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AbstractThis thesis investigates the problem of growing decision trees from data, for the purposesof classi�cation and prediction.After a comprehensive, multi-disciplinary survey of work on decision trees, somealgorithmic extensions to existing tree growing methods are considered. The implicationsof using (1) less greedy search and (2) less restricted splits at tree nodes are systemati-cally studied. Extending the traditional axis-parallel splits to oblique splits is shown tobe practical and bene�cial for a variety of problems. However, the use of more extensivesearch heuristics than the traditional greedy heuristic is argued to be unnecessary, and oftenharmful. Any e�ort to build good decision trees from real-world data involves \massag-ing" the data into a suitable form. Two forms of data massaging, domain-independentand domain-speci�c, are distinguished in this work. A new framework is outlined for theformer, and the importance of the latter is illustrated in the context of two new, complexclassi�cation problems in astronomy. Highly accurate and small decision tree classi�ers arebuilt for both these problems through a collaborative e�ort with astronomers.
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1
Chapter 1Introduction

This thesis explores a speci�c method for discovering mathematical regularitiesunderlying sets of observations using a computer program.Consider the following examples. (1) An astronomer takes a set of images usinga telescope, and identi�es the objects as stars and galaxies in each image. With a viewto automate the identi�cation process, he/she wants to discover, from the existing images,empirical rules governing how images of stars di�er from images of galaxies. (2) A cancercenter has a set of medical records accumulated over a period of time. A portion of theserecords belong to patients whose cancer has recurred. It is desirable to know well in advancewhether a particular patient's cancer will recur, and empirical regularities in existing patientrecords may be a key to this information.We refer to the general process of discovering rules from data as \exploration",\learning", or \classi�cation". Many areas of scienti�c enquiry address the problem of dataexploration. The science of statistics deals with assembling, classifying and tabulating data



2or facts. Pattern recognition, an area of engineering, attempts to �nd patterns (commonali-ties, de�nitive tendencies etc.) that exist in images or signals. Several areas of mathematics,such as mathematical programming and function approximation, aim at �tting represen-tations to data. Recent disciplines such as machine learning and arti�cial neural networkslargely concentrate on data exploration and classi�cation techniques.Advances in data collection methods, storage and processing technology providea unique challenge and opportunity for automated data exploration techniques. Majorscienti�c projects such as the Human Genome Project, the Hubble Space Telescope, andthe human brain mapping initiative are generating enormous amounts of data on a dailybasis. In addition, researchers and practitioners from more diverse disciplines than everbefore are attempting to use automated methods to analyze their data. As the quantityand variety of data available to data exploration methods increases, there is a commensurateneed for robust, e�cient and versatile data exploration methods.This thesis considers decision trees, which are a way to represent rules underly-ing data. Decision trees are hierarchical, sequential classi�cation structures that recursivelypartition the set of observations (data). In this thesis, we are interested in constructing de-cision trees automatically from data. A hypothetical data set for a star/galaxy classi�cationproblem, and a decision tree which could have been constructed from it are given in Fig. 1.1.In the �gure, the attributes w,x,y and z might represent any useful information, such as thebrightness of the object, its size etc. Each node of the decision tree consists of either a testthat partitions the data, or a decision about the object. Once a tree is constructed from



3data, it can be used to classify objects of unknown category (star or galaxy).Automatic construction of rules in the form of decision trees has been attempted inalmost all disciplines in which data exploration methods have been developed. Though theterminology and emphases di�er from discipline to discipline, there are many similarities inthe methodology (see Chapter 2). Several advantages of decision tree-based classi�cationhave been pointed out in the literature.� Knowledge acquisition from pre-classi�ed examples circumvents the bottleneck of ac-quiring knowledge from a domain expert.� Tree methods are exploratory (non-parametric) as opposed to inferential (parametric).As only a few assumptions are made about the model and the data distribution, treescan model a wide range of data distributions.� Hierarchical decomposition implies better use of available features and computationale�ciency in classi�cation.� Tree classi�ers can treat uni-modal as well as multi-modal data in the same fashion(as opposed to some statistical methods).� Trees can be used with the same ease in deterministic as well as incomplete problems.(In deterministic domains, the dependent variable (class) can be determined perfectlyfrom the independent variables, whereas in incomplete problems, it cannot.)� Trees perform classi�cation by a sequence of simple, easy-to-understand tests whosesemantics are intuitively clear to domain experts. The decision tree formalism itself
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5is intuitively appealing.1.1 ContributionsThe main contributions of this thesis, in the author's opinion, are the following.� \Oblique" decision trees are clearly preferable to the standard axis-parallel trees forsome domains. So, it is desirable to have a system capable of e�ciently inducingoblique trees. This thesis (Chapter 3) proposes and evaluates one such system, OC1.The OC1 software, written by the author, has been available in the public domainsince 1993. Hundreds of researchers from multiple disciplines from all over the worldhave retrieved this software.� Two new, complex classi�cation problems in astronomy are successfully solved.(Chapter 6)� A systematic attempt is made to quantify the e�ect of lookahead search for decisiontree induction (Chapter 4). The existence of pathology [360] in the context of decisiontrees is reported for the �rst time, and several real and synthetic data sets for whichlookahead hurts tree quality are presented.� A comprehensive, multidisciplinary survey of work on decision trees is presented whosecoverage is broader than that of the existing surveys in the �eld. (Chapter 2)Most of this thesis (except Chapter 2) is from the point of view of machine learn-ing, a sub�eld of arti�cial intelligence (AI). Almost all of this thesis has an experimental



