees have been used for the detection of physical particles [34].

Plant diseases: CART [44] was recently used to assess the hazard of mortality to

pine trees [19].

Power systems: Power system security assessment [199] and power stability predic-
tion [414] are two areas in power systems maintenance for which decision trees were

used.

Remote Sensing: Remote sensing has been a strong application area for pattern

recognition work on decision trees (see [464, 247]). A recent use of tree-based classi-

64

fication in remote sensing can be found in [416].

e Software development: Regression trees (and backpropagation networks) were re-
cently used to estimate the development effort of a given software module in [266],
where it is argued that machine learning methods compare favorably with traditional

methods.

e Text processing: A recent use of ID3 [391] for medical text classification can be

found in [282].

e Miscellaneous: Decision trees have also been used recently for building personal

learning assistants [327] and for classifying sleep signals [267].

2.9 A word of caution

The hierarchical, recursive tree construction methodology is simple and intuitively appeal-
ing. However, the simplicity of the methodology should not lead a practitioner to take a
slack attitude towards using decision trees. Just as in the case of statistical methods or
neural networks, building a successful tree classifier for an application requires a thorough
understanding of the problem itself, and a deep knowledge of tree methodology.

This chapter attempted a multi-disciplinary survey of work in automatically con-
structing decision trees from data. We gave pointers to work in fields such as pattern
recognition, statistics, machine learning, mathematical programming, neural networks etc.

We attempted to provide a self-contained, concise description of the directions which deci-

65

sion tree work has taken over the years. Our larger goal is to help avoid some redundant,

ad hoc effort, both from researchers and from system developers.

66

Chapter 3

Oblique decision trees

3.1 Introduction

Many variants of decision tree (DT) algorithms have concentrated on decision trees in which
each node checks the value of a single attribute. In numeric attribute spaces, the tests have
the form z; > k, where z; is one of the attributes of an example and k is a constant.
This class of decision trees may be called azis-parallel, because the tests at each node are
equivalent to axis-parallel hyperplanes in the attribute space. An example of such a decision
tree is given in Figure 3.1, which shows both a tree and the partitioning it creates in a 2-D
attribute space.

In this chapter, we examine decision trees that test a linear combination of
the attributes at each internal node. More precisely, let an example take the form

X = x1,29,...,24,C;j where C; is a class label and the x;’s are real-valued attributes.23

23 The constraint that x1,...,2q are real-valued does not necessarily restrict oblique decision trees

to numeric domains. Several researchers have studied the problem of converting symbolic (un-
ordered) domains to numeric (ordered) domains and vice versa (Section 2.3.3). To keep the discus-

Figure 3.1: The left side of the figure shows a simple axis-parallel tree that uses two at-
tributes. The right side shows the partitioning that this tree creates in the attribute space.

The test at each node will then have the form:

d
> aiwi + agp >0 (3.1)
i=1

where ay,...,aq41 are real-valued coefficients. Because these tests are equivalent to hy-

perplanes at an oblique orientation to the axes, we call this class of decision trees oblique
decision trees. (Trees of this form have also been called “linear” (Section 2.3.2) and “mul-
tivariate” [49] . We prefer the term “oblique” to aid geometric intuition and because
“multivariate” includes non-linear combinations of the variables, i.e., curved surfaces.) It is
clear that these are simply a more general form of axis-parallel trees, since by setting a; = 0
for all coefficients but one, the test in Eq. 3.1 becomes the familiar univariate test. Note
that oblique decision trees produce polygonal (polyhedral) partitionings of the attribute
space, while axis-parallel trees produce partitionings in the form of hyper-rectangles that
are parallel to the feature axes.

It should be intuitively clear that when the underlying concept is defined by a

sion simple, however, we will assume that all attributes have numeric values.

Figure 3.2: The left side shows a simple 2-D domain in which two oblique hyperplanes
define the classes. The right side shows an approximation of the sort that an axis-parallel
decision tree would have to create to model this domain.
polygonal space partitioning, it is preferable to use oblique decision trees for classification.
For example, there exist many domains in which one or two oblique hyperplanes will be
the best model to use for classification. In such domains, axis-parallel methods will have to
approximate the correct model with a staircase-like structure, while an oblique tree-building
method could capture it with a tree that was both smaller and more accurate.?4 Figure 3.2
gives an illustration.

For a review of work on oblique (linear) decision trees, see Section 2.3.2. The pur-
pose of the current chapter is to review the strengths and weaknesses of some of the existing
methods, to design a system that combines some of the strengths and overcomes the weak-

nesses, and to evaluate that system empirically and analytically. The main contributions

and conclusions of the current chapter are as follows:

e We have developed a new, randomized algorithm for inducing oblique decision trees

24 Note that though a given oblique tree may have fewer leaf nodes than an axis-parallel tree—
g g

which is what we mean by “smaller”—the oblique tree may in some cases be larger in terms of

information content, because of the increased complexity of the tests at each node.

69

from examples. This algorithm extends the work of Breiman et al.[44] (Chapter 5).

Randomization helps significantly in learning many concepts.

e Our algorithm is fully implemented as an oblique decision tree induction system and
is available over the Internet. The code can be retrieved by anonymous ftp from

ftp://ftp.cs.jhu.edu/pub/ocl/ocl.tar.Z.

e The randomized hill-climbing algorithm used in OC1 is more efficient than other
existing randomized oblique decision tree methods (described below). In fact, the
current implementation of OC1 guarantees a worst-case running time that is only
O(logn) times greater than the worst-case time for inducing axis-parallel trees (i.e.,
O(dn?logn) vs. O(dn?)).

e The ability to generate oblique trees often produces very small trees compared to
axis-parallel methods. When the underlying problem requires an oblique split, oblique
trees are also more accurate than axis-parallel trees. Allowing a tree-building system
to use both oblique and axis-parallel splits broadens the range of domains for which

the system should be useful.

The remaining sections of this chapter follow this outline: the remainder of this
section discusses the complexity issues involved in inducing oblique decision trees. Sec-
tion 3.2 briefly reviews some existing techniques for oblique DT induction, outlines some
limitations of each approach, and introduces the OC1 system. Section 3.3 describes the
OC1 system in detail. Section 3.4 describes experiments that (1) compare the performance

of OCI1 to that of several other axis-parallel and oblique decision tree induction methods on

70

a range of real-world datasets, (2) demonstrate empirically that OC1 significantly benefits
from its randomization steps and (3) demonstrate that randomization is sparingly used in

OCl1, ensuring efficiency.

3.1.1 Complexity of inducing oblique decision trees

One reason for the relatively few papers on the problem of inducing oblique decision trees is
the increased computational complexity of the problem when compared to the axis-parallel
case. There are two important issues that must be addressed. In the context of top-down
decision tree algorithms, we must address the complexity of finding optimal separating
hyperplanes (decision surfaces) for a given node of a decision tree. An optimal hyperplane
will minimize the impurity measure used; e.g., impurity might be measured by the total
number of examples mis-classified. The second issue is the lower bound on the complexity

of finding optimal (e.g., smallest size) trees.

Let us first consider the issue of the complexity of selecting an optimal oblique
hyperplane for a single node of a tree. In a domain with n training instances, each described
using d real-valued attributes, there are at most 2 ('}) distinct d-dimensional oblique splits;
i.e., hyperplanes that divide the training instances uniquely into two nonoverlapping subsets.
This upper bound derives from the observation that every subset of size d from the n points
can define a d-dimensional hyperplane, and each such hyperplane can be rotated slightly in
2¢ directions to divide the set of d points in all possible ways. Figure 3.3 illustrates these

upper limits for two points in two dimensions.

Figure 3.3: For n points in d dimensions (n > d), there are at most n-d distinct axis-parallel
splits. However, there can be 2% Y¢_, ((";1)) oblique splits if n > d + 1 and 2" oblique
splits if n < d 4+ 1. This figure shows all distinct oblique and axis-parallel splits for two

specific points in 2-D.

72

More precisely, hyperplanes can dichotomize a set of n d-dimensional vectors in
at most 2% Y.¢_, (("gl)) ways if n > d + 1 and 2" ways if n < d + 1, and for any given
n and d, one can find a set of vectors for which this bound is achieved [473]. For axis-
parallel splits, on the other hand, there are only n - d distinct possibilities, and axis-parallel
methods such as C4.5 [398] and CART [44] can exhaustively search for the best split at each
node. The problem of searching for the best oblique split is therefore much more difficult
than that of searching for the best axis-parallel split. In fact, the problem is NP-hard
(see Section 2.3.2) and any method for finding the optimal oblique split is likely to have
exponential cost (assuming P # N P). Intuitively, the problem is that it is impractical to
enumerate all distinct hyperplanes and choose the best, as is done in axis-parallel decision

trees. However, any non-exhaustive deterministic algorithm for searching through all these

hyperplanes is prone to getting stuck in local minima.

On the other hand, it is possible to define impurity measures for which the problem
of finding optimal hyperplanes can be solved in polynomial time. For example, if one mini-
mizes the sum of distances of mis-classified examples, then the optimal solution can be found
using linear programming methods. However, classifiers are usually judged by how many
points they classify correctly, regardless of how close to the decision boundary a point may
lie. Thus most of the standard measures for computing impurity (Section 2.3.1) base their
calculation on the discrete number of examples of each category on either side of the hy-
perplane. Section 3.2 discusses the linear programming approach further, and Section 3.4.2

presents comparisons of our approach with a method that uses linear programming to find

73

splits.

Now let us address the second issue, that of the complexity of building a small
tree. The problem of inducing the smallest axis-parallel decision tree is known to be NP-
hard (Section 2.6.1). Tt is also easy to see that the problem of constructing an optimal
(e.g., smallest) oblique decision tree is NP-hard. This conclusion follows from the work of
Blum and Rivest [32]. Their result implies that in d dimensions (i.e., with d attributes)
the problem of producing a 3-node oblique decision tree that is consistent with the training
set is NP-complete. More specifically, they show that the following decision problem is
NP-complete: given a training set T" with n examples and d Boolean attributes, does there
exist a 3-node neural network consistent with 7'7 From this it is easy to show that the
following question is NP-complete: given a training set T, does there exist a 3-leaf-node

oblique decision tree consistent with 77

Note that one can generate the smallest axis-parallel tree that is consistent with
the training set in polynomial time if the number of attributes is a constant. This can be
done by using dynamic programming (e.g.: [318]) or branch and bound techniques (e.g.:
[39]). But when the tree uses oblique splits, it is not clear, even for a fixed number of
attributes, how to generate an optimal (e.g., smallest) decision tree in polynomial time.
Goodrich [176] showed that the problem of inducing the smallest oblique decision tree is
NP-hard even in three dimensions. This suggests that the complexity of constructing good

oblique trees is greater than that for axis-parallel trees.

As a result of these complexity considerations, we took the pragmatic approach of

74

trying to generate small trees, but not looking for the smallest tree. The greedy approach
used by OC1 and virtually all other decision tree algorithms implicitly tries to generate
small trees. In addition, it is easy to construct example problems for which the optimal
split at a node will not lead to the best tree; thus our philosophy as embodied in OC1 is
to find locally “good” splits, but not to spend excessive computational effort on improving

the quality of these splits.

3.2 Details of some existing methods

Before describing the OC1 algorithm, we will briefly discuss some existing oblique DT
induction methods. The methods discussed are CART with linear combinations, Linear
Machine Decision Trees, Simulated Annealing of Decision Trees and Linear Programming
based tree building methods. For a more comprehensive list of pointers to existing work on

oblique trees, see Section 2.3.2.

CART-LC:

The first oblique decision tree algorithm to be proposed was CART with linear combinations
[44, chapter 5]. This algorithm, referred to henceforth as CART-LC, is an important basis
for OC1. Figure 3.4 summarizes (using Breiman et al.’s notation) what the CART-LC
algorithm does at each node in the decision tree. The core idea of the CART-LC algorithm
is how it finds the value of § that maximizes the goodness of a split. This idea is also used

in OC1, and is explained in detail in Section 3.3.1.

75

To induce a split at node T of the decision tree:
Normalize values for all d attributes.

L=0
While (TRUE)
L=L+1
Let the current split s; be v < ¢, where v = Z;-izl a;Tie
Fori=1,...,d
For v = -0.25,0,0.25
Search for the § that maximizes the goodness of the split v — d(a; +7) < c.
Let §*,7v* be the settings that result in highest goodness in these 3 searches.
a; =a; — 0", c=c— 6.
Perturb ¢ to maximize the goodness of s;, keeping ay,...,as constant.
If [goodness(sy) - goodness(s;_1)| < € exit while loop.
Eliminate irrelevant attributes in {ai,...,a,} using backward elimination.

Convert s; to a split on the un-normalized attributes.
Return the better of s; and the best axis-parallel split as the split for 7.

Figure 3.4: The procedure used by CART with linear combinations (CART-LC) at each
node of a decision tree.

After describing CART-LC, Breiman et al.point out that there is still much room
for further development of the algorithm. OCI is an extension of CART-LC that includes

some significant additions. It addresses the following limitations of CART-LC:

e CART-LC is fully deterministic. There is no built-in mechanism for escaping local
minima, although such minima may be very common for some domains. Figure 3.5
shows a simple data set, containing just 8 points in 2 dimensions, for which CART-LC

gets stuck in a local minimum.

e CART-LC sometimes makes adjustments that increase the impurity of a split. This
feature was probably included to allow it to escape some local minima. Because of
this feature, there is no upper bound on the time spent at any node in the decision

tree. CART-LC halts when no perturbation changes the impurity more than e, but

76

Initial Loc.

Figure 3.5: The deterministic perturbation algorithm of CART-LC fails to find the correct
split for this data, even when it starts from the location of the best axis-parallel split. OC1
finds the correct split using one random jump.

7

because impurity may increase and decrease, the algorithm can spend arbitrarily long
time at a node. We found several simple data sets for which CART-LC does not halt,

unless an arbitrary stopping condition is imposed.

To emphasize that the above two characteristics of CART-LC are indeed limita-
tions in real-world data, we trace in Figure 3.6 typical runs of CART-LC and OC1 on the
Dim Star/Galazy data set described in Section 3.4.2. This figure plots the value of the
impurity at every perturbation. It can be seen from the figure that (1) CART-LC does not
find as good a split as OC1 because of local minima, and (2) the impurity of the split found

by CART-LC’s does not monotonically decrease with time.

LMDT:

Another oblique decision tree algorithm, one that uses a very different approach from CART-
LC, is the Linear Machine Decision Trees (LMDT) system [483, 48], which is a successor
to the Perceptron Tree method [480, 482]. Each internal node in an LMDT tree is a Linear
Machine [364]. The training algorithm presents examples repeatedly at each node until
the linear machine converges. Because convergence cannot be guaranteed, LMDT uses
heuristics to determine when the node has stabilized. To make the training stable even
when the set of training instances is not linearly separable, a “thermal training” method

[150] is used, similar to simulated annealing.

Impurity (Twoing value)

78

6.4

6.2

6.6 l | | |
Q‘ b best axis parallel split ¢
| , CART ----
i R OCl -----)
N ' random jumps +
6L T [i
58 | i
o
56 | i
ot
5.4 | ‘. i
52 F Al |
-t
: e
5 I | | |
0 50 100 150 200
Perturbation

Figure 3.6: The local minima in the Dim Star-Galaxy data. The locations where OC1
uses random jumps to escape local minima are marked. Note that the impurity of OC1’s
perturbations is monotonically decreasing unlike that of CART-LC.

79

SADT:

A third system that creates oblique trees is Simulated Annealing of Decision Trees (SADT)
[204] which, like OC1, uses randomization. SADT uses simulated annealing [252] to find
good values for the coefficients of the hyperplane at each node of a tree. SADT first places
a hyperplane in a canonical location, and then iteratively perturbs all the coefficients by
small random amounts. Initially, when the temperature parameter is high, SADT accepts
almost any perturbation of the hyperplane, regardless of how it changes the goodness score.
However, as the system “cools down,” only changes that improve the goodness of the split
are likely to be accepted. Though SADT’s use of randomization allows it to effectively
avoid some local minima, it compromises on efficiency. It runs much slower than either
CART-LC, LMDT or OC1, sometimes considering tens of thousands of hyperplanes at a

single node before it finishes annealing.

Linear Programming:

An alternative way of finding splits is through the use of linear programming (LP). (See
Section 2.3.2 for pointers to work using LP for tree construction.) Typically, LP methods
would find a split by minimizing the distance of misclassified points to the decision boundary.
In our experience, we found this approach to be very competitive, in terms of efficiency
and effectiveness, with methods that optimize a discrete count-based goodness measure.

However, there seem to be three significant problems with LP-based tree building methods.

80

I [
iy
H

TR T T
g2 Tttt X0 AL

222 2 2% 2 Tty gt
K 122%, 2 3%@225?22 byo By
TR N A

2 i.;zézlz‘; % 22522252 !
SRR A

Figure 3.7: Trees induced on the POL data by OC1 and LP.

¢ LP methods are unlikely to be robust to non-uniformly distributed noise in the data.
We are currently experimenting with the LP formulations of [117, 25] to verify this

hypothesis, and our preliminary results support the hypothesis.

e For some multimodal class distributions, impurity-based methods can “shave-off”
homogeneous corners of the attribute space, successively reducing the problem size
and complexity. LP-based methods instead attempt to find a split that is good for
the whole data set, which may not exist. As a result, LP can produce overly large
trees. This is illustrated in Figure 3.7, which shows the partitionings generated by

OC1 and LP for the POL data set described in Section 3.4.3.

e Most LP-based methods produce null/useless solutions when the two sets to be sep-
arated have the same centre. Figure 3.8 shows a simple data set for which the LP

formulations in [117, 25] fail to produce any split.

Our experimental section includes results showing how each of these methods

compares to OC1. Our algorithm, OC1, uses deterministic hill climbing most of the time,

81

T % 227 F1 1T
by, %Zgzz azg%?f 2 %ag 27 34 ‘ﬂfj}l
S e 232% 22" 722 a0 | ATV
PR o S
2252@ 222 ;2 24 i
4 % 2% 2 222]]%
“allxli;ﬂ??;;z“‘ 2%%&22 zzfg éf%ﬁ ggﬂ ;i“
FR I 3 22 2 2

¥ *{;% 22;231{? 5@ £ T

25 2

3%
23 225
it ;f 2;2222 232
TR TN 5272%”}2;&;

1 z

Figure 3.8: Linear programming formulations have trouble finding a split when the centres
of the data sets to be separated coincide. The two LP formulations we experimented with
did not find any split for this data set.

ensuring computational efficiency. In addition, it uses two kinds of randomization to avoid
local minima. By limiting the number of random choices, the algorithm is guaranteed to
spend only polynomial time at each node in the tree. In addition, randomization itself
has produced several benefits: for example, it means that the algorithm can produce many
different trees for the same data set. This offers the possibility of a new family of classifiers:
k-decision-tree algorithms, in which an example is classified by the majority vote of k trees
(see Section 2.5.7 for pointers to work on using multiple trees). Finally, our experiments
indicate that OC1 efficiently finds small, accurate decision trees for many different types of

classification problems.

3.3 Oblique Classifier 1 (OC1)

In this section we discuss details of the oblique decision tree induction system OC1. As

part of this description, we include:

82

To find a split of a set of examples T':
Find the best axis-parallel split of T. Let I be the impurity of this split.
Repeat R times:
Choose a random hyperplane H.
(For the first iteration, initialize H to be the best axis-parallel split.)
Step 1: Until the impurity measure does not improve, do:
Perturb each of the coefficients of H in sequence.
Step 2: Repeat at most J times:
Choose a random direction and attempt to perturb H in that direction.
If this reduces the impurity of H, go to Step 1.
Let I; = the impurity of H. If I} < I, then set I = I;.
Output the split corresponding to I.

Figure 3.9: Overview of the OC1 algorithm for a single node of a decision tree.

the method for finding coefficients of a hyperplane at each tree node,

methods for computing the impurity or goodness of a hyperplane,

a tree pruning strategy, and

methods for coping with missing and irrelevant attributes.

Section 3.3.1 focuses on the most complicated of these algorithmic details; i.e. the
question of how to find a hyperplane that splits a given set of instances into two reasonably
“pure” non-overlapping subsets. This randomized perturbation algorithm is the main novel
contribution of OC1. Figure 3.9 summarizes the basic OC1 algorithm, used at each node

of a decision tree. This figure will be explained further in the following sections.

3.3.1 Perturbation algorithm

OC1 imposes no restrictions on the orientation of the hyperplanes. However, in order to be

at least as powerful as standard DT methods, it first finds the best axis-parallel (univariate)

83

split at a node before looking for an oblique split. OC1 uses an oblique split only when it
improves over the best axis-parallel split.25

The search strategy for the space of possible hyperplanes is defined by the proce-
dure that perturbs the current hyperplane H to a new location. Because there are an expo-
nential number of distinct ways to partition the examples with a hyperplane, any procedure
that simply enumerates all of them will be unreasonably costly. The two main alternatives
considered in the past have been simulated annealing, used in the SADT system [204], and
deterministic heuristic search, as in CART-LC [44]. OC1 combines these two ideas, using
heuristic search until it finds a local minimum, and then using a non-deterministic search
step to get out of the local minimum. (The non-deterministic step in OC1 is not simulated
annealing, however.)

We will start by explaining how we perturb a hyperplane to split the training
set T at a node of the decision tree. Let n be the number of examples in T, d be the
number of attributes (or dimensions) for each example, and & be the number of categories.
Then we can write T; = (21, 2, ..., %4, C;j) for the jth example from the training set 7T,
where xj; is the value of attribute ¢ and Cj is the category label. As defined in Eq. 3.1,
the equation of the current hyperplane H at a node of the decision tree is written as
S¢ (aiw) + agy1 = 0. If we substitute a point (an example) T} into the equation for H,

we get Zle(aixji) + aq+1 = Vj, where the sign of V; tells us whether the point T} is above

25 As pointed out in [44, Chapter 5], it does not make sense to use an oblique split when the
number of examples at a node n is less than or almost equal to the number of features d, because
the data underfits the concept. By default, OC1 uses only axis-parallel splits at tree nodes at which
n < 2d. The user can vary this threshold.

84

or below the hyperplane H; i.e., if V; > 0, then T} is above H. If H splits the training set
T perfectly, then all points belonging to the same category will have the same sign for V;.
ie., sign(V;) = sign(V;) iff category(T;) = category(T};).

OC1 adjusts the coefficients of H individually, finding a locally optimal value for
one coefficient at a time. This key idea was introduced by Breiman et al.. It works as
follows. Treat the coefficient a,, as a variable, and treat all other coefficients as constants.
Then V; can be viewed as a function of a,,. In particular, the condition that 7} is above H
is equivalent to

V>0

1y > Smlim 7 1y def gy (3.2)

Tjm
assuming that x;,, > 0, which we ensure by normalization. Using this definition of Uj, the
point T} is above H if a,, > U;, and below otherwise. By plugging all the points from T
into this equation, we will obtain n constraints on the value of a,,.

The problem then is to find a value for a,, that satisfies as many of these constraints
as possible. (If all the constraints are satisfied, then we have a perfect split.) This problem
is easy to solve optimally: simply sort all the values U;, and consider setting a,, to the
midpoint between each pair of different values. This is illustrated in Figure 3.10. In the
figure, the categories are indicated by font size; the larger U;’s belong to one category, and
the smaller to another. For each distinct placement of the coefficient a,,, OC1 computes the
impurity of the resulting split; e.g., for the location between Ug and Uy illustrated here, two

examples on the left and one example on the right would be misclassified (see Section 3.3.4

Figure 3.10: Finding the optimal value for a single coefficient a,,. Large U’s correspond to
examples in one category and small u’s to another.

for different ways of computing impurity). As the figure illustrates, the problem is simply
to find the best one-dimensional split of the Us, which requires considering just n — 1 values
for a,,. The value a,, obtained by solving this one-dimensional problem is then considered
as a replacement for a,,. Let H; be the hyperplane obtained by “perturbing” a,, to a/,. If
H has better (lower) impurity than Hy, then H is discarded. If H; has lower impurity, H;
becomes the new location of the hyperplane. If H and H; have identical impurities, then H;
replaces H with probability Pstag.% Figure 3.11 contains pseudocode for our perturbation
procedure.

Now that we have a method for locally improving a coefficient of a hyperplane, we
need to decide which of the d + 1 coefficients to pick for perturbation. We experimented
with three different methods for choosing which coefficient to adjust, namely, sequential,

best first and random.

Seq: Repeat until none of the coefficient values is modified in the For loop:

26 The parameter Py o4, denoting “stagnation probability”, is the probability that a hyperplane is
perturbed to a location that does not change the impurity measure. To prevent the impurity from
remaining stagnant for a long time, Py, decreases by a constant amount each time OC1 makes a
“stagnant” perturbation; thus only a constant number of such perturbations will occur at each node.
This constant can be set by the user. Piq4 is reset to 1 every time the global impurity measure is
improved.

86

Perturb(H,m)
Forj=1,...,n
Compute U; (Eq. 3.2)
Sort Uy,..., U, in non-decreasing order.

al, = best univariate split of the sorted U;s.

H; = result of substituting a,, for a,, in H.
If (impurity(Hy) < impurity(H))
{ am:alm H Pmove:Pstag }
Else if (impurity(H) = impurity(H;))
{ a = al,, with probability P,
Pmove = Pmove —0.1% Pstag }

Figure 3.11: Perturbation algorithm for a single coefficient a,,.

For i =1 to d, Perturb(H, 1)
Best: Repeat until coefficient m remains unmodified:
m = coeflicient which when perturbed, results in the
maximum improvement of the impurity measure.
Perturb(H,m)
R-50: Repeat a fixed number of times (50 in our experiments):
m = random integer between 1 and d + 1

Perturb(H,m)

Our previous experiments [350] indicated that the order of perturbation of the coefficients
does not affect the classification accuracy as much as other parameters, especially the ran-
domization parameters (see below). Since none of these orders was uniformly better than

any other, we used sequential (Seq) perturbation for all the experiments reported in Sec-

87

tion 3.4.

3.3.2 Randomization

The perturbation algorithm halts when the split reaches a local minimum of the impurity
measure. For OC1’s search space, a local minimum occurs when no perturbation of any
single coefficient of the current hyperplane will decrease the impurity measure. (Of course,
a local minimum may also be a global minimum.) We have implemented two ways of
attempting to escape local minima: perturbing the hyperplane with a random vector, and
re-starting the perturbation algorithm with a different random initial hyperplane.

The technique of perturbing the hyperplane with a random vector works as follows.
When the system reaches a local minimum, it chooses a random vector to add to the
coefficients of the current hyperplane. It then computes the optimal amount by which the
hyperplane should be perturbed along this random direction. To be more precise, when
a hyperplane H = Zle a;x; + aqyq1 cannot be improved by deterministic perturbation,
OC1 repeats the following loop .J times (where .J is a user-specified parameter, set to 5 by

default).

e Choose a random vector R = (r1,r9,...,7q11)- 27

27 One needs to be careful in choosing a random vector. If the components of the vector are
randomly chosen independently of each other, the resulting random vectors will not be uniformly
distributed. Their distribution will be biased towards the corners of a hyperrectangle, and the bias
increases with increasing dimensionality. This implies that such a strategy to choose random vectors
may be ineffective in escaping local minima for higher dimensional data. A better strategy is to
choose the polar coordinates of the point at random, independently of each other, and then convert
them to the rectilinear coordinates.

88

e Let a be the amount by which we want to perturb H in the direction R. In other
words, let Hy = Y% (a; + ari)zi + (aapr + arayq).
e Find the optimal value for «.

e If the hyperplane H; thus obtained decreases the overall impurity, replace H with Hy,
exit this loop and begin the deterministic perturbation algorithm for the individual

coefficients.

Note that we can treat a as the only variable in the equation for Hy. Therefore each of the
n examples in T, if plugged into the equation for Hy, imposes a constraint on the value of
a. OC1 therefore can use its coefficient perturbation method (see Section 3.3.1) to compute
the best value of a. If J random jumps fail to improve the impurity, OC1 halts and uses
H as the split for the current tree node.

An intuitive way of understanding this random jump is to look at the dual space
in which the algorithm is actually searching. Note that the equation H = Zle ;i + a1
defines a space in which the axes are the coefficients a; rather than the attributes x;.
Every point in this space defines a distinct hyperplane in the original formulation. The
deterministic algorithm used in OC1 picks a hyperplane and then adjusts coefficients one at
a time. Thus in the dual space, OC1 chooses a point and perturbs it by moving it parallel
to the axes. The random vector R represents a random direction in this space. By finding
the best value for o, OC1 finds the best distance to adjust the hyperplane in the direction
of R.

Note that this additional perturbation in a random direction does not significantly

89

increase the time complexity of the algorithm (see Section 3.3.3). We found in our exper-
iments that even a single random jump, when used at a local minimum, proves to be very
helpful. Classification accuracy improved for every one of our data sets when such pertur-
bations were made. See Section 3.4.3 for some examples.

The second technique for avoiding local minima is a variation on the idea of per-
forming multiple local searches. The technique of multiple local searches is a natural ex-
tension to local search, and has been widely mentioned in the optimization literature (see
Roth [412] for an early example). Because most of the steps of our perturbation algorithm
are deterministic, the initial hyperplane largely determines which local minimum will be
encountered first. Perturbing a single initial hyperplane is thus unlikely to lead to the best
split of a given data set. In cases where the random perturbation method fails to escape
from local minima, it may be helpful to simply start afresh with a new initial hyperplane.
We use the word restart to denote one run of the perturbation algorithms, at one node of
the decision tree, using one random initial hyperplane.28 That is, a restart cycles through
and perturbs the coefficients one at a time and then tries to perturb the hyperplane in a
random direction when the algorithm reaches a local minimum. If this last perturbation
reduces the impurity, the algorithm goes back to perturbing the coefficients one at a time.
The restart ends when neither the deterministic local search nor the random jump can find
a better split. One of the optional parameters to OC1 specifies how many restarts to use.

If more than one restart is used, then the best hyperplane found thus far is always saved.

28 The first run through the algorithm at each node always begins at the location of the best
axis-parallel hyperplane; all subsequent restarts begin at random locations.

90

In all our experiments, the classification accuracies increased with more than one restart.
Accuracy tended to increase up to a point and then level off (after about 20-50 restarts,
depending on the domain). Overall, the use of multiple initial hyperplanes substantially

improved the quality of the decision trees found (see Section 3.4.3 for some examples).

Our initial hyperplanes are chosen uniformly randomly. Goodrich et al.[176] eval-
uated the benefits of choosing the initial hyperplanes in a data sensitive manner. Their
method chooses d (= dimensionality) points randomly from the input, fits a hyperplane to
them, and uses it as an initial hyperplane for a restart of OC1. In addition to making it
possible to analytically quantify how close the perturbation algorithm comes to the opti-
mal split, data sensitive restarts produce trees of almost identical quality to OC1’s default

restarts.

Best Axis-Parallel Split. It is clear that axis-parallel splits are more suitable for some
data distributions than oblique splits. To take into account such distributions, OC1 com-
putes the best axis-parallel split and an oblique split at each node, and then picks the better
of the two.29 Calculating the best axis-parallel split takes an additional O(dnlogn) time,
and so does not increase the asymptotic time complexity of OC1. As a simple variant of
the OC1 system, the user can opt to “switch off” the oblique perturbations, thus building
an axis-parallel tree on the training data. Section 3.4.2 empirically demonstrates that this

axis-parallel variant of OC1 compares favorably with existing axis-parallel algorithms.

29 Sometimes a simple axis-parallel split is preferable to an oblique split, even if the oblique split
has slightly lower impurity. The user can specify such a bias as an input parameter to OC1.

91
3.3.3 Computational complexity

By carefully combining hill-climbing and randomization, OC1 ensures a an efficient worst
case time for inducing a decision tree. In the following, we show that for a data set with
n examples (points) and d attributes per example, OC1 uses at most O(dn?logn) time for
inducing the tree. We assume n > d for our analysis.

For the analysis here, we assume the coefficients of a hyperplane are adjusted in
sequential order (the Seq method described in Section 3.3.1). The number of restarts at a
node will be r, and the number of random jumps tried will be 7. Both r and j are constants,
fixed in advance of running the algorithm.

Initializing the hyperplane to a random position takes just O(d) time. We need to
consider first the maximum amount of work OC1 can do before it finds a new location for

the hyperplane. Then we need to consider how many times it can move the hyperplane.

1. Attempting to perturb the first coefficient (a1) takes O(dn+nlogn) time. Computing
U;’s for all the points (equation 3.2) requires O(dn) time, and sorting the U;’s takes

O(nlogn). This gives us O(dn 4+ nlogn) work.

2. If perturbing a; does not improve things, we try to perturb as. Computing all the new
U;’s will take just O(n) time because only one term is different for each U;. Re-sorting

will take O(nlogn), so this step takes O(n) + O(nlogn) = O(nlogn) time.

3. Likewise ag, ..., aq will each take O(nlogn) additional time, assuming we still have not

found a better hyperplane after checking each coefficient. Thus the total time to cycle

92

through and attempt to perturb all these additional coefficients is (d—1)*O(nlogn) =
O(dnlogn).

. Summing up, the time to cycle through all coefficients is O(dn logn)+O(dn+nlogn) =
O(dnlogn).

. If none of the coefficients improved the split, then we attempt to make up to 7 random
jumps. Since j is a constant, we will just consider j = 1 for our analysis. This step
involves choosing a random vector and running the perturbation algorithm to solve for
«, as explained in Section 3.3.2. As before, we need to compute a set of U;’s and sort
them, which takes O(dn+nlogn) time. Because this amount of time is dominated by
the time to adjust all the coefficients, the total time so far is still O(dnlogn). This is
the most time OC1 can spend at a node before either halting or finding an improved

hyperplane.

. Assuming OC1 is using the Sum Minority or Max Minority error measure (Sec-
tion 3.3.4), it can only reduce the impurity of the hyperplane n times. This is
clear because each improvement means one more example will be correctly classi-
fied by the new hyperplane. Thus the total amount of work at a node is limited
to n * O(dnlogn) = O(dn*logn). In practice, we have found that the number of

improvements per node is much smaller than n.

. The measures Information Gain, Gini Index and Twoing Rule (Section 3.3.4) can take
6(n?) values at a node with n points belonging to one of two classes. (More precisely,

information gain can take on (n + 2)2/8 distinct values. Gini index and Twoing rule

93

can take on fewer values, as they have more inherent symmetry than information gain,
but the upper bound is #(n?) for all three measures.) So, the time bounds derived for
max minority and sum minority increase by a linear factor for these measures. The
bounds derived are not applicable to a measure that, for example, uses the distances

of mis-classified objects to the hyperplane.

Assuming that OC1 only adjusts a hyperplane when it improves the impurity
measure, it will do O(dn?logn) work in the worst case. However, OC1 allows a certain
number of adjustments to the hyperplane that do not improve the impurity, although it
will never accept a change that worsens the impurity. The number allowed is determined by
a constant known as “stagnant-perturbations”. Let this value be s. This works as follows.

Each time OC1 finds a new hyperplane that improves on the old one, it resets
a counter to zero. It will move the new hyperplane to a different location that has equal
impurity at most s times. After each of these moves it repeats the perturbation algorithm.
Whenever impurity is reduced, it re-starts the counter and again allows s moves to equally
good locations. Thus it is clear that this feature just increases the worst-case complexity of
OC1 by a constant factor, s.

Finally, note that the overall cost of OC1 is also O(dn?logn), i.e., this is an upper
bound on the total running time of OC1 independent of the size of the tree it ends up
creating. (This upper bound applies to Sum Minority and Max Minority; an open question
is whether a similar upper bound can be proven for Information Gain or the Gini Index.)

Thus the worst-case asymptotic complexity of our system is comparable to that of systems

94

that construct axis-parallel decision trees, which have O(dn?) worst-case complexity. To
sketch the intuition that leads to this bound, let G be the total impurity summed over all
leaves in a partially constructed tree (i.e., the sum of currently misclassified points in the
tree). Now observe that each time we run the perturbation algorithm on any node in the
tree, we either halt or improve G by at least one unit. The worst-case analysis for one node
is realized when the perturbation algorithm is run once for every one of the n examples,
but when this happens, there would no longer be any mis-classified examples and the tree

would be complete.

3.3.4 Other details

Impurity measures

OC1 attempts to divide the d-dimensional attribute space into homogeneous regions; i.e.,
regions that contain examples from just one category. The goal of adding new nodes to
a tree is to split up the sample space so as to minimize the “impurity” of the training
set. Some algorithms measure “goodness” instead of impurity, the difference being that
goodness values should be maximized while impurity should be minimized. Many different
measures of impurity have been studied (Section 2.3.1).

The OCI1 system is designed to work with a large class of impurity measures.
Stated simply, if the impurity measure uses only the counts of examples belonging to every
category on both sides of a split, then OC1 can use it. (See Chapter 7 for ways of mapping

other kinds of impurity measures to this class of impurity measures.) The user can plug

95

in any impurity measure that fits this description. The OC1 implementation includes six
impurity measures. Though all six of the measures have been defined elsewhere in the
literature, in some cases we have made slight modifications that are defined precisely below.

In each of the following definitions, the set of examples T" at the node about to be
split contains n (> 0) instances that belong to one of k categories. (Initially this set is the
entire training set.) A hyperplane H divides T into two non-overlapping subsets T;, and
Tg (i.e., left and right). L; and R; are the number of instances of category j in 77, and Tg
respectively. All the impurity measures initially check to see if Tr, and Tk are homogeneous

(i.e., all examples belong to the same category), and if so return minimum (zero) impurity.

1. Information Gain: This measure of information gained from a particular split was
popularized in machine learning by Quinlan (1986). Quinlan’s definition makes infor-
mation gain a goodness measure; i.e., something to maximize. Because OC1 attempts
to minimize whatever impurity measure it uses, we use the reciprocal of the standard

value of information gain in the OC1 implementation.

2. Gini Index: The Gini criterion (or index) was proposed for decision trees by Breiman
et al.(1984). The Gini Index as originally defined measures the probability of misclas-
sification of a set of instances, rather than the impurity of a split. We implement the

following variation:
k
GiniL = 1.0 = Y (L;/|T.])?
i=1
k
GiniR = 1.0 = Y (R;/|Tr|)*
i=1

96
Impurity = (|Tr| * GiniL + |Tg| * GiniR)/n

where GiniL is the Gini Index on the “left” side of the hyperplane and GiniR is that

on the right.

. Twoing Rule: The Twoing Rule was first proposed by Breiman et al. (1984). The

value to be computed is defined as:
k
TwoingValue = (|Tp|/n) * (|Tr|/n) * (3 |Li/|Tz| — Ri/|Tr||)?
i=1

where |Tr| (|Tr]|) is the number of examples on the left (right) of a split at node T,
n is the number of examples at node T, and L; (R;) is the number of examples in
category i on the left (right) of the split. The TwoingValue is actually a goodness
measure rather than an impurity measure. Therefore OC1 attempts to minimize the

reciprocal of this value.

. Max Minority: The measures Max Minority, Sum Minority and Sum Of Variances
were defined in the context of decision trees by Heath, Kasif, and Salzberg [204].
Max Minority has the theoretical advantage that a tree built minimizing this measure
will have depth at most logn. Our experiments indicated that this is not a great
advantage in practice: seldom do other impurity measures produce trees substantially

deeper than those produced with Max Minority. The definition is:

k
MinorityL = >~ L,
i=1,i1#max L;
k
MinorityR = Z R;

i=1,i#max R;

97
Max Minority = max(MinorityL, MinorityR)

5. Sum Minority: If MinorityL. and MinorityR are defined as for the Max Minority
measure, then Sum Minority is just the sum of these two values. This measure is the
simplest way of quantifying impurity, as it simply counts the number of misclassified
instances. Though Sum Minority performs well on some domains, it has some obvious
flaws. As one example, consider a domain in which n = 100,d = 1, and k = 2 (i.e., 100
examples, 1 numeric attribute, 2 classes). Suppose that when the examples are sorted
according to the single attribute, the first 50 instances belong to category 1, followed
by 24 instances of category 2, followed by 26 instances of category 1. Then all possible
splits for this distribution have a sum minority of 24. Therefore it is impossible when
using Sum Minority to distinguish which split is preferable, although splitting at the

alternations between categories is clearly better. 30

6. Sum Of Variances: 5! The definition of this measure is:

Tz | 1Tz

Variancel, = Z (Cat(Ty,) — Z Cat(TLj)/|TLD2
=1 7=1
TR TR

VarianceR = > (Cat(Tg,) — > _ Cat(Tg,)/|Tr|)>
i=1 Jj=1

Sum of Variances = Variancel. 4+ VarianceR

where Cat(T;) is the category of instance T;. As this measure is computed using the

actual class labels, it is easy to see that the impurity computed varies depending on

30 Lubinsky [298] also used this measure for tree construction, referring to it as inaccuracy. He
suggested an improvement to inaccuracy called weighted inaccuracy.

31 Sum Of Variances was called Sum of Impurities by Heath et al.. The earliest use of this measure
we found was in the Automatic Interaction Detection (AID) program [139].

98

how numbers are assigned to the classes. For instance, if 77 consists of 10 points of
category 1 and 3 points of category 2, and if T consists of 10 points of category 1
and 3 points of category 5, then the Sum Of Variances values are different for 77 and
T5. To avoid this problem, OC1 uniformly reassigns category numbers according to
the frequency of occurrence of each category at a node before computing the Sum Of

Variances.

Our experiments indicated that, on average, Information Gain, Gini Index and
the Twoing Rule perform better than the other three measures for both axis-parallel and
oblique trees. The Twoing Rule is the current default impurity measure for OC1, and it
was used in all of the experiments reported in Section 3.4. There are, however, artificial
data sets for which Sum Minority and/or Max Minority perform much better than the rest
of the measures. For instance, Sum Minority easily induces the exact tree for the POL data

set described in Section 3.4.3, while all other methods have difficulty finding the best tree.

Pruning

Virtually all decision tree induction systems prune the trees they create in order to avoid
overfitting the data. Many studies have found that judicious pruning results in both smaller
and more accurate classifiers, for decision trees as well as other types of machine learning
systems (see Section 2.4.1). For the OC1 system we implemented an existing pruning
method, but note that any tree pruning method will work fine within OC1. Based on

the experimental evaluations of Mingers [324] and other work, we chose Breiman et al.’s

99

Cost Complexity (CC) pruning [44] as the default pruning method for OC1. This method,
which is also called Error Complexity or Weakest Link pruning, requires a separate pruning
set. The pruning set can be a randomly chosen subset of the training set, or it can be
approximated using cross validation. OC1 randomly chooses 10% (the default value) of the
training data to use for pruning. In the experiments reported below, we only used this

default value.

Briefly, the idea behind CC pruning is to create a set of trees of decreasing size from
the original, complete tree. All these trees are used to classify the pruning set, and accuracy
is estimated from that. CC pruning then chooses the smallest tree whose accuracy is within
k standard errors squared of the best accuracy obtained. When the 0-SE rule (k = 0) is
used, the tree with highest accuracy on the pruning set is selected. When k > 0, smaller
tree size is preferred over higher accuracy. For details of Cost Complexity pruning, see

Breiman et al.[44] or Mingers [324].

Irrelevant attributes

Irrelevant attributes pose a significant problem for most machine learning methods. Decision
tree algorithms, even axis-parallel ones, can be confused by too many irrelevant attributes
(see Section 2.5.1 for pointers to existing work). Because oblique decision trees learn the
coefficients of each attribute at a DT node, one might hope that the values chosen for each
coefficient would reflect the relative importance of the corresponding attributes. Clearly,

though, the process of searching for good coefficient values will be much more efficient when

100

there are fewer attributes; the search space is much smaller. For this reason, oblique DT
induction methods can benefit substantially by using a feature selection method (an algo-
rithm that selects a subset of the original attribute set) in conjunction with the coefficient
learning algorithm [44, 49].

Currently, OC1 does not have a built-in mechanism to select relevant attributes.
However, it is easy to include any of several standard methods (e.g., stepwise forward
selection or stepwise backward selection) or even an ad hoc method to select features before
running the tree-building process. For example, in separate experiments on data from the
Hubble Space Telescope (Section 6.1), we used feature selection methods as a preprocessing
step to OC1, and reduced the number of attributes from 20 to 2. The resulting decision
trees were both simpler and more accurate. Work is currently underway to incorporate an
efficient feature selection technique into the OC1 system.

Regarding missing values, if an example is missing a value for any attribute, OC1
uses the mean value for that attribute. One can of course use other techniques for handling

missing values, but those were not considered in this study.

3.4 Experiments

In this section, we present three experiments to support the following three claims, respec-

tively.

1. OC1 compares favorably over a variety of real-world domains with several existing

axis-parallel and oblique decision tree induction methods.

101

2. Randomization, both in the form of multiple local searches and random jumps, im-

proves the quality of decision trees produced by OCI.

3. OC1 uses randomization sparingly, ensuring efficient search.

The experimental method used for all the experiments is described in Section 3.4.1.
Sections 3.4.2, 3.4.3 and 3.4.4 describe experiments corresponding to the above three claims.
Each experimental section begins with a description of the data sets, and then presents the

experimental results and discussion.

3.4.1 The setup

We used five-fold cross validation (CV) in all our experiments to estimate classification

accuracy. A k-fold CV experiment consists of the following steps.

1. Randomly divide the data into k equal-sized disjoint partitions.

2. For each partition, build a decision tree using all data outside the partition, and test

the tree on the data in the partition.

3. Sum the number of correct classifications of the k trees and divide by the total number
of instances to compute the classification accuracy. Report this accuracy and the

average size of the k trees.

Each entry in Tables 3.1 and 3.2 is a result of ten 5-fold CV experiments; i.e., the result of
tests that used 50 decision trees. Each of the ten 5-fold cross validations used a different

random partitioning of the data. Each entry in the tables reports the mean and standard

102

deviation of the classification accuracy, followed by the mean and standard deviation of the
decision tree size (measured as the number of leaf nodes). Good results should have high

values for accuracy, low values for tree size, and small standard deviations.

In addition to OC1, we also included in the experiments an axis-parallel version
of OC1, which only considers axis-parallel hyperplanes. We call this version, described in
Section 3.3.2, OC1-AP. In all our experiments, both OC1 and OC1-AP used the Twoing
Rule (Section 3.3.4) to measure impurity. Other parameters to OC1 took their default values
unless stated otherwise. (Defaults include the following: number of restarts at each node:
20. Number of random jumps attempted at each local minimum: 5. Order of coefficient
perturbation: Sequential. Pruning method: Cost Complexity with the 0-SE rule, using 10%

of the training set exclusively for pruning.)

In our comparison, we used the oblique version of the CART algorithm, CART-
LC. We implemented our own version of CART-LC, following the description in Breiman
et al.[44, Chapter 5]; however, there may be differences between our version and other
versions of this system (note that CART-LC is not freely available). Our implementation
of CART-LC measured impurity with the Twoing Rule and used 0-SE Cost Complexity
pruning with a separate test set, just as OC1 does. We did not include any feature selection
methods in CART-LC or in OC1, and we did not implement normalization. Because the
CART coefficient perturbation algorithm may alternate indefinitely between two locations
of a hyperplane (see Section 3.2), we imposed an arbitrary limit of 100 such perturbations

before forcing the perturbation algorithm to halt.

103

We also included axis-parallel CART and C4.5 in our comparisons. We used the
implementations of these algorithms from the IND 2.1 package [63]. The default cart0 and
c4.5 “styles” defined in the package were used, without altering any parameter settings.
The cart0 style uses the Twoing Rule and 0-SE cost complexity pruning with 10-fold cross
validation. The pruning method, impurity measure and other defaults of the c4.5 style are
the same as those described in Quinlan [398].

The last method we included in our comparisons is a modification of OC1 that
uses linear programming (LP) to find the split at each node. We call this variation OC1-LP.
To implement this method, we replaced OC1’s hyperplane-finding routine with a routine
that formulates and solves a LP problem. The LP formulation we used is the one suggested
in [25]. 32 We used LOQO to solve the linear programs. LOQO is a linear and quadratic
programming problem solver written by Robert J. Vanderbi, Program in Statistics and
Operations Research, Princeton University. 33 Note that we have implemented the LP-

formulation only for 2-class problems.

3.4.2 OC1 vs. existing tree methods

Table 3.1 compares the performance of OC1 to three well-known decision tree induction
methods, OC1-AP and OC1-LP on six different real-world data sets. In the next section we

will consider artificial data, for which the concept definition can be precisely characterized.

32 Thanks to Kristin Bennett for providing the code, and for helpful discussions.
33 Though LOQO is a commercial product, academic institutions can obtain a free copy for research
purposes only. Contact Robert Vanderbi at rvdb@jazz.princeton.edu.

104

Description of data sets

Star/Galaxy Discrimination. Two of our data sets came from a large set of astronom-
ical images collected by Odewahn et al.[367]. In their study, they used these images to
train artificial neural networks running the perceptron and back propagation algorithms.
The goal was to classify each example as either “star” or “galaxy.” Each image is char-
acterized by 14 real-valued attributes, where the attributes were measurements defined by
astronomers as likely to be relevant for this task. The objects in the image were divided by
Odewahn et al.into “bright” and “dim” data sets based on the image intensity values, where
the dim images are inherently more difficult to classify. (Note that the “bright” objects are
only bright in relation to others in this data set. In actuality they are extremely faint,
visible only to the most powerful telescopes.) The bright set contains 2462 objects and the

dim set contains 4192 objects.

In addition to the results reported in Table 3.1, the following results have appeared
on the Star/Galaxy data. Odewahn et al. (1992) reported accuracy of 99.8% accuracy on
the bright objects, and 92.0% on the dim ones, although it should be noted that this study
used a single training and test set partition. Heath [202] reported 99.0% accuracy on the
bright objects using SADT, with an average tree size of 7.03 leaves. This study also used
a single training and test set. Salzberg [422] reported accuracies of 98.8% on the bright
objects, and 95.1% on the dim objects, using 1-Nearest Neighbor (1-NN) coupled with a

feature selection method that reduces the number of features.

105

Breast Cancer Diagnosis. Mangasarian and Bennett have compiled data on the prob-
lem of diagnosing breast cancer to test several new classification methods [309, 25, 26]. This
data represents a set of patients with breast cancer, where each patient was characterized
by nine numeric attributes plus the diagnosis of the tumor as benign or malignant. The
data set currently has 683 entries and is available from the UC Irvine machine learning
repository [346]. Heath et al.[204] reported 94.9% accuracy on a subset of this data set (it
then had only 470 instances), with an average decision tree size of 4.6 nodes, using SADT.
Salzberg [421] reported 96.0% accuracy using 1-NN on the same (smaller) data set. Herman
and Yeung [207] reported 99.0% accuracy using piece-wise linear classification, again using
a somewhat smaller data set. Bennett and Mangasarian [25] reported 97.4% accuracy using

their MSM1 algorithm, using a different experimentation method from the one we employ.

Classifying Irises. This is Fisher’s famous iris data, which has been extensively studied
in the statistics and machine learning literature. The data consists of 150 examples, where
each example is described by four numeric attributes. There are 50 examples of each of
three different types of iris flower. Weiss and Kapouleas [501] obtained accuracies of 96.7%
and 96.0% on this data with back propagation and 1-NN, respectively. Note that Table 3.1
does not report results of OC1-LP on the Iris data. This is because we have implemented

the LP-formulation for only two-class problems.

Housing Costs in Boston. This data set, also available as a part of the UCI ML repos-

itory, describes housing values in the suburbs of Boston as a function of 12 continuous

106

Algorithm | Bright S/G | Dim S/G | Cancer Iris | Housing | Diabetes
0C1 98.940.2 | 95.0£0.3 | 96.24£0.3 | 94.7£3.1 | 82.4+0.8 | 74.4+1.0
4.3+1.0 | 13.0£8.7 | 2.84+0.9 | 3.1£0.2 | 6.1£3.0 | 54438

CART-LC 98.84+0.2 | 92.840.5 | 95.3+0.6 | 93.5£2.9 | 81.4+1.2 | 73.7+1.2
3.9£1.3 | 242487 | 3.5£0.9 | 3.2+0.3 | 5.843.2 | 8.0£5.2

OC1-LP 99.240.1 | 95.54+0.1 | 96.7£0.3 85.84+0.9 | 75.5£0.9
2.5+0.5 6.4+3.1 | 3.0+1.2 4.2+1.9 | 6.6+4.3

OC1-AP 98.14+0.2 | 94.04+0.2 | 94.54+0.5 | 92.7£2.4 | 81.8+1.0 | 73.84+1.0
6.9£2.4 | 29.3£8.8 | 6.4£1.7 | 3.2+0.3 | 8.6+4.5 | 11.4£7.5

CART-AP 98.54+0.5 | 94.24+0.7 | 95.0£1.6 | 93.8£3.7 | 82.1£3.5 | 73.9+3.4
13.94£5.7 | 30.4£10 | 11.5+£7.2 | 4.3+1.6 | 15.14£10 | 11.5£9.1

C4.5 98.54+0.5 | 93.3+0.8 | 95.3£2.0 | 95.1£3.2 | 83.2+3.1 | 71.44+3.3
14.3£2.2 | 7T7.9£7.4 | 98+£2.2 | 4.6+0.8 | 28.243.3 | 56.3£7.9

Table 3.1: Comparison of OC1 and other decision tree induction methods on six different
data sets. The first line for each method gives accuracies, and the second line gives average
tree sizes.

attributes and 1 binary attribute [194]. The category variable (median value of owner-
occupied homes) is actually continuous, but we discretized it so that category = 1 if value

< $21000, and 2 otherwise. For other uses of this data, see [20, 399].

Diabetes diagnosis. This data catalogs the presence or absence of diabetes among Pima
Indian females, 21 years or older, as a function of eight numeric-valued attributes. The
original source of the data is the National Institute of Diabetes and Digestive and Kidney
Diseases, and it is now available in the UCI repository. Smith et al. [452] reported 76%

accuracy on this data using their ADAP learning algorithm, using a different experimental

method from that used here.

107

Discussion

The table shows that, for the six data sets considered here, OC1 consistently finds better
trees than the original oblique CART method. Its accuracy was greater in all six domains,
although the difference was significant (more than 2 standard deviations) only for the dim
star/galaxy problem. The average tree sizes were roughly equal for five of the six domains,
and for the dim stars and galaxies, OC1 found considerably smaller trees. These differences

will be analyzed and quantified further by using artificial data, in the following section.

The oblique methods (OC1, OC1-LP and CART-LC) generally find much smaller
trees than the axis-parallel methods. This difference can be quite striking for some
domains—mnote, for example, that OC1 produced a tree with 13 nodes on average for the
dim star/galaxy problem, while C4.5 produced a tree with 78 nodes, 6 times larger. Of
course, in domains for which an axis-parallel tree is the appropriate representation, axis-
parallel methods should compare well with oblique methods in terms of tree size. In fact,

for the Iris data, all the methods found similar-sized trees.

OCI1-LP has the highest accuracy among all the methods, for all the domains it
was applied to. This result substantiates our claim that oblique decision trees are more
accurate and concise in some domains. However, it is surprising that linear programming
(LP) beats our randomized search method, considering that LP methods may be over-
sensitive to outliers (Section 3.2). One possible reason for this is that the underlying trees
are small for all the data sets we used. The bright star/galaxy data is almost linearly

separable and the cancer and iris data sets have very accurate trees that have just more

108

than 3 leaf nodes. We are currently investigating the properties of OC1-LP in more detail.

3.4.3 Randomization helps OC1

In our second set of experiments, we examine more closely the effect of introducing random-
ized steps into the algorithm for finding oblique splits. Our experiments demonstrate that
OC1’s ability to produce an accurate tree from a set of training data is clearly enhanced
by the two kinds of randomization it uses. More precisely, we use three artificial data sets
(for which the underlying concept is known to the experimenters) to show that OC1’s per-
formance improves substantially when the deterministic hill climbing is augmented in any

of three ways:

e with multiple restarts from random initial locations,

e with perturbations in random directions at local minima, or

e with both of the above randomization steps.

In order to find clear differences between algorithms, one needs to know that the
concept underlying the data is indeed difficult to learn. For simple concepts (say, two
linearly separable classes in 2-D), many different learning algorithms will produce very
accurate classifiers, and therefore the advantages of randomization may not be detectable.
It is known that many of the commonly-used data sets from the UCI repository are easy
to learn with very simple representations [209]; therefore those data sets may not be ideal

for our purposes. Thus we created a number of artificial data sets that present different

109

problems for learning, and for which we know the “correct” concept definition. This allows

us to quantify more precisely how the parameters of our algorithm affect its performance.

A second purpose of this experiment is to compare OC1’s search strategy with
that of two existing oblique decision tree induction systems — LMDT [48] and SADT [204].
We show that the quality of trees induced by OC1 is as good as, if not better than, that of
the trees induced by these existing systems on three artificial domains. We also show that
OC1 achieves a good balance between amount of effort expended in search and the quality

of the tree induced.

Both LMDT and SADT used information gain for this experiment. However, we
did not change OC1’s default measure (the Twoing Rule) because we observed, in exper-
iments not reported here, that OC1 with information gain does not produce significantly
different results. The maximum number of successive, unproductive perturbations allowed
at any node was set at 10000 for SADT. For all other parameters, we used default settings

provided with the systems.

Description of artificial data

LS10 The LS10 data set has 2000 instances divided into two categories. Each instance is
described by ten attributes x1,...,x19, whose values are uniformly distributed in the range
[0,1]. The data is linearly separable with a 10-D hyperplane (thus the name LS10) defined
by the equation x1 + x2 + x3 + x4 + x5 < g + 7 + g + X9 + x19. The instances were all

generated randomly and labelled according to which side of this hyperplane they fell on.

110

Because oblique DT induction methods intuitively should prefer a linear separator if one
exists, it is interesting to compare the various search techniques on this data set where we
know a separator exists. The task is relatively simple for lower dimensions, so we chose

10-dimensional data to make it more difficult.

POL This data set is shown in Figure 3.12. It has 2000 instances in two dimensions, again
divided into two categories. The underlying concept is a set of four parallel oblique lines
(thus the name POL), dividing the instances into five homogeneous regions. This concept is
more difficult to learn than a single linear separator, but the minimal-size tree is still quite

small.

RCB RCB stands for “rotated checker board”; this data set is also used in Chapter 7
for a different set of experiments. The data set, shown in Figure 3.12, has 2000 instances
in 2-D, each belonging to one of eight categories. This concept is difficult to learn for any
axis-parallel method, for obvious reasons. It is also quite difficult for oblique methods, for
several reasons. The biggest problem is that the “correct” root node, as shown in the figure,
does not separate out any class by itself. Some impurity measures (such as Sum Minority)
will fail miserably on this problem, although others (e.g., the Twoing Rule) work much
better. Another problem is that a deterministic coefficient perturbation algorithm can get
stuck in local minima in many places on this data set.

Table 3.2 summarizes the results of this experiment in three smaller tables, one

for each data set. In each smaller table, we compare four variants of OC1 with LMDT

111

Linearly Separable 10-D (LS10) data

R:J | Accuracy Size Hyperplanes
0:0 | 89.841.2 67.04+5.8 2756
0:20 | 91.5+1.5 55.2+7.0 3824
20:0 | 95.0+0.6 25.6+24 24913
20:20 | 97.2+0.7 13.943.2 30366
LMDT | 99.74+0.2 2.240.5 9089

SADT | 95.241.8 15.54+5.7 349067
Parallel Oblique Lines (POL) data

R:J | Accuracy Size Hyperplanes
0:0 | 98.3+0.3 21.6+1.9 164
0:20 | 99.34+0.2 9.0+1.0 360
20:0 | 99.1+0.2 14.24+1.1 3230
20:20 | 99.640.1 5.540.3 4852
LMDT | 89.6+10.2 41.9+19.2 1732
SADT | 99.3£0.4 8.4+2.1 85594
Rotated Checker Board (RCB) data
R:J | Accuracy Size Hyperplanes
0:0 | 98.44+0.2 35.5+1.4 573
0:20 | 99.3+0.3 19.7+0.8 1778
20:0 | 99.6+0.2 12.0+14 6436
20:20 | 99.840.1 8.7+0.4 11634
LMDT | 95.742.3 70.1£9.6 2451

SADT | 97.9£1.1 32.54+4.9 359112

Table 3.2: The effect of randomization in OC1. The first column, labelled R:J, shows the
number of restarts (R) followed by the maximum number of random jumps (J) attempted by
OC1 at each local minimum. Results with LMDT and SADT are included for comparison
after the four variants of OC1. Size is average tree size measured by the number of leaf nodes.
The third column shows the average number of hyperplanes each algorithm considered while
building one tree.

112

s
P 3338, B o4 e qads /17
$53 33 4y 44 4

33 &% adly 4 7T

4t gay 4 e 7 7

a4 a® g

4 7
4, daet 7
I i1

s

1 2 B33 944 A
RO

s Ry 77
aftmr 7

ke 7 7|

Figure 3.12: The POL and RCB data sets

and SADT. The different results for OC1 were obtained by varying both the number of
restarts and the number of random jumps. When random jumps were used, up to twenty
random jumps were tried at each local minimum. As soon as one was found that improved
the impurity of the current hyperplane, the algorithm moved the hyperplane and started
running the deterministic perturbation procedure again. If none of the 20 random jumps
improved the impurity, the search halted and further restarts (if any) were tried. The same
training and test partitions were used for all methods for each cross-validation run (recall
that the results are an average of ten 5-fold CVs). The trees were not pruned for any of the

algorithms, because the data were noise-free and furthermore the emphasis was on search.

Table 3.2 also includes the number of hyperplanes considered by each algorithm
while building a complete tree. Note that for OC1 and SADT, the number of hyperplanes
considered is generally much larger than the number of perturbations actually made, because
both these algorithms compare newly generated hyperplanes to existing hyperplanes before

adjusting an existing one. Nevertheless, this number is a good estimate of much effort

113

each algorithm expends, because every new hyperplane must be evaluated according to the
impurity measure. For LMDT, the number of hyperplanes considered is identical to the

actual number of perturbations.

Discussion

The OCI1 results here are quite clear. The first line of each table, labelled 0:0, gives the
accuracies and tree sizes when no randomization is used — this variant is very similar
to the CART-LC algorithm. As we increase the use of randomization, accuracy increases
while tree size decreases, which is exactly the result we had hoped for when we decided to

introduce randomization into the method.

Looking more closely at the tables, we can ask about the effect of random jumps
alone. This is illustrated in the second line (0:20) of each table, which attempted up to 20
random jumps at each local minimum and no restarts. Accuracy increased by 1-2% on each
domain, and tree size decreased dramatically, roughly by a factor of two, in the POL and
RCB domains. Note that because there is no noise in these domains, very high accuracies

should be expected. Thus increases of more than a few percent in accuracy are not possible.

Looking at the third line of each sub-table in Table 3.2, we see the effect of multiple
restarts on OC1. With 20 restarts but no random jumps to escape local minima, the
improvement is even more noticeable for the LS10 data than when random jumps alone
were used. For this data set, accuracy jumped significantly, from 89.8 to 95.0%, while tree

size dropped from 67 to 26 nodes. For the POL and RCB data, the improvements were

114

comparable to those obtained with random jumps. For the RCB data, tree size dropped
by a factor of 3 (from 36 leaf nodes to 12 leaf nodes) while accuracy increased from 98.4 to
99.6%.

The fourth line of each table shows the effect of both the randomized steps. Among
the OC1 entries, this line has both the highest accuracies and the smallest trees for all three
data sets, so it is clear that randomization is a big win for these kinds of problems. In
addition, note that the smallest tree for the RCB data should have eight leaf nodes, and
OC1’s average trees, without pruning, had just 8.7 leaf nodes. It is clear that for this
data set, which we thought was the most difficult one, OC1 came very close to finding
the optimal tree on nearly every run. (Recall that numbers in the table are the average
of 10 5-fold CV experiments; i.e., an average of 50 decision trees.) The LS10 data show
how difficult it can be to find a very simple concept in higher dimensions—the optimal tree
there is just a single hyperplane (two nodes), but OC1 was unable to find it with the current
parameter settings.34 The POL data required a minimum of 5 leaf nodes, and OC1 found
this minimal-size tree most of the time, as can be seen from the table. Although not shown
in the Table, OC1 using Sum Minority performed better for the POL data than the Twoing
Rule or any other impurity measure; i.e., it found the correct tree using less time.

The results of LMDT and SADT on this data lead to some interesting insights.
Not surprisingly, LMDT does very well on the linearly separable (LS10) data, and does

not require an inordinate amount of search. Clearly, if the data is linearly separable, one

34 ma separate experiment, we found that OC1 consistently finds the linear separator for the LS10
data when 10 restarts and 200 random jumps are used.

115

should use a method such as LMDT or linear programming. OC1 and SADT have difficulty
finding the linear separator, although in our experiments OC1 did eventually find it, given

sufficient time.

On the other hand, for both of the non-linearly separable data sets, LMDT pro-
duces much larger trees that are significantly less accurate than those produced by OC1
and SADT. Even the deterministic variant of OC1 (using zero restarts and zero random

jumps) outperforms LMDT on these problems, with much less search.

Although SADT sometimes produces very accurate trees, its main weakness was
the enormous amount of search time it required, roughly 10-20 times greater than OC1 even
using the 20:20 setting. One explanation of OC1’s advantage is its use of directed search,
as opposed to the strictly random search used by simulated annealing. Overall, Table 3.2
shows that OC1’s use of randomization was quite effective for the non-linearly separable

data.

It is natural to ask why randomization helps OC1 in the task of inducing decision
trees. Researchers in combinatorial optimization have observed that randomized search
usually succeeds when the search space holds an abundance of good solutions [186]. Fur-
thermore, randomization can improve upon deterministic search when many of the local
maxima in a search space lead to poor solutions. In OC1’s search space, a local maximum
is a hyperplane that cannot be improved by the deterministic search procedure, and a “so-
lution” is a complete decision tree. If a significant fraction of local maxima lead to bad

trees, then algorithms that stop at the first local maximum they encounter will perform

116

poorly. Because randomization allows OC1 to consider many different local maxima, if a
modest percentage of these maxima lead to good trees, then it has a good chance of finding
one of those trees. Our experiments with OC1 thus far indicate that the space of oblique
hyperplanes usually contains numerous local maxima, and that a substantial percentage of

these locally good hyperplanes lead to good decision trees.

3.4.4 Different kinds of perturbations

In this experiment, we examine the relative effectiveness of OC1’s three types of perturba-
tions: hill climbing, jumps in random directions and stagnant perturbations. Our aim is to
see how often each kind of perturbation is used. If either random jumps or stagnant per-
turbations are being used excessively, that will indicate that OC1 might be wasting search.
On the other hand, if most of the time is being spent in hill climbing perturbations, with
random jumps and stagnant perturbations being used judiciously, that will indicate that

OC1 combines the strengths of methods like CART-LC and SADT.

We use the LS10 data set (Section 3.4.3) for this experiment. As the aim is
to evaluate the search and not tree quality, we build only one internal node trees — we
start with a random hyperplane and apply OC1’s perturbation algorithm until no more
perturbations can be made. We don’t use any restarts. We use the sequential method of
perturbation, trying a maximum of 100 random jumps at every local maximum. If none of
the 100 random jumps are effective in finding a better position for the hyperplane, we stop

the search. Else, we go back to the hill climbing procedure. After every perturbation, we

117

record the resulting impurity (information gain) value and the type of the perturbation.
Figure 3.13 shows how the impurity value changes in a typical application of OC1’s
perturbation procedure. The X-axis shows the serial number of the perturbation, and the
Y-axis shows the value of the impurity after the perturbation. So, a point (54,6.74) on the
graph means that the impurity was 6.74 after the 54th perturbation. The perturbations
are counted consecutively in spite of their type. So, the 54th perturbation can be a random
jump, a stagnant perturbation or a hill climbing move. There are three curves in Fig. 3.13,
corresponding to three different thresholds for it stagnant perturbations. When stag = k,
the hyperplane is allowed at most k consecutive stagnant perturbations before trying a
random jump. The curves are identical for the first 30 or so perturbations, after which they
diverge. The first perturbation, for all three values of stag, was a hill climbing perturbation
which brought the impurity down from 427.64 to 38.11. As showing such a large drop will
reduce the clarity of the rest of the figure, the first perturbation is omitted for all curves in

Fig. 3.13. On each curve, the locations of random jumps are marked.

Discussion

Several interesting observations can be made from Figure 3.13.

e The first few (30 to 40) hill climbing perturbations bring the impurity down from
427 to about 7. Even if we had aborted the search after these few perturbations, we
would have obtained a good solution, spending much less time. We observed that the

first few perturbations are the most effective for several domains. We are currently

Impurity value

40

35

30 |

25 1t

20

118

I I I I I I
stag=0 —
stag=10 ----
I stag=100 - |
I -
e B e P - |
| | | | | |
0 100 200 300 400 500 600 700

Perturbation #

Figure 3.13: A typical search space of OC1 for the LS10 data. The first hill climbing
perturbation for all the curves shown reduces the impurity from 427.64 to 38.11, and is not
shown to improve clarity. The locations where random perturbations are made are marked
on all curves.

119

investigating ways to take advantage of this property. One possible application is to
detect bad restarts early-on. For example, we can have a “checkpoint” after a few
initial perturbations for each restart. From the second restart onwards, if the impurity
at the checkpoint is much worse than that in the previous unaborted restart, we may
be able to avoid the rest of the search in the current restart, without compromising

on the solution.

Random jumps are much rarer compared to hill climbing moves, in all the curves. For
instance, when stag = 100, only 5 out of 600 perturbations were random jumps. This

is in accordance with our earlier claim that randomization is used judiciously in OCI.

As the number of stagnant perturbations allowed is increased, the search increases
and increasingly large plateaus appear in the impurity curve. This is to be expected,
as all the stagnant perturbations are tried before any random jump. However, this
situation is not easy to rectify. If we swap the order of doing random and stagnant
perturbations (i.e., try random jumps whenever the hill climbing is ineffective, before
trying any stagnant perturbations) this can slow down the algorithm significantly,
as random jumps are more computationally expensive than stagnant perturbations.
Judicious choice of the number of stagnant perturbations is needed to ensure that
search is not wasted. OC1’s current default is to try ten stagnant perturbations

before attempting a random jump.

120

3.5 Conclusions

This chapter described OC1, a new system for constructing oblique decision trees. We have
shown experimentally that OC1 can produce good classifiers for a range of real-world and
artificial domains. We have also shown how the use of randomization improves upon the
original algorithm proposed by Breiman et al. (1984), without significantly increasing the
computational cost of the algorithm. 35 We argued that the ability to produce oblique
splits at a node broadens the capabilities of decision tree algorithms, especially as regards
domains with numeric attributes.

Finding the best split at a node and finding the best decision tree are basically
search problems. Axis-parallel tree methods use exhaustive search to find the best split
at a node, and greedy search to choose the best tree. For oblique trees, we retained the
latter of these heuristics, and showed that the former (exhaustively searching for the best
oblique split at a node) is impractical. We demonstrated that one particular local search
algorithm, augmented with two specific types of randomization, is effective for finding a good
split at a node. There are obviously other local search strategies and randomization steps
one could use. For instance, one may use linear programming in place of our deterministic
perturbation algorithm, and perhaps impose limits on the amount of deterministic search to
be performed before the random perturbations are attempted. Random search methods like

simulated annealing or threshold accepting [118] may be used in place of our randomization

35 OC1’s deterministic coefficient perturbation algorithm was constructed independently of CART,
and this is the reason for the slight differences in the algorithm. We realized the similarity with
CART subsequently.

121

steps. However, we think that, with any search heuristics, an analysis of the search space
should be done to identify the heuristics that are likely to be most useful. The experiment
in Section 3.4.4 was intended to serve this purpose, but several alternate experiments can
be designed. Interesting analyses of search methods, though not in the context of decision

tree induction, can be found in [239, 166, 434].

122

Chapter 4

Limited lookahead search

The standard algorithm for constructing decision trees from a set of examples is
greedy induction — a tree is induced top-down with locally optimal choices made at each
node, without lookahead or backup. As the greedy approach can produce suboptimal trees
[174], it is naturally of interest to explore ways to improve the greedy strategy. Fixed-depth
lookahead search is a standard technique for improving greedy algorithms [426]. Though
scattered uses of lookahead exist in the literature (Section 2.5.4), there have not been
any systematic evaluations (analytical or empirical). The advantages, or lack thereof, of
lookahead search have not been systematically quantified in the context of decision tree or

rule induction. 36

With the rapid increases in computing power in recent years, limited lookahead

is now feasible for moderately large data sets. The question that therefore arises is, what

36 Quinlan and Jones recently experimentally analyzed “oversearching” in the context of rule in-
duction [401]. Their conclusions are similar in spirit to ours, namely that oversearching does not
help, and can hurt.

123

are the benefits (if any) that we might gain from employing this more costly approach? In
the current chapter, we attempt to answer this question empirically. We systematically
compare, using a large number of real and artificial data sets, the quality of axis-parallel
decision trees induced by the greedy approach to that of axis-parallel trees induced using

one-level lookahead. The main observations from our experiments are:

e Limited lookahead search does not produce significantly better decision trees. On
average, it produces trees with approximately the same classification accuracy and

size as greedy induction, with slightly shorter longest paths.

e Limited lookahead search produces inferior (less accurate, larger and/or deeper) de-
cision trees in a significant number of cases; i.e., decision tree induction exhibits the

same pathology that has been observed in game trees [360].

e Tree post-processing techniques such as pruning are at least as beneficial as limited

lookahead for a variety of real-world data sets.

Our empirical evaluations are based on both synthetic and real-world data sets.
To create the synthetic data, we defined two concept classes C and Cg, and built all possible
decision trees in these classes, many thousands of trees. We then created training and tests
sets for all of these concepts. We also experimented with seven real-world domains from the
UCT machine learning repository [346]. Our experiments only consider one level lookahead
in this chapter. Although deeper lookahead might also be interesting, it is prohibitively

expensive for the experimental design we employed.

124

Section 4.1 describes related work on using lookahead to improve greedy search.
Section 4.2 describes our experimental method. Sections 4.3 and 4.4 present the results

with synthetic and real world data respectively. Section 4.5 provides general conclusions.

4.1 Related work

Decision tree induction is fundamentally an optimization problem. Optimization algorithms
typically consider a set of choices at each step towards a solution, improving things along
the way. A greedy algorithm makes the choice that looks best at the moment, and does not
return later to reconsider that choice. That is, it makes locally optimal choices in the hope
that they will lead to a globally optimal solution. Greedy algorithms do not always yield
optimal solutions, but for some problems they do. Examples of the latter variety include
methods for constructing minimum spanning trees [178] and methods for producing optimal
Huffman codes for data compression [283].

Greedy search is used as a heuristic for a number of well-known NP-hard problems.
Examples are the 0/1 knapsack problem [419], multiprocessor scheduling [210] and the
problem under consideration here, decision tree induction. For these problems, greedy
polynomial algorithms obviously can not guarantee optimal solutions, assuming P # N P.
It is natural, therefore, to look for techniques that systematically bridge the gap between
the approximate solutions provided by greedy search and the optimal solutions. Fixed-
depth lookahead search is one such technique. The idea is to repeatedly apply a greedy

algorithm to selected subproblems in order to make less greedy (and hopefully more prudent)

125

decisions. Sarkar et al.[426] show theoretically that lookahead search can guarantee e-
bounded solutions for the 0/1-knapsack problem and for a scheduling problem, where ¢

depends on the depth of lookahead.

Several variations of optimal decision tree induction are known to be NP-Complete
(Section 2.6.1). Virtually all implemented decision tree systems use a greedy, top-down ap-
proach. There have been, however, some attempts to augment the simple greedy algorithm.
(See Section 2.5.4 for a more comprehensive list of pointers.) Hartmann et al.[197] describe a
tree induction algorithm based on an information theoretic criterion between branching lev-
els in a tree. With the appropriate parameter settings, their Generalized Optimum Testing
Algorithm (GOTA) can do fixed depth lookahead, varying depths of lookahead at different
levels of the tree or even exhaustive search. However, Hartmann et al. do not demonstrate
that lookahead yields any improvements over greedy search. The ideas in GOTA motivated
Norton’s IDX system [365], which is a variant of ID3 [391] that performs lookahead. Norton
conducted experiments on a voting records database (see Section 4.4) using ID3, IDX and
GOTA, and found that lookahead reduced the average decision tree depth. With a few
exceptions, though, the advantages of lookahead were very small in Norton’s experiments.
Moreover, since this study only considered a single data set, it is not clear how well these

results generalize to other domains.

Interesting approaches to slightly different problems include Ragavan and Rendell’s
Lookahead Feature Construction (LFC) algorithm [403]. This method uses lookahead to

construct composite Boolean features, and uses the constructed features to induce concise

126

decision trees. This method is more efficient than methods like IDX because it caches
the features found while looking ahead. Ragavan and Rendell describe experiments that
show that LFC outperforms more straightforward approaches to feature construction and

lookahead, on symbolic domains.

4.2 Experimental method

Our goal in this chapter is to evaluate systematically the gains (or losses) of limited looka-
head search for decision tree induction. The greedy and one level lookahead algorithms
we used in all our experiments are described below. S is a set of training examples whose

attributes are assumed to be all numeric.

Algorithm Greedy(S)

1. If S contains examples from only one class, halt.

2. Consider all distinct tests T of the form = < k on the features of S.
The k’s are chosen to be the midpoints between adjacent feature values.
Choose the best test T* according to a pre-defined goodness measure.

. Split S into two subsets S1 and S2 using 7.

4. Recursively run this procedure on S1 and S2.

w

The algorithm for one level lookahead, Look, uses the same set of candidate splits
as Greedy. However, the goodness of a candidate split 7" is computed by examining all splits

one level down from 7.

Algorithm Look(S)
1. Execute step 1 of algorithm Greedy.
2. For each test T of the form x < k, do:
(a) Split S into sets S1 and S2 using T.
(b) Find the best split of S1 into sets S11 and S12, using
steps 1-3 of algorithm Greedy.
(c) Repeat (b) on S2, forming sets S21 and S22.
(d) Compute the goodness of splitting S into S11, S12, S21, and S22,

127

using the same goodness measure as in Greedy. This is T’s goodness.
3. Execute steps 3,4 of algorithm Greedy.

We experimented with two pre-defined goodness measures, namely, the Gini index
of diversity [44] and information gain [391]. 37 This gave us four algorithms, which we named
Greedy-Gini, Greedy-Info, Look-Gini, and Look-Info. Note that Greedy-Gini is essentially
identical to the CART algorithm [44] and Greedy-Info to the ID3 algorithm [391].

All our experiments measured tree quality in terms of four measures. Accuracy is
the classification accuracy on either an independently generated test set (for the synthetic
domains) or obtained by cross validation (for the real world domains). Tree Size is the
number of leaf nodes in a tree. Mazimum Depth is the length of the longest path, from the
root to a leaf node. Number of candidate splits is the total number of splits evaluated by
the tree induction algorithm while building a tree. The final measure quantifies the amount

of search performed during tree induction.

4.2.1 Synthetic data

For a systematic evaluation of the benefits of lookahead, we compared the trees induced with
limited lookahead to those induced with greedy search over entire classes of decision trees.
(This style of empirical investigation has been made possible by the existence of extremely

fast, inexpensive workstations. Murphy and Pazzani [347] used this style of experimentation

37 We chose Gini index and information gain because they have been widely used for real world
applications. Experiments with other goodness measures may be interesting, but we suspect the
results would be similar.

128

to evaluate the Occam’s Razor principle by constructing all decision trees consistent with a
fixed concept.) In the current study, we have defined two classes of decision trees C and Cg,
which are small enough to be amenable to systematic experimentation on the entire class,
and general enough to be interesting. We built decision trees for all possible concepts in C
and Cs with and without lookahead, and compared the results. The precise definitions of C
and Cs and the experimental results are given in Section 4.3.

For our experiments with synthetic data, we first generated an unlabeled training
set TRAIN and an unlabeled test set TEST. TRAIN has 500 examples and TEST has
5000 examples, with two real-valued attributes for each example, and all attribute values
generated uniformly at random in the interval (0,10). The same unlabeled training and
test sets are used in all the experiments. As TRAIN is noise-free, no pruning was used.
We performed the following experiment on classes C and Cg, using both Gini index and
information gain.