6
avor. The investigations are empirical in nature, where carefully designed and controlledexperiments form the basis of observations and conclusions. Experimental analysis hashistorically been a predominant form of AI research [447].One of the grand goals of AI has been to emulate and comprehend human intelli-gence. A reader with such a perspective might expect machine learning systems to imitatehuman learning. Adaptive processes in humans in particular, and biological organisms ingeneral, are fascinating. However, this thesis neither explores biological learning nor at-tempts to justify machine learning techniques using biological analogies. It is possible thatautomated techniques to learn from data enhance our understanding of biological learning,or vice versa. Nevertheless, this thesis is based on the belief that biological justi�cation isneither necessary nor su�cient for a successful machine learning system. We believe thatan attempt to evaluate aircrafts by comparing them with birds is futile [200]. Throughoutthis thesis, machine learning techniques are viewed as helpful tools, and not as techniquesthat attempt to emulate natural intelligence.1.2 Overview of the thesisThis thesis can be roughly divided into three parts. Chapter 2 is the �rst part, whichpresents in detail the existing work on decision trees. The second part deals with one wayof building \better" decision trees: through algorithmic extensions. This part comprises ofChapters 3, 4 and 5. The third part addresses another, not necessarily an alternative, wayof building better trees: by re-representing or massaging the data into an appropriate form.



7Chapters 6 and 7 form the third part. We outline the contents of each of the three partsbelow.Existing work: Chapter 2 presents a concise multi-disciplinary survey of decision treerelated work. The main emphasis is on tree construction methodology, but pointers are alsogiven to comparisons of decision trees with other (statistical and neural) data explorationmethods, and to some recent, real-world applications. The e�ort is to trace the directionsdecision tree work has taken over the years, rather than to provide a tutorial of speci�ctopics. Chapter 2 is intended to accomplish two things: (1) as there exist no comprehensive,multi-disciplinary surveys of decision tree work, it attempts to �ll an important gap in theliterature; (2) it shows the reader where in the big picture the rest of the results in thisthesis �t.Algorithmic extensionsLess restricted splits: Chapter 3 considers the problem of inducing \oblique"decision trees. Oblique decision trees can contain tests that use linear combinations offeatures. (Fig. 1.1 is an oblique decision tree.) These are a generalization of the morepopular univariate, or axis-parallel, decision trees. (See Section 2.1.2 for decision treeterminology and basics.) In Chapter 3, we discuss the di�culties in inducing oblique trees,present an e�cient algorithm and thoroughly evaluate it. We demonstrate that stochasticsearch is an e�ective and e�cient tool for building oblique trees.



8Less greedy gearch: Most existing methods for tree construction use greedysearch for determining the splits at tree nodes | splits that are optimal locally (i.e., ata node) according to some criterion are used to partition each node. As greedy search isknown to produce necessarily suboptimal trees, the advantages of replacing greedy searchby one-level lookahead search are investigated in Chapter 4. In this method, the bestsplit at a tree node is taken to be the one that can eventually produce the best � 4-waypartitioning. Systematic experimentation with arti�cial and real world data reveals thatlimited lookahead search does not o�er signi�cant advantages over the greedy approach.In addition, limited lookahead search produces worse trees than greedy search in severalsituations. This latter trend is known as \pathology" in the context of game trees, and, toour knowledge, has not been reported in the context of decision trees.The counter-intuitive result that lookahead search does not improve over greedysearch would stand to reason if the latter itself constructs near-optimal trees. Chapter 5describes experiments that attempt to quantify how close the greedily induced trees are tothe optimal ones. For hundreds of thousands of data sets, we compare the greedily inducedtrees to the optimal ones, under varying training data characteristics. The results of theseexperiments suggest that the greedy heuristic, together with pruning (Section 2.4.1), indeedproduces trees with near-optimal expected depth.Data MassagingDomain-speci�c data massaging: Chapter 6 describes two projects in which



9decision trees are used to solve new astronomical classi�cation problems. The �rst involvesidentifying cosmic rays (a type of noise) in Hubble Space Telescope images, and the secondinvolves classifying stars and galaxies in Sloan Digital Sky Survey images. Both problems arecharacterized by data streams (images) that are directly not useful for classi�cation. Thereare high noise levels and a very large variety of parameters that can be measured. Theenormous sizes of the data streams make it essential that the classi�ers be highly accurateand e�cient. The author worked with a group of four other researchers for approximately3.5 years to successfully develop decision tree classi�ers for both these problems. A largeportion of our e�ort involved re-representing the data in an appropriate form.Domain-independent data massaging: The basis for choosing splits at deci-sion tree nodes are goodness measures (Section 2.3.1), which assign a numeric \goodness"to each split. Most existing goodness measures cannot take into account the distributionor structure of the data in numeric attribute spaces. Because some statistical methods canextract this information, Chapter 7 proposes a framework to massage the data using sta-tistical methods prior to tree induction. As an example, clustering is demonstrated to be auseful preprocessing step for several univariate and multi-variate decision tree methods.Finally, Chapter 8 provides general conclusions and outlines interesting directionsfor further research.



10
Chapter 2Existing work on decision trees: Amulti-disciplinary survey
2.1 IntroductionA decision tree can be used for data exploration in one or more of the following ways: 1� To reduce a volume of data by transforming it into a more compact form whichpreserves the essential characteristics and provides an accurate summary.� Discovering whether the data contains well-separated clusters of objects, such thatthe clusters can be interpreted meaningfully in the context of a substantive theory.� Uncovering a mapping from independent to dependent variables that is useful forpredicting the value of the dependent variable in the future.1 Adapted from [369], where a similar taxonomy was suggested in the general framework of search-ing for structure in data.



11Work related to automatically constructing and using decision trees for data de-scription, classi�cation and generalization exists in a wide variety of disciplines. It has beentraditionally developed in the �elds of statistics, engineering (logic synthesis, pattern recog-nition) and decision theory (decision table programming). Recently renewed interest hasbeen generated by research in arti�cial intelligence (machine learning) and the neurosciences(neural networks). In spite of a diverse body of literature on automatic construction of de-cision trees, there exist no comprehensive, multi-disciplinary surveys of up-to-date resultson this topic (see Section 2.2 for discussion of existing surveys [379, 338, 417]).A characteristic of existing decision tree work seems to be a lack of directedprogress. As most research on this subject is (perhaps needs to be) empirical, researchersand system developers typically try ad hoc variations of the basic methodology. However,such a practice can lead to redundant e�ort, particularly because researchers from verydiverse disciplines are interested in decision trees. It is not unusual to �nd many papersproposing almost identical heuristics/analyses of tree construction.As a step towards rectifying the above situation, the current chapter undertakesa concise survey of decision tree related work. We summarize signi�cant results relatedto automatically constructing decision trees from data, from �elds such as logic synthesis,machine learning, mathematical programming, neural networks, pattern recognition, signalprocessing and statistics. Although it is not the intent of the current chapter to point outspeci�c instances of redundant results, a careful reader may notice several such examples.The main distinctive features of the current chapter, compared to existing surveys are:



12� A substantial body of work that has been done after the existing surveys were written(e.g., almost all of the machine learning work) is covered. Many topics that were notdiscussed in the existing surveys (e.g., multivariate trees) are also covered.� This chapter considers decision tree work in multiple disciplines in contrast to existingsurveys that concentrated on speci�c disciplines (e.g., Safavin and Langrebe's survey[417] covers work mostly from the pattern recognition literature).� Our main emphasis is on automatically constructing decision trees for parsimoniousdescriptions of, and generalization from, data. (In contrast, Moret's [338] main em-phasis was on representing Boolean functions as decision trees.)� A signi�cant portion of this survey is devoted to comparisons of tree-based dataexploration with other (e.g., statistical and neural) methods, and to recent real-worldapplications of decision trees.Because there is a vast body of work on automatic construction of decision trees,we maintain the conciseness of this survey using the following guidelines and limitations.� We do not attempt a tutorial overview of any speci�c topics. Our main emphasis isto trace the directions that decision tree work has taken.� We avoid repeating many of the references from [379, 338, 417]. This is partly becausethe above surveys had di�erent emphases than ours, as outlined in Section 2.2.� We limit our references primarily to refereed journals, published books and recentconferences.



13� Our coverage of decision tree applications falls far short of being comprehensive; it ismerely illustrative.Work Not Covered: Work not covered includes automatic construction of hierarchicalstructures using data in which the categories of objects are not known (unsupervised learn-ing), present in �elds such as cluster analysis [127] and machine learning (e.g., [141, 165]).A body of work using decision trees as a representational paradigm, existing in �elds suchas programming languages and analysis of algorithms, is not included. Work on decisiontrees constructed by hand (prevalent in the medical domain) is also not considered.2.1.1 Outline of the chapterSection 2.1.2 is intended to clarify the basics and terminology of decision trees. The next foursections provide pointers to tree construction methods. Section 2.2 gives high level pointers,mentioning existing surveys, text books and historical origins. Section 2.3 discusses workon determining splits at tree nodes. Section 2.4 discusses techniques, such as pruning, usedto obtain the right sized trees. Section 2.5 ties into one section several disparate topicsrelevant to tree construction, such as sample size and dimensionality considerations, workon improving greedy induction, incorporating costs, estimating probabilities from decisiontrees etc.Several researchers have analyzed, theoretically and empirically, the process oftree construction itself. Section 2.6 discusses NP-completeness results in the context of treeconstruction, work analyzing biases and assumptions, etc. Section 2.7 gives pointers to