For each of the decision trees D in the class:
— label TRAIN and TEST according to D;
— greedily induce a decision tree D; on TRAIN;
— induce a decision tree Dy on TRAIN using lookahead;
— and record the accuracy on TEST, tree size, max. depth and
the number of splits considered, for D; and D,.

4.2.2 Real-world data

In addition to synthetic data, we have also experimented with noisy, real world data sets for
which the underlying concepts are unknown. We evaluated the effects of one-level lookahead

on seven data sets taken from the University of California at Irvine repository of machine

129

learning databases [346].

If a greedy method can induce a highly accurate, concise classifier for a domain
(the well-known Iris data is one such example), it is unlikely that we can observe significant
benefits of lookahead on that domain. It has been observed that most of the data sets in
the UCI repository can be described by very simple classification rules [209]. So, we needed
to be careful in our choice of real world domains. We used a survey of results on several
UCI data sets provided by Holte [209] to choose six “difficult” domains — domains for which
the best known accuracy is at most 90%. Though the low accuracies may be due to factors
other than the inadequacy of greedy induction, such as an overly small or noisy training set,
there is no straightforward way of knowing this a priori. In addition to these six “difficult”
domains, we also experimented with two variants of the congressional voting records data
used by Norton [365] for his lookahead experiments. Brief descriptions of all our real world

domains, and the results of the experiments are given in Section 4.4.

We augment all our algorithms (Greedy-Gini, Look-Gini, Greedy-Info and Look-
Info) with pruning for the experiments with real world data — in effect, we experimented
with eight different tree induction algorithms. We used Breiman et al.’s cost complexity
pruning ([44], Chapter 3) with the one standard error rule, reserving 10% of the training
data as the pruning set. We used 5-fold cross validation to estimate accuracy, as can be
seen in the following summary of our experimental method for the real world domains. For
each of our data sets DATA, we repeated this procedure with Greedy-Gini, Greedy-Info,

Look-Gini and Look-Info, with and without pruning.

130

repeat ten times with different random seeds:
— divide DATA randomly into 5 equal disjoint partitions;
— foreach partition P
— induce a decision tree on (DATA - P);
— record tree size, max. depth and no. of misclassified examples in P;
— report the accuracy on DATA and the average size and depth;

4.3 Experiments with synthetic data

4.3.1 C: A class of simple data sets

Our first set of experiments are designed to measure how close to optimal are the trees
produced by greedy induction on a fixed concept class. More precisely, we consider a
class of concepts C, all members of which are simple enough for one-level lookahead to
be equivalent to exhaustive search, and systematically evaluate the effectiveness of greedy

induction over this entire class. C is a class of binary decision trees defined as follows:

Each member of C has 3 test nodes and 4 leaves, and is balanced. The tests at the
three internal nodes (root, left, and right) are all non-trivial, in the sense that they

split heterogeneous sets of examples.

C contains only two attributes, z1 and x5 (to enable graphical display and comparison

of trees).

The tests are restricted to be of the form x; < k where k is an integer in (0, 10).

C contains exactly two classes, 1 and 2.

Figure 4.1: Class C consists of all balanced decision trees on a 10 X 10 grid such that each
tree has three test (internal) nodes and no test node is trivial.

See Figure 4.1 for a graphical definition of the class C, which has a total of 5844
distinct trees. (Trees that are equivalent except for having their class labels swapped are
not considered distinct.) C is defined to make systematic exhaustive search on all possible
concepts computationally feasible. One reason for defining class C in this form is that one
level of lookahead from the root will always find the optimal decision tree in terms of the
size and depth. Trees in this class may realistically occur in many situations as subtrees of
a larger tree, and it is reasonable to ask if we should constantly check one level ahead to
“finish off” a subtree. However, even one level of lookahead is very costly, so we wish to
quantify its possible advantages. (The work done at a single node by the standard greedy
algorithm is at most O(dnlogn) for d attributes and n examples. One level of lookahead

requires at most O(d?n?) work.)

132

7 . I |
Greedy-Gini ——
Look ----
Greedy-Info :----

0 1 ; ; 1 ; ; L
Accuracy Tree Size (#leaves) Maximum Depth

Figure 4.2: Summary of experiments with class C. The mean and one quartile ranges for
accuracy, tree size and maximum depth are shown for Greedy- Gini, one-level lookahead and
Greedy-Info. The accuracies shown are the amounts above a baseline value of 95%; e.g., the
accuracy of lookahead was 99.74%.

We used the experimental method defined in Section 4.2.1. Each decision tree in C
was used to label TRAIN and TEST. Two sets of 5844 trees each were induced on TRAIN
using Greedy-Info and Greedy-Gini. A third set of 5844 trees was induced on C using one
level lookahead. Note that, as one level lookahead is the same as exhaustive search on C,
Look-Info and Look-Gini produce identical trees for this class. Figure 4.2 summarizes the
differences between the quality of decision trees induced by Greedy-Gini, Greedy-Info, and
exhaustive search, over the entire class C. The figure shows the mean and one quartile
ranges of the accuracy, tree size and maximum depth. (One quartile range is the interval
that includes 25% of the samples above and below the mean.)

As the figure shows, the differences between Greedy-Gini, Greedy-Info, and Look

are quite small, in spite of the fact that greedy induction uses only about 0.004 times as much

133

search as exhaustive search. Greedy-Gini evaluates 1798 candidate splits on average per tree,
and Greedy-Info evaluates 1718 splits. In contrast, Look evaluates 419,301 splits for each
tree, on average. The differences in average accuracy between the greedy algorithms and
Look are negligible. The difference in average tree size between Greedy-Info and exhaustive
search is 0.36 nodes, less than one standard deviation of 0.4 nodes . The difference of 0.63
between the average tree size of Greedy-Gini and Look is slightly more pronounced. The
only aspect in which greedily induced trees are significantly worse than the optimal trees is
maximum depth. Exhaustive search produces trees that are on average one level shallower

than the greedy algorithms.

Figures 4.3 and 4.4 show the effects of one-level lookahead (equivalently, exhaus-
tive search) for class C in more detail. The horizontal axis plots the improvement due to
lookahead. Thus the line for accuracy shows the increase in accuracy due to lookahead,
measured by percentage change. The lines for tree size and depth show the decrease in
these measures when lookahead is used. The vertical axis plots the number of trees in
which lookahead causes a particular improvement. For instance, a point (z,y) on the line
“accuracy” in the graph means that, for y trees out of the total of 5844, accuracy improved
by x when lookahead was used. For points on X = 0, lookahead had no effect, and for
points to the right of X = 0, lookahead was beneficial. For points to the left of the line
X =0, greedy induction was better than lookahead; i.e., the tree induction task exhibited

pathology.

Affected Trees

134

5000 '] ; | I
accuracy ——
size -o-—
depth -+--
g
4000 |- |
3000 |- |
2000 - |
,”’ \Z;\
1000 | |
H T R
| B g T -
0} L i I I *

Improvement Due To Lookahead

Figure 4.3: Effect of one level lookahead in trees produced with information gain, for class
C. Improvements in accuracy, size and maximum depth are shown, along with the number

of trees in which these improvements occur.
lookahead produced inferior trees.

Negative values on the X-axis mean that

Effected Trees

135

5000 T T T T T T
3 accuracy ——
size -o--
max. depth -+--
‘ I
4000 i .
3000 —
2000 -
1000 F i N .
LN e
0L | 1 - \?>n“ 1 1 1]
-2 0 2 4 10 12

6
Improvement Due To Lookahead

Figure 4.4: Effect of one level lookahead in trees produced with gini index, for class C.
Improvements in accuracy, size and maximum depth are shown, along with the number
of trees in which these improvements occur. Negative values on the X-axis mean that
lookahead produced inferior trees.

Figure 4.5: A tree with maximum depth of 3 produced by Greedy-Info. 1t is easy to see
that this tree can be balanced. By making Root the left child of R, and R the root, the
depth can be reduced to 2, without changing the partitioning induced (and the accuracy)

We discuss only the measurements for information gain (Fig. 4.3) as the graph
for Gini index (Fig. 4.4) looks almost identical. Fig. 4.3 offers several interesting insights.
First, each of the three lines has a single, prominent peak. The peaks for the accuracy and
tree size lines are at X = 0, and the peak for depth is at X = 1. The peaks at X = 0
show that for a large number of trees, lookahead did not make any difference in terms of
accuracy and number of leaves. The depth peak at X = 1 shows that the maximum depth
of most of the greedily induced trees is exactly one more than optimal. To understand why
the greedy approach builds deeper trees, we looked at several of these trees individually,
and found that many had a structure similar to the one shown in Figure 4.5. Although
this tree partitions the data optimally, it is deeper than necessary. Section 4.3.4 describes
a simple post-processing step to rebalance a greedily induced tree, in order to reduce its

worst-case classification cost.

137

Second, it is interesting to note that lookahead actually hurts accuracy in almost as
many trees as those in which it enhances accuracy. This property, where lookahead search
finds inferior solutions, is known as pathology in the context of game trees [356, 360]. We
discuss pathology for decision trees further in Section 4.3.2, where this trend is exhibited
more prominently. Pathology cannot occur for tree size or depth for class C, because one-
level lookahead is equivalent to exhaustive search. However, our next class Cg includes
deeper trees, and limited lookahead can and does produce trees that are worse in terms of
size and depth.

Third, we can see from Figure 4.3 that there are some greedily induced trees that
have as many as 4 leaves more than those induced with lookahead. We looked at all such
large trees, and found that they all had several “minimally useful” splits. For example,
consider the tree shown in Figure 4.6. We can usually avoid such splits with a simple stop-
splitting rule. Pruning will also tend to remove them, but pruning is not fully justified on

our synthetic data sets as they are noise-free.

4.3.2 C(Cs: A more difficult class

In section 4.3.1, we experimented on a class C of concepts for which one-level lookahead is
equivalent to exhaustive search, and showed that the benefits of lookahead are negligible.
This section extends C to a class Cs, where one level of lookahead does not perform exhaus-
tive search. Cg is a more realistic concept class than C, because in practice we can do only

limited lookahead. Cg is an extension of C obtained as follows:

138

222 2 2, Z4 27, 522
532 222 22 2 3
2., 2°2 B §22 2 2 2 2
S 00 R Il W
2 2 2 2, 22
22 2 2 2
22 z 2 222 2 9
2 28° 2 25 2222 2,
2, 252 22 3 22
2 3 2,% 2 2
5 2 2 2% 2 5
i 11111 Wiza oz 2 0
ui 1 111 2)%, 2
1
ou o, rih 22%, 20,
L1 111 41, 22 2s
11 2
11l 1 22
is ST , 2,22 227 32,
f u 111 N I 3 2
1t g 111 L 2 % %22 3
1
111111111 1 1) 2 2222 22222
1 1 3 1T T TAr
1.1 1 1 1 1
1o Y : PR Ve |
1 tah o Ay, 1 !
E 1 1 %1 1
= 111 ISRt Y
1 i
1 N I R
1q1 1
:) e 111l 1h b
1, gt 11 1

Figure 4.6: A tree with 8 nodes and maximum depth of 4 produced by Greedy-Gini. Each
thick line consists of three or four splits, very close to each other. A simple stop-splitting
rule can avoid most splits in this tree, without significantly changing the accuracy.

Cs =10

For each tree T in C, do:

1.
2.
3.

=

Remove T from C.

Randomly choose one of the four leaf nodes of T'. Call this L.
Split L with a randomly chosen, non-trivial split S of the form
x; < k, where k is an integer in the range (0,10). If there is no
valid split, go to step 2 and choose a different leaf.

Assign one side of S to class 1 and the other side to class 2.

. Add T to Cs.

Each decision tree in Cs is a binary tree with four decision nodes and has a maxi-

mum depth of 3. Note that while Cs has 5844 trees, the same as C, another run of the above

procedure would create a different definition of Cs because of the randomized steps. We

considered using exhaustive enumeration in place of these random choices, but that would

produce a class that is vastly larger, too large for systematic experimentation. The experi-

mental method used for Cg is identical to that used for C, and is described in Section 4.2.1.

139
8 T T T
Greedy-Gini
Look-Gini =---¢
Look-Info #----:
ran Greedy-Info - |

1 L L T
Accuracy Tree Size (#leaves) Maximum Depth

Figure 4.7: Summary of experiment with class Cs. The mean and one quartile ranges for
accuracy, tree size and maximum depth are shown for Greedy-Gini, Look-Gini, Greedy-Info,
and Look-Info. The accuracies shown are the amounts above a baseline value of 95%.

One important difference is that, since one-level lookahead is not equivalent to exhaustive

search on Cs, Look-Gini and Look-Info do not produce identical trees for this class.

The experimental results with class Cs substantiate the conclusions drawn from
experiments with class C, in section 4.3.1. Figure 4.7 summarizes the differences in accuracy,
tree size and maximum depth between Greedy-Gini, Look-Gini, Greedy-Info, and Look-Info
on class Cs. It can be seen from this figure that there is no significant improvement in
accuracy due to one level lookahead. The differences between accuracy with and without
lookahead are actually smaller here than they were for class C, despite the fact that the rel-
ative cost of lookahead search was higher for this class. On average, Greedy-Gini considered
1952 candidate tests per tree and Greedy-Info considered 1847 splits. Look-Gini and Look-

Info, in contrast, considered 745,689 and 747,037 tests respectively. The differences in tree

Affected Trees

140

4000 ! : , .
accuracy ——
size -o--
3500 + depth -+-- |
1
3000 |- "’3"“]
2500 |- I |
i
2000 |- P |
1500 | j X |
1000 Pl |
500 |- { X |
/’ :" V%x
IO RN
ol : . . S %ﬁ,wrf“wm‘ T S
2 4 6 8

-12 -10 -8 -6 -4 -2 0
Improvement with Lookahead

Figure 4.8: Effect of one level lookahead for trees in class Cs. Improvements in accuracy, size
and maximum depth of trees built using Look-Info versus Greedy-Info are shown. Negative
values on the x-axis show instances where lookahead produced inferior trees.

size are insignificant for both goodness measures. The only quantity for which one-level

lookahead caused noticeable improvement for class Cs was maximum depth, where trees

induced with lookahead were on average 0.6 levels shallower than greedily induced trees.

Figure 4.8 shows the effect of one-level lookahead for class Cs in more detail for
Greedy-Info. The corresponding picture for Greedy-Gini looks nearly identical and is shown
in Fig. 4.9. As in Figure 4.3, points to the left of X = 0 are concepts in Cg for which limited
lookahead performs worse than greedy search; i.e., the problem exhibits pathology. Points

on X = 0 are concepts for which lookahead makes no difference at all. Points to the right

Effected Trees

141

4000 T T T | T T T T T
accuracy ——
size -o-—
3500 max. depth -+-- |
ot
3000 | .
gp
2500 .
2000 |- . -
1500 |- P -
1000 il e .
500 | ;o N .
;o e
of 67"{?”7{97"7?/“_&/‘?—‘47’/&»“* | ur-\‘xiz‘\ﬁ»”»? I I]
-8 -6 -4 -2 0 2 4 6 8 10 12
Improvement with Lookahead

Figure 4.9: Effect of one level lookahead for trees in class Cs. Improvements in accuracy, size
and maximum depth of trees built using Look-Gini versus Greedy-Gini are shown. Negative
values on the x-axis show instances where lookahead produced inferior trees.

142

222 2 2, 24 2 2222
22 22 2% 2 2 o
2, 27%5 §22 2 2 2, 2 2
2 % 223 5 2, % F2, 22
, 2 2 2 2 22 3,
25,2 z , 2 2 22 2,
2 28° 2 2222 2
22 2272
2.2, 23 22 2,22,
22 %272 2 2 2, 2
2 3 22 2 22, 2
2 2 22, 2, 2 2 2 2
22, 2 2, 2 2 2
202 2 22 2 22 ,°, 2
o) 2
2 3 2222?222 22222522 2252
, 2 % P2 %, 22 2 2s
122 kA 1721
11ty 2 11 pEsy
H 1, 2915101
3 1 i 1T 131
1 111 1 11 L
11 11]} 11 1, 11 1 i JiJJJllli
14
1y 111111 , 1 2 1111 ;
1
o 1,01 1 111112 21 11]111
g 1t 1,2 Wttty 1)
Y 1Y g 111]111% }1 1 .
1
u 111 1 224 1 i
1 L 25 1. 111
1 11 gt , 22 111 N
251 1
: s e 22Q 1h b
1, gt 1127, 1

Figure 4.10: A data set in class Cs on which information gain exhibits pathology.

of X = 0 are concepts for which limited lookahead search produces better trees. The peaks
for accuracy, tree size and maximum depth in Fig. 4.8 coincide with those in Figure 4.3.
It is interesting to note that there were more trees for which lookahead hurt accuracy than
there were those for which it benefited. lookahead produced worse trees in terms of tree
size also. It produced trees that had as many as six more leaves (five more decision nodes)

than greedy induction. Section 4.3.3 shows an example of pathology.

4.3.3 An example of pathology

Fig. 4.10 shows a labeling of TRAIN, the training set we used for all our experiments
with synthetic data. This labeling was obtained by a tree in class Cgs. Information gain
exhibits pathology on this data — Greedy-Info produces a better tree than that produced

with Look-Info, in terms of all our three measures, accuracy, size and maximum depth.

We show below the tree induced by Greedy-Info and Look-Info on the data in

143

Fig. 4.10, both in terms of the equations for the splits in the trees and the partitioning
induced on the training data. Each equation of a split is of the form label :equation.
label is a character string comprising of characters 1 and r, denoting left and right. All
examples answering yes to the question at a decision node take the left branch, and all
others take the right branch. The split at the root of the decision tree has an empty label.
Every other split has a label specifying where in the tree the split occurs. For example, a
split at the “I”7eft child of the “r”ight child of the root has the label rl. Leaf nodes have
class labels instead of equations. Figure 4.11 graphically shows the partitions induced by
the Greedy-Info and Look-Info trees, making it obvious that greedy induction induces a

much better tree for this domain.
Look-Info Tree

: 19 < 3.057
l:xy <6.047
1l :class 1
Ir :xqy < 7.017
Greedy-Info Tree Ir] :class 2
Irr :class 1
D xo < 4.997 rre < 4.597
l:xy <6.047 rl iz < 6.327
II :class 1 rll :class 1
Ir iz < 7.017 rlr :xq < 6.987
Irl :class 2 rlr] :class 2
Irr :class 1 rlrr :class 1
r :class 2 IT xo < 4.827

rrl :xo < 4.817
rrll :class 1
rrlr :class 2

ITr o < 4.997
rrll :class 1
rrir :class 2

144

2 22 2 2 2 Z
2 2 ?2 2%, 3 , 2222, 2 2 32 5, 3 27, 2222
2z 2% 2 3 2?2 2% 2 3
2, 2 2222 § 22 2 2 2, 2 2, 2%, § 2 2 2 2, 2
2 Bty 2, 7 h, 2 2 By 2, 2 h, a2
)2 2 F 222 3, 22 2 F 22 3,
232 z , 2 222 2 o 2g2 2 z 2 222 2 4|
2 28° 2 25 2222 2 2 28° 2 25 2222 2
. 232 22 % 22 ,. 232 22 % 22
22 %272 2 2 3 22 %2%2 2 2 32
2, 22 2?2 22,° 7 3 22 22 22,02
2 2 22 2 2 2 2 22 2 2
2 2 ° 32 ;2% 2 2 2t Z22 EI 2
2z 2, 22 2 %7, 2z 2, 22 2 %)7, 2
22, 2 22 223 ¥ 22, 2 32 22 %
2 Z22,, 232 222, 225 2 2o,, 222 22 %, 22,2
, 2 3922 7, 22 2y , 2 3222 #2 am, 22 2s
s 22, s 122,
TTT L T T b 1
1 A 1101 T T " 1
ro ottt 1111 g R o1t 11 ERPE R PTY
1 1 1
1t 11111 it 1y 1! “]f 1. ta ¥ ljlh]lli
1 1
113 gt ;1 TR ul g , 1 1t
N 1 e F R SN n, L e 11, 173
N 111111 1 ilizgli 1 Y TR T E
1.
) 111 L 11 all %2 g 11 111 14 111 N 11 at ! 222 hy 11 101h
1hy 1 I ;1 1 4 kS M ; 1
u 111 i 22F 1 1 u 111 1 224 4 1
* 1 1 11 ;z 1,pt? N b 1 11 2 1.2t 1
1 1ol e vy 1 1ol e trey
241 241
o N Wl 222 o : . " 22Z 1A
1, gttt 11 R I 1, gl 1R 12t

Figure 4.11: Trees induced by information gain without and with lookahead for the data
in the previous figure. The tree induced by Greedy-Info has size 4, maximum depth 3 and
accuracy 99.74% on an independent test set. On the other hand, Look-Info induces a tree
with size 10, maximum depth 4 and accuracy of 99.10%. Greedy-Info considers a total of
1545 splits while inducing its tree, whereas Look-Info considers a total of 1,455,901 splits.

4.3.4 “Rebalancing” greedy trees

Some examples of methods to “refine” greedily induced trees are given in Section 2.5.4. We
outline here a simple refining method, which we call tree rebalancing. Given a decision
tree D for a training set TRAIN, we want to produce a tree Dp that induces the same
partitioning as D on TRAIN, but has lower average depth than D (i.e., Dp is more “bal-
anced” than D). The average depth of a tree is the path length between the root and a
leaf node, averaged over all the leaf nodes. (This measure is also used in the experiments
in Chapter 5.)

Although little if any work has been done on balancing decision trees, a great deal
of research has considered balanced search trees (e.g., see [16, 79, 461, 93, 357]). Roughly

speaking, this literature deals with techniques to restructure search trees when elements are

145

inserted or deleted, in order to restrict the depth of these trees to a logarithmic function of
the number of search keys. Examples of balanced search trees include AVL trees, B-trees,
and red-black trees. An axis-parallel decision tree in a continuous space can be interpreted
as a multi-dimensional binary search tree, where each internal node stores an axis number
and a search key along that axis. Such an interpretation makes it possible to use search
tree balancing techniques on decision trees.

The main primitives used for rebalancing a tree in balanced search tree methods
are rotations. Rotations are operations in which the parent-child links of some nodes in
the tree are rearranged locally, while guaranteeing that the functionality of the whole tree
remains invariant. We have adapted two simple tree rotation operators, left-rotate and
right-rotate, to decision trees. These operators, illustrated in Figure 4.12, take constant
time for each rotation. The following procedure can be used for balancing a decision tree
T. Note that as this procedure itself is a greedy heuristic, it may not result in optimally

balanced trees.

Algorithm Balance(T)

if T = then halt;

if T and right-subtree(T) test the same attribute at the root
T, = left-rotate(T);
if avg. depth(71) < avg. depth(T") then T = T};

skip the next If statement;

if T and left-subtree(T) test the same attribute at the root
T, = right-rotate(T);
if avg. depth(T1) < avg. depth(T) then T = Ti;

Balance (left-subtree(T));

Balance (right-subtree(T));

Figures 4.13 and 4.14 show the effect of post-processing on the greedily induced

Figure 4.12: Left and right rotations of a binary decision tree. Rotation operators can help
reduce the average depth, and thus the expected cost of classification, of a decision tree
without changing its accuracy. The leaf nodes L1, L2 etc. in this figure can be replaced
with arbitrary subtrees.

trees in class C and class Cg respectively. Results for Greedy-Gini are shown, and results for
Greedy-Info look very similar. Each figure consists of five stacked bars, the first three corre-
sponding to maximum depth and the last two to tree size. Each bar shows the distribution
of 5844 trees into bins of equal size or depth. The three maximum depth bars correspond
to (i) no post-processing, (ii) tree balancing as a post-processing step and (iii) tree balanc-
ing and stop-splitting. The two tree size bars show the distribution of the trees with no

postprocessing and with stop-splitting. (Note that tree size is not altered by balancing.)

Figures 4.13 and 4.14 show that tree balancing reduces the maximum depth of
several trees in classes C and Cs. In addition, the stop-splitting rule reduces tree size
and depth substantially. Note that stop-splitting, unlike balancing, decreases classification

accuracy because it allows for heterogeneous partitions. However, this reduction was small

147

6000 — —
. W<
5000 — I
§] BN]
£ 4000] | |
; 3000] 4
g -
2 —
5 000] o s
1000 -
- >5
- = B
0 [[[[[

A B C D E

Depth and Size

Figure 4.13: Improvement due to post-processing in greedily induced trees for class C. First
three bars show the distribution of class C trees according to maximum depth (i) with no
postprocessing, (ii) with tree balancing and (iii) with stop-splitting and balancing. The
last two bars show distribution of tree size (i) without any postprocessing and (ii) with
stop-splitting. All the results are for Greedy-Gini.

148

B2
H 3
(] a
O s
B -5
| | | | |
A B C D E

Depth and Size
Figure 4.14: Improvement due to post-processing in greedily induced trees for class Cs.
First three bars show the distribution of trees according to maximum depth (i) with no
postprocessing, (ii) with tree balancing and (iii) with stop-splitting and balancing. The last
two bars show distribution of trees according to size (i) without any postprocessing and (ii)
with stop-splitting. Results for Greedy-Gini are shown.

6000

5000

4000

3000

2000

Number of Trees

1000

o

149

for both classes. For class C, the average accuracy with stop-splitting was 99.3, as opposed
to 99.6 when no post-processing was used. For class Cg, average accuracy dropped from

99.5 to 99.0 when stop-splitting was used.

4.4 Experiments with real-world data

The experiments with synthetic data, presented in Section 4.3, do not suggest how looka-
head search might perform on real world, noisy, higher dimensional domains. This section
describes experiments we did with seven data sets available in the UCI Machine Learning
repository [346]. Brief descriptions of each of the real data sets we used are given below.
A brief rationale for choosing these particular data sets, and our experimental method for

real world domains are given in Section 4.2.2.

BC Breast cancer recurrence data [38]. Contains 286 instances, each described by 9 at-
tributes and one class label. The task is to predict if a breast cancer event is to

recur.

CL Cleveland Clinic Foundation’s heart disease diagnosis data [89]. Contains 303 instances,
each described by 14 attributes including the class label. We use the “processed”
data in the UCI repository, where there are only two classes, namely the presence and

absence of heart disease.

GL Glass identification data. Contains 214 instances described using ten continuous valued

attributes and a class label. The first attribute “Id number” is not used in our

150

experiments.

HE Hepatitis domain. Contains 155 instances, described using 20 attributes including the
class label. The task is to classify patients that die from hepatitis from those that do

not.

LA Final settlements in labor negotiations in Canadian industry. 57 instances each de-

scribed using 16 features.

LY Lymphography domain [304]. Contains 148 instances, each described using 19 at-

tributes, including the class attribute.

VO 1984 United States congressional voting records database. This data is used by Norton
[365] in his experiments. The data contains 435 instances, each described by 16 nom-
inal attributes and one class label. The task is to classify democrats from republicans

on the basis of their voting records.

V1 This data, used in [59, 209], is identical to the VO data, except that the “best” attribute

physician-fee freeze is removed.

All the experimental results reported in this section are obtained with information
gain. The experiments with Gini index did not offer any more insights, and are omitted for
brevity. Figures 4.15, 4.16 and 4.17, one for each of the three measures accuracy, tree size
and maximum depth, summarize the results of our experiments on the real-world data sets.

In each figure we plot the values of a measure obtained using four induction methods: (i)

151

100 T T T T
BC —-—
CL —+-
o GL -8--
95 T
LA -4
LY -x
90 VO — 4
V1 -
P SR B e
85 | ;—;‘*‘*A\\\ |
SN
> 80 | S, -
IS X
§ - U e o
< 75 | Foomrm g e T + 4
70 | B
65 |- B
60 | B
55 1 1 1 1
Greedy-Info Look-Info Greedy-Info+Pruning Look-Info+Pruning

Figure 4.15: Effect of one level lookahead on accuracy for eight real-world data sets. The
accuracies with and without lookahead, and with and without pruning are shown for infor-
mation gain.

Greedy-Info, (ii) Look-Info, (iii) Greedy-Info with pruning and (iv) Look-Info with pruning,.
Each value is the average of ten 5-fold cross validations, as explained in Section 4.2.2. There

are eight lines in each figure, corresponding to eight data sets.

Consider the accuracy plot in Fig. 4.15. The first observation is that the accuracies
do not vary much between various induction methods. On closer observation, accuracy drops
for six out of the eight data sets (all except V1 and GL) when lookahead is used, though not
significantly for all of them. In addition, Greedy-Info with pruning produces more accurate
trees than Look-Info for the V1 data (and four others). Pruning, which is a much less
expensive technique than lookahead, seems to be more beneficial in terms of accuracy. It
is of course unfair to expect lookahead to compensate for pruning on noisy domains. So,

we evaluated lookahead plus pruning versus just pruning (columns four and three), to see

152

90 T T T T

80 |

70 |

60

50

Tree Size

40 -

30 |

20 |

10 -

Greedy-Info Look-Info Pruned Greedy-Info Pruned Look-Info

Figure 4.16: Effect of one level lookahead on tree size for eight real-world data sets. The tree
sizes with and without lookahead, and with and without pruning are shown for information
gain.

if pruning complements lookahead induction better than it complements greedy induction.
This doesn’t seem to be the case — Look-Info doesn’t do very well with pruning either.
The differences in accuracy, between Greedy-Info with pruning and Look-Info with pruning
are insignificant for all domains except one, the BC data. For this data, Greedy-Info with
pruning is better than Look-Info with pruning. Our overall impression from the accuracy
plot in Fig. 4.15 is that lookahead doesn’t affect the accuracy significantly. Better benefits

than lookahead can be obtained with pruning, which is a much less expensive alternative.

Now consider the tree size plot in Fig. 4.16. Lookahead does reduce the tree
size, significantly for two domains (BC and GL) and slightly for five others. These benefits,
however, are over-shadowed by the benefits of pruning. For all domains except the LA data,

pruning helps produce much smaller trees than both the greedy and lookahead methods.

153

20 T T T T

15 -

10 -

Maximum Depth

Greedy-Info Look-Info Pruned Greedy-Info Pruned Look-Info

Figure 4.17: Effect of one level lookahead on maximum tree depth for eight real-world data
sets. The depths with and without lookahead, and with and without pruning are shown for
information gain (IG).

As lookahead and pruning independently help reduce the tree size, it is natural to ask if
using them together would accumulate the benefits. From the results in the third and
fourth columns, it is clear that this is not the case. The differences between Greedy-Info
with pruning and Look-Info with pruning are negligible for most domains. In the only case
where this difference is significant (for the BC data), Look-Info with pruning produces worse

trees than Greedy-Info with pruning.

The plot for maximum depth in Fig. 4.17 looks similar to the size plot in Fig: 4.16.
Look-Info produces shallower trees for all eight domains than Greedy-Info, but the benefits
due to lookahead are over-shadowed by the benefits due to pruning. Combining pruning

with lookahead doesn’t produce any significant improvements over just pruning.

154

Overall, the results of our experiments with real data substantiate our results with
the synthetic data. Limited lookahead did not benefit significantly in terms of classification
accuracy or size, despite the fact that it is enormously more expensive. It helped produce
shallower trees, but tree post-processing techniques (pruning in this case) which are much
less expensive than lookahead were adequate to obtain comparable benefits. Finally, both
goodness measures we used (Gini index and information gain) exhibited pathology on the

real-world domains also.

4.5 Conclusions

Most existing decision tree induction methods use a greedy strategy — decisions in the tree
are induced one node at a time. It is known that all these methods are necessarily suboptimal
[174]. Tt is desirable, particularly in view of the huge increase in the available computing
power, to have techniques that can systematically bridge the gap between greedily induced
trees and the optimal trees. Limited lookahead search is commonly believed to be one such
technique.

In this chapter, we described experiments that aimed to precisely quantify the
benefits of limited lookahead search for tree induction. We restricted ourselves to one
level lookahead. Our experiments used both synthetic and real world domains. For the
experiments with synthetic data, we defined two moderately large classes of concepts and
induced trees with greedy induction and limited lookahead on all possible concepts in these

classes. For the experiments with real world data, we used seven domains from the UCI

155

repository of machine learning databases. The tree induction methods we used are very

similar to CART [44] and ID3 [391].

The benefits of limited lookahead search in all our experiments are marginal in spite
of the enormous increase in the computational complexity. Greedy induction consistently
produces trees that are as accurate and small as those produced with lookahead. The only
significant benefit of lookahead is in producing slightly shallower trees than greedy induction.
However, tree post-processing techniques, such as pruning and “balancing”, narrow the
difference between greedy and limited lookahead induction even further. Moreover, we
measured maximum depth in all our experiments. The longest paths in a tree may be
trying to split a small area of the attribute space, and thus may be used very rarely for
actual classification. One can claim that lookahead produces shallow trees only on the basis
of expected depth, the number of tests needed to classify an unseen example. We present
experiments in the next chapter, which show that the expected depth of greedily induced
trees is very close to the optimum, leaving little scope for improvement by lookahead or

other techniques.

Not only does lookahead search not produce significant benefits, it can actually
hurt tree quality. We discovered several synthetic and real world data sets for which limited
lookahead search produces worse trees than greedy induction, in terms of accuracy, tree size
and max. depth. Intuitively, doing more search (lookahead) should produce better decision
trees, just as deeper search in game trees (e.g., for chess) produces better game-playing

programs. However, it has been observed that for some games, deeper search can actually

156

produce an inferior program, both with two players [360] and with multiple players [356].
Decision trees, one can argue, are analogous to a one-player game tree. Our discovery that
deeper search can lead to inferior decision trees thus extends the earlier pathology results
to a new domain.

It is intriguing that limited lookahead search can produce inferior decision trees
as compared to greedy search. Pathology may be caused by the way heuristic goodness
measures are defined. Greedy methods grow a decision tree by optimizing measures such
as class entropy or diversity at each node of the tree (Section 2.3). However, as indicated
by pathology, each such optimization is not necessarily improving the tree globally. It is
commonly believed that information gain helps induce shallow trees [391, 403]. Our findings
that Look-Info generally produces shallower trees than Greedy-Info are in accordance with
this common belief. However, pathology in terms of maximum depth indicates that a split
that optimizes information gain can in fact lead to a deeper tree.

Finally, a word of caution. Most of our experiments in this chapter are based on
synthetic data. Experiments with synthetic data are necessarily limited in the generality
and applicability of their conclusions. We used synthetic data in this chapter mainly to
show the existence of pathology. To determine how often pathology occurs in real-world,

more detailed analyses will be necessary.

157

Chapter 5

On the effectiveness of the greedy
heuristic

Chapter 4 presented extensive experimentation which indicated that one-level
lookahead does not produce better trees than the traditional greedy tree induction algo-
rithm. This is surprising, as one would expect that more search should mean better results.
One plausible explanation for this seemingly unintuitive result is that greedily induced trees
are themselves so close to the optimal that improvement is hard to achieve. The current
chapter investigates in this direction: it attempts to measure how close greedily induced

trees are to the optimal.

We cannot, however, use the same synthetic data here as we had used in Chapter 4.
Classes of small, shallow decision trees were chosen for the lookahead experiments so that
one-level lookahead can have an effect. On these trees, there can obviously be not much
difference between the greedily constructed and optimal trees. For the experiments in this

chapter, we use much larger trees, varying dimensionality, varying levels of noise, etc.

158

What we mean by greedy tree induction is the standard top-down method: recur-
sively do the following until no more nodes can be split: choose the best possible test at
the current node according to some goodness measure and split the current node using that
test; after a complete tree is grown, prune it back to avoid overfitting the training data.
The choice of a “best” test is what makes this algorithm greedy. The best test at a given
internal node of the tree is only a locally optimal choice; and a strategy choosing locally
optimal splits necessarily produces suboptimal trees [174]. Optimality of a decision tree
may be measured in terms of prediction accuracy, size or depth. It should be clear that it
is desirable to build optimal trees in terms of one or more of these criteria. Maximizing
classification accuracy on unseen data (within the constraints imposed by the training data)
is obviously desirable. Smaller, shallower decision trees imply better comprehensibility and
computational efficiency. Shallow trees are also more cost-effective, as the depth of a tree is
a measure of its classification cost. However, because the problem of building optimal trees
is known to be intractable (Section 2.6.1), a greedy heuristic might be wise given realistic

computational constraints.

Although the greedy approach is suboptimal, it is commonly believed to produce
reasonably good trees. In the current chapter, we attempt to verify this belief. We ask
the question, if we had unlimited resources and could compute the optimal tree, how much
better should we expect to perform? An alternative way of asking the same question is,
what is the penalty that decision tree algorithms pay in return for the speed gained by the

greedy heuristic? We quantify the goodness of greedy tree induction empirically in this

159

chapter, using the popular decision tree algorithms, C4.5 [398] and CART [44]. We induce
decision trees on thousands of synthetic data sets and compare them to the corresponding
optimal trees, which in turn are found using a novel map coloring idea. We measure the
effect on greedy induction of variables such as the underlying concept complexity, training
set size, noise and dimensionality. The main observations from the experiments in this

chapter are the following.

e The expected depth of greedily induced decision trees is consistently very close to the

optimal.

e The prediction accuracy of a greedily induced tree is not dependent on concept com-

plexity, provided there is adequate training data.

e Greedily induced trees are not much larger than the optimal, even for complex con-
cepts. However, the variance in tree size increases with increase in concept complexity

and/or dimensionality.

e There is almost no difference between the greedy goodness measures of CART and

C4.5, in terms of the predictive accuracy, size or depth of trees they generate.

Section 5.1 describes our experimental method and Section 5.2 presents the results.

Section 5.3 provides general conclusions.

160

5.1 Experimental setup

Our experimental framework is quite simple — we use C4.5 [398] and CART [44] to induce
decision trees on a large number of random data sets, and in each case we compare the
greedily induced tree to the optimal tree. The implementation of this framework raises

some interesting issues.

Optimal Decision Tree for a Training Set. The problem of computing the shallowest
or smallest decision tree for a given data set is NP-complete (Section 2.6.1), meaning that it
is highly unlikely that a polynomial solution will be found. Previous studies that attempted
comparisons to optimal trees (e.g., [97]) used approaches like dynamic programming to
generate the optimal trees. Because it is slow, this option is impractical for our study, in
which we use hundreds of thousands of artificial data sets. Our solution is to first generate
a random decision tree D, and then generate data sets for which D is guaranteed to be the
optimal tree. The main idea behind ensuring the optimality of a random decision tree is
coloring its leaf nodes with appropriate class labels.

An instance is a real valued vector X; = (x;1, %2, ...,2q) plus a class label ¢;.
x;8 are the attributes of X;, and d is its dimensionality. Consider a binary decision tree
D in two attributes. (The ensuing argument applies to arbitrary dimensions.) D induces
a hierarchical partitioning of the attribute space, which can be drawn as a map M. The
boundaries of M are the splits (test nodes) in D, and the regions of M are the leaf nodes

in D. Assuming that each leaf node of D contains instances of only one class, we can color

161

M by assigning a distinct color to each class in D. Now consider a data set S consistent
with D, which has the additional property that S requires every leaf node of D, i.e., every

leaf node of D contains at least one instance of S.

It should be clear that D is the smallest binary decision tree consistent with S,
provided no two neighboring regions of M have the same color. Informally, any decision
tree that has fewer leaves than D needs to either ignore some decision regions of D, or
merge (parts of) two or more regions into one. The former possibility is ruled out because
S requires all decision regions in G. The latter is impossible because no decision regions
of the same color are adjacent, so no two regions can be merged. Hence, any decision tree
consistent with S has to have at least as many leaf nodes as D. Moreover, if D was a
perfectly balanced tree to start with, then any decision tree consistent with S has to be at

least as deep as D.

In our experiments, we start with perfectly balanced, empty trees. We then gen-
erate random tests at the decision nodes, ensuring that no leaf region is empty. Finally we
color the leaves to ensure optimality with respect to size, using the following procedure. We
first compute the adjacency information of the leaf nodes. After initializing the class labels
at all leaf nodes to k (> number of leaves), we go back and change the label of each leaf
to be the smallest number in [1, k] that is not yet assigned to any neighbor. This heuristic
procedure worked quite well in all our experiments. (For instance, decision trees of 64 leaf
nodes in the plane were colored with 5 classes on average.) Fig. 5.1 shows a sample random

decision tree in 2-D, along with the class labels assigned by the above coloring procedure.

162

Figure 5.1: The partitioning induced by a random decision tree of 32 leaf nodes. Class
labels assigned by our coloring procedure are shown (for most nodes).