14work comparing tree based data exploration to alternatives, such as multivariate statisticalmethods, neural networks, etc. Section 2.8 lists some recent, real-world applications ofdecision trees, to give the reader a feel for the versatality of the decision tree paradigm.Section 2.9 concludes the chapter.2.1.2 Basics of tree constructionThis section gives a quick (and dirty) overview of the process of decision tree construction.We assume that the reader is familiar with some form of decision trees, and only try toclarify terminology. Readers not familiar with decision trees are directed to ([417], SectionII) for a good summary of basic de�nitions.A decision tree is induced on a training set, which consists of objects. Each objectis completely described by a set of attributes and a class label. Attributes can have orderedor unordered values. For example, integer values are ordered whereas Boolean values arenot. The concept underlying a data set is the true mapping between the attribute set andthe class label. A noise-free training set is one in which all the objects are generated usingthe underlying concept.A decision tree contains zero or more internal nodes and one or more leaf nodes(see Fig. 1.1). All internal nodes have two or more child nodes. 2 All non-terminal nodescontain splits, which test the value of a mathematical or logical expression of the attributes.Edges from an internal node T to its children are labelled with distinct outcomes of the test2 Lubinsky [300] considered trees that can have internal nodes with just one child. At these nodes,the data are not split, but residuals are taken from a single variable regression.



15at T . Each leaf node has a class label associated with it. 3 The number of classes is �nite.A leaf node t is said to be pure if all the training samples at t belong to the same class.The task of constructing a tree from the training set is called tree induction. Mostexisting tree induction systems proceed in a greedy top-down fashion (see Section 2.5.10 forexceptions). Starting with an empty tree and the entire training set, the following algorithmis applied until no more splits are possible.� If all the training examples at the current node t belong to category c, create a leafnode with the class c and halt.� Otherwise, score each one of the set of possible splits S, using a goodness measure(Section 2.3.1).� Choose the best split s� as the test at the current node, and create as many childnodes as there are distinct outcomes of s�.� Label edges between the parent and child nodes with outcomes of s�, and partitionthe training data using s� into the child nodes.There are several reasons why one might construct a decision tree from data, suchas concise data description, discrimination or classi�cation. Discrimination is the process ofderiving classi�cation rules from samples of classi�ed objects, and classi�cation is applyingthe rules to new objects of unknown class [190]. In other words, classi�cation is computingthe class label of an object given its attribute values. 4 An object X is classi�ed by passing3 While converting decision tables to trees, it is common to have leaf nodes that have a \nodecision" label.4 More precisely, a decision tree is said to perform classi�cation if the class labels are discrete



16it through the tree starting at the root node. The test at each internal node along thepath is applied to the attributes of X, to determine the next edge along which X should godown. The label at the leaf node at which X ends up is outputted as its classi�cation. Anobject is misclassi�ed by a tree if the classi�cation outputted by the tree is not the same asthe object's class label. The proportion of objects correctly classi�ed by a decision tree isknown as its accuracy, whereas the proportion of misclassi�ed objects is the error.A univariate decision tree is one in which the test at each internal node usesa single attribute. A multivariate decision tree may use as splits expressions containingmultiple attributes. A special case of multivariate trees that we are particularly interestedin is oblique decision trees. The tests in oblique trees use linear combinations of attributes.Alternative TerminologyStructures very similar to decision trees have been referred to as classi�cation trees,branched testing sequences, discriminant trees, tree structured vector quantizers and iden-ti�cation keys. Tree induction is also referred to as tree construction, building or growing.Training sets or samples consists of objects (also known as observations, examples or in-stances). Attributes are also known as features, predictors or independent variables. Adecision tree imposes a partitioning in an ordered attribute space that can be geometricallyrepresented as a collection of hyperplanes and regions. For this reason, splits are oftenreferred to as hyperplanes, attributes as dimensions and objects as points.values, and regression if the class labels are continuous. We restrict almost entirely to classi�cationtrees in this chapter.



17A class label is also referred to as category or dependent variable. Ordered domainsare equivalent to or comprise of continuous, integer, real-valued and monotonous domains.Unordered domains have categorical, discrete or free variables. Internal nodes are the sameas non-terminals or test nodes. Leaf nodes are the terminal nodes or decision nodes. Splitsare the same as cuts or tests. Goodness measures are also known as feature evaluationcriterion, feature selection criterion, impurity measure or splitting rule. A leaf node is purewhen it is homogeneous. A univariate tree is also axis-parallel, and an oblique tree is thesame as a linear tree.2.2 High-level pointersA decision tree performs mutistage hierarchical decision making. For a general rationale formultistage classi�cation schemes and a categorization of such schemes, see [237].2.2.1 TreatisesThe work on decision tree construction in statistics has its origins in methods for exploringsurvey data. For a review of earlier statistical work on hierarchical classi�cation, see [139].Statistical programs such as AID [454], MAID [170], THAID [339] and CHAID [240] builtbinary segmentation trees aimed towards unearthing the interactions between predictor anddependent variables. A standard reference for the current work on decision trees from a sta-tistical perspective is Breiman et al.'s excellent monograph on classi�cation and regressiontrees [44].



18Pattern recognition work on decision trees was motivated by the need to interpretimages from remote sensing satellites such as LANDSAT in the 1970s [464]. An overview ofwork on decision trees in the patter recognition literature can be found in [106]. A high levelcomparative perspective on the classi�cation literature in pattern recognition and arti�cialintelligence can be found in [76].Decision trees in particular, and induction methods in general, arose in machinelearning to avoid the knowledge acquisition bottleneck [137] for expert systems. A majorityof work on decision trees in machine learning is an o�shoot of Breiman et al.'s CART work[44] and Quinlan's ID3 algorithm [391]. Quinlan's book on C4.5 [398], although speci�c tohis tree building program, is perhaps the best available overview of tree methodology froma machine learning perspective.In sequential fault diagnosis, a set of possible tests with associated costs and aset of system states with associated prior probabilities are given. One of the states is a\fault-free" state and the other states represent distinct faults. The aim is to build a testalgorithm that unambiguously identi�es the occurrence of any system state using the giventests, while minimizing the total cost. The testing algorithms normally take the form ofdecision trees or AND/OR trees [488, 378]. Many heuristics used to construct decision treesare used for test sequencing also.Vector quantization (VQ) [167] is a data compression technique that has proveduseful for image coding. Tree structured vector quantizers (TSVQ) [65] are structures verysimilar to decision trees. A lot of work exists in the speech and signal processing literature,



19on building and analyzing TSVQs.A Binary Decision Diagram (BDD) represents a Boolean function as a rooted,directed acyclic graph [279, 441]. Ordered binary decision diagrams (OBDD) [52, 53] im-pose restrictions on the ordering of variables at the nodes of a BDD. OBDDs have beenused for digital system design, veri�cation and testing. OBDDs are similar to decisiontrees, 5 and there exist several issues of common concern such as �nding the minimal-sizedrepresentations.2.2.2 SurveysPayne and Preece [379] surveyed results on constructing identi�cation keys, in a paperthat attempted \a synthesis of a large and widely-dispersed literature" from �elds such asbiology, pattern recognition, decision table programming, machine fault location, codingtheory and questionnaire design. Taxonomic identi�cation keys are tree structures thathave one object per leaf and for which the set of available tests (splits) is prespeci�ed. Theproblem of constructing identi�cation keys is not the same as the problem of constructingdecision trees from data, but many common concerns exist (e.g: optimal key construction,choosing good tests at tree nodes etc.).Moret [338] provided a tutorial overview of the work on representing Booleanfunctions as decision trees and diagrams. He summarized results on constructing decisiontrees in discrete variable domains. Though Moret does mention some pattern recognition5 Oblivious decision trees [257] from the machine learning literature are nearly identical in struc-ture to OBDDs.



20work on constructing decision trees from data, this was not his main emphasis. Safavin andLandgrebe [417] more recently summarized decision tree construction methodology, almostentirely from a pattern recognition perspective. Bryant [53] surveyed the methodology andapplications of ordered binary decision diagrams.2.3 Finding splitsTo build a decision tree, it is necessary to �nd, at each internal node, a split for the data.In case of univariate trees, �nding a split amounts to �nding an attribute which is the most\useful" in discriminating the input data, and �nding a decision rule using the attribute.In case of multivariate trees, �nding a split can be seen as �nding a \composite" feature,a combination of (some of the) existing attributes that has good discriminatory power. Ineither of these cases, a basic task in tree building is to rank features (single or composite)according to their usefulness in discriminating the classes in the data.The manner of growing a tree di�ers slightly from discipline to discipline, butseveral underlying concerns are the same. In pattern recognition and statistics literature,features are typically ranked using feature evaluation rules, and the single best featureor a good feature subset are chosen from the ranked list. In the context of ordered binarydecision diagrams (OBDDs), the order in which variables are chosen at tree nodes determinesthe complexity of the OBDD, and many heuristics have been evaluated for variable orderselection (eg., [457, 154]). In machine learning, feature evaluation rules are used mainly forpicking the single best feature at every node of the decision tree. Methods used for selecting