163

Tree Quality Measures. In all our experiments, we report tree quality using six mea-

sures:

e (lassification accuracy: accuracy on the training data;
e Prediction accuracy: accuracy on an independent, noise-free testing set;
e Tree size: number of leaf nodes;

e Maximum depth: distance from the root to the farthest leaf node; (distance from A

to B is the number of nodes between, and including, A and B)
e Average depth: mean distance from the root to a leaf node in the tree;

e Expected depth: number of tests needed to classify an unseen example. We compute
expected depth by averaging, over all the examples in the testing set, the length of
the path that the example followed in the tree. If all attributes have equal costs
of measurement, expected depth is equal to the expected cost of using the tree for

classifying one example.

Control Variables. The effectiveness of greedy induction can not be measured indepen-
dently of training data characteristics. For instance, if the training data is very noisy, it
is likely that no induction method will be able to generate accurate trees. In this paper,
we study the effectiveness of greedy induction in controlled settings with respect to the

following parameters:

e concept complexity (measured as the size of the optimal decision tree),

164

e size of the training set,

e amount and nature of noise in the training data (noise in class labels versus noise in

attributes), and

e dimensionality (number of attributes).

Tree Induction Methods Used. The tree induction methods we use are C4.5 [398] and
CART [44]. One main difference between C4.5 and CART is the goodness criterion, the
criterion used to choose the best split at each node. C4.5 uses the information gain 38
criterion, whereas CART uses either the Gini index of diversity or the twoing rule. All the
experiments in this chapter were repeated using information gain, Gini index and twoing
rule. In no case did the results show statistically significant differences between goodness
measures—the differences in accuracies, sizes and measurements of depth were always much
less than one standard deviation. For brevity, we report only the results with information
gain (i.e., C4.5) in the rest of this chapter. We implemented all the goodness measures using
the OC1 system (Chapter 3). Although C4.5 and CART differ in respects other than the
goodness measures, we have not implemented these differences. In the experiments in which
the training data is noise-free, no pruning was used with either method. In the experiments

using noisy training sets, we augment both methods with cost complexity pruning [44],

reserving 10% of the training data for pruning.

38 Quinlan suggested gain ratio as an improvement over information gain. However the two mea-
sures are equivalent in our experiments as all our decision trees are binary.

165

5.2 Experiments

This section describes six experiments, each of which is intended to measure the effectiveness
of greedy induction as a function of one or more control variables described in Section 5.1.

The procedure is more or less the same for all experiments.

— generate 100 random trees with no class labels;
— for each tree D,y generated in the above step:
— color D,y with class labels (Sec. 5.1);
— generate a large, noise-free testing set for which D,,; is optimal;
— generate 50 training sets using Dop;
— for each training set T":
— greedily induce a tree D on T
—record the size, depth, accuracy etc. of D and D,:

— report the mean and std. dev. of the quality measures for the 5000 trees.

The instances in the training and testing sets are always generated uniformly randomly,
and are labeled using the optimal decision tree. The size of the testing set is linearly
dependent on the concept complexity and the dimensionality of the data, whereas the size
of the training set is a control variable. More precisely, |T| = C % (D — 1) % 500, where
|T| is the size of the testing set, C' is the concept complexity and D is the number of

attributes. For instance, for a size 16 concept in 4 dimensions, we use a testing set of size

166

Optimal | Training | Prediction | Tree Size Depth

Tree Size Set Accuracy Maximum Average Expected
8 1000 99.5+0.1 9.8+1.7 4.840.7 (3) | 3.6£0.3 (3) | 2.94+0.3 (3)
16 1000 98.7+0.3 | 20.7+3.3 | 7.24+1.0 (4) | 5.0+0.4 (4) | 3.9+0.4 (4)
32 1000 97.2+0.6 | 40.4+6.8 | 9.3+1.0 (5) | 6.3+0.5 (5) | 5.0+0.5 (5)
64 1000 94.3+0.9 | 71.7+10.3 | 11.5+1.2 (6) | 7.4+0.5 (6) | 5.840.5 (6)

Table 5.1: Effect of concept complexity. There is no noise in data, so all trees have 100.0%
classification accuracy. Numbers in parenthesis are for optimal trees.

16 % (4 — 1) % 500 = 24,000. We ensure that no subtree of the optimal decision tree is

consistent with the testing set.

In all the tables in this chapter, each entry comprises of the average value of a tree
quality measure over 5000 trees and the standard deviation (one o). Numbers in parenthesis
correspond to the optimal trees. The ¢’s are omitted when they are zero. Optimal values
are omitted when their values are obvious. The optimal trees always give 100% prediction
accuracy in our experiments, because the testing set has no noise. In addition, they give

100% classification accuracy when the training data is noise-free.

Experiment 1: The purpose of this experiment is to evaluate the effectiveness of greedy
induction as a function of concept complexity. All training sets comprise of 1000 random
2-D instances. There is no noise in the training data. Table 5.1 summarizes the results.

Greedily induced trees give 100% classification accuracy in this experiment as there is no

pruning.

167

Observations: The prediction accuracy of greedily induced trees decreases with increase
in concept complexity. This can be either be due to the inadequacy of greedy search or due
to inadequate training data. (The training set size remained at 1000 though the concept
complexity increased from 8 to 64.) In Experiment 2, we increase the size of the training
set in proportion with the concept complexity, in order to better isolate the effects due to

greedy search.

The difference between the sizes of greedily induced and optimal trees increases
with increasing concept complexity. However, it can be seen on closer observation that the
variances, not just the differences in size, are increasing. Greedily induced tree sizes are
just more than one ¢ away from the optimal in 3 out of 4 rows in Table 5.1, and less than

one std. dev. away for concepts of size 64.

The maximum depth measurements in Table 5.1 show that greedily induced trees
can have decision paths which are about twice as long as those in the optimal trees, even
for moderately complex concepts. However, the average depth measurements show that
the decision paths in greedily induced trees only have about one test more than those in
the optimal trees. In terms of the third depth measurement, the expected depth, greedily
induced trees are almost identical to the optimal ones, for all the concept sizes considered in
this experiment. This is a very desirable, although somewhat counterintuitive, trend which
is seen consistently throughout our experiments. (Note that no pruning was used in this

experiment.)

168

Optimal | Training | Prediction | Tree Size Depth

Tree Size Set Accuracy Maximum Average Expected
8 200 97.5+0.7 8.5+1.5 4.440.6 (3) | 3.4£0.3 (3) | 2.840.3 (3)
16 400 97.1+0.7 | 17.5+3.3 | 6.6+0.9 (4) | 4.7+0.5 (4) | 3.840.5 (4)
32 800 96.6+0.7 | 38.0+£7.1 | 9.1+1.0 (5) | 6.24+0.5 (5) | 4.840.5 (5)
64 1600 96.4+0.6 | 76.3+12.2 | 11.6+1.2 (6) | 7.5+0.6 (6) | 5.840.6 (6)

Table 5.2: Effects of concept complexity and training set size. There is no noise in the data,
so all trees give 100.0% classification accuracy. Numbers in parentheses correspond to the
optimal trees.

Experiment 2: The purpose of this experiment is to isolate the effects of concept com-
plexity on greedy induction, from those of the training set size. The size of the training sets
now grows linearly with the concept complexity—25 training points on average are used

per each leaf. There is no noise. Table 5.2 summarizes the results.

Observations: It is interesting to note that the prediction accuracy does not drop as
much with increase in concept complexity as it does in Experiment 1. In fact, when the
concept complexity increased by 8-fold (from 8 to 64), the accuracy went down by just
more than one standard deviation. In addition, none of the differences in tree size between
greedily induced and optimal trees in Table 5.2 are more than one standard deviation. This
is surprising, considering no pruning was used in this experiment. In terms of the three
depth measures, the observations made in Experiment 1 hold here also.

Comparing the entries of Tables 5.1 and 5.2, line by line, one can see the effect
of the training set size on prediction accuracy. When the training set size increases, the

prediction accuracy increases and its variance goes down. In other words, the more (noise-

169

Concept | Prediction | Tree Size Depth
Size Accuracy Maximum Average Expected
8 98.3+0.5 8.9+1.6 | 4.44+0.8 (3) | 3.4+£0.4 (3) | 3.0+0.4 (3)
16 96.7+0.9 | 17.2+3.2 | 6.3+1.0 (4) | 4.6+0.4 (4) | 3.9+0.4 (4)
32 93.9+1.4 | 31.1+£6.2 | 8.2+0.9 (5) | 5.6+0.4 (5) | 4.8+0.5 (5)
64 89.4+2.0 | 50.2+9.0 | 10.14+1.1 (6) | 6.6+0.5 (6) | 5.7+0.5 (6)

Table 5.3: Effect of concept complexity. All classes are equally likely. As there is noise, all
trees give 100.0% classification accuracy.

free) training data there is, the more accurately and reliably greedy induction can learn the

underlying concept.

Experiment 3: This experiment is intended to evaluate the effects of training data dis-
tribution on the quality of greedily induced trees. Each training set comprises of 100 planar
instances per each class. There is no noise. Data in each class is uniformly randomly

distributed. Table 5.3 summarizes the results.

Consider a situation in which a particular class is much rarer than the others,
but it is important to predict that class accurately. (e.g., Patients with cancer are a lot
rarer than those without cancer.) The uniform distribution in Experiments 1 and 2 may
generate too few training instances in the rare class, thus producing unbalanced training
sets. The data distribution in this experiment ensures that all classes are well-represented
in the training data. It is common practice in the real world to collect training instances in

all (known) classes before using a learner on the data.

170

Observations: Prediction accuracy decreases in this experiment as the concept complex-
ity increases, just as in Experiment 1. The reason for this decrease in accuracy may again
be the inadequacy of training data or the inadequacy of the greedy heuristic for complex
concepts. 39

Tree sizes increase much slower with increasing concept complexity in this exper-
iment, than in Experiment 1. In fact, the greedily induced trees are significantly smaller
than the optimal trees when concept size = 64. This result, however, can not be taken in
support of the greedy heuristic, for two reasons. First, for concepts of size 64, the training
set size was about 500. It is possible that several decision regions are not even represented
by such a small training set. Moreover, as all classes have the same number of training
instances, larger classes (classes that span a lot of decision regions) have a large probability
of having decision regions with no training instances in them. Both these reasons can cause
overly general decision trees that are smaller than the optimal trees but much less accurate.
Similar reasoning can be used to explain smaller values of maximum and average depth in

this experiment. The expected depth, however, is very close to the expected depth of the

optimal trees, as in Experiment 1.

Experiment 4: This experiment is intended to evaluate the effectiveness of greedy in-

duction in the presence of noise in class labels. The training sets are all in 2-D, and consist

39 Note that the training set sizes varied slightly across concept complexities in this experiment
unlike in Experiment 1. The average number of classes assigned to the optimal trees by the coloring
algorithm (Section 5.1) were 3.43, 4.04, 4.55 and 5.02 for concept sizes 8, 16, 32 and 64. As we
used 100 training points per class, the size of the training set increased by about 50 when concept
complexity doubled.

171

Class Classification Prediction | Tree Size Depth

Noise Accuracy Accuracy Maximum | Average | Expected
0 100.0 (100.0) 93.94+1.4 | 31.1£6.2 8.2+0.9 5.6+£0.4 | 4.840.5
5 92.1+1.3 (95.1+0.01) | 89.54+2.4 | 21.9+5.1 7.04+0.8 4.9£0.5 | 4.4+£0.4
10 87.7+1.3 (90.5+0.02) | 88.24+2.6 | 22.2+5.1 7.0+0.8 49+04 | 4.4+04
15 83.5+1.3 (86.1+0.05) | 86.6+2.9 | 22.4+5.4 7.0+0.8 4.9£0.5 | 4.4+£0.4
20 79.7+£1.4 (81.9£0.05) | 84.943.1 | 22.74+5.2 7.1£0.8 4.940.5 | 4.44+04

)

25 76.1+£1.4 (77.8+0.03 83.1+£3.4 | 23.3+5.7 7.1£0.8 4.840.5 | 44404

Table 5.4: Effects of noise in class labels. Concept complexity=32. Numbers in parentheses
are for the optimal trees.

of 100 instances per class, uniformly randomly distributed in each class. k% noise is added
into each training set by incrementing by 1 the class labels of a random k% of the training
points. All concepts are of size 32, so all optimal tree depth values are equal to 5.0. Pruning

was used when noise level is greater than 0%. Table 5.4 summarizes the results.

Observations: As is expected, the classification and prediction accuracies decrease when
the amount of noise is increased. The tree size and depth measurements vary significantly
when the first 5% of noise is introduced (obviously because pruning is started), and remain

steady thereafter.

One needs to be careful in analyzing the results of experiments 4 and 5, in order
to separate out the effects of noise and the effect of the greedy search. What we want to
investigate is whether the greedy heuristic becomes less and less effective as the noise levels
increase, or if it is robust. For instance, the fact that the classification accuracy decreases

linearly with increase in noise in Table 5.4 is perhaps not as significant as the fact that the

172

prediction accuracy decreases more slowly than classification accuracy. This is because the
former is an obvious effect of noise whereas the later indicates that greedy induction might
be compensating for the noise.

Several patterns in Table 5.4 argue in favor of the effectiveness of pruning, which
has come to be an essential part of greedy tree induction. Classification accuracies of
the greedy trees are close to, and less than, those of the optimal trees for all the noise
levels, indicating lack of overfitting. Prediction accuracies of greedily induced trees with
pruning are better than their classification accuracies, again indicating that there is no
strong overfitting. Tree size and depth measurements remained virtually unchanged in the

presence of increasing noise, certifying to the robustness of pruning.

Experiment 5: This experiment is similar to the previous one, in that we measure the
effectiveness of greedy induction as a function of noise in the training data. However,
this time we consider noise in attribute measurements. The training sets again comprise
100 2-D instances per class, uniformly randomly distributed in each class. k% noise is
introduced into each training set by choosing a random k% of the instances, and by adding
an € € [—0.1,0.1] to each attribute. All the concepts are of size 32, so all the optimal depth
measurements are equal to 5.0. Cost complexity pruning was used in cases where the noise

level was greater than 0%. The results are summarized in Table 5.5.

Observations: There results with attribute noise (Table 5.5) and noise in class labels

(Table 5.4) are very similar, except for the classification accuracies. The values for prediction

173

Attribute Classification Prediction | Tree Size Depth
Noise Accuracy Accuracy Maximum | Average | Expected
0 100.0 (100.0) 93.9+1.4 | 31.1£6.2 8.24+0.9 5.6+0.4 | 4.8+0.5
5 95.2+1.3 (98.0+0.4) | 90.0+2.3 | 22.2+5.3 7.0+0.8 4.940.5 | 4.4404
10 93.5+1.4 (96.0+0.7) | 88.7+2.6 | 22.6+5.5 7.0+0.8 4.940.5 | 4.4404
15 92.1+1.6 (94.1+1.0) | 87.4+2.8 | 23.3+5.6 7.0+0.8 5.0+0.5 | 4.44+04
20 90.7£1.8 (92.2+1.3) | 86.24+3.1 | 23.7£5.6 7.0+0.8 4.940.5 | 4.4+04
25 89.4+2.0 (90.6+£1.6) | 85.0+3.4 | 23.7£5.5 7.0+0.8 4.940.5 | 4.3+04

Table 5.5: Effects of noise in attribute values. Concept complexity=32.

accuracy, tree size and depth measurements in the presence of k% noise are almost the same
whether the noise is in attribute values or class labels. The classification and prediction
accuracies decrease with increasing noise. The tree size and depth measurements decrease
when the first 5% of the noise is introduced (due to pruning) and remain steady thereafter.

However, introducing k% attribute noise is not equivalent to introducing k% class
noise. Changing the attributes of an instance by a small amount affects the classification
of only those instances lying near the borders of decision regions, whereas changing the
class labels affects the classification of all the instances involved. This can be seen from
the classification accuracies of the optimal trees in Tables 5.4 and 5.5. The classification
accuracy of the greedy trees is quite close to, and less than that of the optimal trees in both
tables. All the prediction accuracy values in Table 5.5, unlike those in Table 5.4, are less

than the corresponding classification accuracies.

Experiment 6: Our final experiment attempts to quantify the effect of dimensionality

on the greedy heuristic. All the training sets consist of 1000 uniformly randomly generated

#Dim. | Prediction | Tree Size Depth
Accuracy Maximum | Average | Expected
2 98.74+0.3 | 20.74£3.3 | 7.24+1.0 | 5.0+0.4 | 3.9+04
4 98.3+0.7 | 23.9+6.0 | 6.6+0.9 | 5.0+0.5 | 4.0+0.4
8 98.04+0.8 | 24.5+6.5 | 6.3+£0.9 | 4.94+0.5 | 4.1+0.2
12 97.940.9 | 25.4+6.8 | 6.3+£0.9 | 4.94+0.5 | 4.1+0.2

174

Table 5.6: Effect of dimensionality. Training set size=1000. As there is no noise, all trees
give 100.0% classification accuracy. Concept complexity=16.

instances, with no noise, as in Experiment 1. No pruning was used. All concepts are of size

16, so the optimal tree depths are 4.0. Table 5.6 summarizes the results.

Observations: There is no statistically significant difference in any tree quality measure

when dimensionality of the data is increased from 2 to 12. This result is surprising because,

intuitively, higher dimensional concepts should be more difficult to learn than lower dimen-

sional ones, when the amount of available training data does not change. Our experiments

indicate that the effects due to dimensionality do not seem to be as pronounced as the ef-

fects due to concept complexity (Table 5.1) or noise. The quantity that does increase with

increasing dimensionality is the variance. Both prediction accuracy and tree size fluctuate

significantly more in higher dimensions than in the plane. This result suggests that methods

that help decrease variance, such as combining the classifications of multiple decision trees

(Section 2.5.7), may be useful in higher dimensions.

175

5.3 Discussion

In this chapter, we presented six experiments for evaluating the effectiveness of the greedy
heuristic for decision tree induction. In each experiment, we generated thousands of ran-
dom training sets, and compared the decision trees induced by C4.5 and CART to the
corresponding optimal trees. The optimal trees were found using a novel graph coloring
idea.

We summarize the main observations from our experiments below. 40 Where

relevant, we briefly mention related work in the literature.

o The expected depth of greedily induced decision trees was consistently very close to the
optimal. Garey and Graham (1974) showed that a recursive greedy splitting algorithm
using information gain (not using pruning) can be made to perform arbitrarily worse
than the optimal in terms of expected tree depth. Goodman and Smyth (1988) argued,
by establishing the equivalence of decision tree induction and a form of Shannon-Fano
prefix coding, that the average depth of trees induced by greedy one-pass (i.e., no

pruning) algorithms is nearly optimal.

o Cost complezity pruning [44] dealt effectively with both attribute and class noise. How-
ever, the accuracies on the training set were overly optimistic in the presence of at-

tribute noise.

e Greedily induced trees became less accurate as the concepts became harder, i.e., as

40 A5 mentioned at the end of Chapter 4, experimental results with synthetic data are necessarily
limited in their applicability. We had experimented with a spectrum of training data characteristics
in this chapter, so we hope that our conclusions will prove to be general.

176

the optimal tree size increased. However, increasing the training data size linearly

with concept complexity helped keep the accuracy stable.

Greedily induced trees were not much larger than the optimal, even for complex
concepts. However, the variance in tree size was more for higher dimensional and
more complex concepts. Dietterich and Kong (1995) empirically argued that even in
terms of prediction accuracy, variance is the main cause for the failure of decision

trees in some domains.

For a fized training set size, increasing the dimensionality did not affect greedy in-
duction as much as increasing concept complexity or noise did. Several authors (e.g.,
[156]) have argued that for a finite sized data with no a priori probabilistic infor-
mation, the ratio of training sample size to the dimensionality must be as large as
possible. Our results are consistent with these studies. However, with a reasonably
large training set (1000 instances), the drop in tree quality was quite small in our

experiments, even for a 6-fold (2 to 12) increase in dimensionality.

The goodness measures of CART and C4.5 were identical in terms of the quality of
trees they generated. It has been observed earlier (e.g.,[44, 325]) that the differences
between these goodness criteria are not pronounced. Our observation that these
measures consistently produced identical trees, in terms of six tree quality measures, in
a large scale experiment (involving more than 130,000 synthetic data sets) strengthens
the existing results. Note that the fact that we only used binary splits in real-valued

domains may be one reason why information gain, Gini index and twoing rule behaved

177

similarly.

Many researchers studied ways to improve upon greedy induction (Section 2.5.4),
by using techniques such as limited lookahead search and more elaborate representations
than trees. The results in the current chapter throw light on why it might be difficult to

improve upon the simple greedy algorithm for decision tree induction.

178

Chapter 6

Domain specific data massaging;:
Two Illustrations from Astronomy

The goal of this thesis is to find techniques that help build “good” decision trees
from data. Chapter 3, 4 and 5 described ways of achieving this aim through algorithmic
extensions such as non axis-parallel splits and limited lookahead search. However, algorith-
mic enhancements alone are seldom adequate to grow good trees, especially if the data is
not in the “right” form. For instance, if the features do not contain sufficient information
about the concept to be learnt, or if the concept can not be concisely represented using
the given features, no learning method can expect to do well. “Massaging” the data into
a form suitable for the given learning method is a crucial step in building good real-world

classifiers.

Although anyone that applied data exploration methods to real world data ought
to be aware of the importance of data massaging, very few papers seem to explicitly discuss

data massaging. The most detailed discussion about data massaging that the author is

179

aware of is from two recent workshop proceedings [222, 332]. Both these forums discussed
the problem of structuring, or engineering the data into a form suitable for inductive learn-
ing. Each paper at these two workshops, like the current chapter, argues data massaging
mostly relies on domain knowledge. However, we feel that some domain-independent data
massaging is possible, and pursue that issue in Chapter 7. More precisely, we discuss au-
tomated ways of engineering any data set into a form more appropriate for a particular
learning method.

The data massaging procedure to use for a given problem depends heavily on the
problem and on the learning method to be used. Data massaging encompasses tasks such
as choosing a set of features that is likely to be useful for learning the concept, weeding
out inconsistant/redundant instances and features, and sometimes even defining what to
learn. Most of the time the classification problem needs to be understood using domain
knowledge, so that the data can be re-represented in a suitable form.

The current chapter illustrates domain-specific data massaging in the context of

two new classification problems in astronomy, namely:

1. Identifying cosmic rays in the Hubble Space Telescope images, and
2. Classifying stars and galaxies in Sloan Digital Sky Survey images.

The raw data for both problems consisted of images of parts of the sky, which were not
directly useful to the classification method. The main effort in solving the problems was
spent on finding the appropriate training data points (objects), and the appropriate features

to represent the objects. The author worked as part of a group of three astronomers and two

180

computer scientists 41 for about 3.5 years to solve these problems. We iterated the following
(roughly defined) procedure several times to before finding the best data representation for

each of these problems.

1. Using expert knowledge as well as empirical observation, define a set of features that

are potentially good discriminators.

2. Build and test classifiers using these features. Stop if the astronomers are satisfied

with the performance of the classifier.

3. Modify the feature set and the data. Go to step 1.

The rest of this chapter outlines this iterative process, and presents our results for
the above problems. Our primary goal in this work has been to develop techniques that
classify with high accuracy, in order to ensure that celestial objects are not stored in the
wrong catalogs. In addition, classification time must be fast due to the large number of
classifications and to future needs for on-line classification systems. For both problems, we

obtained small, highly accurate decision tree classifiers using OC1 (Chapter 3).

Outline

Section 6.1 reports on our experiments for using decision tree classifiers to identify cosmic

ray hits in Hubble Space Telescope (HST) images. This method produces classifiers with

4l The Astroexplorer group comprised of the author and Steven Salzberg from the Department
of Computer Science, Johns Hopkins University; Holland Ford and Rupali Chandar from the De-
partment of Physics and Astronomy, Johns Hopkins University; and Rick White from the Space
Telescope Science Institute. The work described in this chapter and Appendix A was done jointly
with these researchers.

181

over 95% accuracy using data from a single, unpaired image. Accurate prediction was
achieved both for the old and aberration-corrected images from the Hubble Telescope. Our
experiments indicate that this accuracy will get even higher if methods for eliminating
background noise improve.

Section 6.2 describes ongoing work on the classification of stars and galaxies in
the Sloan Digital Sky Survey (SDSS) images. SDSS is a large-scale survey of the northern
hemisphere, expected to produce photographic images of hundreds of millions of stars,
galaxies and quasars, and high resolution spectra for millions of bright galaxies and quasars.
We were able to obtain decision trees with very high classification accuracies in this domain
also, using noisy and extremely faint object lists.

As our main emphasis in this thesis is on machine learning, we present most
astronomy-specific details separately in Appendix A. This is also appropriate because the
author’s contributions are minor in the astronomy-specific parts of the project. As the
purpose of this chapter is to illustrate the importance of data massaging, and not to find the
best algorithm for the given data, we do not attempt comparison of different classification
methods here — we use the default OC1 system (Chapter 3) for all our experiments. Some

results with other classification methods on these data sets can be found in [424].

6.1 Cosmic ray hits in Hubble Space Telescope images

This section describes the results of an effort to identify accurately the types of noise

commonly present in Hubble Space Telescope (HST) data, especially cosmic ray hits, which

182

are very common in the Wide Field Planetary Camera (WFPC) images. Below we first
outline the star/cosmic ray classification problem for HST images. We then present our
experiments with the data from the aberrated HST images, describing in detail the data
massaging involved. We describe in Section 6.1.7 our results on the aberration-corrected
HST images, which are being obtained with the new WFPC (WFPC2) that was installed

in the HST by the crew of the Space Shuttle Endeavor in December 1993.

6.1.1 The task

Cosmic rays (CR) are a common type of noise in HST images. During a typical 20-minute
exposure, each of the four CCDs 42 detect approximately 2,000 CR events. Many of the
low amplitude CR events look like faint stars, and need to be filtererd out before cataloging
the stars.

The method commonly used to filter cosmic rays is to take two images of the same
region in the sky at different times, and to identify as stars objects that appear above noise
in both images. The goal of our work was to find classifiers that separated CRs and stars
with high reliability in individual images. Eliminating the need for split exposures saves
the significant amount of spacecraft time that is required to prepare the camera for the
second exposure. We also wish to eliminate the noise penalty that is incurred by taking
two exposures. (Whenever the exposure is split and then subsequently summed after CR

removal, the noise is increased by /2. See Appendix A for details.)

42 Loosely speaking, Charge Coupled Detectors (CCDs) are akin to photographic plates. Incident
photons or rays leave electron-hole pairs on the CCDs. The magnitude of the current generated is
a measure of the intensity of the incident light.

183

We began our study by selecting two images of a field in the nearby galaxy M81
taken at two different times. Figure 6.1 shows part of an image from one of the four CCDs
(CCD WF1). The entire field, which was centered on a portion of a spiral arm in M81,
contains thousands of faint stars. Because the stars are faint and close to one another, the
image is a difficult test case. Moreover, this image provides a difficult test case because
some of the CCD’s fall directly on the galactic bulge.

Our first objective was to create a highly reliable catalog of the positions and
identities of stars and cosmic rays. We used standard astronomy software packages (see
Appendix A for details) to detect and locate objects (stars in this case) that are statistically
above the noise in each image, and reject objects (CRs) that appear in only one image. Note
that we use the combined images only to find positions of the objects. Features are always
extracted from single images.

A relatively small number of cosmic rays (287 out of 4689 objects) were superposed
on the images of stars. These blends (stars plus CRs) are a third class of objects that we
wish to classify at a later date when we have a sufficient number of examples. We removed

these blends from our database for all the experiments described below.

Experimental Method

In some of our experiments, we used cross-validation to estimate accuracy. As a further
check on these accuracy figures, we collected additional data from a different CCD and

used a tree built on the first CCD to classify this data. The database consisted of two sets

184

'

Figure 6.1: A portion of a 900 second CCD WF1 image of M81 taken through a yellow
filter (F555W), containing stars, cosmic rays, and other sources of CCD and sky noise.

"]

185

of objects, taken from two adjacent CCDs, WF1 and WF2, from a 4-CCD array. WF1
was used to develop the decision tree classifiers, and give initial estimates of accuracy. We
reserved WF2 to provide an independent test of the accuracy of each classifier. We chose
adjacent CCDs in order to equalize global conditions such as background sky brightness as
much as possible. Including blends, WF1 contained 2430 objects and WF2 contained 2484
objects. After removing the blends, WF1 contained 2259 objects and WF2 contained 2368

objects. In both cases about 60% of the objects were cosmic rays.

To estimate the accuracy of a classifier on the WF1 data, we ran a five-fold cross-
validation experiment. Each of the WF1 numbers given in below is an average of ten 5-fold
cross-validation (CV) experiments. “Tree size” refers to the number of leaf nodes; i.e., the
number of regions that the data is divided into by the tree. After training our program on
the WF1 data, we used the same decision trees, without any further training, to classify the
WEF2 data. The experimental design here was simple: we built a tree using the entire WF1
data set of 2259 objects (rather than 4/5 of the objects, as was done in the cross-validation
study above), and then calculated the classification accuracy of that tree on the WF2 data
set of 2368 objects. Because OC1 is randomized, we randomly chose 80% of the WF1 data
as the training set and reserved 20% as a test set. We then built a decision tree with OC1
on the training set and measured its accuracy on the test set. We repeated this procedure
with different random training/test partitions ten times, and chose the best (in terms of

overall accuracy on its test set) of the 10 trees as the tree to use for the WF2 data.

In all experiments, we report three accuracy figures: overall, stars, and cosmic

186

Data Accuracy (%) Tree Size
Overall Stars Cosmic Rays

WF1 81.1 83.3 77.1 21.6

WEF?2 74.1 87.0 52.1 9

Table 6.1: OC1 accuracies: Using 9 raw pixel intensities. No blends

rays. Overall accuracy is just the percentage of correct classifications over the whole test
set, where “correct” means the decision tree agreed with the class label provided with the
input data. Accuracy on stars (and respectively cosmic rays) is the percentage of the time

that a prediction of “star” was correct.

6.1.2 Tteration 1: Using raw data

Any classification method uses a set of features to characterize each object; obviously, the
features should be tailored to the task at hand. The first approach we took to extracting
features has the appeal of maximum simplicity, and very liitle data massaging effort: simply
give the classifier the raw data. A 3 x 3 array of pixels centered on a faint star contains
most of the information about the star. Consequently, we extracted a 3 X 3 “postage stamp”
centered on each star and each CR, and used the nine intensity values as our only features.
Our results using the nine raw pixel values as the only features are presented in Table 6.1.
These numbers obviously are not satisfactory, because not only are the accuracies low on

WF1, but the trees built on WF1 do not generalize well on the WF2 data.

187

6.1.3 Iteration 2: An appropriate feature set

After the preliminary trials with the raw pixel intensities, we determined that we could
improve our results substantially by using additional features relevant to the problem. The
astronomers know in great detail how aberration and diffraction determine the HST inten-
sity distribution from point light sources (i.e., stars), the so-called point spread function or
PSF. If we fit a PSF to the stars and CRs, the parameters of the fit should be very different
for the two classes. We used parameters from the PSF fit plus other knowledge about the
differences between stars and CRs to define 11 additional features. This gave us a total of
20 parameters, listed below. Computation of these features is based entirely on an object’s

location on the CCD and on the pixel intensities in a 3x3 grid centered on the object.

Feature set for Star-Cosmic Ray discrimination:
9 raw pixel values in a 3x3 grid
x-moment: computed from first intensity moments
y-moment: computed from first intensity moments
ellipticity: computed from a formula combining second intensity moments
ratio: average of 4 pixels (above, below, left, and right of central pixel)
divided by the intensity in the central pixel.
rl: magnitude calculated for a radius of 1 pixel

r1.5: magnitude (radius=1.5pixels) / magnitude (radius=1.0 pixels)

188

Data Accuracy (%) Tree Size
Overall Stars Cosmic Rays

WF1 91.8 87.9 94.1 7.5

WEF?2 91.7 87.6 95.1 5)

Table 6.2: OC1 accuracies: Using 20 features. No blends

r2: magnitude (radius=2.0pixels)/ magnitude (radius=1.0 pixels)

peak intensity: intensity of the central pixel (radius=0.55 pixels)
Computed as: total counts (in this radius) - area*(avg. sky)

p2: peak intensity/ magnitude (radius=2.0 pixels)

mean: mean value of pixels in 3x3 postage stamp

stddev: standard deviation of pixels in 3x3 postage stamp

Significantly better results than those with the raw pixel intensities were obtained
when the feature set included the PSF parameters, as shown in Table 6.2. Note that the

trees produced using WF1 data were still very good classifiers for the WF2 data.

To give an example of what a particular classifier looks like, one relatively small
tree that OC1 produced on the WF1 data is shown in Fig. 6.2. This tree gave 93.2%
accuracy on the WF1 training set. The same tree applied to the WF2 data gave 91.9%

overall accuracy.

Figure 6.2: Small, accurate tree produced by OC1-AP.

In Figure 6.2, x9¢ is the standard deviation of the pixels in the 3x3 map, and x4
is the ratio of the magnitude at a radius of 2 pixels to the magnitude at 1 pixel. Because
OC1 found a tree that used only two features, the partitioning induced by this tree can be
viewed using those two features as the coordinate axes. As many trees produced by OC1
used these two features at the top levels, it might be a good idea to run OC1 using only

these two features to describe the examples, an idea which we pursue in Section 6.1.5.

6.1.4 Tteration 3: Removing noise

Although 91% represents a very respectable accuracy, we wanted to improve this figure.
With this goal in mind, we re-examined the CCD WF1 data in an attempt to locate other
sources of error. One source of noise are the “hot” pixels, which occur where the “dark

current” is large. The dark current appears when long exposures are taken with no light

190

incident on the CCD.

The hot pixels occur in all of the images in our database (10 images that are
within 1 pixel of each other). We combined all 10 images so that we would have better
signal-to-noise, making it easier to see the hot pixels. We used a routine called DoPhot*3
which is fairly accurate at finding cosmic rays. Since the hot pixels are usually single
pixel events resembling cosmic rays, all the objects DoPhot identified as cosmic rays in the
combined image are presumably hot pixels. (Note that cosmic rays do not appear in the

combined image.) We found between 100 and 225 hot pixels this way, depending on the

CCD examined, but not all of them were bright enough to be detected.

After finding the hot pixels, we removed them from the WF1 and WF2 data sets,
and re-ran our experiments to measure accuracy. For WF1, removing the hot pixels reduced
the data set from 2259 objects to 2211, and for WF2 the number of objects dropped from
2368 to 2282. The accuracy on both data sets improved substantially when hot pixels
were removed, as shown in Table 6.3. As in the first experiments, the WF1 accuracies
were estimated using 10 five-fold cross-validation experiments. The WF2 accuracies were
produced by using a single tree, created from WF1 data only, to classify the entire WF2

data set.

43 Thanks to Abhijit Saha of STScl for providing this software.

191

Data Accuracy (%) Tree Size
Overall Stars Cosmic Rays

WF1 94.0 91.8 95.3 8.4

WEF2 95.1 95.1 95.0 4

Table 6.3: OC1 accuracies: 20 features, no blends, no hotpixels

Data Accuracy (%) Tree Size
Overall Stars Cosmic Rays

WF1 96.6 96.6 96.6 2

WEF?2 95.4 95.9 94.9 2

Table 6.4: OC1 accuracies: 2 features, no blends, no hot pixels

6.1.5 Iteration 4: Reducing the feature set

The performance of OC1 and many other machine learning methods can suffer when a data
set is characterized by a large number of features (Section 2.5.1). Because OC1 searches an
exponentially large space of hyperplanes, reducing the number of attributes dramatically
reduces the size of the search space, improves the efficiency of OC1’s search, and results in
better oblique trees. We observed earlier that many of the trees used as few as two features:
attributes 16 and 20. We therefore ran a final experiment in which we used the same data
sets, but this time using just those two attributes. Our best results came from this final
run using fewer features. These results appear in Table 6.4. As before, the results on WF2
were produced by training on the entire WF1 data set, and then testing on WF2. These
results point out the importance of selecting the right features, which in this case was done

by using a decision tree method as the selection mechanism.

192

The tree produced by OC1 in this last experiment is displayed in Fig. 6.3. This
figure shows the data from WF1 displayed in two dimensions, with the tree induced by OC1
superimposed. A small number of outliers have been omitted from the figure in order to
improve the resolution for the rest of the data. 44 We have also not shown some objects
in the middle of the dense clusters in the figure, to help the clarity.

This very small tree (just two internal nodes) is easy to understand and even easier
to interpret once displayed graphically. After the data massaging described here, a realistic
estimate of accuracy for OC1 on the WF2 data increased from just over 92% to over 95%.
We believe that this may represent the limit of accuracy for any method using the data we
have available. However, larger data sets, which provide a more complete picture of the

range of possible star and cosmic ray images, might lead to additional increases.

6.1.6 Using decision trees to confirm labelling

In a preliminary study using paired images, OC1 produced a decision tree that discovered
errors made by a standard labelling procedure used as an HST analysis tool. For this study,
we produced two new images from the pair. The first was a CR-clipped image produced by
summing the original images with the STSDAS program Combine. In principle this image
contains only stars. The second image was the difference of the original images, and contains

only positive and negative CRs. By learning to recognize the difference in background for

44 More precisely, 68 objects out of a total of 2259 objects on WF1 lie far outside the bounding
box of this graph. Of these, all except six are correctly classified by the OC1 tree shown. 5 of
the misclassified objects are cosmic rays, and lie to the left of the oblique line. The remaining
misclassified object is a star, and lies on the right of the oblique line, just above the line X20 = 5.25.

T T T To) T 93
N m
"o Lo m
1 :
o
28 S
T O <
x® o
Q
L & —
n
(@]
O
| L
o
©
—
(5]
-
T ... P oS
=2
| —
=
<
Te} To)
| e | -
~ <
11
o
N
>
©
~
o
+
| © —
—
>
~
QY]
—
]]] i 0
—
o o o o o !
o Lo o Lo
N — —

Oc¢ =mnqunv

Figure 6.3: Data from WF1 displayed by Attributes 16 (magnitude at a radius of 2 pixels
divided by magnitude at 1 pixel) and 20 (standard deviation of pixels in 3x3 postage stamp).
The OC1 tree is superimposed on the data.

194

the stars in the summed image and the CRs in the difference image, OC1 produced a nearly
perfect decision tree from a training set of 2,221 objects. (The only features used for this
study were the nine intensity values from the 3x3 postage stamp centered on each object.)
When we classified the remaining objects, 11 objects found in the combined image were
classified as CRs. Inspection of these showed that 6 objects were in fact CRs that had
survived the Combine program because they appeared in both images; independent cosmic
rays had struck the same pixels in both images, thus fooling the Combine software. In other
words, our decision tree detected errors in the labelling resulting from using Combine. After
correcting the labelling in our catalogs, OC1 only mis-labelled (at most) four objects: one

star and 3 CRs, for an overall accuracy of 99.8%.

6.1.7 The aberration-corrected images

All the work described so far was done before the First Servicing and Repair Mission of
the HST during the December 1993. The images taken after the repair have very different
characteristics than the ones taken before. Thus it was important to extend the above work
to the aberration-corrected images.

The cosmic ray signature is essentially the same in the new camera as that seen
in the old devices. However CR events impact scientific imaging differently with the new

camera in two ways.

e The CCDs in the new camera have thickness around 10 micrometers, compared to the

8 micrometers for the old CCDs. This leads to a higher total number of electrons being

195

deposited on the CCDs per event. In addition, the new camera has a significantly lower
readnoise. Due to these “improvements”, a larger number of faint (low-amplitude)
events are detected than before, leading to a larger number of pixels contaminated by

CRs.

e As the new images are aberration-corrected, they have more light concentrated on a

smaller number of pixels. So, small stars look more like cosmic rays in the new images.

In spite of the above difficulties, the distinctive signature of the point spread
function (the sharp core surrounded by the first ring in the diffraction pattern) is more
prominent in the new images, contributing to our confidence that our classification methods

may be successful on the corrected imagery also.