21a good subset of features are typically quite di�erent and are used as preprocessing steps totree induction. (We will discuss feature subset selection methods separately in Section 2.5.1.)Tree structure vector quantizers, when they were proposed [65], were grown one layer ata time, by splitting all nodes in the previous layer. Makhoul et al.[306] introduced anunbalanced tree algorithm that grew the tree a node at a time. Riskin and Gray [409]proposed a greedy method for TSVQs, which is directly related to decision tree growing. 62.3.1 Feature evaluation rulesWhen used for classi�cation or generalization, decision trees are essentially probabilityestimators. Feature evaluation rules are heuristics whose aim is to produce as reliableprobability estimates from training data as possible. A taxonomy, proposed by Ben-Bassat[23], is helpful in understanding the large number of existing feature evaluation criteria. Ben-Basset divides feature evaluation rules into three, not necessarily distinct, categories: rulesderived from information theory, rules derived from distance measures and rules derivedfrom dependence measures.� Rules derived from information theory: Examples of this variety are rules basedon Shannon's entropy. 7 Tree construction by maximizing global mutual information,i.e., by expanding tree nodes that contribute to the largest gain in average mutual6 Chou et al.[85] suggested a pruning method, based on [44], for optimally pruning a balancedTSVQ. The TSVQ growing procedure suggested by Riskin and Gray [409] can be viewed as aninverse to Chou's pruning procedure.7 The desirable properties of a measure of entropy include symmetry, expandability, decisivity,additivity and recursivity. Shannon's entropy [439] possesses all of these properties [2]. For aninsightful treatment of entropy reduction as a common theme underlying several pattern recognitionproblems, see [498].



22information of the whole tree, is explored in pattern recognition [172, 437, 465]. 8 Treeconstruction by locally optimizing information gain, the reduction in entropy due tosplitting each individual node, is explored in pattern recognition [197, 493, 70, 192], insequential fault diagnosis [488] and in machine learning [391]. Mingers [323] suggestedthe G-statistic, an information theoretic measure that is a close approximation to �2distribution, for tree construction as well as for deciding when to stop. De Merckt[486] suggested an attribute selection measure that combined geometric distance withinformation gain, and argued that such measures are more appropriate for numericattribute spaces.� Rules derived from distance measures: \Distance" here refers to the distancebetween class probability distributions. The feature evaluation criteria in this classmeasure separability, divergence or discrimination between classes. A popular distancemeasure is the Gini index of diversity, named after the Italian economist Corrado Gini(1884{1965). Gini index has been used for tree construction in statistics [44], patternrecognition [162] and sequential fault diagnosis [378]. Breiman et al. pointed out thatthe Gini index has di�culty when there are a relatively large number of classes, andsuggested the twoing rule [44, 351] as a remedy. Taylor and Silverman [470] pointedout that the Gini index emphasizes equal sized o�spring and purity of both children.They suggested a splitting criterion, called mean posterior improvement (MPI), thatemphasizes exclusivity between o�spring class subsets instead.8 Goodman and Smyth [174] report that the idea of using the mutual information between featuresand classes to select the best feature was originally put forward by Lewis [285].



23Bhattacharya distance [290], Kolmogorov-Smirno� distance [152, 413, 198] and the�2 statistic [21, 195, 323, 515, 503] are some other distance-based measures that havebeen used for tree induction. Class separation-based metrics developed in the machinelearning literature [133, 514] are also distance measures. A relatively simplistic methodfor estimating class separation, which assumes that the values of each feature followa Gaussian distribution in each class, was used for tree construction in [302].� Rules derived from dependence measures: These measure the statistical de-pendence between two random variables. All dependence-bassed measures can beinterpreted as belonging to one of the above two categories [23].There exist several attribute selection criteria that do not clearly belong to anycategory in Ben-Basset's taxonomy. Gleser and Collen [172] and Talmon [465] used a com-bination of mutual information and �2 measures. They �rst measured the gain in averagemutual information I(Ti) due to a new split Ti, and then quanti�ed the probability P (I(Ti))that this gain is due to chance, using �2 tables. The split that minimized P (I(Ti)) waschosen by these methods. A permutation statistic was used for univariate tree constructionfor 2-class problems in [286]. The main advantage of this statistic is that, unlike most ofthe other measures, its distribution is independent of the number of training instances. Aswill be seen in Section 2.4, this property provides a natural measure of when to stop treegrowth. Measures that use the activity of an attribute have been explored for tree con-struction [337, 329]. The activity of a variable is equal to the testing cost of the variable



24times the a priori probability that it will be tested. The computational requirements forcomputing activity are the same as those for the information-based measures. Quinlan andRivest [402] suggested the use of Risannen's minimum description length [408] for decidingwhich splits to prefer over others and also for pruning. Kalkanis [235] pointed out thatmeasures like information gain and Gini index are all concave (i.e., they never report aworse goodness value after trying a split than before splitting), so there is no natural wayof assessing where to stop further expansion of a node. As a remedy, Kalkanis suggestedthe use of the upper bounds in the con�dence intervals for the misclassi�cation error as anattribute selection criterion. 9Heath et al.[204] used the simplest possible attribute selection criteria, based onthe number of misclassi�ed objects, for oblique decision tree induction. Their measureswere called max minority and sum minority, respectively denoting the maximum and thesum of the number of misclassi�ed points on either side of a binary split. Max minority hasthe theoretical advantage that the depth of the tree constructed using this measure is atworst logarithmic in the number of examples. Lubinsky [297, 298] also used the number ofmisclassi�ed points as a splitting criterion, calling it inaccuracy. The performance of thesemeasures does not seem to be in general as good as the information theory or distancebased measures, and additional tricks are needed to make these measures robust [297, 351].Another measure suggested by Heath et al., called the sum of impurities, assigns an integerto each class and measures the variance between class numbers in each partition [204, 351].9 Quinlan's C4.5 [398] uses a naive version of the con�dence intervals for doing pessimistic pruning.



25An almost identical measure was used earlier in the Automatic Interaction Detection (AID)program [139].Most of the above feature evaluation criteria assume no knowledge of the proba-bility distribution of the training objects. The optimal decision rule at each tree node, arule that minimizes the overall error probability, is considered in [270, 271, 272] assumingthat complete probabilistic information about the data is known.ComparisonsGiven the large number of feature evaluation rules, a natural concern is to decide their rel-ative e�ectiveness in constructing \good" trees. Evaluations in this direction, in statistics,pattern recognition and machine learning, have been predominantly empirical in nature,though there have been a few theoretical evaluations. We will discuss the empirical com-parisons here, and defer the discussion of the latter to Section 2.6.In spite of a large number of comparative studies, very few so far have concludedthat a particular feature evaluation rule is signi�cantly better than others. A majority ofstudies have concluded that there is not much di�erence between di�erent measures. Thisis to be expected as induction per se can not rigorously justify performance on unseeninstances. Any strategy that results in superior generalization accuracy on some problemsis bound to have inferior performance on some other problems. 10 Of course, comparisons10 Scha�er [429] stated and proved a conservation theorem that states, essentially, that positiveperformance in some learning situations must be o�set by an equal degree of negative performance inothers. To clarify the, sometimes non-intuitive, consequences of the conservation theorem, Scha�er[430] gave an example of a concept for which information loss gives better generalization accuracythan information gain.



26of individual methods are still interesting because they throw light on which method canbe used in what situations.Baker and Jain [18] reported experiments comparing eleven feature evaluationcriteria and concluded that the feature rankings induced by various rules are very similar.Several feature evaluation criteria, including Shannon's entropy and divergence measures,are compared using simulated data in [22], on a sequential, multi-class classi�cation problem.The conclusions are that no feature selection rule is consistently superior to the others,and that no speci�c strategy for alternating di�erent rules seems to be signi�cantly moree�ective. Breiman et al. [44] conjectured that decision tree design is rather insensitive to anyone from a large class of splitting rules, and it is the stopping rule that is crucial. Mingers[325] compared several attribute selection criteria, and concluded that tree quality doesn'tseem to depend on the speci�c criterion used. He even claimed that random attributeselection criteria are as good as measures like information gain [391]. This later claim wasrefuted in [292], where the authors argued that random attribute selection criteria are proneto over�tting, and also fail when there are several noisy attributes.Babic et al. [15] compared ID3 [391] and CART [44], for two clinical diagnosisproblems. Miyakawa [329] compared three activity-based measures, Q, O and loss, bothanalytically and empirically. He showed that Q and O do not chose non-essential variablesat tree nodes, and that they produce trees that are 1/4th the size of the trees produced byloss. Fayyad and Irani [133] showed that their measure C-SEP, performs better than Giniindex [44] and information gain [391] for speci�c types of problems.



27Several researchers [195, 391] pointed out that information gain is biased towardsattributes with a large number of possible values. Mingers [323] compared information gainand the �2 statistic for growing the tree as well as for stop-splitting. He concluded that �2corrected information gain's bias towards multivalued attributes, however to such an extentthat they were never chosen, and the latter produced trees that were extremely deep andhard to interpret. Quinlan suggested gain ratio [398] as a remedy for the bias of informa-tion gain. Mantaras [310] argued that gain ratio had its own set of problems, and suggestedusing information theory-based distance between partitions for tree construction. He for-mally proved that his measure is not biased towards multiple-valued attributes. However,White and Liu [503] present experiments to conclude that information gain, gain ratio andMantaras' measure are worse than a �2 based statistical measure, in terms of their bias to-wards multiple-valued attributes. A hypergeometric distribution is proposed as a means toavoid the biases of information gain, gain ratio and �2 metrics in [312]. Kononenko recentlypointed out that [260] Minimum Description Length based feature evaluation criteria havethe least bias towards multi-valued attributes.2.3.2 Multivariate splitsDecision trees most commonly are univariate, i.e., they use splits based on a single attributeat each internal node. Multivariate decision trees can use splits that contain more thanone attribute at each internal node. Though several methods have been developed in theliterature for constructing multivariate trees, this body of work is not as well-known as that