Experimental design and results

We used four images (two separate pairs) of the M100 galaxy for classification. These two
pairs are offset from each other by slightly more than one pixel. The first two images (set A)
contain far more hotpixels than the second pair (Set B). In our previous set of experiments
(Section 6.1.2), we combined two exposures to remove cosmic ray events. However, as
the number of pixels contaminated by CRs per exposure have increased, there are higher
chances that the same pixels are contaminated in both exposures. (See Appendix A for
details.) We experimented with combining more than two images to identify the cosmic
rays and to reduce contamination in star catalogs.

The star images proved to be a bit more difficult. The sky background varied

196

Data Accuracy (%) Tree Size
Overall Stars Cosmic Rays

WF1 95.0 93.9 95.6 8

WEF?2 95.1 95.3 94.9 7

WF1 (new) 97.6 87.4 99.7 7

Table 6.5: OC1-AP accuracies: 2 features

widely in 3 of the 4 CCDs making accurate detection very difficult. Also the bulge of the
galaxy falls in two CCDs. We tried different techniques (Appendix A) in order to find the

one that gave the best star catalog on the the different CCDs.

We then ran the following experiment. We built decision trees on the data from
(set A) CCDI1 of the old camera using an axis-parallel version of OC1 and estimated their
accuracies on (set A) CCD1 of the new camera. We used only features 16 and 20, which
proved to be very good discriminants for the old images (Section 6.1.5). Table 6.5 shows the
results of OC1-AP on the old WF1 and WF2, and on the new WF1. Note that trees were
always built using the old WF1 data. Use of oblique hyperplanes did not improve results
significantly over the axis-parallel ones. Similar results were obtained for data from the set

B images, which contained fewer hotpixels.

CCD4 required the use of slightly different techniques than those described above,
because it contained very bright as well as very dark sky regions. Appendix A gives details
of how we extracted objects from CCD4. A 5-fold cross validation on the CCD4 data using
OC1-AP and all 20 parameters gave the following accuracies: 92.4% overall, 95.1% for the

cosmic rays and 86.9% for the stars. A significant problem for the CCD4 data set is that of

197

blended objects. To deal with this problem, we defined a blend as a star and a cosmic ray
that fall within two pixels of each other. There were approximately 290 blended objects on
CCD4, which when deleted improved the accuracies as follows: 93.3% overall, 96.5% for
cosmic rays and 86.6% for stars.

Our analyses of the aberration-corrected data (by hand) indicates that the wide
variations in the sky background are the major source of the difficulty of this data as opposed
to the earlier one. For example, CCD3 contains part of the central bulge of the galaxy. We
tried to eliminate most of the objects in that region from the data set, because it was very
difficult to get accurate catalogs there. After we deleted spurious objects from the catalogs,
the accuracies improved to about 94% overall, 93.5% on stars and 95.7% for the cosmic
rays.

Although the M100 images obtained by the new camera appear quite difficult to
classify, we found that once sources of noise are eliminated from the catalogs, OC1 is able
to classify objects quite accurately, especially when the sky background does not vary too

much across the CCD.

6.2 Star/galaxy classification for Sloan Digital Sky Survey

The Sloan Digital Sky Survey (SDSS), a large-scale digital survey of the northern galactic
cap, is currently underway. The aim of the survey is to produce a detailed photometric
map of half of the northern sky at about the 23rd magnitude. The detected objects would

contain about 10% galaxies, similar number of stars and a million quasar candidates. From

198

these, about one million bright galaxies and 100,000 bright quasars will be selected for which
high-resolution spectra will be obtained. This project is being executed under the auspices
of the Astrophysical Research Consortium by researchers at the University of Chicago,
Fermi National Accelerator Laboratory, the Institute for Advanced Study, Johns Hopkins
University, the National Observatory of Japan, and Princeton University. The survey work
is expected to take five years, with a one year test period, and the total budget is $29.3M.
The database that will result from SDSS will be enormous: a processed pixel map of the
whole region will occupy about 8.2 tera bytes. The extracted spectra will occupy another

50 Gigabytes.

Because of the large amount of incoming data from the survey, efficient and robust
data processing is a necessary component of the survey. An important part of SDSS’s data
processing pipeline is a classification module. Stars, galaxies and quasars in the photometric
images need to be separated from each other, and from the various types of noise. We were
able to build small decision tree classifiers for discriminating very accurately between star

and galaxy images, down to the detection limit of the survey.

A set of simulated images and object catalogs are being made available to the
SDSS researchers. The procedures for generating the simulated data are quite elaborate,
and some details can be found in [114]. Considerable effort is being expended in making
the simulated data as close to reality as possible, in terms of the noise levels, magnitudes,
colors, atmospheric effects, distributions of objects etc. All the results reported in this

section are on the simulated SDSS data. (The real survey data is not available yet. The

199

first set will be released at the end of the second year of the survey, probably in 1997 or
1998.) We were able to get very high accuracies on this data, almost down to the detection

limit of the survey.

6.2.1 The task

There are three basic categories of simulated data sets [114]: catalogs, images and tapes. A
catalog is a list of objects, each of which has a position, magnitude, colors, shape parameters
and so forth. An image represents a CCD frame, or a subsection of a frame. A tape (which
might be a physical tape or a disk file) is a series of images, in the form of a data stream
that looks as if it is coming from the telescope. Every image or tape has a corresponding
catalog, so that one can run image or tape data through a pipeline module, and then
compare the output to the “real” catalog of objects in the simulated universe. In the
experiments reported below, we started with the positions of objects given in the catalogs,
extracted from the images features we thought were relevant to classification (independently
of the features listed in the catalogs), built decision trees using our features, and estimated

accuracy against the “ground truth” (i.e., true class labels) provided by the catalogs.

The SDSS data is in five color bands, g, i, r, u and z. In each color, there are
20 frames. We used only eight of the 20 frames for our experiments. Each frame consists
of 2048x1500 pixels. Each of the 8 frames we used contained approximately 1000 objects,

together summing up to 9056 objects. The objects were classified into stars and galaxies.

200

(Quasars have not been included in the simulated data yet.) 4> The SDSS images can be
at five levels of increasingly more noise. All the data we used in the following experiments
has noise level 5. This includes both local and global noise, encompassing such effects as
readout noise, photon noise, ghosts, satellite tracks, airplanes , sky background fluctuation,
atmospheric refraction, time delay of different color bands due to camera geometry and
band-dependent positional shifts of objects (toward zenith) due to atmospheric differential
refraction.

Throughout this section, we only report accuracies obtained with OC1-AP. We did
try other methods such as OC1, CART, C4.5 and nearest neighbor, but the performances
were not very different from that of OC1-AP. All the accuracy values given in this section are
the averages of ten 10-fold cross validation experiments, each experiment using a different

random seed for data partitioning.

6.2.2 Iteration 1: A “borrowed” feature set

For our first set of experiments, we tried to classify stars and galaxies using the same feature
set that we found useful for cosmic ray identification (Section 6.1.2). Recall that there were
a total of 20 features out of which 9 were raw pixel intensities. We did not use raw pixel
values for star/galaxy classification, so there were 11 features. As the image features could
be measured in any one of 5 color bands, this gave us a total of 55 features. We included

some additional features that we thought might be helpful for differentiating between stars

45 The SDSS data divides galaxies into elliptical galaxies, four types of spiral galaxies and irregular
galaxies. For the experiments described in this section, we combined all of these into a single class
galazy. We may attempt subclassification of galaxies in the future.

201

and galaxies — we included 3 new features per color band and 4 magnitude differences
across color bands. The total set of 74 features is listed below. The features that were not

used for star-cosmic ray discrimination are shown in bold face.

Features for Iteration 1:
In color bands g,i,r,u and z:
x, y moments, ellipticity, ratio, r1, r1.5, r2
peak intensity, p2, mean, stddev
RMAG: magnitude
PEAK: intensity of the central pixel
FWHM: full width at half maximum: #pixels containing half the light.

magnitude differences u-g, g-i, g-r and g-z

Out of the 9056 objects in 8 frames, there were several very faint objects in the
data. These had indefinite values for many features, because the object detection routines
had difficulty in locating the faint objects and in measuring the features. For example,
several objects had indefinite values for RMAG in one or more color bands, and several
had peak intensity values < 0. (Note that peak intensity is the intensity of the brightest
pixel, so has to be positive.) There were also objects very close to the border of the image,

whose features can not be accurately measured by any detection routine. The problem with

202

near-border objects was easy to rectify: we used only the objects that were more than 20
pixels away from all four borders.

The problem of faint objects was much more difficult to solve. In fact, a main
obstacle in solving the SDSS star-galaxy classification problem was to find a way of reliably
quantifying magnitude of an object. It should be intuitively clear why a good measure
of magnitude (brightness) is helpful: human experts classify brighter objects better, so
one would expect automated classifiers to do the same. One can also divide objects into
brightness ranges, and build separate classifiers for different brightness ranges. (The latter
approach was taken in [367].)

At first, we tried several heuristic, empirically derived rules to filter out the faint objects.
The following is an example of the kind of rules we considered:

Rule: Retain only the objects that have a peak intensity value > 20 in at least

one color band. From these, remove objects that have an indefinite RMAG value

in the u-band.
An application of the above rule resulted in retaining only 1754 objects out of the total 9056.
Let us call this subset of presumably bright objects Bright-R. The accuracies obtained by
OC1-AP on Bright-R are given in Table 6.6. Note that Table 6.6 has a new column,
Coverage, which specifies what portion of the total data is used in the current experiment.
In the case of Bright-R, the coverage is 1754 out of 9056, which is 19.4%.

The accuracies in Table 6.6 are clearly not satisfactory. For instance, on bright
stars, astronomers expect close to 100% accuracy, whereas the above numbers are in the

higher 80s. A possible, and likely reason for this is that the objects in Bright-R are not

203

Data Coverage (%) Accuracy (%)
Overall Stars Galaxies
Bright-R 19.4 91.5 86.7 94.7

Table 6.6: OC1-AP accuracies: 74 features

really bright. The parameter peak intensity, which we used to identify the bright objects,
measured the amount of light incident on the central pixel in a 3 x 3 pixel array. This
measure is unreliable, as the objects can be off-center and the object centers vary from one
color band to the other.

Moreover, none of our features measured the size of an object. In star/cosmic ray
classification, a measure of size was not crucial because both the faint stars and cosmic
rays are usually small. However, size can be an important discriminator between stars and
galaxies, when combined with a peak intensity estimate. For instance, a star and a galaxy
both having the same peak intensity values may be easily distinguished from the fact that
the galaxy is larger than the star.

In addition, as machine learning methods are adversely affected by irrelevant or
redundant features (Section 2.5.1), it may be beneficial to reduce the feature set from its

current size of 75 by removing features that are clearly not useful.

6.2.3 TIteration 2: Refining the feature set

To address the problems outlined at the end of the last section, we added a new feature

peaksig, which measures the intensity of the brightest pixel in the 3 x 3 pixel array. This is a

204

more reliable brightness measure than peak intensity, which assumes that the central pixel
is the brightest. In addition, we added two features, radius and numpiz, which quantify
size. We removed some features that were redundant /irrelevant. These included x and y
moments, RMAG, PEAK and magnitude differences. We identified irrelevant features using
standard feature subset selection methods (Section 2.5.1). We also studied several decision
trees built in the previous experiments to identify, and remove, features that were never
used. The modified feature set consisted of 61 features, listed below. o denotes the sky

background. New features are shown in bold face.

Features for Iteration 2:
In color bands g,i,r,u and z:
radius: average weighted distance between the object border to center.
numpix: #connected pixels above 1.5 x ¢, in a region of max. size 41 x 41.
ellipticity, ratio, r1, r1.5, r2, peak intensity, p2, mean, stddev
peaksig: intensity of the brightest pixel in a 3x3 box around the object

FWHM in the r-band

With this set of features, we used OC1-AP to construct decision trees on the data
from 8 frames (9056 objects). At different cutoff thresholds for peaksig, we estimated the

accuracy using ten 10-fold cross validation experiments with OC1-AP. The results are shown

205

Cutoff Coverage (%) Accuracy (%)
Overall Stars Galaxies
0 99.8 90.2 60.1 98.1
2.5 70.4 89.7 66.8 97.4
) 26.7 90.2 88.2 92.1
7.5 19.7 92.1 92.4 91.8
10 16.2 92.2 93.8 89.2

Table 6.7: Accuracy of OC1-AP. The larger the peaksig cutoff, the brighter the set of objects.
61 features.

in Table 6.7. A cutoff threshold of k means that only objects that have a peaksig value more
than k in at least one color band are retained in the data set. The format of Table 6.7 is
similar to that of Table 6.6.

As seen from Table 6.7, peaksig is a reasonably good feature to quantify bright-
ness, because the classification performance increased monotonically with brightness cutoffs.
However, the classifier is guessing at the fainter end that all objects are galaxies, which is
the more prevalent class. As the cutoff threshold increases, the proportion of stars in the
training data increase, balancing the accuracies. The best results in Table 6.7 are better
than the best results in iteration 1. At cutoff= 7.5, the coverage is about the same as that

in Table 6.6 but the accuracies for stars and galaxies are better balanced.

6.2.4 Iteration 3: A multi-stage classifier

Assuming that peaksig is a good feature to quantify brightness, it may be beneficial to build
separate classifiers for different brightness ranges. We divided the data into 3 subsets and

built a different classifier for each subset.

206

e The bright objects have a peaksig value > 15 in at least one color band. For these,
we used the set of 61 attributes described in Section 6.2.3 and ran ten 10-fold cross

validation experiments using OC1-AP.

e The detectable objects have a peaksig > 5 in at least one color band, but have
peaksig < 15 in all color bands. We extracted a new set of features for classifying

these objects, as described below.

e The very faint objects do not have a peaksig > 5 in any color band. 73% of the
objects in fields 1 through 8 are very faint. As a majority of these objects (88.8%)
are galaxies, we extracted empirical rules that cover as many galaxies as possible. A

concise and effective rule we found was the following.

Rule: if peaksig < 1 in the g-band, then object is a galaxy.

Detectable Objects: Most parameters used so far were computed using a 3x3 postage
stamp image. However, as dim objects can occupy larger areas, features need to be com-
puted using the entire image of the object. We found the boundary of an object by starting
at its center and spreading out in all directions until the intensity < k x o (o is avg. sky
brightness. We chose k = 1.7 and k = 3.5 on the recommendation of the astronomers). All
pixels inside the boundary were used to compute the features. This method of computing
features is clearly more powerful than the postage stamp method, and produced good pa-
rameters for the bright and very faint objects also (Section 6.2.5). The 51 features used in

the classification of detectable objects are listed below. As before, new features are shown

207

in bold face. We ran ten 10-fold cross validation experiments using OC1-AP and these 51

features.

Features for Detectable objects:
In color bands g,i,r and z:
for k=1.7and k =3.5
npix: #pixels above k x o
s-parm: “Gaussian-ness” of the core, for pixels above k x o
mean: average transmission for pixels above k x o
stddev: std. dev. of transmission for pixels above k * o
r2, peak intensity
r3: magnitude (radius=3.0) / magnitude(radius=1.0)
r4: magnitude (radius=4.0)
magnitude: Equal to —2.5 % log;(flux
sharpness: (Roughly) equal to objectwidth? — PSFwidth?

chisquare: Diff. between the object and the PSF. Should be high for galaxies.

Table 6.8 summarizes the results of the multiple classifiers described above. These
numbers are better than the accuracies we got with one-stage classifiers so far, because the

3-stage classifier has a much larger coverage. However, these numbers were also not very

208

Data Coverage (%) Accuracy (%)
Overall Stars Galaxies
Bright 12.6 92.7 95.1 85.8
Detectable 14.1 89.3 75.4 93.6
Very Faint 9.9 93.9 0 100
Total 36.6 91.3 85.5 94.6

Table 6.8: Multiple classifiers based on brightness cutoffs.

satisfactory to the astronomers.

Though our multi-stage classifier was not very successful, we stumbled upon two

very useful things in trying to come up with a feature set for the “Detectable” objects.

1. The method for computing feature values from the whole image of an object (which
was used for the “Detectable” objects above) is clearly more powerful than the method

we have been using, which computes features from a 3X3 postage stamp.

2. The features magnitude, sharpness and chisquare appear very powerful. Magnitude
has an almost linear relation with the catalog magnitude of the objects in the simulated
SDSS, as shown in Fig. 6.4. So it provides a better basis for brightness cutoffs than
either peak intensity or peaksig. Sharpness estimates the intrinsic angular size of the
measured object outside the atmosphere. It should have values close to zero for single
stars, large positive values for blended doubles and partially resolved galaxies, and
large negative values for cosmic rays and blemishes. The chisquare parameter should

have near zero values for stars and high values for galaxies.

ALLSTAR Magnitude

209

'16 - | | | | | | | | | | | |
8 10 12 14 16 18 20 22 24 26
Catalog Magnitude

Figure 6.4: ALLSTAR magnitude varies almost linearly with the catalog magnitude. Hence
it can be used to divide objects into brightness ranges reliably. This figure plots catalog
versus ALLSTAR magnitudes for all objects (stars and galaxies) in fields 1-8

210

With the help of three new features and the whole-object method of extracting fea-
tures, we built star/galaxy classifiers that achieved very high accuracies upto the detection

limit of the survey. We will describe these experiments next.

6.2.5 The final iteration

At the end of the previous iteration, we found that the features magnitude, sharpness and
chisquare have a variety of useful characteristics. We had also empirically observed that
the feature FWHM was used in the highest levels of many trees for the “Bright” objects

(Section 6.2.4). Drawing from these two pieces of evidence, we formed our final feature set.

Final Feature set
In color band r:
magnitude
sharpness

chisquare

FWHM

We used OC1-AP to build decision trees using these 4 features, and estimated
accuracy using the average of ten 10-fold cross validation experiments, at different magnitude

cutoffs. At a cutoff of k, only objects whose magnitude is < k are retained. (Note that

211

Magnitude Coverage (%) Accuracy (%)
Cutoff Overall Stars Galaxies
-2 85.4 89.8 64.2 98.0
-2.5 56.4 89.4 73.9 96.3
-3 39.7 91.5 85.0 95.4
-3.5 29.3 94.6 95.2 94.1
-4 22.4 96.6 97.4 95.7
-4.5 16.9 98.7 98.7 98.7
-9 12.6 99.1 98.9 99.6
-5.5 9.5 99.1 99.0 99.3
-6 7.5 98.9 98.8 98.9

Table 6.9: Accuracies with OC1-AP. Objects get brighter at lower cutoffs. 4 features.

magnitude is a negative number, and the smaller the magnitude, the brighter the objects.)
Out of the 9056 objects in frames 1 through 8, magnitude could be measured for 7319
objects. The other objects were too faint to be detected by the ALLSTAR program, which

we used to measure features.

Very bright objects “saturate” the CCD pixels, so it is difficult to tell the difference
between two very bright objects. There were many bright stars that were saturated in the r-
band. When a star saturates the CCD pixels, it tends to have high values for FWHM, which
makes it more similar to galaxies. We discovered that most of the stars that are saturated
in the r-band are not saturated in the u-band. So, we used the parameters computed in the

u-band for all objects whose catalog magnitude was greater than 13.6.

Table 6.9 shows the results of this experiment. At the faintest end, the classifier
guesses that everything is a galaxy, giving poor accuracies on stars. But this situation

improves rapidly. The accuracies on both the stars and galaxies increase significantly when

212

the magnitude cutoff is raised. The accuracies for both stars and galaxies are > 94% at
magnitude cutoff —3.5. ALLSTAR magnitude —3.5 is equivalent to catalog magnitude 22.35
(see Fig. 6.4), which is close to the detection limit of the SDSS survey. (Recall that the
detection limit on the photometric survey in SDSS is at about the 23rd magnitude.) One
main purpose of the photometric survey in SDSS is to identify the bright objects, for which
high-resolution spectral analysis can be performed. SDSS aims to produce high resolution
spectra for galaxies brighter than catalog magnitude 18.3. Even at a magnitude cutoff of
-4.5, which is equivalent to catalog magnitude 21.35 and considerably fainter than the limit

for spectroscopic survey, our classifier gets 98.7% accuracy on stars and galaxies.

It is interesting to note that the accuracies on both stars and galaxies go down
slightly at the brightest ends. The reason for this is that there are fewer objects at the
bright end. We observed that the same 5 stars and one galaxy were being misclassified at
magnitude cutoffs -5, -5.5 and -6. We are currently looking into why these six objects are

difficult to classify.

6.2.6 Confidence estimation

A common feature of all the experimental results we presented on SDSS data is that pre-
dictive accuracy decreases as objects become fainter. Though this is similar to the fact
that the classification performance of humans deteriorates as the objects become fainter,
there is a crucial difference. Humans typically know that they don’t know — astronomers

do not attempt to classify very faint objects, and even if they do, their confidence in the

213

classification will be very little. It is desirable to be able to compute some estimate of
confidence for pipelined systems like the Simulated Digital Sky Survey — if one classifier
can accurately identify objects on which it is not confident, other, more elaborate, types of

processing could be used on these objects.

A way of quantifying confidence in decision tree classification is by outputting class
probabilities. Most decision tree methods used so far in this thesis output crisp decisions
such as “this object is a star” or “this object is a galaxy”. Instead, if the decision tree
outputs “this object is a star with probability 0.6 and a galaxy with probability 0.4”,
then one identify objects for which the classifier is very certain, say, probability > 0.95.
Some techniques to augment decision tree methods to output class probabilities have been
explored in the literature (Section 2.5.6). We experimented with one such technique [62] on

the SDSS data.

The most obvious way of determining class probabilities is to compute them di-
rectly from the counts of training examples at the leaf nodes. That is, if an object O that is
being classified ends up at a leaf node which has 100 objects (90 stars + 10 galaxies) from
the training set, then the probability of O being a star may be output as 0.9. This estimate
is often not be reliable because (1) the number of training examples at individual leaf nodes
is typically quite small, not allowing reliable probability estimates, and (2) the distribution
at the training data at a leaf node may be particular to the choice of the training and

pruning partitions used.

We improved the naive probability estimates at the leaf nodes using two techniques,

214

smoothing and averaging. Smoothing is the process of combining the probability estimates
at the leaf nodes with those at nodes higher up in the tree, whereas averaging is done across

trees, combining the probability estimates of several trees built on the same data.

We started by dividing the data into a training set and a test set. Our training
set consisted of all the objects from frames 1 through 4, and the test set had all objects
from frames 5 through 8. (So far, we are doing cross validation experiments using the entire
data — data from frames 1 through 8. An alternate way of getting reliable estimate of the
accuracy on unseen data is to divide the data into training and test sets, as we had done
in Section 6.1.) We first built ten trees on the training data. The only difference between
the trees was the way the training data was partitioned into training and pruning sets. 46
In each tree, we smoothed the probabilities at each leaf by combining them along the paths
from the root to the leaf, giving different weights to different ancestor nodes. (We do not
discuss the smoothing algorithm in detail here. The interested reader is referred to [62].)
Once the probability estimates are smoothed in each tree, we classify the test instances using
the ten trees. Each tree outputs two probabilities for each test instance: the confidence of

the object being a star and the confidence of it being a galaxy. We average these numbers

across the ten trees, to get our confidence measures for each test instance.

Fig. 6.5 and Fig. 6.6 show the confidence measures outputted by the above method,

as a function of ALLSTAR magnitude, for stars and galaxies respectively. There is one line

46 Note that OC1 being a randomized method produces a different tree each time it is executed.
However, as we used the axis-parallel version, OC1-AP, for all our experiments in this section, we
used generated different trees by randomly setting aside 30% of the training data each time for
pruning.

215

1 T T LTI

0.8

0.4

-:galaxy)

0.2

-0.2

Confidence (+:star,

-04

-0.6

[

1 1 1 1 1 1 1
-16 -14 -12 -10 -8 -6 -4
ALLSTAR magnitude

-0.8

]

Figure 6.5: Confidence in classifying stars in fields 5-8, as a function of magnitude. The
decision trees are trained using objects in fields 1-4.

N
o

(ruler) for each object, and the length of the ruler is 1.0, the total probability. In the figure
for stars (Fig. 6.5), the length of the ruler above Y = 0 is the confidence that the object is a
star, and the length below Y = 0 is the confidence that the object is a galaxy. In the figure
for galaxies (Fig. 6.6), the length of the ruler above Y = 0 is the confidence that the object
is a galaxy, and the length below Y = 0 is the confidence that the object is a star. So, a
long bar above Y = 0 indicates that the object is correctly classified with confidence; a long
bar below Y = 0 indicates that the object is misclassified with confidence, and a bar that
is half-way through Y = 0 indicates that the classifier is not very sure of its classification.
Note that the objects become brighter as we move towards the Y-axis.

Figures 6.5 and 6.6 offer several interesting insights.

216

0.8

0.2

-0.2

Confidence (+:galaxy, -:star)
o
T

0.4 |

-0.6

-0.8 —

1 I I I I I I I
-16 -14 -12 -10 -6 -

N
1
N
o

-8
ALLSTAR magnitude

Figure 6.6: Confidence in classifying galaxies in fields 5-8, as a function of magnitude. The
decision trees are trained using objects in fields 1-4.

217

e There are much fewer galaxies than stars at the brighter end. More bright galaxies are
being misclassified than bright stars, however the bright stars are more confidently
being misclassified. For example, if we decide to not take into account any object
for which the confidence in both categories is less than 90%, we will not misclassify
any galaxies (we will just drop them as being “unsure”), but we will misclassify both

bright and faint stars.

e All the stars below magnitude of about —3.0 are confidently (80-90% confidence)
classified as galaxies. However, all galaxies at this magnitude are still being confidently
(> 90%) correctly classified. These facts are in accordance with our earlier observation
that, at very faint magnitudes, the classifiers are just guessing that everything is a

galaxy.

In both Figure 6.5 and 6.6, there are a lot of objects in the magnitude range -3
to -4.5, for which the classifiers are “wavering” — the confidences are 70/30 or 60/40 for
these objects. We found that some of the bright galaxies and stars are misclassified by the
classifier because the fainter objects in the training set confuse it. By excluding the fainter
stars and galaxies from the training set, we may be able to avoid this confusion, at the
expense of losing some accuracy at the faint end. This is one of the directions we would like
to explore. Another is to use the error in feature measurements to compute the confidence.
The program ALLSTAR, which computed the features magnitude, sharpness and chisquare,
outputs a measure of error in each of these features. We are currently trying to effectively

use these error measures for building reliable classifiers.

218

Chapter 7

Domain-independent data
massaging: Statistical
Preprocessing

The previous chapter argued that (1) data massaging is a crucial step in building
classifiers from real-world data, and (2) most data massaging requires domain knowledge. In
the current chapter, we argue that it is posible to (partially) automate some data massaging
tasks. We argue that, irrespective of the specific problem under consideration, decision
tree methods can benefit by the use of “structure” information in numeric domains. We
propose statistical preprocessing as a means to furnish decision tree methods with structure
information.

The criterion used to measure the goodness of a split (goodness measure or feature
evaluation criterion) is clearly an important factor in tree construction. Most existing
goodness measures (Section 2.3.1) may be inadequate for some numeric domains for the

following reasons:

219

e A majority of the existing goodness measures are either information theory based or
class distance based. Both these kinds of measures compute the goodness of a split
based solely on the discrete counts of each class in each partition. Other factors which
may be relevant, such as distribution of the objects in the attribute space, are not

taken into account at all.

e Several decision tree methods, especially in the machine learning literature, were orig-
inally proposed for symbolic domains. The “adoption” of these methods into numeric
domains may be less than ideal, as numeric domains have their own peculiarities

[485, 245, 486, 481].

In this chapter, we present a framework for augmenting decision tree induction
so it can take advantage of patterns in numeric attribute spaces that would otherwise be
ignored. We suggest a way preprocess (massage) data in numeric domains to extract some
“structure” information, which can in turn be used by any tree induction program. As a
case study, we demonstrate empirically that clustering, when used as a preprocessing step,
can improve the quality of decision trees induced.

Scatterd attempts exist in literature which qualify as examples of domain-
independent data massaging. Nearest Neighbor classification is used to preprocess training
data before using a neural network, in [362]. Flach [143] discusses inductive data engineer-
ing, an interactive process of restructuring a knowledge base by means of rule induction.

Section 7.1 presents some “simple” artificial data sets for which several common

goodness measures fail to produce good trees. Section 7.2 suggests a framework in which

220

T

UO
o o

Figure 7.1: The CB, RCB and RGC data sets

data is processed by statistical methods prior to tree induction. As an example of the use
of this framework, Section 7.3 uses Minimum Spanning Tree clustering as a preprocessing

step with univariate and multivariate decision tree methods.

7.1 Three simple data sets

Fig. 7.1 displays three synthetic, no-noise 2-D data sets, each having 2000 objects belonging
to two classes, 0 or *. The CB (checker board) data set can be described perfectly by
an axis-parallel decision tree with 8 leaves. The RCB (rotated checkerboard) data can
be described exactly by an oblique decision tree (Section 2.3.2) of 16 leaves. The RGC
(randomly generated clusters) data consists of 20 circular clusters, and need not necessarily
have a clear decision tree partitioning. But since the generation process produced clusters,
trees that separate each cluster into a distinct region are clearly preferable.

Each of these artificial data sets has well-separated, dense, homogeneous regions

of the attribute space that call out to be separated. Now consider typical decision trees

221

o

o S gTe

R
g mtn o
T 0%/

gﬁﬁ% G
‘:'s 0000
2 @le% %M’

Figure 7.3: Trees induced on RCB data by multivariate CART and OC1, using Gini index

induced on these data sets by existing tree induction methods. Figure 7.2 displays the
decision trees generated for the CB data by C4.5 [398]. Figure 7.3 shows the trees generated
by multivariate CART [44] and multivariate OC1 on the RCB data. Figure 7.4 displays the
trees induced by C4.5 and multivariate CART on the RGC data.

These figures show that some otherwise successful tree induction methods have
trouble in these apparently simple domains. The source of this difficulty is that the only
information available to the goodness measures used is the distribution of object classes

across the splits. However, building the ideal tree requires knowing that there are well-

222

Seh
X
7

Figure 7.4: Trees induced on RGC data by C4.5 (information gain) and multivariate CART
(Gini index)

defined homogeneous clusters in the attribute space. Existing decision tree methods cannot
use any such “structure” information. Some thought should convince the reader that this
problem is specific to numeric attribute spaces. In nominal-valued domains, attribute simi-
larity is used for generating the partitions and class similarity follows due to instance space
proximity. But in numeric attribute spaces, this process is reversed. Class similarity guides
the generation of decision regions and the proximity of instances is a side effect of the
divide-and-conquer process.

One solution to this problem is to augment the definition of the goodness mea-
sures, to somehow take into account the “structure” of the examples in addition to the
class distribution. Van de Merckt [486] used this approach to define a selection criterion
that combines proximity with class entropy. Though this certainly is a step towards using

structure, it leaves open some potential problems.

e de Merckt considers only one kind of structure information, namely clusters. It is not

clear how to deal with other important kinds of structure information, for e.g., empty

223

regions in attribute space, in his framework.

e de Merckt uses unsupervised clustering. This approach fails when each class is clearly
multimodal, but the entire set of examples is not. (Consider, for example, variations

of fig. 7.1 data sets with no “space” between clusters.)

e As de Merckt incorporates structure information into the definition of the goodness
measure, this information needs to be calculated once for every split considered. This
can be very expensive, especially for multivariate tree methods that consider large

numbers of candidate splits.

An alternative way of incorporating structure, that overcomes the above problems,

is presented in the next section.

7.2 A Framework

Given that structure information is important for constructing good decision trees in some
numeric domains, an effective strategy is to find the structure using other (e.g., statistical)
methods and to incorporate it into the information that the tree induction methods can use
— namely, attributes or classes. This suggests the two-layered architecture in Fig. 7.5, in
which tree induction is preceded by a data massaging step, namely, statistical preprocessing.

The training data is first fed into the statistical “structure extraction” module,

which outputs information about patterns in the data. Patterns can include:

e clusters,

Figure 7.5: Statistical Preprocessing for Decision Tree Induction

attributes irrelevant to inducing the classifier,

instances that are useless/crucial in inducing the classifier,

large empty regions in attribute space,

sudden variations in the distribution of instances, etc.

The above information, referred to here as “structure” information for lack of a
better phrase, is incorporated into the training data by modifying attributes and/or class
labels. For example, if we know which subsets of instances form well-separated clusters,
we can change the training set by marking each homogeneous cluster as a distinct class, to
ensure that the decision tree separates out the clusters. If it is known that there exist large

“voids” or empty spaces in the attribute space, we can generate “null” instances in these

225

voids, so that the decision tree is forced not to overgeneralize.

An advantage of the above framework is the clear separation between the structure
extraction and tree induction stages. Structure extraction methods of varying complexity
can be used in conjunction with univariate, multivariate and/or incremental decision tree
methods in this model. The complexity of the resulting system is only a sum of the com-

plexities of the preprocessing and tree building stages, as opposed to a product as in [486].

7.3 A Concrete Example

This section illustrates that five decision tree methods (three axis-parallel and two oblique)
benefit by using Euclidean minimum spanning tree (EMST) clustering as a preprocessing
step, on the CB, RCB and RGC domains and two real-world data sets taken from the UCI

machine learning repository [346].

7.3.1 Minimum Spanning Tree Clustering

A host of unsupervised clustering methods have been developed in the fields of psychology,
statistics and machine learning. (See [127, 241] for a tutorial.) The choice of which clustering
technique to use for a given data set is often very difficult. Most techniques require the
user to define the number of clusters in advance, and those that do not, often require
tuning of various parameters. Most clustering methods also require well-formed, convex
clusters if they are to do a good job. In our experiments, we use a clustering method based

on minimum spanning trees. The criteria we used to select this method from the many

226

alternatives were (1) MST-clustering is intuitive and easy to implement, and (2) it has been

researched extensively, and shown to work well on a variety of distributions [178, 513, 232].

A minimum spanning tree of a weighted graph G is the minimum-weight connected
acyclic subgraph G of G containing all vertices of G. Many robust and efficient algorithms
are available to compute MSTs. An optimal algorithm runs in O(E log V') time and O(E+V)
space, where E and V are the number of edges and number of vertices in G, respectively. The
variation of MSTs that we use is the Euclidean minimum spanning tree (EMST). An EMST
of a set of points S is the minimum length acyclic graph spanning all points of S, where
“length” of a graph is defined as the sum of the edge lengths. Efficient algorithms for MSTs
do not do very well for EMSTs, because if we let V = |S|, then E = O(V?) for EMSTs.
EMSTs in two dimensions can be constructed in an optimal O(V'log V) time and O(V)
space by constructing the Delaunay triangulation of the points [386]. Unfortunately, this
technique does not extend to higher-dimensional spaces, because the size of the Delaunay

triangulation grows exponentially in the number of dimensions.

It is easy to see how EMSTs can be a basis for clustering. By definition, each edge
in the EMST of a set of points S is the smallest edge connecting two partitions A and S — A
of S. Thus points in different clusters in S should intuitively be connected by longer edges
in the EMST than points in the same cluster. So, cutting the largest edges in the EMST
may separate the most prominent clusters of points. Cutting by edge length alone may not
be sufficient to split the correct clusters, because the clusters thus obtained may not be of

reasonable size and/or concentration. To obtain good clusters, one needs, in most cases, to

227

impose some additional constraints on the edges to be cut.

Our method computes the MST of labeled examples and artificially sets the edge
lengths between examples of different classes to be much greater than edges between exam-
ples of the same class. In this way, the MST connects all regions of like examples before
making any connections between unlike examples. When the heaviest edges in an MST
are cut, we obtain homogeneous clusters. (For more details of our clustering method, see
[352].) In most of our experiments, the clustering algorithm did not do a perfect job, but
our clusters were distinct enough that the tree induction methods did quite well. Obviously,

the success of the clustering method will affect the quality of the decision tree induced.

7.3.2 Experiments

We have experimented with the synthetic data sets CB, RCB, RGC (Fig. 7.1), as well as
two real-world data sets from UC Irvine machine learning repository [346]. The BUPA liver
disorders data contains patients that have specific liver disorders. It has 345 instances, each
described using 6 numeric attributes. The ION data [446] contains classifications of radar
returns from the ionosphere. 351 observations, each with 34 continuous attributes, were
classified as good or bad, depending on whether they were genuine or erroneous signals.
The decision tree induction programs used in our experiments were C4.5 [398],
CART [44], and OC1 (Chapter 3). Both the univariate and multivariate versions of CART
and OC1 were used, unless we knew the correct bias for a data set in advance. For example,

on the CB data only univariate algorithms were considered. C4.5 used information gain

228

(IG) as its goodness measure, and CART and OC1 used the twoing rule (TW). Additional
experiments (not reported here due to space limitations) indicated that no other impurity
measures did significantly better for the data sets used. The univariate CART and C4.5
implementations are part of the IND2.0 package developed by Wray Buntine. We imple-
mented our own version of multivariate CART based on [44], with error complexity pruning

using a separate test set. All the methods were run using default parameters.

All the classification accuracies and tree sizes (given as number of leaves) reported
are averages of ten 5-fold cross validation experiments. A 5-fold cross validation consists
of first dividing the training set randomly into 5 disjoint partitions of equal size. Then, for
each partitions p, we built a tree using the rest of the data as training, and tested it on
p. We report the error rate on the entire data set (number of examples misclassified/total

number of examples), and the average size of the five trees built.

Table 7.1 summarizes the results of our experiments, giving classification accura-
cies and tree sizes (number of leaves) with and without the use of clusters as a pre-processing
step. Fach entry lists the mean and standard deviation of ten 5-fold cross-validation exper-

iments.

The results on artificial data were unequivocal: the use of clustering allowed all
the methods to get much smaller, more accurate trees. For the CB data, all three methods
found the perfect tree every time, where without clustering they never found the right tree.
These tree contains just eight leaf nodes, corresponding to the eight regions in Fig. 1. For

the RCB data, only the oblique methods were used because we knew the tree required

0C1 C4.5 CART
Data Set | Univariate ‘ Multivariate Univariate ‘ Multivariate
With No Preprocessing
CB 99.7+1.08 99.740.27 | 99.9+0.13
13.6+3.63 23.64+2.70 | 16.0+3.50
RCB 97.1+0.76 97.0+0.46
25.7+1.75 33.7+2.9
RGC 98.5+0.34 | 97.441.55 98.84+0.21 | 98.3+1.21 | 96.6+1.64
18.14+2.87 | 17.3+£2.65 26+3.54 18+1.22 17.842.77
Bupa 62.1+3.66 | 67.54+2.13 67.3+6.69 | 62.9+3.15 | 62.74+2.06
4.2+2.28 3.4+2.63 37.2+7.19 | 8.4+2.5 3.6+1.35
ION 88.6+1.8 86.0+1.1 92.04+2.92 | 88.7+2.13 | 79.2+4.31
3.5+0.92 3.44+0.82 12.24+2.39 | 3.84+1.3 4.6+1.9
With Clustering as a preprocessing step
CB 100+40.0 100+40.0 100+40.0
8+0.0 8+0.0 8+0.0
RCB 99.6+0.44 99.5+0.7
17.2+1.2 21.04+2.53
RGC 99.4+0.2 99.6+0.29 99.6+0.16 | 99.5+0.21 | 99.44+0.22
17.74£1.39 | 17.24+0.45 17.1+£1.89 | 17.6+1.33 | 17.3+1.2
Bupa 62.9+3.09 | 67.0+1.2 64.4+1.2 | 62.842.77 | 62.9+2.12
5.0+£2.13 3.4+1.7 5.6+£2.67 | 5.04+2.21 3.5+1.22
ION 89.2+1.43 | 87.64+1.39 91.4+1.95 | 89.3+1.4 79.1+1.6
3.7£0.63 3.5+1.3 7.842.16 | 3.74+0.67 4.84+1.55

Table 7.1: Effect of clustering as a data massaging step

229

230

oblique splits. These methods showed a similarly dramatic improvement with clustering;:
in many cases they found the minimal tree with 16 nodes, and occasionally the tree was
slightly larger. OC1 only had one non-essential leaf node on average. For the RGC data
the results were improved but not as dramatic. For the two real data sets, the accuracies
remained roughly the same but in some cases the trees were much smaller. For example,
the tree size for C4.5 dropped from 37.2 to 5.6 leaf nodes. These data sets do not contain
such well-formed clusters as our synthetic data.

Of course, accuracy and tree size alone do not completely capture the quality
of a decision tree in a continuous attribute space. For example, some trees displayed in
Figures 7.2 and 7.4 are quite small and accurate, but impose a counterintuitive structure
on the data. Alternative ways to quantify the goodness of decision trees would be useful
in numerical domains [486]. In our experiments, after clustering information was provided
to the tree induction programs, the trees induced were consistently identical to the original
concept descriptions for the synthetic data. This indicates that using structure information
helps induce better decision trees in some domains. However, in higher dimensional real-
world domains, clusters obtained may be arbitrary, confusing the decision tree method. The
results reported in this chapter are of a preliminary nature. We believe that the idea of

statistical preprocessing in the context of decision trees has merit, and needs to be explored.

231

Chapter 8

Conclusions

In this dissertation, we explored a specific paradigm for data exploration and classi-
fication, namely, decision trees. We started by undertaking an extensive, multi-disciplinary
survey of existing work on decision trees. We then studied in detail two algorithmic ex-
tensions to tree building methods, namely (1) using more general classes of splits at tree
nodes, and (2) using less greedy search to determine the splits. Finally, we illustrated the
importance of data massaging (domain-specific and domain-independent) for inducing good
decision trees.

We recapitulate in Section 8.1 the main results in the dissertation, chapter by

chapter. In Section 8.2, we point out some interesting directions for future research.

8.1 Summary

Chapter 2 presented a multi-disciplinary survey of work on automatically constructing de-

cision trees from data. We gave pointers to work in fields such as pattern recognition,

232

statistics, decision theory, machine learning, mathematical programming, neural networks,
signal processing etc. We attempted to provide a self-contained, concise description of the
directions which decision tree work has taken over the years. In addition to familiarizing the
reader with the diversity and extent of work on decision trees, the larger goal of this survey
is to help avoid some redundant, ad hoc effort in decision tree work, both from researchers

and from system developers.

Chapter 3 described OC1, a new system for constructing oblique decision trees. We
have shown experimentally that OC1 can produce good classifiers for a range of real-world
and artificial domains. We have also shown how the use of randomization improves upon the
original algorithm by Breiman et al.[44], without significantly increasing the computational
cost of the algorithm. If a domain is best captured by a tree that uses oblique hyperplanes,
it is desirable to have a system that can generate that tree. OCI1 is the first such publicly

available system.

Chapter 4 considered the implications of increasing the amount of search for in-
ducing axis-parallel splits, beyond the commonly used greedy heuristic. Using experiments
on a very large number of synthetic and real-world data sets, we demonstrated that limited
lookahead search does not improve decision tree quality significantly. The only advantage
of lookahead search in our experiments was to produce trees with slightly smaller worst-
case classification cost than greedy search. However, lookahead produced worse trees than
greedy search in a significant number of cases, in terms of prediction accuracy, tree size and

depth (classification cost), exhibiting pathology. We observed instances of pathology both

233

for real and synthetic data sets.

Chapter 5 is a continuation of the work in Chapter 4. After observing that limited
lookahead search is not particularly beneficial for decision tree induction, we explored the
question of whether this was because greedy induction itself produced trees so close to
the optimal that any improvement was difficult. We built decision trees on thousands of
synthetic data sets using CART [44] and C4.5 [398], and compared each one to the respective
optimal tree. We found that, for a wide range of data characteristics, the greedy heuristic
(along with pruning) produced decision trees whose expected classification cost was very

close to the optimal.

We changed our focus after Chapter 5. Algorithmic extensions alone are not
adequate for building “better” decision trees. Another important, if not crucial, step is to
massage, or re-represent, the data in an appropriate fashion. We distinguished between

domain-specific and domain-independent data massaging in this thesis.

We illustrated domain-specific data massaging in detail in Chapter 6, where we
described applications of decision trees to two real-world classification problems. The first
problem was to identify cosmic rays in Hubble Space Telescope images, and the second
was to classify stars and galaxies in Sloan Digital Sky Survey images. For both these
problems, we could not work with off-the-shelf data sets, as is common practice in machine
learning research. In collaboration with researchers in astronomy, we went through several
iterations of extracting useful data and features for classification. In both the astronomical

classification problems we worked on, we were able to obtain very high accuracies using

234

small decision tree classifiers.

Finally, in Chapter 7, we suggested a simple framework for domain-independent
data massaging. Many existing tree induction methods can not take into account certain
kinds of “structure” information in numeric attribute spaces. We suggested to use statistical
methods to extract structure information from data, and represent that information in a
form usable to tree induction. We gave a simple illustration of the effectiveness of this
approach by using clustering as a preprocessing step for tree induction, on both real and
artificial datasets. The results were uniformly excellent on the artificial data, which is not
surprising given that these data sets were designed with this problem in mind. The results

on real data were less convincing.

8.2 Research directions

One of the ideas we put forth in this thesis is the use of randomization for inducing oblique
decision trees (Chapter 3). Randomization can also be beneficial for axis-parallel tree meth-
ods. Note that although greedy axis-parallel tree methods do find the optimal test (with
respect to an impurity measure) for each node of a tree, they are necessarily suboptimal
[174]. Tt will be interesting to explore the uses of randomization to build optimal or near-
optimal axis-parallel trees. Randomized search techniques, such as genetic programming
[264] and simulated annealing [55, 303] have already been used to improve axis-parallel deci-
sion trees. These methods search the space of all decision trees using random perturbations,

additions and deletions of the splits. We believe that randomization is a powerful tool in

235

the context of decision trees, and our experiments in Chapter 3 are just one example of how

it might be exploited.

It will be interesting to design algorithms to efficiently find splits which are more
general than oblique splits, say, a class of hypercurves. However, caution must be exercised
in such an effort. A main advantage of decision trees in particular, and hierarchical methods
in general, is that they divide the classification problem into a sequence of subproblems
which are, in principle, simpler to solve than the original problem. Allowing more and more
general splits implies that some advantages of the divide-and-conquer paradigm may be

lost.

In addition, axis-parallel splits are simpler than oblique splits or hypercurves. It
can be argued that a n node oblique tree in d dimensions is no smaller than a n % d node
axis parallel tree. In other words, it is desirable to use complicated splits only when the
extra complexity of the split is commensurate with its contribution to tree quality. OC1
uses oblique splits only when their impurity is less than a user-defined constant k times the
impurity of the best axis-parallel split; however, we do not know how to determine the best
value for k. Finding a good compromise between the complexity and effectiveness of a split

remains an area for further research.

Observing incidences of pathology (as we did in Chapter 4) is only the first step
in several interesting research directions. Concept classes for which a particular goodness
measure exhibits pathology can be studied, analytically or quantitatively, to determine

when pathology might occur. Conversely, one can attempt to isolate characteristics of data

236

which have bearing on when lookahead is likely to help. As we only studied lookahead
in the context of two concept classes C and Cs in Chapter 4, several other interesting
concepts remain to be explored. In addition, we considered only one-level lookahead. One
can attempt to evaluate the benefits of lookahead as a function of search depth. We feel
that such a systematic evaluation is not only going to be computationally prohibitive, but
also probably not very useful. Norton [365] presents experiments comparing one and two
level lookahead for decision tree induction, on one particular data set. Another interesting
question for further study is whether there exist effective goodness measures that guarantee

no pathology.

Section 4.3.4 described a decision tree rebalancing method. We used rotation
operations to locally adjust the structure of the tree, in order to reduce its classification
cost. Note that, in addition to attempting to refine the structure of the tree, rotations
provide an opportunity for recomputing splits at some tree nodes. This is because they
change the portions of the training set associated with some nodes. We are in general
interested in finding methods that can systematically refine the splits and structure of

greedily induced trees.

Greedy decision tree induction is effective under many conditions (Chapter 5) and
is quite efficient. For the situations in which greedy induction is not effective, we may need
to augment it with appropriate preprocessing or postprocessing methods. We described,
in Chapter 7 and Section 4.3.4, preliminary attempts at augmenting greedy decision tree

induction. We suggested the use of statistical preprocessing to extract and use structure

237

information in finding splits, and rebalancing greedily induced trees. Clearly more work
needs to be done in these directions. The effectiveness of these approaches needs to be
evaluated on more real-world data. Our experiments only explored incorporating structure
information into class distributions. It will be interesting to incorporate structure into
attributes instead. By doing this in conjunction with feature selection, it may be possible

to identify what kinds of structure information are most useful for specific problems.

One premise of this work in Chapter 7 is that information about structure should
be useful to learning algorithms. We do not yet know what other kinds of structural
information besides clusters might be beneficial for decision tree induction, or to what
extent. Besides clusters, descriptions of empty regions of attribute space might help build
trees that do not overgeneralize (underfit). Sudden changes in the density of examples in the
attribute space may tell us something about possible splits. One direction for future work is
to identify and quantify the kinds of structure information useful in decision tree induction,
and then explore the question of how to take advantage of this structure in building decision

trees and other classifiers.

Last, but certainly not the least, it is always very educational and exciting to apply
data exploration techniques like decision trees in new application areas. Each significant
real-world classification problem has its own peculiarities, requirements and challenges.
Algorithmic improvements often take place in the context of a particular application. We
feel that continued application of existing techniques to new problems is a prerequisite for

progress in data exploration technology.

238

A final word of caution. The hierarchical, recursive tree construction methodol-
ogy itself is simple and intuitively appealing. However, the simplicity of the methodology
should not lead a practitioner to take a slack attitude towards using decision trees. Experi-
mental researchers should guard against the tendency to “try out” interesting ideas as and
when they occur. There is a large body of previous work on decision trees, and significant

extensions to this work are not easy to come up with.

239

Appendix A

Processing HST images

This chapter presents some details of the image processing techniques we used to
detect objects and measure features from the Hubble Space Telescope images. It should be
read in conjunction with Section 6.1 where we describe the process of building classifiers on
the extracted data. Most of the material presented in this chapter is astronomy-related, and
was originally prepared by astronomers Holland Ford, Richard White and Rupali Chandar,

with whom the author had collaborated.

A.1 The aberrated images

Cosmic ray (CR) primaries and secondaries striking the CCD detectors in the HST’s first
Wide Field and Planetary Camera (WF/PC-1) created electron-hole pairs in the silicon
that were detected along with the electron-hole pairs created by the photons striking the
CCD.

The traditional way to filter cosmic rays is to work with twin exposures of the

same region of the sky. Split exposures increase the readnoise in the images, in addition

240

to needing the extra time required to prepare the spacecraft for an additional exposure.
More precisely, the quadratic sum of the root mean square (rms) read noise and preflash
noise in CCD WF1 was ~ 20 electrons per pixel. The rms read noise in WFPC2 is ~ 5.2
electrons per pixel. Whenever the exposure is split and then subsequently summed after
CR removal, the read noise is increased by /2. This noise competes with the noise in the
sky-background in short exposures or in exposures made through narrow band filters.

Our images for the cosmic ray identification project are taken from HST “Key
Project” aimed at measuring the Hubble Constant, i.e., the rate at which the universe is
expanding. The images are two 900-second WFC exposures through a yellow filter (F555W).
Four CCDs (CCD WF1, WF2,WF3 and WF4) were exposed simultaneously when a picture
was taken by WF/PC1.

We combined the two exposures using the task “Combine” in the Space Telescope
Institute’s software package STSDAS, with one-sided, three sigma cutoff. We next used the
program DAOFIND to catalog the (x,y) positions of the stars in the image. 47 The mean
background of the combined image varied from 27 to 33 counts in WF1, with an average of
31 counts. The standard deviation varied from 2.1 to 2.8, with an average of 2.55. Similar
means and standard deviations were found for the other three CCDs. The threshold used
for object detection by DAOFIND was 9 counts above the background, which along with the
2.55 standard deviation of the background gives a 3.50 detection limit. By subtracting the

combined image from each of the individual images, we obtained two images which contain

A7 The expected number of corresponding pixels with CR hits in both images is (roughly)
15742 /8002 ~ 4. These can not be found by the above procedure of combining two images.

241

only CRs. We then used DAOFIND on each of the CR images to catalog the positions of

the CRs.

As an external check on the completeness of this CR catalogue, we found the
surface density of the CRs and compared it to the values recently determined in [505]. The
Final Orbital/Science Verification Report by the WF/PC-1 Investigation Definition Team
lists zeropoint offsets for the M81 field for WF2 [214]. Consequently, we used the same CCD
for our CR surface density determination. We defined a cosmic ray to be a single pixel in
the CR image with a threshold of 4.0 X 0jy¢q; in ADU flux. A fairly high threshold was used
because the noise in the two input images was heavily correlated, leading to an artificially
low rms noise in the difference (CR) image. The (z,y) catalog of these CR positions on
WF2 was used as input to the IRAF task DAOPHOT.PHOT, which performed 0.55 pixel
aperture photometry. This essentially gives the counts in a single pixel, which is appropriate
for cosmic rays. The V magnitude given by PHOT treats CRs as if they were real objects on
the sky, and is defined as C, — 2.5log ADU, where ADU is the ADU flux a CR would have
generated in the image during the total exposure time. We histogramed the V magnitudes

from both images.

Before plotting the histogram, we needed to find the correct zeropoint magnitude
for our data, in order to use it as an offset. We followed a procedure similar to that outlined
in [151]. We located the 5 Cepheids listed for CCD WEF2 and did core fitting with an
aperture of 2.5 pixels. In order to perform the aperture correction, we used a theoretical

PSF generated by TinyTim for WF2. From this we found that ~ 14.3% of the light falls

242

within a 2.5 pixel radius. We ignored color corrections as was done in [214], but we did
perform aperture corrections. Comparing our F555W V magnitudes to the V' magnitudes
listed by the IDT, we confirmed the zeropoint magnitude of 23.0 to within 0.1 magnitudes
(or 10%), and used this number as our offset. Figure A.1 plots the (log of the) number of
pixels affected by cosmic rays as a function of V magnitude. The peak of our CR surface
density occurs around magnitude 26, whereas it is around magnitude 27 in Windhorst et
al.’s paper. This difference is most likely due to the much longer exposure times used in
Windhorst et al.’s paper. We find that the differential CR "magnitude counts” closely follow
an apparent power law, down to V' ~ 27 magnitude, with a slope vy ~ 0.57 (when counted
as N(m) oc m?), compared to v ~ 0.6 in Windhorst et al.’s paper. Our observed surface
density of CR hits is 3.96 pix/sec/CCD. This corresponds to ~ 3 events cm 2sec . (Note
that we have defined a CR event to consist of one pixel which has signal above a certain
threshold in the image containing only CRs.) In general, however, our results are consistent

with theirs.

A.2 Hot Pixels

Hot pixels are caused due to the thermal generation (i.e., the CCD is not at 0° Kelvin)
of electron-hole pairs at the interfaces between the silicon and oxide layers of the CCD
causes the dark currents. At normal CCD temperature, the dark current is about 0.01
electrons/pixel/second for WF/PC. The hot pixels are caused by hits from high energy

CRs which damage the lattice in the bulk silicon near the CCD channel stops. Because of

Figure A.1: HST/WFC Cosmic Ray “counts” (F555W)

244

the high electric fields near the channel stops, the lattice damage results in the creation of
electron-hole pairs at the interface between the bulk silicon and the overlying silicon oxide

layer.

Some of the damaged sites in the silicon lattice anneal whenever the temperature
of the CCD is raised from the cold operating temperature of —87° C to the warm decon-
tamination temperature of ~ 5° C; consequently, dark frames taken months before the most
recent CCD temperature cycling are not a reliable guide for finding hot pixels. We used the
following method to identify hot pixels. We combined all 10 images using STSDAS “com-
bine” so that we would have better signal-to-noise, making it easier to see the hot pixels.
Fig. A.2 shows a portion of the combined WF1 image (not the same portion as shown in
Fig. 6.1). We ran DoPhot on the combined image using a threshold of 10 counts above the
background. The mean sky varied from 33 to 42 counts with an average of 39, while the
standard deviation varied from 1.6 to 2.5 with an average of 2.2, giving a detection level
of ~ 4.50. We found between 100 and 225 hot pixels this way, depending on the CCD
examined. However not all of these were sufficiently intense to be detected by DAOFIND

in the image from which we made the catalogue.

The last step, in order to find the (x,y) values of the hot pixels and remove them
from the images, was to match the (x,y) coordinates of the hot pixels given by DoPhot
with our star catalogue using a radius of 1.5 pixels. (The reason that we had to do this
matching is that DAOFIND and DoPhot give slightly different coordinates for detections,

and we needed the exact coordinates of objects to delete.)

245

Figure A.2: A 900 sec WF1 image of M81 which has been combined to improve signal-to-
noise. This picture shows a portion of the WF1 image.

246

A.3 The aberration-corrected images

WEFPC II CCDs have a thickness around 10 micrometers, compared to the 8 micrometers
for the WF/PC I CCDs, and a recombination length of 8-10 microns in the substrate. This
leads to a higher total number of electrons being deposited on the CCDs per event. WFPC

IT also has a significantly lower readnoise than WF/PC 1 48

, so low amplitude events are
detected leading to a larger apparent number of CR events. This leads to a larger number

of pixels that are contaminated by CR in a WFPC II image, even though the underlying

event rate is similar to that experienced by WF/PC 1.

Stellar images are still undersampled, but with the correction of the spherical aber-
ration, stars and cosmic rays look more alike and are more difficult to tell apart. Faint stellar
images and low amplitude CRs are indistinguishable. Long observations are thus broken

up into at least two exposures (CR-SPLIT) to ensure that CR events can be identified.

Approximately 3.7% of the pixels in WFPC2 CCDs are affected by cosmic rays
in a 2000 sec. exposure. Since cosmic rays hit random locations on the CCDs, about 1000
pixels per chip may be hit in both the exposures to be combined, making CR identification

for these pixels impossible. These affected pixels obviously can contaminate the data set.

The first step to classification was to create accurate catalogs of star and cosmic
ray positions on the CCDs. We used the STSDAS.COMBINE routine in IRAF to combine

each pair of images. This algorithm retains objects that are statistically above the noise in

48 The quadratic sum of the root mean square (rms) read noise and preflash noise in CCD WF1
was ~ 20 electrons per pixel. The rms read noise in WFPC2 is ~ 5.2 electrons per pixel.

247

both images (stars in our case) and rejects objects that appear in only one image (cosmic
rays). If the resulting image (containing stars, hotpixels, and CR events that occurred in
the same place in both images) is subtracted from one of the original images, the result is
an image containing only cosmic rays. We ran DAOFIND on this cosmic ray image, using

a 4 sigma detection limit, to get a catalog of cosmic rays.

Set A images were taken at the higher instrument temperature of around -77
degrees Celsius. Set B images was taken with instrument temperature around -88 degrees
Celsius, and were the first chronologically taken images at that lower temperature. Images
taken later at the lower temperature contain more and more hotpixels since long term
radiation from cosmic rays leads to an increase in the dark noise, primarily in the creation
of hotpixels. The solution to this in HST has been to anneal the CCD’s periodically to wipe
out these hotpixels. All four of our images are 1800 second exposures taken at different

times through a yellow filter (F555W).

Let the combination of the two images in set A (with lots of hot pixels) created
to get rid of cosmic rays be called C1 and the combination of the images in set B (with
fewer hotpixels) be called C2. We first created C1 and C2 for all the CCDs. We then
used a technique which took advantage of the fact that C2 is shifted by about one pixel
from C1. We shifted and combined C1 and C2 (using IRAF task PROTO.IMALIGN and
STSDAS.COMBINE), to get rid of most of the hotpixels. We then subtracted the combined
image from C1, and ran a detection routine to get a map of all of the hotpixels. Some stars

leaked through to this image, and we deleted them by hand. This gave us a map of all the

248

hotpixels in the first set of images, which were matched and deleted from the star catalog
created by running DAOFIND on the combined image.

CCD4 required the use of slightly different techniques than those described above,
because it contained very bright as well as very dark sky regions. The sky varied from
approximately 30 counts to 60 counts depending on location in the chip. The standard
deviation of the sky also varied by location. One of the different methods we used for
CCD4 is the following: we took C1 and C2 for this CCD and aligned the images in the
same way as discussed above. The shifted images were put through STSDAS.COMBINE
again. However, instead of using this to catalog the hotpixels and then delete them from
the data set, we used the combined image of all four images (sets A and B) to catalog the
stars. The stars are a bit dimmer, but this technique has the advantage that not only does
it eliminate the hotpixels, but it also gets rid of many of the cosmic ray events that occurred
in the same location in both the images that were used to make C1 or C2. The chances
that cosmic ray hits were sustained in all four CCD’s in the same location is decreased
significantly. We ran DAOFIND on this combined image. These coordinates were shifted

when used on the images of set B. We ended up with 1751 stars for CCD 4.

249

Bibliography

[1]

[10]

E.H.L. AarTs, P.J.M. VAN LAARHOVEN, J.K.LENSTRA, AND N.L.J.ULDER. A
computational study of local search algorithms for job shop scheduling. ORSA Journal
on Computing, 6(2):118-125, Spring 1994.

J. ACczEL AND J. DAROCZY. On measures of information and their characterizations.
Academic Publishers, New York, 1975.

DaviD W. AHA AND RICHARD L. BANKERT. A comparitive evaluation of sequential
feature selection algorithms. In Al&Statistics-95 [5], pages 1-7.

AIéStats-93: Preliminary Papers of the Fourth International Workshop on Artificial
Intelligence and Statistics, Ft. Lauderdale, FL, 3rd—6th, January 1993. Society for Al
and Statistics.

Al€9Stats-95: Preliminary Papers of the Fifth International Workshop on Artificial
Intelligence and Statistics, Ft. Lauderdale, FL, 4-7th, January 1995. Society for Al
and Statistics.

HUSSEIN ALMUALLIM AND THOMAS G. DIETTERICH. Learning boolean concepts in
the presence of many irrelevant features. Artificial Intelligence, 69:279-305, 1994.

American Association for Artificial Intelligence. AAAI-92: Proceedings of the Tenth
National Conference on Artificial Intelligence, San Jose, CA, 12-16th, July 1992.
AAAI Press / The MIT Press.

American Association for Artificial Intelligence. AAAI-93: Proceedings of the
Eleventh National Conference on Artificial Intelligence, Washington, DC, 11-15th,
July 1993. AAAT Press / The MIT Press.

American Association for Artificial Intelligence. AAAI-94: Proceedings of the Twelfth
National Conference on Artificial Intelligence, volume 1, Seattle, WA, 31st July - 4th
August 1994. AAAT Press / The MIT Press.

PETER ARGENTIERO, ROLAND CHIN, AND PAUL BEAUDET. An automated approach
to the design of decision tree classifiers. IEEE Transactionson Pattern Analysis and
Machine Intelligence, PAMI-4(1):51-57, January 1982.

[11]

[12]

[16]

[17]

[21]

[22]

23]

250

SUNIL ARYA AND DAvVID M. MoOUNT. Asymptotically efficient randomized algorithm
for nearest neighbor searching. Technical Report CS-TR-3011 or UMIACS-TR-92-
135, Computer Science, University of Maryland, College Park, MD, December 1992.

LEs ATLAS, RONALD COLE, YESHWANT MUTHUSWAMY, ALAN LIPMAN, JEROME
CONNOR, DONG PARK, MUHAMMED EL-SHARKAWI, AND ROBERT J. MARKS II. A

performance comparison of trained multilayer perceptrons and trained classification
trees. Proceedings of the IEEE, 78(10):1614-1619, 1990.

PETER AUER, ROBERT C. HOLTE, AND WOLFGANG MAASS. Theory and applica-
tions of agnostic PAC-learning with small decision trees. In ML-95 [333], pages 21-29.
Editor: Jeffrey Schlimmer.

HALDUN AYTUG, SIDDHARTHA BHATTACHARYA, GARY J. KOEHLER, AND JANE L.
SNOWDON. A review of machine learning in scheduling. IEEE Transactions on En-
gineering Management, 41(2):165-171, May 1994.

A. BaBic, E. KRUSINSKA, AND J.-E. STROMBERG. Extraction of diagnostic rules

using recursive partitioning systems: A comparison of two approaches. Artificial
Intelligence in Medicine, 4(5):373-387, October 1992.

J.LL. BAER AND B. SCHWAB. A comparison of tree-balancing algorithms. Commu-
nications of the ACM, 20(5):322-330, 1977.

L. BAHrL, P.F.BROWN, P.V. DE SOoUZA, AND R. L. MERCER. A tree-based statis-
tical language model for natural language speech recognition. IEEE Transactions on
Accoustics, Speech and Signal Processing, 37(7):1001-1008, 1989.

EARD BAKER AND A. K. JAIN. On feature ordering in practice and some finite
sample effects. In Proceedings of the Third International Joint Conference on Pattern
Recognition, pages 45-49, San Diego, CA, 1976.

F. A. BAKER, DAvID L. VERBYLA, C. S. HODGES JR., AND E. W. Ross. Classi-
fication and regression tree analysis for assessing hazard of pine mortality caused by
hetero basidion annosum. Plant Disease, 77(2):136, February 1993.

D.A. BELSLEY. Regression Diagnostics: Identifying Influential Data and Sources of
Collinearity. Wiley & Sons, New York, 1980.

W. A. BELSON. Matching and prediction on the principle of biological classification.
Applied Statistics, 8:65-75, 1959,

MOSHE BEN-BASSAT. Myopic policies in sequential classification. IEEE Transactions
on Computing, 27(2):170-174, February 1978.

MosHE BEN-BASSAT. Use of distance measures, information measures and error
bounds on feature evaluation. In Krishnaiah and Kanal [265], pages 773-791.

[24]

[25]

[26]

[29]

[30]

[31]

[35]

[36]

251

J. A. BENEDIKTSSON AND P. H. SwAIN. Consensus theoretic classification methods.
IEEE Transactions on Systems, Man and Cybernetics, 22(4):688-704, 1992.

K.P. BENNETT AND O.L. MANGASARIAN. Robust linear programming discrimina-
tion of two linearly inseparable sets. Optimization Methods and Software, 1:23-34,
1992.

K.P. BENNETT AND O.L. MANGASARIAN. Multicategory discrimination via linear
programming. Optimization Methods and Software, 3:29-39, 1994.

K.P. BENNETT AND O.L. MANGASARIAN. Serial and parallel multicategory discrim-
ination. SIAM Journal on Optimization, 4(4), 1994.

KRrisTIN P. BENNETT. Decision tree construction via linear programming. In Pro-
ceedings of the 4th Midwest Artificial Intelligence and Cognitive Science Society Con-
ference, pages 97-101, 1992.

KRrisTIN P. BENNETT. Machine Learning via Mathematical Programmaing. PhD
thesis, Department of Computer Science, University of Wisconsin-Madison, 1993.

KRISTIN P. BENNETT. Global tree optimization: A non-greedy decision tree algo-
rithm. In Proceedings of Interface 94: The 26th Symposium on the Interface, Research
Triangle, North Carolina, 1994.

JOHN A. BENTRUP AND SYLVIAN R. RAY. An examination of inductive learning
algorithms for the classification of sleep signals. Report. UIUCDCS-R-93-1792, De-
partment of Computer Science, University of Illinois at Urbana-Champaign, 1304
Springfield Avenue, Urbana, Il 61801, February 1993.

A. BrLum AND R. RIVEST. Training a 3-node neural network is NP-complete. In
Proceedings of the 1988 Workshop on Computational Learning Theory, pages 9-18,
Boston, MA, 1988. Morgan Kaufmann.

MARKO BOHANEC AND IVAN BRATKO. Trading accuracy for simplicity in decision
trees. Machine Learning, 15:223-250, 1994,

DAvID BOWSER-CHAO AND DEBRA L. DziALo. Comparison of the use of binary de-
cision trees and neural networks in top quark detection. Physical Review D: Particles
and Fields, 47(5):1900, March 1993.

D. Bovce, A. FArRHI, AND R. WEISHEDEL. Optimal Subset Selection. Springer-
Verlag, 1974.

ANNA BRAMANTI-GREGOR AND HENRY W. Davis. The statistical learning of accu-
rate heuristics. In IJCAT-93 [221], pages 1079-1085. Editor: Ruzena Bajcsy.

[37]

[38]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

252

Y. BRANDMAN, A. ORLITSKY, AND J. HENNESSY. A spectral lower bound technique
for the size of decision trees and two-level AND/OR circuits. IEEE Transactions on
Computers, 39(2):282-286, February 1990.

Breast cancer data. Available in the UCI ML Repository. Obtained from the Univer-
sity Medical Centre, Institute of Oncology, Ljubljana, Yugoslavia. Data provided by
Matjaz Zwitter and Milan Soklic.

Y. BREIBART AND A. REITER. A branch-and-bound algorithm to obtain an optimal
evaluation tree for monotonic boolean functions. Acta Informatica, 4:311-319, 1975.

LEO BREIMAN. The 7 method for estimating multivariate functions from noisy data.
Technometrics, 33(2):125-143, 1991.

LEO BREIMAN. Stacked regressions. Technical Report TR-367, Department of Statis-
tics, University of California at Berkeley, 1992.

LEo BREIMAN. Hinging hyperplanes for regression, classification and function ap-
proximation. IEEE Transactions on Information Theory, 39(3):999-1013, May 1993.

LEO BREIMAN. Bagging predictors. Technical report, Department of Statistics, Uni-
versity of California, Berkeley, CA, 1994.

LEO BREIMAN, JEROME FRIEDMAN, RICHARD OLSHEN, AND CHARLES STONE.
Classification and Regression Trees. Wadsworth International Group, 1984.

MicHAEL R. BRENT, SREERAMA K. MURTHY, AND ANDREW LUNDBERG. Discov-
ering morphemic suffixes: A case study in minimum description length induction. In
Proceedings of the Fifth International Workshop on Artificial Intelligence and Statis-
tics, Ft. Laudersdale, FL, January 1995.

RicHARD P. BRENT. Fast training algorithms for multilayer neural nets. IEEE
Transactions on Neural Networks, 2(3):346-354, May 1991.

CARLA E. BRODLEY. Recursive Automatic Algorithm Selection for Inductive Learn-
ing. PhD thesis, University of Massachusetts, Amherst, MA, 1994.

CARLA E. BRODLEY AND PAUL E. UTGOFF. Multivariate versus univariate decision
trees. Technical Report COINS-CR-92-8, Dept. of Computer Science, University of
Massachusetts, Amherst, MA, January 1992.

CARLA E. BRODLEY AND PAUL E. UTGOFF. Multivariate decision trees. Machine
Learning, 19:45-77, 1995.

DoNaLD E. BROWN, VINCENT CORRUBLE, AND CLARENCE LoOUIS PITTARD. A

comparison of decision tree classifiers with backpropagation neural networks for mul-
timodal classification problems. Pattern Recognition, 26(6):953-961, 1993.

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[61]

[62]

253

DoNALD E. BROWN AND CLARENCE Louls PITTARD. Classification trees with op-
timal multivariate splits. In Proceedings of the International Conference on Systems,
Man and Cybernetics, volume 3, pages 475-477, Le Touquet, France, 17-20th, October
1993. TEEE, New York.

RANDAL E. BRYANT. Graph-based algorithms for boolean function manipulation.
IEEE Transactions on Computing, C-35(8):677-691, August 1986.

RANDAL E. BRYANT. Symbolic boolean manipulation with ordered binary decision
diagrams. Technical Report CMU-CS-92-160, Carnegie Mellon University, School of
Computer Science, Pittsburgh, PA 15213., July 1992. Accepted to ACM Computing
Surveys.

NaADER H. BsHouty. Exact learning via monotone theory. In Proceedings. 34th
Annual Symposium on Foundations of Computer Science, pages 302-311, New York,

NY, 1993. IEEE.

R.S. Bucy AND R.S. DIESPOSTI. Decision tree design by simulated annealing. Math-
ematical Modieling and Numerical Analysis, 27(5):515-534, 1993. A RATIRO Journal.

C. BurL, M. CHIOGNA, R. FRANKLIN, AND D. SPIEGELHALTER. Expert derived and
automatically generated classification trees: an example from pediatric cardiology. In
Proceedings: Computers in Cardiology, pages 217-220, Los Alamitos, CA, September
5th—8th 1993. IEEE Computer Society Press.

M. E. BuLLock, D. L. WANG, FAIRCHILD S. R., AND T. J. PATTERSON. Auto-
mated training of 3-D morphology algorithm for object recognition. Proceedings of
SPIE — The International Society for Optical Engineering, 2234:238-251, 1994. Issue
title: Automatic Object Recognition IV.

W. BUNTINE. Tree classification software. Technology 2002: The third national
technology transfer conference and exposition, December 1992.

W. BUNTINE AND T. NIBLETT. A further comparison of splitting rules for decision-
tree induction. Machine Learning, 8:75-85, 1992.

WRAY BUNTINE. Classifiers: A theoretical and empirical study. In IJCAI-91 [220],
pages 638—-644. Editors: John Mylopoulos and Ray Reiter.

WRAY BUNTINE. A theory of learning classification rules. PhD thesis, University of
Technology, Sydney, Australia, 1991.

WRAY BUNTINE. Learning classification trees. Statistics and Computing, 2:63-73,
1992.

[63]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

254

WRAY BUNTINE AND RICH CARUANA. Introduction to IND and recursive partition-
ing. Technical Report FTA-91-28, RTACS and NASA Ames Research Center, Moffett
Field, CA, 1991.

G. BURGER AND U. JUTTING. Specimen classification in cytometry: An intercom-

parison of various means of decision making. In Gelsema and Kanal [163], pages
509-519.

A. Buzo, A.H. GRAY JR., ROBERT M. GRAY, AND J.D. MARKEL. Speech coding

based upon vector quantization. IEEE Transactions on Accoustics, Speech and Signal
Processing, 28:562-574, October 1980.

JANICE D. CALLAHAN AND STEPHEN W. SORENSEN. Rule induction for group

decisions with statistical data - an example. Journal of the Operational Research
Society, 42(3):227-234, March 1991.

JAN M. VAN CAMPENHOUT. Topics in measurement selection. In Krishnaiah and
Kanal [265], pages 793-803.

C. CARTER AND JASON CATLETT. Assessing credit card applications using machine
learning. IEEE FExpert, Fall:71-79, 1987.

RicH CARUANA AND DAYNE FREITAG. Greedy attribute selection. In ML-94 [331],
pages 28-36. Editors: William W. Cohen and Haym Hirsh.

RicHARD G. CASEY AND GEORGE NAGY. Decision tree design using a probabilistic
model. IEEE Transactions on Information Theory, IT-30(1):93-99, January 1984.

JASON CATLETT. Megainduction. PhD thesis, Basser Department of Computer Sci-
ence, University of Sydney, Australia, 1991.

JASON CATLETT. Tailoring rulesets to misclassification costs. In AlI&Statistics-95
[5], pages 88-94.

GERT CAUWENBERGHS. A fast stochastic error-descent algorithm for supervised
learning and optimization. In Proceedings of Neural Information Processing Systems,
1992.

G. CeEsTNIK, I. KONONENKO, AND I. BRATKO. Asgsistant 86: A knowledge acqui-
sition tool for sophisticated users. In I. Bratko and N. Lavrac, editors, Progress in
Machine Learning. Sigma Press, 1987.

C. CHAN AND J. BAO. On the design of a tree classifier and its application to speech

recognition. International Journal of Pattern Recognition and Artificial Intelligence,
5(5):677-692, December 1991.

[76]

[77]

[82]

[33]

255

B. CHANDRASEKARAN. From numbers to symbols to knowledge structures: Pat-
tern Recognition and Artificial Intelligence perspectives on the classification task. In
Gelsema and Kanal [163], pages 547-559.

B. CHANDRASEKARAN AND A. K. JAIN. Quantization complexity and independent
measurements. IEEE Transactions on Computers, C-23(1):102-106, January 1974.

C.-L. CHANG. Finding prototypes for nearest neighbor classifiers. IEEE Transactions
on Computers, 23(11):1179-1184, November 1974.

Hst CHANG AND SITHARAMA IYENGAR. Efficient algorithms to globally balance a
binary search tree. Communications of the ACM, 27(7):695-702, July 1984.

A. R. CHATURVEDI AND D. L. NAZARETH. Investigating the effectiveness of condi-
tional classification: an application to manufacturing scheduling. IEEE Transactions
on Engineering Management, 41(2):183-193, May 1994.

M. R. CHMIELEWSKI AND J. W. GRZYMALA-BUSSE. Global discretization of contin-
uous attributes as preprocessing for machine learning. In T. Y. Lin, editor, RSSC-9/:
The Third International Workshop on Rough Sets and Soft Computing, pages 294—
301, San Jose, CA, November 1994. American Association of Artificial Intelligence,
San Jose State University.

PuiLip A. CHOU. Applications of Information Theory to Pattern Recognition and the
Design of Decision Trees and Trellises. PhD thesis, Stanford University, 1988.

PuiLip A. CHOU. Optimal partitioning for classification and regression trees. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 13(4):340-354, April
1991.

PuirLip A. CHOU AND ROBERT M. GRAY. On decision trees for pattern recognition.

In Proceedings of the IEEE Symposium on Information Theory, page 69, Ann Arbor,
MI, 1986.

PuiLir A. CaHOU, TOM LOOKABAUGH, AND ROBERT M. GRAY. Optimal pruning
with applications to tree-structured source coding and modeling. IEEFE Transactions
on Information Theory, 35(2):299-315, March 1989.

ATHENE CHUK-KWAN CHOY. Decision Rules and Decision Tree Approach in Pattern
Recognition Theory. PhD thesis, University of Missouri, Columbia, MO, 1978.

KRrzyszToF J. Ci0s AND NING LiU. A machine learning method for generation of

a neural network architecture: A continuous ID3 algorithm. IEEE Transactions on
Neural Networks, 3(2):280-291, March 1992.

I. CLEOTE AND H. THERON. CID3: An extension of ID3 for attributes with ordered
domains. South African Computer Journal, 4:10-16, March 1991.

[89]

[90]

[91]

[92]

[98]

[99]

[100]

[101]

[102]

256

Cleveland heart disease database. Available in the UCI ML Repository. Collected
by Roberto Detrano, M.D., Ph.D., V.A. Medical center, Long Beach and Cleveland
Clinic Foundation.

J.R.B. COCKETT AND J.A. HERRERA. Decision tree reduction. Journal of the ACM,
37(4):815-842, October 1990.

W.W. CoHEN. Efficient pruning methods for separate-and-conquer rule learning
systems. In IJCAI-93 [221], pages 988-994. Editor: Ruzena Bajcsy.

DouarLAas COMER AND RAvI SETHI. The complexity of trie index construction.
Journal of the ACM, 24(3):428-440, July 1977.

THoMAs H. CoRMEN, CHARLES E. LEISERSON, AND RONALD L. RIVEST. Intro-
duction to Algorithms. The MIT Press and McGraw-Hill Book Company, 1990.

T.M. CoVER AND J.M. VAN CAMPENHOUT. On the possible orderings in the mea-
surement selection problems. IEEE Transactions on Systems, Man and Cybernetics,

SMC-7(9), 1977.

Louts ANTHONY CoX. Using causal knowledge to learn more useful decision rules
from data. In Al&Statistics-95 [5], pages 151-160.

Louts ANTHONY COX AND YUPING QIU. Minimizing the expected costs of classifying
patterns by sequential costly inspections. In AT&Statistics-93 [4].

Louis ANTHONY CoOX, YUPING QIU, AND WARREN KUEHNER. Heuristic least-
cost computation of discrete classification functions with uncertain argument values.
Annals of Operations Research, 21(1):1-30, 1989.

STUART L. CRAWFORD. Resampling strategies for recursive partitioning classification
using the CART algorithm. PhD thesis, Stanford University, 1987.

STUART L. CRAWFORD. Extensions to the CART algorithm. International Journal
of Man-Machine Studies, 31(2):197-217, August 1989.

STEPHEN P. CURRAM AND JOHN MINGERS. Neural networks, decision tree induc-

tion and discriminant analysis: An empirical comparison. Journal of the Operational
Research Society, 45(4):440-450, April 1994.

K.T. DAGO, R. LUTHRINGER, R. LENGELLE, G. RINAUDO, AND J. P. MATCHER.
Statistical decision tree: A tool for studying pharmaco-EEG effects of CNS-active
drugs. Neuropsychobiology, 29(2):91-96, 1994.

FLORENCE]jALCHE—BUC, DIDIER ZWIERSKI, AND JEAN-PIERRE NADAL. Trio

learning: A new strategy for building hybrid neural trees. International Journal
of Neural Systems, 5(4):259-274, December 1994.

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

114]

257

S.K. DAs AND S. BHAMBRI. A decision tree approach for selecting between de-
mand based, reorder and JIT /kanban methods for material procurement. Production

Planning and Control, 5(4):342, 1994.

Belur V. Dasarathy, editor. Nearest neighbor (NN) norms: NN pattern classification
techniques. IEEE Computer Society Press, Los Alamitos, CA, 1991.

BELUR V. DASARATHY. Minimal consistent set (MCS) identification for optimal

nearest neighbor systems design. IEEFE transactions on systems, man and cybernetics,
24(3):511-517, 1994.

G. R. DATTATREYA AND LAVEEN N. KANAL. Decision trees in pattern recognition.

In Kanal and Rosenfeld, editors, Progress in Pattern Recognition, volume 2, pages
189-239. Elsevier Science, 1985.

G. R. DATTATREYA AND V. V. S. SARMA. Bayesian and decision tree approaches

to pattern recognition including feature measurement costs. IEEE Transactions on
Pattern Analysis and Machine Intelligence, PAMI-3(3):293-298, 1981.

L. DEVROYE. Automatic pattern recognition : A study of the probability of error.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 10(4):530-543,
1988.

THOMAS G. DIETTERICH AND GHULUM BAKIRI. Solving multiclass learning prob-

lems via error-correcting output codes. Journal of Artificial Intelligence Research,
2:263-286, January 1995.

THOMAS G. DIETTERICH, HERMANN HILD, AND GHULUM BAKIRI. A comparison

of ID3 and backpropagation for english text-to-speech mapping. Machine Learning,
18:51-80, 1995.

THOMAS G. DIETTERICH AND EUN BAE KONG. Machine learning bias, statistical
bias and statistical variance of decision tree algorithms. In ML-95 [333]. to appear.

THOMAS G. DIETTERICH AND RYSZARD S. MICHALSKI. A comparitive view of
selected methods for learning from examples. In R.S. Michalski, J.G. Carbonell,
and T.M. Mitchell, editors, Machine Learning, an Artificial Intelligence Approach,
volume 1, pages 41-81. Morgan Kaufmann, San Mateo, CA, 1983.

JUSTIN DoOAK. An evaluation of search algorithms for feature selection. Technical
report, Graduate Group in Computer Science, University of California at Davis; and
Safeguards Systems Group, Los Alamos National Laboratory, January 1994.

M. Dor, J. GUNN, AND D. WEINBERG. Simulated data for the SDSS: User’s guide.
Technical report, Princeton University, Princeton, NJ, 1994.

[115]

[116]

[117)

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

258

B. A. DRAPER, CARLA E. BRODLEY, AND PAUL E. UTGOFF. Goal-directed classi-
fication using linear machine decision trees. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 16(9):888, 1994.

N. R. DRAPER AND H. SMITH. Applied Regression Analysis. Wiley, New York, 1966.
2nd edition in 1981.

R. Dubpa AND P. HART. Pattern Classification and Scene Analysis. Wiley, New
York, 1973.

GUNTER DUECK AND TOBIAS SCHEUER. Threshold accepting: A general purpose
optimization algorithm appearing superior to simulated annealing. Journal of com-
putational physics, 90:161-175, 1990.

EADES AND STAPLES. On optimal trees. Journal of Algorithms, 2(4):369-384, 1981.

BRADLEY EFRON. Estimating the error rate of a prediction rule: improvements on
cross-validation. Journal of American Statistical Association, 78(382):316-331, June
1983.

A. EHRENFEUCHT AND DAVID HAUSSLER. Learning decision trees from random
examples. Information and Computation, 82:231-246, 1989.

JouN F. ELDER, IV. Heuristic search for model structure. In AI&Statistics-95 [5],
pages 199-210.

TAaPiO ELOMAA. In defence of C4.5: Notes on learning one-level decision trees. In
ML-94 [331], pages 62—69. Editors: William W. Cohen and Haym Hirsh.

A. ErciL. Classification trees prove useful in nondestructive testing of spotweld
quality. Welding Journal, 72(9):59, September 1993. Issue Title: Special emphasis:
Rebuilding America’s roads, railways and bridges.

FLORIANA EspP0OSITO, DONATO MALERBA, AND GIOVANNI SEMERARO. A further
study of pruning methods in decision tree induction. In AI&Statistics-95 [5], pages
211-218.

BoB EvANs AND DoucG FisHER. Overcoming process delays with decision tree in-
duction. IEEE Ezpert, pages 60-66, February 1994.

BRIAN EVERITT. Cluster Analysis - 3rd Edition. E. Arnold Press, London., 1993.

Final orbital/science verification report: Wide field/planetary camera investigation
definition team, February 1991. Principal Investigator: James A. Westphal.

[129]

[130]

[131]

[132]

[133)]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

141]

259

JubpiTH A. FALCONER, BRUCE J. NAUGHTON, DorOTHY D. DUNLOP, ELLIOT J.
RoTH, AND DALE C. STRASSER. Predicting stroke inpatient rehabilitation outcome

using a classification tree approach. Archives of Physical Medicine and Rehabilitation,
75(6):619, June 1994.

A. Fawmirl. Use of decision tree induction for process optimization and knowledge
refinement of an industrial process. Artificial Intelligence for Engineering Design,
Analysis and Manufacturing (AI EDAM), 8(1):63-75, Winter 1994.

R. M. FANO. Transmission of Information. MIT Press, Cambridge, MA, 1961.

UsaMA M. FAyyAD AND KEKI B. IrRANI. What should be minimized in a decision
tree? In AAAI-90: Proceedings of the National Conference on Artificial Intelligence,
volume 2, pages 749-754. American Association for Artificial Intelligence, 1990.

UsamAa M. Favyvyap AND KEKI B. TRANI. The attribute specification problem in
decision tree generation. In AAAT-92 [7], pages 104-110.

UsamMAa M. FAyvyaD AND KEKI B. IRANI. On the handling of continuous-valued
attributes in decision tree generation. Machine Learning, 8(2):87-102, 1992.

UsAaMA M. FAyvAaDp AND KEKI B. IRANI. Multi-interval discretization of continu-
ous valued attributes for classification learning. In IJCAI-93 [221], pages 1022-1027.
Editor: Ruzena Bajcsy.

USAMA M. FAYYAD, NICHOLAS WEIR, AND D. DJORGOVSKI. SKICAT: A machine
learning system for automated cataloging of large scale sky surveys. In ML-93 [330],
pages 112-119. Editor: Paul E. Utgoft.

EDWARD A. FEIGENBAUM. Expert systems in the 1980s. In A. Bond, editor, State
of the Art in Machine Intelligence. Pergamon-Infotech, Maidenhead, 1981.

C. FENG, A. SUTHERLAND, R. KING, S. MUGGLETON, AND R. HENERY. Compari-
son of machine learning classifiers to statistics and neural networks. In AI&Statistics-
93 [4], pages 41-52.

A. FIELDING. Binary segmentation: the automatic interaction detector and related
techniques for exploring data structure. In O’Muircheartaigh and Payne [370], pages
221-257.

P. E. FiLe, P. I. DUGARD, AND A. S. HOUSTON. Evaluation of the use of induction

in the develeopment of a medical expert system. Computers and Biomedical Research,
27(5):383-395, October 1994.

DoucLras FisHER. Knowledge acquisition via incremental conceptual clustering. Ma-
chine Learning, 2:130-172, 1987.

142]

[143]

[144]

[145]

[146]

[147)

[148]

[149]

[150]

[151]

[152]

[153]

[154]

260

DouGLAS FISHER AND KATHLEEN MCcKUSICK. An empirical comparison of ID3 and
back propagation. In IJCAI-89 [219]. Editor: N. S. Sridharan.

P. A. FrLACH. Predicate invention in inductive data engineering. In P. B. Brazdil,
editor, ECML: European Conference on Machine Learning, Berlin, Germany, 1993.
Springer-Verlag. Conf. held in Vienna, Austria, 5-7 April 1993.

R. FLETCHER AND M. J. D. POWELL. A rapidly convergent descent method for
minimization. Computer Journal, 6(1SS.2):163-168, 1963.

D. H. FoLey. Considerations of sample and feature size. IEEE Transactions on
Information Theory, IT-18:618-626, 1972.

F. FOrROURAGHI, L. W. SCHMERR, AND G. M. PRABHU. Induction of multivariate
regression trees for design optimization. In AAAI-94 [9], pages 607-612.

IMAN FOROUTAN. Feature Selection for Piecewise Linear Classifiers. PhD thesis,
University of California, Irvine, CA, 1985.

IMAN FOROUTAN AND JACK SKLANSKY. Feature selection for automatic classifica-
tion of non-Gaussian data. IEEE Transactions on Systems, Man and Cybernetics,

17(2):187-198, March/April 1987.

RICHARD S. FORSYTH, DAvVID D. CLARKE, AND RICHARD L. WRIGHT. Overfit-
ting revisited: an information-theoretic approach to simplifying discrimination trees.
Journal of Experimental and Theoretical Artificial Intelligence, 6(3):289-302, July—
September 1994.

M. FREAN. Small Nets and Short Paths: Optimising neural computation. PhD thesis,
Centre for Cognitive Science, University of Edinburgh, 1990.

W. L. FREEDMAN, S. M. HuGHES, B. F. MADORE, J. R. MouLD, M. G. LEE,
P. STteTsoN, R. C. KeENNICUTT, A. TURNER, L. FERRARESE, H. C. FORD, J. A.
GRAHAM, R. HiLL, J. G. HOESSEL, J. HUCHRA, AND G. D. ILLINGWORTH. The
Hubble Space Telescope extragalactic distance scale key project. I. The discovery of
cepheids and a new distance to M81. Astrophysical Journal, 427:628, 1994.

JEROME H. FRIEDMAN. A recursive partitioning decision rule for nonparametric
classifiers. IEEE Transactions on Computers, C-26:404—408, April 1977.

JEROME H. FRIEDMAN. Flexible metric nearest neighbor classification. Technical
report, Department of Statistics and Stanford Linear Accelerator Center, Stanford
University, Stanford, CA 94305, November 1994.

M. Fuiita, H. FuJisSAWA, AND Y. MATSUNAGA. Variable ordering algorithms
for ordered binary decision diagrams and their evaluation. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 12(1):6-12, January 1993.

[155]

[156]

[157]

[158]

[159]

[160]

[161]

[162]

[163]

[164]

[165]

[166]

[167)

[168]

261

KEINOSUKE FUKANAGA. Introduction to Statistical Pattern Recognition. Academic
Press, 1990.

KEINOSUKE FUKANAGA AND R. A. HAYES. Effect of sample size in classifier design.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 11:873-885, 1989.

TrRUXTON K. FULTON, SIMON KASIF, AND STEVEN SALZBERG. An efficient algo-
rithm for for finding multi-way splits for decision trees. In ML-95 [333]. to appear.

G. M. FURNIVAL. Regression by leaps and bounds. Technometrics, 16(4):499-511,
1974.

MICHAEL R. GAREY AND RONALD L. GRAHAM. Performance bounds on the splitting
algorithm for binary testing. Acta Informatica, 3(Fasc. 4):347-355, 1974.

MicHAEL R. GAREY AND D.S. JOHNSON. Computers and Intractability: o Guide to
the theory of NP-Completeness. Freeman and Co., San Francisco, CA, 1979.

S. B. GELFAND AND C. S. RAVISHANKAR. A tree-structured piecewise-linear adap-
tive filter. IEEE Transactions on Information Theory, 39(6):1907-1922, November
1993.

SAUL B. GELFAND, C. S. RAVISHANKAR, AND EDWARD J. DELP. An iterative
growing and pruning algorithm for classification tree design. IEEE Transaction on
Pattern Analysis and Machine Intelligence, 13(2):163-174, February 1991.

Edward S. Gelsema and Laveen N. Kanal, editors. Pattern Recognition in Practice,
volume 2. Elsevier Science, Amsterdam, The Netherlands, 1986.

Edzard S. Gelsema and Laveen S. Kanal, editors. Pattern Recognition in Practice I'V:
Multiple paradigms, Comparative studies and hybrid systems, volume 16 of Machine
Intelligence and Pattern Recognition. Series editors: Kanal, L. S. and Rozenfeld, A.
Elsevier, 1994.

G. H. GENNARI, PAT LANGLEY, AND DoOUGLAS FISHER. Models of incremental
concept formation. Artificial Intelligence, 40(1-3):11-62, September 1989.

IAN P. GENT AND TOBY WALSH. An empirical analysis of search in GSAT. Journal
of Artificial Intelligence Research, 1:47-59, September 1993.

ALLEN GERSHO AND ROBERT M. GRAY. Vector Quantization and Signal Compres-
sion. Kluwer Academic Publishers, 1991.

CASIMIRO GIAMPAOLO, ANDREW T. GRAY, RICHARD A. OLSHEN, AND SANDOR
S7zABO. Predicting chemically induced duodenal ulcer and adrenal necrosis with
classification trees. Proceedings of the National Academy of Sciences of the USA,
88(14):6298-6302, July 1991.

[169]

[170]

[171]

172]

[173]

[174]

[175]

[176]

177)

[178]

[179]

[180]

[181]

262

W. J. GiBB, D. M. AUSLANDER, AND J. C. GRIFFIN. Selection of myocardial
electrogram features for use by implantable devices. IEEE Transactions on Biomedical
Engineering, 40(8):727-735, August 1993.

M. W. GiLro. MAID: A Honeywell 600 program for an automatised survey analysis.
Behavioral Science, 17:251-252, 1972.

EL1ZABETH A. GIPLIN, RICHARD A. OLSHEN, KANU CHATTERJEE, JOHN KJEK-
SHUS, ARTHUR J. Moss, HARMUT HENNING, ROBERT ENGLER, A. ROBERT
BrLacky, HOWARD DITTRICH, AND JOHN R0OSS JR. Predicting 1-year outcome fol-
lowing acute myocardial infarction. Computers and biomedical research, 23(1):46-63,
February 1990.

MALcOLM A. GLESER AND MORRIS F. COLLEN. Towards automated medical deci-
sions. Computers and Biomedical Research, 5(2):180-189, April 1972.

M. GOLEA AND M. MARCHAND. A growth algorithm for neural network decision
trees. EuroPhysics Letters, 12(3):205-210, June 1990.

RODNEY M. GOODMAN AND PADHRAIC J. SMYTH. Decision tree design from

a communication theory standpoint. IEEE Transactions on Information Theory,
34(5):979-994, September 1988.

RODNEY M. GOODMAN AND PADHRIAC J. SMYTH. Decision tree design using infor-
mation theory. Knowledge Acquisition, 2:1-19, 1990.

MicHAEL T. GOODRICH, VINCENT MIRELLI, MARK ORLETSKY, AND JEFFERY SA-
LOWE. Decision tree conctruction in fixed dimensions: Being global is hard but local
greed is good. Technical Report TR-95-1, Johns Hopkins University, Department of
Computer Science, Baltimore, MD 21218, May 1995.

L. GOorDON AND R. A. OLSHEN. Asymptotically efficient solutions to the classifica-
tion problem. Annals of Statistics, 6(3):515-533, 1978.

R. GraHAM AND P. HELL. On the history of minimum spanning tree problem.
Annals of History of Computing, 7, 1985.

N. A. B. GrAY. Capturing knowledge through top-down induction of decision trees.
IEEE Ezpert, 5(3):41-50, June 1990.

ROBERT M. GRAY. Vector quantization. IEEE ASSP Magazine, pages 4-28, April
1984.

GABRIEL GRONER. Statistical Analysis of Adaptive Linear Classifiers. PhD thesis,
Stanford University, 1964.

[182]

[183]

[184]

[185]

[186]

[187]

[188]

[189]

[190]

[191]

[192]

[193]

194]

[195]

263

A. GUENOCHE. Representation of classifications as trees. RAIRO Recherche Opera-
tionelle, 20(4):341-353, November 1986.

R.K. GurATi, R. GUPTA, P. GOTHOSKAR, AND S. KHOBRAGADE. Ultraviolet stel-

lar spectral classification using multilevel tree neural networks. Vistas in Astronomy,
38:293, 1993. Part 3: Neural Networks in Astronomy.

HENG GUO AND SAUL B. GELFAND. Classification trees with neural network feature
extraction. IEEE Transactions on Neural Networks., 3(6):923-933, November 1992.

Y. Guo anD K.J. DooOLEY. Distinguishing between mean, variance and autocor-
relation changes in statistical quality control. International Journal of Production

Research, 33(2):497-510, February 1995.

R. GupTA, S.A. SMOLKA, AND S. BHASKAR. On randomization in sequential and
distributed algorithms. ACM Computing Surveys, 26(1):7-86, March 1994.

OUZDEN GUUR-ALI AND WILLIAM A. WALLACE. Induction of rules subject to a
quality constraint: Probabilistic inductive learning. IEEE Transactions on Knowldge
and Data Engineering, 5(6):979-984, December 1993. Special Issue on Learning and
Discovery in Knowledge-based databases.

S.E. HAMPSON AND D.J. VOLPER. Linear function neurons: Structure and training.
Biological Cybernetics, 53(4):203-217, 1986.

TaOMAS R. HANCOCK. Learning ku decision trees on the uniform distribution. In
Proceedings of the Sizth Annual Workshop on Computational Learning Theory, pages
352-360, July 1993.

D. J. HAND. Discrimination and Classification. Wiley, Chichester, UK, 1981.

D. J. Hand, editor. Artificial Intelligence Frontiers in Statistics III. Chapman & Hall,
London, 1993.

W. HANISCH. Design and optimization of a hierarchical classifier. Journal of new
Generation Computer Systems, 3(2):159-173, 1990.

L. K. HANSEN AND P. SALOMON. Neural network ensembles. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 12(10):993-1001, 1990.

D. HARRISON AND D.L. RUBINFELD. Hedonic prices and the demand for clean air.
Journal of Environmental Economics and Management, 5:81-102, 1978.

A. HART. Experience in the use of an inductive system in knowledge engineering. In
M. Bramer, editor, Research and Development in FExpert Systems. Cambridge Univer-
sity Press, Cambridge, MA, 1984.

[196]

[197]

[198]

[199]

[200]

[201]

[202]

203]

[204]

[205]

[206]

[207]

264

P. HART. The condensed nearest neighbor rule. IEEE Transactions on Information
Theory, 14(3), May 1968.

CARLOS R. P. HARTMANN, PRAMOD K. VARSHNEY, KiSHAN G. MEHROTRA, AND
CARL L. GERBERICH. Application of information theory to the construction of effi-
cient decision trees. IEEE Transactions on Information Theory, IT-28(4):565-577,
July 1982.

R. E. HASKELL AND A. NOUI-MEHIDI. Design of hierarchical classifiers. In N. A.
Sherwani, E. de Doncker, and J. A. Kapenga, editors, Computing in the 90’s: The
First Great Lakes Computer Science Conference Proceedings, pages 118-124, Berlin,
1991. Springer-Verlag. Conference held in Kalamazoo, MI on 18th-20th, October
1989.

N.D. HATZIARGYRIOU, G.C. CONTAXIS, AND N.C. SIDERIS. A decision tree method
for on-line steady state security assessment. IEEE Transactions on Power Systems,
9(2):1052, 1994.

PATRICK HAYES AND KENNETH FORD. Turing test considered harmful. In IJCAI-95
[223], pages 972-977. Invited talk.

MARK A. HEAP AND M. R. MERCER. Least upper bounds on OBDD sizes. IEEE
Transactions on Computers, 43(6):764-767, June 1994.

D. HEATH. A Geometric Framework for Machine Learning. PhD thesis, Johns Hop-
kins University, Baltimore, MD, 1992.

D. HEATH, S. KASIF, AND S. SALZBERG. k-DT: A multi-tree learning method. In

Proceedings of the Second International Workshop on Multistrateqy Learning, pages
138-149, Harpers Ferry, WV, 1993. George Mason University.

D. HEATH, S. KASIF, AND S. SALZBERG. Learning oblique decision trees. In IJCAI-
93 [221], pages 1002-1007. Editor: Ruzena Bajcsy.

Davib P. HELMHOLD AND ROBERT E. SCHAPIRE. Predicting nearly as well as the
best pruning of a decision tree. In Proceedings of the 8th Annual Conference on
Computational Learning Theory, pages 61-68, New York, NY, 1995. ACM Press.

ERNEST G. HENRICHON JR. AND KING-SUN Fu. A nonparametric partitioning
procedure for pattern classification. IEEE Transactions on Computers, C-18(7):614—
624, July 1969.

GABOR T. HERMAN AND K.T. DANIEL YEUNG. On piecewise-linear classification.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 14(7):782-786,
July 1992.

[208]

[209]

[210]

[211]

[212]

[213]

[214]

[215]

[216]

[217]

[218]

[219]

[220]

265

KrLAUs-U HOEFFGEN, HANS-U SIMON, AND KEVIN S. VAN HORN. Robust train-
ability of single neurons. Journal of Computer System Sciences, 50(1):114-125, 1995.

R. HoLTE. Very simple classification rules perform well on most commonly used
datasets. Machine Learning, 11(1):63-90, 1993.

ErLis HOROWITZ AND SARTAJ SAHNI. Fundamentals of Computer Algorithms. Com-
puter Science Press, Rockville, MD, 1984.

A. S. Houston, R. J. TorNns, AND M. A. MACLEOD. The use of thyroid function
studies. Nuclear Medicine Communications, 12:497-506, 1991.

G. E. HUGHES. On the mean accuracy of statistical pattern recognition. I[IEEE
Transactions on Information Theory, IT-14(1):55-63, January 1968.

K. J. Hunt. Classification by induction: Applications to modelling and control of
non-linear dynamic systems. Intelligent Systems Engineering, 2(4):231-245, Winter
1993.

D. HUNTER, S. FABER, R. LiGHT, AND E. SHAYA. Stellar photometry and zero-
points. In S. Faber, editor, Final Orbital/Science Verification Report, 1991.

LAURENT HYAFIL AND RONALD L. RIVEST. Constructing optimal binary decision
trees is NP-complete. Information Processing Letters, 5(1):15-17, 1976.

TOSHIHIDE IBARAKI AND SABURO MUROGA. Adaptive linear classifiers by linear
programming. Technical Report 284, Department of Computer Science, University of
Illinois, Urbana-Champaign, 1968.

M. ICHINO AND JACK SKLANSKY. Optimum feature selection by zero-one integer
programming. IEEE Transactions on Systems, Man and Cybernetics, SMC-14:737-
746, September/October 1984.

Y. IIKURA AND Y. YASUOKA. Utilization of a best linear discriminant function

for designing the binary decision tree. International Journal of Remote Sensing,
12(1):55-67, January 1991.

1JCAI-89: Proceedings of the Eleventh International Joint Conference on Artificial
Intelligence. Morgan Kaufmann Publishers Inc., San Mateo, CA, 1989. Editor: N. S.
Sridharan.

1JCAI-91: Proceedings of the Twelfth International Joint Conference on Artificial
Intelligence, volume 2, Darling Harbour, Sydney, Australia, 24-30th, August 1991.
Morgan Kaufmann Publishers Inc., San Mateo, CA. Editors: John Mylopoulos and
Ray Reiter.

[221]

[222]

[223]

[224]

[225]

[226]

[227]

[228]
[229]

[230]

[231]

[232]

[233]

266

1JCAI-93: Proceedings of the Thirteenth International Joint Conference on Artificial
Intelligence, volume 2, Chambery, France, 28th August—3rd September 1993. Morgan
Kaufmann Publishers Inc., San Mateo, CA. Editor: Ruzena Bajcsy.

Data Engineering for Inductive Learning, Montreal, Canada, 16th—21st, August 1995.
Morgan Kaufmann Publishers Inc., San Mateo, CA. Workshop organized by Peter
Turney. http://ai.iit.nrc.ca/DEIL/.

IJCAI-95: Proceedings of the Fourteenth International Joint Conference on Artificial
Intelligence, Montreal, Canada, 16th-21st, August 1995. Morgan Kaufmann Publish-
ers Inc., San Mateo, CA. Editor: Chris Mellish.

I. F. ImAM AND RYSZARD S. MICHALSKI. Should decision trees be learned from
examples or from decision rules? In Methodologies for Intelligent Systems: 7th Inter-
national Symposium. ISMIS 93, volume 689 of Lecture Notes in Computer Science,
pages 395-404. Springer-Verlag, Trondheim, Norway, June 1993.

KEekr B. IrANI, CHENG JIE, UsaAMA M. FAYYAD, AND QIAN ZHAOGANG. Ap-

plying machine learning to semiconductor manufacturing. IEEE Expert, 8(1):41-47,
February 1993.

P. IsRAEL AND C. KOUTSOUGERAS. A hybrid electro-optical architecture for classifi-
cation trees and associative memory mechanisms. International Journal on Artificial
Intelligence Tools (Architectures, Languages, Algorithms), 2(3):373-393, September
1993.

A. K. JAIN AND B. CHANDRASEKARAN. Dimensionality and sample size considera-
tions in pattern recognition. In Krishnaiah and Kanal [265], pages 835-855.

MIKE JAMES. Classification Algorithms. Wiley-Interscience Publications, 1985.

GEORGE H. JOHN. Robust linear discriminant trees. In AI&Statistics-95 [5], pages
285-291.

GEORGE H. JOHN, RON KoHAVI, AND KARL PFLEGER. Irrelevant features and the
subset selection problem. In ML-94 [331], pages 121-129. Editors: William W. Cohen
and Haym Hirsh.

DaviD S. JOHNSON, CHRISTOS H. PAPADIMITRIOU, AND MIHALIS YANNAKAKIS.
How easy is local search? Journal of Computer and System Sciences, 37:79-100,
1988.

S.C. JOHNSON. Hierarchical clustering schemes. Psychometrika, 32(3), September
1967.

MicHAEL I. JORDAN AND R. A. JAcoBs. Hierarchical mixtures of experts and the
EM algorithm. Neural Computation, 6:181-214, 1994.

[234]

[235]

[236]

[237]

23]

[239)]

[240]

[241]

[242]

[243]

[244]

[245]

[246]

267

J. JUDMAIER, P. MEYERSBACH, G. WEISS, H. WACHTER, AND GG. REIBNEGGER.
The role of Neopterin in assessing disease activity in Crohn’s disease: Classification
and regression trees. The American Journal of Gastroenterology, 88(5):706, May
1993.

G. KALkANIS. The application of confidence interval error analysis to the design of
decision tree classifiers. Pattern Recognition Letters, 14(5):355-361, May 1993.

LAVEEN N. KANAL. Patterns in pattern recognition: 1968-1974. IEEE Transactions
in Information Theory, 20:697-722, 1974.

LAVEEN N. KANAL. Problem solving methods and search strategies for pattern recog-
nition. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-
1:193-201, 1979.

LAVEEN N. KANAL AND B. CHANDRASEKARAN. On dimensionality and sample size
in statistical pattern classification. Pattern Recognition, 3:225-234, 1971.

YOUNKYUNG CHA KANG. Randomized Algorithms for Query Optimization. PhD
thesis, Department of Computer Sciences, University of Wisconsin-Madison, October
1991. Computer Sciences Report #1053.

G. V. Kass. An exploratory technique for investigating large quantities of categorical
data. Applied Statistics, 29(2):119-127, 1980.

LEONARD KAUFMAN AND PETER J. ROUSSEEUW. Finding Groups in Data: An
Introduction to Cluster Analysis. Wiley-Interscience Publication, 1990.

MIicHAEL J. KEARNS AND UMESH VIRKUMAR VAZIRANI. An Introduction to Com-
putational Learning Theory. MIT Press, Cambridge, MA, 1994.

Davis M. KENNEDY. Decision tree bears fruit. Products Finishing, 57(10):66, July
1993.

J. D. KENNEFICK, R. R. CARVALHO, S. G. DJORGOVSKI, M. M. WILBER, E. S.
DicksoN, N. WEIR, U. FAYYAD, AND J. RODEN. The discovery of five quasars at
z > 4 using the second Palomar Sky Survey. The Astronomical Journal, 110(1):78,
1995.

RANDY KERBER. Chimerge: Discretization of numeric attributes. In AAAI-92 [7],
pages 123-128.

B. KHOSHNEVIS AND S. PARISAY. Machine learning and simulation: Application in
queuing systems. Simulation, 61(5):294-302, 1993.

[247)

[248]

[249]

[250]

[251]

[252]

[253]

[254]

[255]

[256]

[257]

[258]

[259]

[260]

268

BYUNGYONG KIM AND DAVID LANDGREBE. Hierarchical decision tree classifiers in
high-dimensional and large class data. IEEE Transactions on Geoscience and Remote
Sensing, 29(4):518-528, July 1991.

Hyunsoo KiM. PAC Learning: A Decision Tree with Pruning. PhD thesis, Univer-
sity of Florida, 1992.

Hyunsoo Kim AND G. J. KOEHLER. An investigation on the conditions of pruning

an induced decision tree. European Journal of Operational Research, 77(1):82, August
1994.

SunG-Ho KiMm. A general property among nested, pruned subtrees of a decision
support tree. Communications in Statistics— Theory and Methods, 23(4):1227-1238,
April 1994.

KENJI KIRA AND LARRY A. RENDELL. The feature selection problem: Traditional
methods and a new algorithm. In AAAI-92 [7], pages 129-134.

S. KirRkPATRICK, C.D. GELATT, AND M.P. VEcCCI. Optimization by simulated
annealing. Science, 220(4598):671-680, May 1983.

Y. KODRATOFF AND M. MANAGO. Generalization and noise. International Journal
of Man-Machine Studies, 27:181-204, 1987.

Y. Kodratoff and R.S. Michalski, editors. Machine learning, and Artificial Intelligence
approach, volume 3. Morgan Kaufmann, San Mateo, CA, 1990.

Y. KODRATOFF AND S. MOSCATELLI. Machine learning for object recognition and

scene analysis. Internationa Journal of Pattern recognition and AI, 8(1):259-304,
1994.

RoN KoHAVI. A study of cross-validation and bootstrap for accuracy estimation and
model selection. In IJCAI-95 [223], pages 1137-1143. Editor: Chris Mellish.

RoN KonHAvi AND CHIA-HSIN Li1. Oblivious decision trees, graphs and top-down
pruning. In IJCAI-95 [223], pages 1071-1077. Editor: Chris Mellish.

P. KokoL, M. MERNIK, J. ZAVRSNIK, AND K. KANCLER. Decision trees based on
automatic learning and their use in cardiology. Journal of Medical Systems, 18(4):201,
1994.

Icor KONONENKO. Inductive and bayesian learning in medical diagnosis. Applied
Artificial Intelligence, 7(4):317-337, October-December 1993.

Icor KONONENKO. On biases in estimating multi-valued attributes. In IJCAI-95
[223], pages 1034-1040. Editor: Chris Mellish.

[261]

262]

263

[264]

[265]

[266]

1267]

[268]

[269]

[270]

[271]

272]

[273]

269

Icor KONONENKO AND IVAN BRATKO. Information based evaluation criterion for
classifier’s performance. Machine Learning, 6(1):67-80, January 1991.

J. A. Kors AND J. H. VAN BEMMEL. Classification methods for computerized inter-
pretation of the electrocardiogram. Methods of Information in Medicine, 29(4):330—
336, September 1990.

V. A. KOVALEVSKY. The problem of character recognition from the point of view of
mathematical statistics. In V. A. Kovalevsky, editor, Character Readers and Pattern
Recognition. Spartan, New York, 1968.

J. R. Koza. Concept formation and decision tree induction using the genetic pro-
gramming paradigm. In H. P. Schwefel and R. Manner, editors, Parallel Problem
Solving from Nature - Proceedings of 1st Workshop, PPSN 1, volume 496 of Lec-
ture Notes in Computer Science, pages 124-128, Dortmund, Germany, October 1991.
Springer-Verlag, Berlin, Germany.

Paruchuri Rama Krishnaiah and Laveen N. Kanal, editors. Classification, Pattern
Recognition and Reduction of Dimensionality, volume 2 of Handbook of Statistics.
North-Holland Publishing Company, Amsterdam, 1987.

SRINTVASAN KRISHNAMOORTHY AND DoOUGLAS FISHER. Machine learning ap-

proaches to estimating software development effort. IEEFE Transactions on Software
Engineering, 21(2):126-137, February 1995.

M. KuBAT, G. PFURTSCHELLER, AND D. FLOTZINGER. Al-based approach to au-
tomatic sleep classification. Biological Cybernetics, 70(5):443-448, 1994.

AsHOK K. KULKARNI. On the mean accuracy of hierarchical classifiers. IEEE Trans-
actions on Computers, C-27(8):771-776, August 1978.

MicHAEL J. KURTZ. Astronomical object classification. In E. S. Gelsema and
Laveen N. Kanal, editors, Pattern Recognition and Artificial Intelligence, pages 317—
328. Elsevier Science Publishers, Amsterdam, 1988.

M. W. KurzyYNskI. The optimal strategy of a tree classifier. Pattern Recognition,
16:81-87, 1983.

M. W. KuUrRzyYNSKI. On the multi-stage Bayes classifier. Pattern Recognition,
21(4):355-365, 1988.

M. W. KURZYNSKI. On the identity of optimal strategies for multi-stage classifiers.
Pattern Recognition Letters, 10(1):39-46, July 1989.

Evar KUSHILEVITZ AND YISHAY MANSOUR. Learning decision trees using the fourier
spectrum. SIAM Journal of Computing, 22(6):1331-1348, 1993. Earlier version in
STOC-91.

[274]

[275]

[276]

[277]

[275]

[279]

[280]

[281]

[282]

[283]

[284]

[285]

[286]

270

S.W. Kwok AND CARTER. C. Multiple decision trees. In R.D. Schachter, T.S.
Levitt, L.N. Kanal, and J.F. Lemmer, editors, Uncertainty in Artificial Intelligence,
volume 4, pages 327-335. Elsevier Science, Amsterdam, 1990.

G. LANDEWEERD, T. TiMMERS, E. GERSEMA, M. Bins, AND M. HArIC. Binary

tree versus single level tree classification of white blood cells. Pattern Recognition,
16:571-577, 1983.

P. LANGLEY AND S. SAGE. Scaling to domains with many irrelevant features. Un-
published manuscript. Learning Systems Department, Siemens Corporate Research,
Princeton, NJ, 1993.

M. LEBOwWITZ. Categorizing numeric information for generalization. Cognitive Sci-
ence, 9:285-308, 1985.

CHULHEE LEE AND DAVID LANDGREBE. Decision boundary feature extraction for

nonparametric classification. IEEE Transactions on Systems, Man and Cybernetics,
23(2):433-444, March/April 1993.

C.Y. LEE. Representation of switching circuits by binary decision programs. Bell
Systems Technical Journal, 38:985-999, July 1959.

KuN CHANG LEE AND SUNG JoO PARK. PRTSM: Pattern recognition based time
series modeler. Computer Science in Economics and Management, 2(3):239-254,
1989.

SEONG-WHAN LEE. Noisy Hangul character recognition with fuzzy tree classifier.
Proceedings of SPIE, 1661:127-136, 1992. Volume title: Machine vision applications
in character recognition and industrial inspection. Conference location: San Jose, CA.
10th—12th February, 1992.

WENDY LEHNERT, STEPHEN SODERLAND, DAVID ARONOW, FANGFANG FENG, AND
AVINOAM SHMUELI. Inductive text classification for medical applications. Journal of
Ezxperimental and Theoretical Artificial Intelligence, 7(1):49-80, January-March 1995.

DEBRA A. LELEWER AND DANIEL S. HIRSCHBERG. Data compression. ACM Com-
puting Surveys, 19(3):261-296, 1987.

Davib D. LEwis AND JASON CATLETT. Heterogeneous uncertainty sampling for
supervised learning. In ML-94 [331]. Editors: William W. Cohen and Haym Hirsh.

P.M. LEwis. The characteristic selection problem in recognition systems. IRFE Trans-
actions on Information Theory, IT-18:171-178, 1962.

X1A0BO L1 AND RICHARD C. DUBES. Tree classifier design with a permutation
statistic. Pattern Recognition, 19(3):229-235, 1986.

[287]

[288]

289

290

[291]

292]

293

[204]

[295]

[296]

297)

298]

299

[300]

271

JIANHIA LIN AND L.A. STORER. Design and performance of tree structured vector
quantizers. Information Processing and Management, 30(6):851-862, 1994.

JIANHUA LIN, J. A. STORER, AND M. COHN. Optimal pruning for tree-structured
vector quantizers. Information Processing and Management, 28(6):723-733, 1992.

JyH-HAN LIN AND J. S. VITTER. Nearly optimal vector quantization via linear
programming. In J. A. Storer and M. Cohn, editors, DCC 92. Data Compression
Conference, pages 22-31, Los Alamitos, CA, March 24th—27th 1992. IEEE Computer
Society Press.

Y. K. Lin AnND KING-SUN Fu. Automatic classification of cervical cells using a
binary tree classifier. Pattern Recognition, 16(1):69-80, 1983.

D. V. LINDLEY. On a measure of the information provided by an experiment. Annals
of Mathematical Statistics, 27(4):986-1005, December 1956.

W. Z. Liu AND A. P. WHITE. The importance of attribute selection measures in
decision tree induction. Machine Learning, 15:25-41, 1994.

ZHEN-PING Lo AND B. BAVARIAN. Development of a two-stage neural network
classifier. Journal of Artificial Neural Networks, 1(3):307-327, 1994.

WEI-YIN LoH AND NUNTA VANICHSETAKUL. Tree-structured classification via

generalized discriminant analysis. Journal of the American Statistical Association,
83(403):715-728, September 1988.

Wirriam J. LonG, JoHN L. GRIFFITH, HARRY P. SELKER, AND RALPH B.
D’AcoSsTINO. A comparison of logistic regression to decision tree induction in a
medical domain. Computers and Biomedical Research, 26(1):74-97, February 1993.

D.W. LOVELAND. Performance bounds for binary testing with arbitrary weights.
Acta Informatica, 22:101-114, 1985.

DaviD LUBINSKY. Algorithmic speedups in growing classification trees by using an
additive split criterion. In AT&Statistics-93 [4], pages 435-444.

DAVID LUBINSKY. Bivariate splits and consistent split criteria in dichotomous clas-
sification trees. PhD thesis, Department of Computer Science, Rutgers University,
New Brunswick, NJ, 1994.

DaAviD LUBINSKY. Classification trees with bivariate splits. Applied Intelligence:
The International Journal of Artificial Intelligence, Neural Networks and Complex
Problem-Solving Technologies, 4(3):283-296, July 1994.

DAvID LUBINSKY. Tree structured interpretable regression. In Al&Statistics-95 [5],
pages 331-340.

[301]

302]

303]

304]

[305]

[306]

[307)

[308]

309]

310

[311]

312]

313

272

PAauL LukowiTz, ERNST A. HEINZ, LUTZ PRECHELT, AND WALTER F. TicHY. Ex-
perimental evaluation in computer science: A quantitative study. Journal of Systems
and Software, January 1995. Anonymous FTP at ftp.ira.uka.de in the file /pub/uni-
karlsruhe/papers/techreports/1994/1994-17.ps.Z.

REN C. Luo, RALPH S. SCHERP, AND MARK LANZO. Object identification using
automated decision tree construction approach for robotics applications. Journal of
Robotic Systems, 4(3):423-433, June 1987.

J. F. Lutsko AND B. KUIJPERS. Simulated annealing in the construction of near-
optimal decision trees. In AI&Statistics-93 [4].

Lymphography data. Available in the UCI ML Repository. Obtained from the Uni-
versity Medical Centre, Institute of Oncology, Ljubljana, Yugoslavia. Data provided
by Matjaz Zwitter and Milan Soklic.

F. MarrioLi, M.G. SPERANZA, AND C. VERCELLIS. Randomized algorithms. In
M. OhFEigeartaigh, J.K. Lenstra, and A.H.G. Rinnooy Kan, editors, Combinatorial
Optimization - Annotated Bibliographies, pages 89-105. 1985.

JOHN MAKHOUL, SALIM Roucos, AND HERBERT GISH. Vector quantization in
speech coding. Proceedings of the IEEE, 73:1551-1588, November 1985. Invited

paper.

OLvI MANGASARIAN. Mathematical programming in neural networks. ORSA Journal
on Computing, 5(4):349-360, Fall 1993.

OLvi L. MANGASARIAN. Misclassification minimization, 1994. Unpublished
manuscript.

Owvi L. MANGASARIAN, R. SETIONO, AND W. WOLBERG. Pattern recognition
via linear programming: Theory and application to medical diagnosis. In SIAM
Workshop on Optimization, 1990.

LO6PEZ DE MANTARAS. Technical note: A distance-based attribute selection measure
for decision tree induction. Machine Learning, 6(1):81-92, 1991.

J. KENT MARTIN. Evaluating and comparing classifiers: complexity measures. In
AT&Statistics-95 [5], pages 372-378.

J. KENT MARTIN. An exact probability metric for decision tree splitting and stop-
ping. In AI&Statistics-95 [5], pages 379-385.

DEAN P. McKENzIE AND LEE HUN Low. The construction of computerized clas-

sification systems using machine learning algorithms: An overview. Computers in
Human Behaviour, 8(2/3):155-167, 1992.

[314]

[315]

[316]

[317)

[318]

319]

[320]

[321]

322]

[323]

324]

[325]

[326]

[327)

[328]

273

DeEAN P. McKENzIE, P. D. McGoORRY, C. S. WALLACE, LEE HUuN Low, D. L.
CoroLov, AND B. S. SINGH. Constructing a minimal diagnostic decision tree. Meth-
ods of Information in Medicine, 32(2):161-166, April 1993.

K. L. McMILLAN. Symbolic model checking: an approach to the state explosion
problem. PhD thesis, Carnegie Mellon University, School of Computer Science, 1992.

R.J. MCcQUEEN, S. R. GARNER, C.G. NEVILL-MANNING, AND I.H. WITTEN. Ap-
plying machine learning to agricultural data. Computers and Electronics in Agricul-
ture, 12(4):275-293, June 1995.

NIMROD MEGIDDO. On the complexity of polyhedral separability. Discrete and
Computational Geometry, 3:325-337, 1988.

WILLIAM S. MEISEL AND DEMETRIOS A. MICHALOPOULOS. A partitioning algo-

rithm with application in pattern classification and the optimization of decision trees.
IEEE Transactions on Computers, C-22(1):93-103, January 1973.

JosePH J. MEZRICH. When is a tree a hedge? Financial Analysts Journal, pages
75-81, November-December 1994.

DoONALD MIcCHIE. The superarticulatory phenomenon in the context of software man-
ufacture. Proceedings of the Royal Society of London, 405A:185-212, 1986.

DoNALD MICHIE. Current developments in expert systems. In J. Ross Quinlan,
editor, Applications of Expert Systems, pages 137-156. Addison-Wesley, Reading, MA,
1987.

A. J. MILLER. Subset Selection in Regression. Chapman and Hall, 1990.

JOHN MINGERS. Expert systems — rule induction with statistical data. Journal of
the Operational Research Society, 38(1):39-47, 1987.

JOHN MINGERS. An empirical comparison of pruning methods for decision tree in-
duction. Machine Learning, 4(2):227-243, 1989.

JOHN MINGERS. An empirical comparison of selection measures for decision tree
induction. Machine Learning, 3:319-342, 1989.

M. MINSKY AND S. PAPERT. Perceptrons. MIT Press, Cambridge, MA, 1969.

ToMm MITCHELL, RicH CARUANA, DAYNE FREITAG, JOHN MCDERMOTT, AND
DaviD ZABOWSKI. Experience with a learning personal assistant. Communications
of the ACM, July 1994,

MASAHIRO MIYAKAWA. Optimum decision trees — an optimal variable theorem and
its related applications. Acta Informatica, 22(5):475-498, 1985.

329]

330]

[331]

332]

333]

[334]

[335]

[336]

[337)

338

339]

[340]

[341]

274

MASAHIRO MIYAKAWA. Criteria for selecting a variable in the construction of efficient
decision trees. IEEE Transactions on Computers, 38(1):130-141, January 1989.

Machine Learning: Proceedings of the Tenth International Conference, University of
Massachusetts, Amherst, MA, 27-29th, June 1993. Morgan Kaufmann Publishers Inc.
Editor: Paul E. Utgoff.

Machine Learning: Proceedings of the Eleventh International Conference, Rutgers
University, New Brunswick, NJ, 10-13th, July 1994. Morgan Kaufmann Publishers
Inc. Editors: William W. Cohen and Haym Hirsh.

Applying Machine Learning in Practice, Tahoe City, CA, 10-13th, July 1995. Morgan
Kaufmann Publishers Inc., San Mateo, CA. Workshop organized by David Aha.
http://www.aic.nrl.navy.mil/ aha/imlc95-workshop/.

Machine Learning: Proceedings of the Twelfth International Conference, Tahoe City,
CA, 10-13th, July 1995. Morgan Kaufmann Publishers Inc., San Mateo, CA. Editor:
Jeffrey Schlimmer.

DunjA MrADENIC. Combinatorial optimization in inductive concept learning. In
ML-93 [330], pages 205-211. Editor: Paul E. Utgoft.

ADVAIT MOGRE, ROBERT MCLAREN, JAMES KELLER, AND RAGHURAM KRISH-
NAPURAM. Uncertainty management for rule-based systems with application to im-
age analysis. IEEE Transactions on Systems, Man and Cybernetics, 24(3):470-481,
March 1994.

ANDREW W. MOORE AND MARY S. LEE. Efficient algorithms for minimizing cross
validation error. In ML-94 [331], pages 190-198. Editors: William W. Cohen and
Haym Hirsh.

BERNARD M. E. MORET, M. G. THOMASON, AND R. C. GONZALEZ. The activity

of a variable and its relation to decision trees. ACM Transactions on Programming
Language Systems, 2(4):580-595, October 1980.

BERNARD M.E. MORET. Decision trees and diagrams. Computing Surveys,
14(4):593-623, December 1982.

J. N. MORGAN AND R. C. MESSENGER. THAID: a sequential search program for the

analysis of nominal scale dependent variables. Technical report, Institute for Social
Research, University of Michigan, Ann Arbor, MI, 1973.

D. T. MoRRIS AND D. KALLES. Decision trees and domain knowledge in pattern
recognition. In Gelsema and Kanal [164], pages 25-36.

Paur. MoORRIs. The breakout method for escaping from local minima. In AAAT-93
[8], pages 40—45.

[342)

[343)

[344]

[345]

[346]

[347)

[348]

[349]

[350]

351]

[352]

353

[354]

275

A. N. MUuccIARDI AND E. E. GOSE. A comparison of seven techniques for choos-
ing subsets of pattern recognition properties. IEEE Transactions on Computers, C-
20(9):1023-1031, September 1971.

W. MULLER AND F. WYSOTZKI. Automatic construction of decision trees for clas-
sification. Annals of Operations Research, 52:231, 1994.

O. J. MurpPHY AND R. L. McCRAW. Designing storage efficient decision trees. IEEE
Transactions on Computers, 40(3):315-319, March 1991.

PATRICK M. MURPHY. An empirical analysis of the benefit of decision tree size biases

as a function of concept distribution. Submitted to the Machine Learning journal,
July 1994.

Patrick M. MURPHY AND DAvID AHA. UCI repository of machine learning
databases — a machine-readable data repository. Maintained at the Department of
Information and Computer Science, University of California, Irvine. Anonymous FTP
from ics.uci.edu in the directory pub/machine-learning-databases, 1994.

PATRICK M. MURPHY AND MICHAEL J. PAzzANI. Exploring the decision forest:

An empirical investigation of Occam’s Razor in decision tree induction. Journal of
Artificial Intelligence Research, 1:257-275, 1994.

SREERAMA K. MURTHY. Data exploration using decision trees: A survey. In prepa-
ration, 1995. http://www.cs.jhu.edu/grad/murthy.

SREERAMA K. MURTHY. Using structure to improve decision trees. In Al&Statistics-
95 [5], pages 403-409.

SREERAMA K. MURTHY, S. KASIF, S. SALZBERG, AND R. BEIGEL. OC1: Random-
ized induction of oblique decision trees. In AAAI-93 [8], pages 322-327.

SREERAMA K. MURTHY, SIMON KASIF, AND STEVEN SALZBERG. A system for

induction of oblique decision trees. Journal of Artificial Intelligence Research, 2:1—
33, August 1994.

SREERAMA K. MURTHY AND STEVEN SALZBERG. Clustering astronomical objects
using minimum spanning trees. Technical report, Dept. of Computer Science, Johns
Hopkins University, July 1992.

SREERAMA K. MURTHY AND STEVEN SALZBERG. Decision tree induction: How
effective is the greedy heuristic? In Proceedings of the First International Conference
on Knowledge Discovery in Databases, Montreal, Canada, August 1995.

SREERAMA K. MURTHY AND STEVEN SALZBERG. Lookahead and pathology in de-
cision tree induction. In IJCAT-95 [223]. to appear.

[355]

[356]

[357]

[358]

[359]

[360]

[361]

362

363

[364]

[365]

[366]

[367]

368

276

R. Musick, JASON CATLETT, AND S. RUSSELL. Decision theoretic subsampling for
induction on large databases. In ML-93 [330], pages 212-219. Editor: Paul E. Utgoff.

D. MuTcHLER. The multi-player version of minimax displays game pathology. Arti-
ficial Intelligence, 64(2):323-336, December 1993.

Y. NAKAMURA, S. ABE, Y. OHSAWA, AND M. SAKAUCHI. A balanced hierarchical
data structure for multidimensional data with highly efficient dynamic characteristics.
IEEE Transactions on Knowledge and Data Engineering, 5(4):682-694, August 1993.

P. M. NARENDRA AND K. FUKANAGA. A branch and bound algorithm for feature
subset selection. IEEE Transactions on Computers, C-26(9):917-922, 1977.

S. C. NARULA AND J. F. WELLINGTON. The minimum sum of absolute errors
regression: a state of the art survey. International Statistical Review, 50:317-326,
1982.

DANA S. NAU. Decision quality as a function of search depth on game trees. Journal
of the Association of Computing Machinery, 30(4):687-708, October 1983.

G. E. NAuMoOvV. NP-completeness of problems of construction of optimal decision
trees. Soviet Physics, Doklady, 36(4):270-271, April 1991.

V. NEDELJKOVIC AND M. MILOSAVLJEVIC. On the influence of training set data pre-
processing on neural networks training. In Proceedings of the 11th International Con-
ference on Pattern Recognition, volume 11, pages 33-36, Los Alamitos, CA, Septem-
ber 1992. International Association for Pattern Recognition, IEEE Computer Society
Press.

T. NIBLETT. Constructing decision trees in noisy domains. In I. Bratko and
N. Lavrac, editors, Progress in Machine Learning. Sigma Press, England, 1986.

N.J. NILSSON. Learning Machines. Morgan Kaufmann, 1990.

STEVEN W. NORTON. Generating better decision trees. In IJCAI-89 [219], pages
800-805. Editor: N. S. Sridharan.

M. NUNEzZ. The use of background knowledge in decision tree induction. Machine
Learning, 6:231-250, 1991.

S.C. OpEwAHN, E.B. STOCKWELL, R.L. PENNINGTON, R.M. HUMPHREYS, AND
W.A. ZUMACH. Automated star-galaxy discrimination with neural networks. Astro-
nomical Journal, 103(1):318-331, 1992.

J. OLIVER. Decision graphs—an extension of decision trees. In AI&Statistics-93 [4].

369]

[370]

[371]

[372]

373]

[374]

[375]

[376]

[377]

[378]

379]

[380]

[381]

382

[383]

277

CorLMm A. O’MUIRCHEARTAIGH. Statistical analysis in the context of survey research.
In O’Muircheartaigh and Payne [370], pages 1-40.

Colm A. O’Muircheartaigh and Clive Payne, editors. The analysis of survey data,
volume I. John Wiley & Sons, Chichester, UK, 1977.

GiuLiA M. PAGALLO. Adaptive Decision Tree Algorithms for Learning from Ezxam-
ples. PhD thesis, University of California, Computer Research Laboratory, Santa
Cruz, CA, June 1990.

GiuLiA M. PAGALLO AND D. HAUSSLER. Boolean feature discovery in empirical
learning. Machine Learning, 5(1):71-99, March 1990.

SHAILENDRA C. PALVIA AND STEVEN R. GORDON. Tables, trees and formulas in
decision analysis. Communications of the ACM, 35(10):104-113, October 1992.

YOUNGTAE PARK. A comparison of neural net classifiers and linear tree classifiers:
Their similarities and differences. Pattern Recognition, 27(11):1493-1503, 1994.

YOUNGTAE PARK AND JACK SKLANSKY. Automated design of linear tree classifiers.
Pattern Recognition, 23(12):1393-1412, 1990.

YOUNTAE PARK AND JACK SKLANSKY. Automated design of multiple-class piecewise
linear classifiers. Journal of Classification, 6:195-222, 1989.

A. PATTERSON AND T. NIBLETT. ACLS user manual. Technical report, MIRU, ITL,
Universty of Edinburgh, 1982.

KRISHNA R. PATTIPATI AND MARK G. ALEXANDRIDIS. Application of heuristic
search and information theory to sequential fault diagnosis. IEEE Transactions on
Systems, Man and Cybernetics, 20(4):872-887, July/August 1990.

R. W. PAYNE AND D. A. PREECE. Identification keys and diagnostic tables: A
review. Journal of the Royal Statistical Society: series A, 143:253, 1980.

JUDEA PEARL. On the connection between the complexity and credibility of inferred
models. International Journal of General Systems, 4:255-264, 1978.

R. A. PEARSON AND P. E. STOKES. Vector evaluation in induction algorithms.
International Journal of High Speed Computing, 2(1):25-100, March 1990.

F. PiriToNE, K. A. DE JoNG, AND W. M. SPEARS. An artificial intelligence

approach to analog systems diagnosis. In Ruey-wen Liu, editor, Testing and Diagnosis
of Analog Circuits and Systems. Van Nostrand-Reinhold, New York, 1991.

SELWYN PIRAMUTHU, NARAYAN RAMAN, AND MICHAEL J. SHAW. Learning-based

scheduling in a flexible manufacturing flow line. IEEE Transactions on Engineering
Management, 41(2):172-182, May 1994.

[384]

[385]

[386]

[387]

[388]

[389)

390]

391]
392]

393]

394]

[395]

396]

278

N. J. P1zz1 AND D. JACKSON. Comparitive review of knowledge engineering and
inductive learning using data in a medical domain. Proceedings of the SPIE: The
International Society for Optical Engineering, 1293(2):671-679, April 1990.

LuTtz PRECHELT. A study of experimental evaluations of neural network algo-
rithms: Current research practice. Technical Report 19/94, Fakultét fiir Informatik,
Universitat Karlsruhe, 76128 Karlsruhe, Germany, August 1994. anonymous FTP:
/pub/papers/techreports/1994/1994-19.ps.Z on ftp.ira.uka.de.

F. P. PREPARATA AND M. I. SHAMOS. Computational Geometry: An Introduction.
Springer-Verlag, New York, 1985.

SHI QING-YUN AND KING-SUN Fu. A method for the design of binary tree classifiers.
Pattern Recognition, 16:593-603, 1983.

JoHN Ross QUINLAN. Discovering rules by induction from large collections of exam-
ples. In Donald Michie, editor, Fxpert Systems in the Micro Electronic Age. Edinburgh
University Press, Edinburgh, UK, 1979.

JOHN RoOss QUINLAN. Learning efficient classification procedures and their appli-
cation to chess end games. In R.S. Michalski, J.G. Carbonell, and T.M. Mitchell,
editors, Machine Learning: An Artificial Intelligence Approach. Morgan Kaufmann,
San Mateo, CA, 1983.

JouN Ro0Sss QUINLAN. The effect of noise on concept learning. In R. S. Michal-
ski, J. G. Carbonell, and T. M. Mitchell, editors, Machine Learning: An Artificial
Intelligence Approach, volume 2. Morgan Kauffman, San Mateo, CA, 1986.

JOHN Ross QUINLAN. Induction of decision trees. Machine Learning, 1:81-106, 1986.

JOHN R0OSs QUINLAN. Generating production rules from decision trees. In Proceed-
ings of Tenth International Joint Conference on Artificial Intelligence, pages 304-307,
Milan, ITtaly, 1987. Morgan Kaufmann.

JouN Ross QUINLAN. Simplifying decision trees. International Journal of Man-
Machine Studies, 27:221-234, 1987.

JOHN R0SSs QUINLAN. An empirical comparison of genetic and decision tree classi-
fiers. In Fifth International Conference on Machine Learning, pages 135-141, Ann
Arbor, Michigan, 1988. Morgan Kaufmann.

JOHN Ross QUINLAN. Unknown attribute values in induction. In Proceedings of the
Sizth International Workshop on Machine Learning, pages 164-168, San Mateo, CA,
1989. Morgan Kaufmann.

JoHN RoSss QUINLAN. Decision trees and decisionmaking. [EEE Transactions on
Systems, Man, and Cybernetics, 20(2):339-346, March-April 1990.

397]

398

[399]

[400]

[401]

[402]

[403]

[404]

[405]

[406]

[407]

[408]

[409]

279

JOHN R0Ss QUINLAN. Probabilistic decision trees. In R.S.Michalski and Y. Ko-
dratoff, editors, Machine Learning: An Artificial Intelligence Approach - Volume 3.
Morgan Kaufmann, San Mateo, CA, 1990.

JOHN R0Oss QUINLAN. C4.5: Programs for Machine Learning. Morgan Kaufmann
Publishers, San Mateo, CA, 1993.

JoHN Ross QUINLAN. Combining instance-based and model-based learning. In ML-
93 [330], pages 236—243. Editor: Paul E. Utgoff.

JoHuN Ross QUINLAN. Comparing connectionist and symbolic learning methods. In
S. Hanson, G. Drastal, and R. Rivest, editors, Computational Learning Theory and
Natural Learning Systems: Constraints and Prospects. MIT Press, 1993.

JouN Ross QUINLAN AND R. M. CAMEROON-JONES. Oversearching and layered-
search in empirical learning. In IJCAI-95 [223], pages 1019-1024. Editor: Chris
Mellish.

JoHN Ross QUINLAN AND RONALD L. RIVEST. Inferring decision trees using the
minimum description length principle. Information and Computation, 80(3):227-248,
March 1989.

HARISH RAGAVAN AND LARRY RENDELL. Lookahead feature construction for learn-
ing hard concepts. In ML-93 [330], pages 252-259. Editor: Paul E. Utgoft.

C. R. Rao, editor. Computational Statistics, volume 9 of Handbook of Statistics,
Amsterdam, 1993. Elsevier Publications, North-Holland Publishing Company.

LARRY RENDELL AND HARISH RAGAVAN. Improving the design of induction methods
by analyzing algorithm functionality and data-based concept complexity. In IJCAI-93
[221], pages 952-958. Editor: Ruzena Bajcsy.

ALFRED RENYI AND LASZLO VEKERDI. Probability Theory. North-Holland Publish-
ing Company, Amsterdam, 1970.

P. RiDDLE, R. SEGAL, AND O. ETZIONI. Representation design and brute-force in-

duction in a Boeing manufacturing domain. Applied Artificial Intelligence, 8(1):125—
147, January-March 1994.

JORMA RISANNEN. Stochastic Complexity in Statistica Enquiry. World Scientific,
1989.

EvE A. RISKIN AND ROBERT M. GRAY. A greedy tree growing algorithm for the

design of variable rate vector quantizers. IEEE Transactions on Signal Processing,
39(11):2500-2507, November 1991.

[410]

[411]

[412]

[413]

[414]

[415]

[416]

[417)

[418]

[419]

[420]

[421]

[422]

280

EvE A. RISKIN AND ROBERT M. GRAY. Lookahead in growing tree-structured
vector quantizers. In ICASSP 91: International Conference on Accoustics, Speech
and Signal Processing, volume 4, pages 2289-2292, Toronto, Ontario, May 14th-17th
1991. IEEE.

G. RITTER, H. WOODRUFF, S. LOWRY, AND T. ISENHOUR. An algorithm for a
selective nearest neighbor decision rule. IEEE Transactions on Information Theory,
21(6):665-669, 1975.

RicHARD H. ROTH. An approach to solving linear discrete optimization problems.
Journal of the ACM, 17(2):303-313, April 1970.

E. ROUNDS. A combined non-parametric approach to feature selection and binary
decision tree design. Pattern Recognition, 12:313-317, 1980.

STEVEN ROVNYAK, STEIN KRETSINGER, JAMES THORP, AND DONALD BROWN.

Decision trees for real time transient stability prediction. IEEE Transactions on
Power Systems, 9(3):1417-1426, August 1994.

RoON RYMON. An SE-tree based characterization of the induction problem. In ML-93
[330], pages 268-275. Editor: Paul E. Utgoft.

RoN RymMON AND N. M. SHORT, JR. Automatic cataloging and characteriza-

tion of earth science data using set enumeration trees. Telematics and Informatics,
11(4):309-318, Fall 1994.

S. RAsSOUL SAFAVIN AND DAvVID LANDGREBE. A survey of decision tree classifier
methodology. IEEE Transactions on Systems, Man and Cybernetics, 21(3):660-674,
May/June 1991.

M. SAHAMI. Learning non-linearly separable boolean functions with linear threshold
unit trees and madaline-style networks. In AAAI-93 [8], pages 335-341.

SARTAJ SAHNI. Approximate algorithms for the 0/1 knapsack problem. Journal of
the ACM, 22:115-124, 1975.

STEVEN SALZBERG. Distance metrics for instance-based learning. In Methodologies
for Intelligent Systems: 6th International Symposium, pages 399-408, 1991.

STEVEN SALZBERG. A nearest hyperrectangle learning method. Machine Learning,
6:251-276, 1991.

STEVEN SALZBERG. Combining learning and search to create good classifiers. Techni-
cal Report JHU-92/12, Department of Computer Science, Johns Hopkins University,
Baltimore MD, 1992.

[423]

[424]

[425]

[426]

[427]

[428]

[429]

[430]

[431]

[432]

[433]

[434]

[435]

281

STEVEN SALZBERG. Locating protein coding regions in human DNA using a decision
tree algorithm. Journal of Computational Biology, 1995. To appear in Fall.

STEVEN SALZBERG, RUPALI CHANDAR, HOLLAND FORD, SREERAMA MURTHY, AND
Rick WHITE. Decision trees for automated identification of cosmic-ray hits in Hub-
ble Space Telescope images. Publications of the Astronomical Society of the Pacific,
107:1-10, March 1995.

ANANT SANKAR AND RICHARD J. MAMMONE. Growing and pruning neural tree
networks. IEEE Transactions on Computers, 42(3):291-299, March 1993.

U. K. SARKAR, P. P. CHAKRABARTI, S. GHOSE, AND S. C. DESARKAR. Improving
greedy algorithms by lookahead-search. Journal of Algorithms, 16(1):1-23, January
1994.

LAWRENCE SAUL AND MICHAEL I. JORDAN. Learning in Boltzmann trees. Neural
Computation, 6(6):1174-1184, November 1994.

CULLEN SCHAFFER. Overfitting avoidance as bias. Machine Learning, 10:153-178,
1993.

CULLEN SCHAFFER. A conservation law for generalization performance. In ML-94
[331], pages 259-265. Editors: William W. Cohen and Haym Hirsh.

CULLEN SCHAFFER. Conservation of generalization: A case study. Technical report,
Department of Computer Science, CUNY /Hunter College, February 1995.

T. M. Scamipr, P. C. CoSMAN, AND ROBERT M. GRAY. Unbalanced non-binary
tree-structured vector quantizers. In A. Singh, editor, Conference Record of the
Twenty-Seventh Asilomar Conference on Signals, Systems and Computers, volume 2,
pages 1519-1523, Los Alamitos, CA, November 1st—3rd 1993. IEEE Computer Society
Press. Conf. held at Pacific Grove, CA.

J. SCHUERMANN AND W. DOSTER. A decision-theoretic approach in hierarchical
classifier design. Pattern Recognition, 17:359-369, 1984.

RicHARD W. SELBY AND ADAM A. PORTER. Learning from examples: Generation
and evaluation of decision trees for software resource analysis. IEEE Transactions on
Software Engineering, 14(12):1743-1757, December 1988.

BART SELMAN AND HENRY A. KAUTZ. An empirical study of greedy local search
for satisfiability testing. In AAAI-93 [8], pages 46-51.

ISHWAR KRISHNAN SETHI. Entropy nets: From decision trees to neural networks.
Proceedings of the IEEE, 78(10), October 1990.

[436]

[437]

[438]

[439)]

[440]

[441]

[442]

[443]

[444]

[445]

[446]

[447]

[448]

[449]

282

ISsHWAR KRISHNAN SETHI AND B. CHATTERJEE. Efficient decision tree design for
discrete variable pattern recognition problems. Pattern Recognition, 9:197-206, 1977.

IsHwAR KRISHNAN SETHI AND G.P.R. SARVARAYUDU. Hierarchical classifier design
using mutual information. IEEE Transactions on Pattern Analysis and Machine

Intelligence, PAMI-4(4):441-445, July 1982.

IsHwAR KRISHNAN SETHI AND J. H. Y00. Design of multicategory, multifeature
split decision trees using perceptron learning. Pattern Recognition, 27(7):939-947,
1994.

C. E. SHANNON. A mathematical theory of communication. Bell System Technical
Journal, 27:379-423,623-656, 1948.

JUupE W. SHAVLIK, R. J. MOONEY, AND G. G. TOWELL. Symbolic and neural learn-
ing algorithms: An empirical comparison. Machine Learning, 6(2):111-144, 1991.

SHELDON B. AKERS. Binary decision diagrams. IEEE Transactions on Computers,
C-27(6):509-516, June 1978.

S. SHIMOZONO, A. SHINOHARA, T. SHINOHARA, S. MivyaNO, S. KUHARA, AND
S. ARIKAWA. Knowledge acquisition from amino acid sequences by machine learn-
ing system BONSAI. Transactions of the Information Processing Society of Japan,
35(10):2009-2018, October 1994.

SEYMOUR SHLIEN. Multiple binary decision tree classifiers. Pattern Recognition,
23(7):757-763, 1990.

SEYMOUR SHLIEN. Nonparametric classification using matched binary decision trees.
Pattern Recognition Letters, 13(2):83-88, February 1992.

W. SIEDLECKI AND J. SKALANSKY. On automatic feature selection. International
Journal of Pattern Recognition and Artificial Intelligence, 2(2):197-220, 1988.

V.G. SIiGILETTO, S.P. WING, L.V. HUuTTON, AND K.B. BAKER. Classification of
radar returns from the ionosphere using neural networks. In Johns Hopkins APL
Technical Digest, pages 262-266, 1989.

HERBERT SIMON. Artificial intelligence as an experimental science. In AAAI-93 [8],
page 853. Invited Talk.

J.A. SIRAT AND J.-P. NADAL. Neural trees: A new tool for classification. Network:
Computation in Neural Systems, 1(4):423-438, October 1990.

JACK SKLANSKY AND LEO MICHELOTTI. Locally trained piecewise linear classifiers.
IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-2(2):101-
111, March 1980.

[450]

[451]

[452]

[453]

[454]

[455]

[456]

[457)

[458]

[459]

[460]

[461]

[462]

[463]

[464]

283

JACK SKLANSKY AND GUSTAV NICHOLAS WASSEL. Pattern classifiers and trainable
machines. Springer-Verlag, New York, 1981.

JoHuN SmiTH. Public key cryptography. Byte, January 1983.

J.W. SmitH, J.E. EVERHART, W.E. DicksoN, W.C KNOWLER, AND R.S. Jo-
HANNES. Using the ADAP learning algorithm to forecast the onset of diabetes mel-
litus. In Proceedings of the Symposium on Computer Applications and Medical Care,
pages 261-265. IEEE Computer Society Press, 1988.

PADHRAIC SMYTH, ALEX GRAY, AND USAMA M. FAYvYAD. Retrofitting decision
tree classifiers using kernel density estimation. In ML-95 [333]. to appear.

J. A. SonquisT, E. L. BAKER, AND J. N. MORGAN. Searching for Structure.
Institute for Social Research, University of Michigan, Ann Arbor, MI, 1971.

S.P.BROOKS AND B.J. T.MORGAN. Automatic starting point selection for function
optimization. Statistics and Computing, 4:173-177, 1994.

Liry SPIRKOVSKA. Three dimensional object recognition using similar triangles and
decision trees. Pattern Recognition, 26(5):727, May 1993.

SREEJIT CHAKRAVARTY. A characterization of binary decision diagrams. I[EEE
Transactions on Computers, 42(2):129-137, February 1993.

S.SCHWARTZ, J. WILES, I. GOUGH, AND S. PHILIPS. Connectionist, rule-based and
bayesian decision aids: An empirical comparison. In Hand [191], pages 264-278.

B.S. STEWART, CHING-FANG Liaw, AND C.C. WHITE. A bibliography of heuristic
search research through 1992. IEEE Transactions on Systems, Man and Cybernetics,
24(2):268-293, 1994.

L. STEWART. Hierarchical bayesian analysis using monte carlo integration: comput-
ing posterior distributions when there are many possible models. The Statistician,
36:211-219, 1987.

QUENTIN F. STOUT AND BETTE L. WARREN. Tree rebalancing in optimal time and
space. Communications of the ACM, 29(9):902-908, September 1986.

C. Y. SUEN AND QING REN WANG. ISOETRP - an interactive clustering algorithm
with new objectives. Pattern Recognition, 17:211-219, 1984.

XIAORONG SUN, YUPING QIU, AND Louis ANTHONY CoX. A hill-climbing approach
to construct near-optimal decision trees. In Al&Statistics-95 [5], pages 513-519.

P. SwaiN AND H. HAUSKA. The decision tree classifier design and potential. IEEE
Transactions on Geoscience and Electronics, GE-15:142-147, 1977.

[465]

[466]

[467)

[468]

[469]

[470]

[471]

[472]

[473]

[474]

[475]

[476]

[477]

284

JAN L. TALMON. A multiclass nonparametric partitioning algorithm. Pattern Recog-
nition Letters, 4:31-38, 1986.

JAN L. TALMON. A multiclass nonparametric partitioning algorithm. In Gelsema
and Kanal [163].

JAN L. TALMON, WILLEM R. M. DASSEN, AND VINCENT KARTHAUS. Neural nets
and classification trees: A comparison in the domain of ECG analysis. In Gelsema
and Kanal [164], pages 415-423.

JAN L. TALMON AND P. McNAIR. The effect of noise and biases on the performance

of machine learning algorithms. International Journal of Bio-Medical Computing,
31(1):45-57, July 1992.

MING TAN. Cost-sensitive learning of classification knowledge and its applications in
robotics. Machine Learning, 13:7-33, 1993.

Paur. C. TAYLOR AND BERNARD W. SILVERMAN. Block diagrams and splitting
criteria for classification trees. Statistics and Computing, 3(4):147-161, December
1993.

SEBASTIAN THRUN AND ET AL. The monk’s problems: A performance comparison of
different learning algorithms. Technical Report CMU-CS-91-197, School of Computer
Science, Carnegie-Mellon University, Pittsburgh, PA, 1991.

R. ToDESHINI AND E. MARENGO. Linear discriminant classification tree: a user-
driven multicriteria classification method. Chemometrics and Intelligent Laboratory
Systems, 16:25-35, 1992,

J.T. Tou AND R.C. GONZALEZ. Pattern Recognition Principles. Addison Wesley,
Reading, MA, 1974.

GODFRIED T. TOUSSAINT. Bibliography on estimation of misclassification. IEFE
Transactions on Information Theory, 20(4):472-479, July 1974.

CHARALAMBOS TSATSARAKIS AND D. SLEEMAN. Supporting preprocessing and post-

processing for machine learning algorithms: A workbench for ID3. Knowledge Acqui-
sition, 5(4):367-383, December 1993.

PEI-LETI TU AND JEN-YAO CHUNG. A new decision-tree classification algorithm for
machine learning. In Proceedings of the IEEFE International Conference on Tools with
Al pages 370-377, Arlington, Virginia, November 1992.

I. B. TURKSEN AND H. ZHAO. An equivalence between inductive learning and
pseudo-Boolean logic simplification: a rule generation and reduction scheme. IEEE
Transactions on Systems, Man and Cybernetics, 23(3):907-917, May-June 1993.

[478]

[479]

[480]

[481]

[482]

[483]

[484]

[485]

[436]

[487)

[488)]

[489)]

[490]

[491]

285

PETER D. TURNEY. Cost-sensitive classification: Empirical evaluation of a hybrid
genetic decision tree induction algorithm. Journal of Artificial Intelligence Research,

2:369-409, March 1995.

PauL E. UTGoFF. Incremental induction of decision trees. Machine Learning, 4:161—
186, 1989.

PAuL E. UTGOFF. Perceptron trees: A case study in hybrid concept representations.
Connection Science, 1(4):377-391, 1989.

PaurL E. UTGOFF. An improved algorithm for incremental induction of decision trees.
In ML-94 [331], pages 318-325. Editors: William W. Cohen and Haym Hirsh.

Paur E. UTGOFF AND CARLA E. BRODLEY. An incremental method for finding
multivariate splits for decision trees. In Proceedings of the Seventh International
Conference on Machine Learning, pages 58-65, Los Altos, CA, 1990. Morgan Kauf-
mann.

Paur E. UTGOFF AND CARLA E. BRODLEY. Linear machine decision trees. Tech-
nical Report 10, University of Massachusetts, Amherst MA, 1991.

J.M. VAN CAMPENHOUT. On the Problem of Measurement Selection. PhD thesis,
Stanford University, Dept. of Electrical Engineering, 1978.

THIERRY VAN DE MERCKT. NFDT: A system that learns flexible concepts based
on decision trees for numerical attributes. In Proceedings of the Ninth International
Workshop on Machine Learning, pages 322-331, 1992.

THIERRY VAN DE MERCKT. Decision trees in numerical attribute spaces. In IJCAI-93
[221], pages 1016-1021. Editor: Ruzena Bajcsy.

P.J.M. VAN LAARHOVEN AND AARTS. E.H.L. Simulated Annealing: Theory and
Applications. Reidel, Dordrecht, 1987.

P.K. VARSHNEY, C.R.P. HARTMANN, AND J.M. DE FARIA JR. Applications of
information theory to sequential fault diagnosis. IEEE Transactions on Computers,
C-31(2):164-170, 1982.

WALTER VAN DE VELDE. Incremental induction of topologically minimal trees. In
Bruce W. Porter and Ray J. Mooney, editors, Proceedings of the Seventh International
Conference on Machine Learning, pages 66—74, Austin, Texas, 1990.

C. S. WALLACE AND D. M. BOULTON. An information measure for classification.
Computer Journal, 11:185-194, 1968.

C. S. WALLACE AND J. D. PATRICK. Coding decision trees. Machine Learning,
11(1):7-22, April 1993.

492]

[493]

[494]

[495]

[496]

[497)

[498]

[499]

[500]

[501]

[502]

[503]

[504]

286

QING REN WANG. Decision Tree Approach to Pattern Recognition Problems on a
Large Character Set. PhD thesis, Concordia University, Canada, 1984.

QING REN WANG AND C. Y. SUEN. Analysis and design of a decision tree based
on entropy reduction and its application to large character set recognition. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 6:406—417, 1984,

QING REN WANG AND CHING Y. SUEN. Large tree classifier with heuristic search and
global training. IEEFE Transactions on Pattern Analysis and Machine Intelligence,
PAMI-9(1):91-102, January 1987.

GusTAV NICHOLAS WASSEL. Training a Linear Classifier to Optimize the Error
Probability. PhD thesis, University of California, Irvine, 1972.

GUSTAV NICHOLAS WASSEL AND JACK SKLANSKY. Training a one-dimensional clas-
sifier to minimize the probability of error. IEEE Transactions on Systems, Man and

Cybernetics, SMC-2:533-541, September 1972.

LARRY WATANABE AND LARRY RENDELL. Learning structural decision trees from
examples. In IJCAI-91 [220], pages 770-776. Editors: John Mylopoulos and Ray
Reiter.

S. WATANABE. Pattern recognition as a quest for minimum entropy. Pattern Recog-
nition, 13:381-387, 1981.

NicHOLAS WEIR, S. DJORGOVSKI, AND UsaMA M. FAYYAD. Initial galaxy counts
from digitized POSS-11. The Astronomical Journal, 110(1):1, 1995.

NicHOLAS WEIR, UsAMA M. FAYYAD, AND S. DJORGOVSKI. Automated

star/galaxy classification for digitized POSS-IIL. The Astronomical Journal,
109(6):2401, 1995.

S. WEISs AND I. KAPOULEAS. An empirical comparison of pattern recognition,
neural nets, and machine learning classification methods. In IJCAI-89 [219], pages
781-787. Editor: N. S. Sridharan.

SHALOM M. WEISS AND NITIN INDURKHYA. Rule-based regression. In IJCAI-93
[221], pages 1072-1078. Editor: Ruzena Bajcsy.

ALLAN P. WHITE AND WEI ZHANG LI1U. Technical note: Bias in information-based
measures in decision tree induction. Machine Learning, 15(3):321-329, June 1994.

P.A.D. WiLks AND M.J. ENGLISH. Accurate segmentation of respiration waveforms

from infants enabling identification and classification of irregular breathing patterns.
Medical Engineering and Physics, 16(1):19-23, January 1994.

[505]

[506]

[507]

[508]

[509]

[510]

[511]

[512]

[513]

[514]

[515]

[516]

287

ROGIER A. WINDHORST, BARBARA E. FRANKLIN, AND LYMAN W. NEUSCHAEFER.
Removing cosmic ray hits from multi-orbit HST wide field camera images. Proceedings
of the Astronomical Society of Pacific, 106, July 1994.

J. WirTH AND J. CATLETT. Experiments on the costs and benefits of windowing
in ID3. In Fifth International Conference on Machine Learning, pages 87-99, Ann
Arbor, Michigan, 1988. Morgan Kaufmann.

D. WOLPERT. On overfitting avoidance as bias. Technical Report SFT TR, 92-03-5001,
The Santa Fe Institute, 1992.

K. S. Woobs, C. C. Doss, K. W. VOWYER, J. L. SoLkA, C. E. PRIEVE, AND
W. P. JrR. KEGELMEYER. Comparative evaluation of pattern recognition techniques
for detection of microcalcifications in mammography. International Journal of Pattern
Recognition and Artificial Intelligence, 7(6):1417-1436, December 1993.

CHIALIN WU, DAVID LANDGREBE, AND PHILIP SWAIN. The decision tree approach
to classification. Technical Report TR-EE-75-17, Laboratory for Applications of Re-
mote Sensing, School of Engineering, Purdue University, West Lafayette, IN, May
1975.

MIHALIS YANNAKAKIS. The analysis of local search problems and their heuristics.
In Lecture Notes in Computer Science, volume 415, pages 298-311. Springer-Verlag,
1990.

K. C. You AND KING-SUN FU. An approach to the design of a linear binary tree
classifier. In Proceedings of the Third Symposium on Machine Processing of Remotely
Sensed Data, West Lafayette, IN, 1976. Purdue University.

Y. YUuAN AND M. J. SHAW. Induction of fuzzy decision trees. Fuzzy Sets and
Systems, 69(2):125, 1995.

C.T. ZAuN. Graph theoretical methods for detecting and describing gestalt clusters.
IEEE Transactions on Computers, C—20(1), January 1971.

WANG ZHENGOU AND LIN YAN. A new inductive learning algorithm: Separability-
Based Inductive learning algorithm. Acta Automatica Sinica, 5(3):267-270, 1993.
Translated into Chinese Journal of Automation.

XIAO J1A ZHOU AND THARAM S. DILLON. A statistical-heuristic feature selection

criterion for decision tree induction. [IEEFE Transactions on Pattern Analysis and
Machine Intelligence, PAMI-13(8):834-841, August 1991.

SETH ZIMMERMAN. An optimal search procedure. The American Mathematical
Monthly, 66(8):690-693, March 1959.

288

Vita

Kolluru Venkata Sreerama Murthy was born in Bapatla, India on 2nd April 1967.
He obtained a baccalaureate honours degree in computer science and engineering from
Motilal Nehru Regional Engineering College, Allahabad in 1988. He then got a Masters
degree in computer science and engineering from Indian Institute of Technology, Madras
in 1990. After working briefly for Westinghouse Electric Corporation (Process Control
Division, Pittsburgh, PA, USA) and National Center for Software Technology (Bombay,
India), he joined the Johns Hopkins University in September 1991, in pursuit of a doctoral
degree in computer science. He married Sudha in May, 1995.