28on univariate trees. We summarize below the directions work on automatically constructingmultivariate trees has taken.Most of the work on multivariate splits considered linear (oblique) trees. Theseare trees which have tests based on a linear combination of the attributes at some internalnodes. The problem of �nding an optimal linear split (optimal with respect to any ofthe feature evaluation measures in Section 2.3.1) is more di�cult that that of �nding theoptimal univariate split. In fact, �nding optimal linear splits is known to be intractablefor some feature evaluation rules (see Section 2.6.1 for pointers), so heuristic methods arerequired for �nding good, albeit suboptimal, linear splits. Methods used in the literaturefor �nding good linear tests include linear discriminant analysis, hill climbing search, linearprogramming, perceptron training and others.Linear Discriminant Trees: Several authors have considered the problem of construct-ing tree-structured classi�ers that have linear discriminants [117] at each node. You and Fu[511] used a linear discriminant at each node in the decision tree, computing the hyperplanecoe�cients using the Fletcher-Powell descent method [144]. Their method requires that thebest set of features at each node be prespeci�ed by a human. Friedman [152] reported thatapplying Fisher's linear discriminants, instead of atomic features, at some internal nodeswas useful in building better trees. Qing-Yun and Fu [387] also describe a method to buildlinear discriminant trees. Their method uses multivariate stepwise regression to optimizethe structure of the decision tree as well as to choose subsets of features to be used in thelinear discriminants. More recently, use of linear discriminants at each node is considered by



29Loh and Vanichsetakul [294]. Unlike in [511], the variables at each stage are appropriatelychosen in [294] according to the data and the type of splits desired. Other features of thetree building algorithm in [294] are: (1) it yields trees with univariate, linear combinationor linear combination of polar coordinate splits, and (2) allows both ordered and unorderedvariables in the same linear split. Use of linear discriminants in a decision tree is consideredin the remote sensing literature in [218]. A method for building linear discriminant classi-�cation trees, in which the user can decide at each node what classes need to be split, isdescribed in [472]. John [229] recently considered linear discriminant trees in the machinelearning literature.An extension of linear discriminants are linear machines [364], which are linearstructures that can discriminate between multiple classes. In the machine learning liter-ature, Utgo� et al. explored decision trees that used linear machines at internal nodes[49, 115].Locally Opposed Clusters of Objects: Sklansky and his students developed severalpiecewise linear discriminants based on the principle of locally opposed clusters of objects.Wassel and Sklansky [496, 450] suggested a procedure to train a linear split to minimizethe error probability. Using this procedure, Sklansky and Michelotti [449] developed asystem to induce a piece-wise linear classi�er. Their method identi�es the closest-opposedpairs of clusters in the data, and trains each linear discriminant locally. The �nal classi�erproduced by this method is a piecewise linear decision surface, not a tree. Foroutan [147]discovered that the resubstitution error rate of optimized piece-wise linear classi�ers is



30nearly monotonic with respect to the number of features. Based on this result, Foroutanand Sklansky [148] suggest an e�ective feature selection procedure for linear splits that useszero-one integer programming. Park and Sklansky [375, 376] describe methods to inducelinear tree classi�ers and piece-wise linear discriminators. The main idea in these methodsis to �nd hyperplanes that cut a maximal number of Tomek links. Tomek links of a dataset connect opposed pairs of data points for which the circle of in
uence between the pointsdoesn't contain any other points.Hill Climbing Methods: CART's use of linear combinations of attributes ([44], Chap-ter 5) is well-known. This algorithm uses heuristic hill climbing and backward featureelimination to �nd good linear combinations at each node. Murthy et al. [350, 351] de-scribed signi�cant extensions to CART's linear combinations algorithm, using randomizedtechniques. (See Chapter 3)Perceptron Learning: A perceptron is a linear function neuron [326, 188] which can betrained to optimize the sum of distances of the misclassi�ed objects to it, using a convergentprocedure for adjusting its coe�cients. Perceptron trees, which are decision trees with per-ceptrons just above the leaf nodes, were discussed in [480]. Decision trees with perceptronsat all internal nodes were described in [482, 438].Mathematical Programming: Linear programming has been used for building adap-tive classi�ers since late 1960s [216]. Given two possibly interesecting sets of points, Duda



31and Hart [117] proposed a linear programming formulation for �nding the split whose dis-tance from the misclassi�ed points is minimized. More recently, Mangasarian and Bennettused linear and quadratic programming techniques to build machine learning systems ingeneral and decision trees in particular [309, 28, 25, 307, 26]. Use of zero-one integer pro-gramming for designing vector quantizers can be found in [289]. Brown and Pittard [51]also employed linear programming for �nding optimal multivariate splits at classi�cationtree nodes. Almost all the above papers attempt to minimize the distance of the misclas-si�ed points from the decision boundary. In that sense, these methods are more similarto perceptron training methods [326], than to decision tree splitting criteria. Mangasarian[308] describes a linear programming formulation to minimize the number of misclassi�edpoints instead of the geometric distance.Neural Trees: In the neural networks community, many researchers have recently con-sidered hybrid structures between decision trees and neural nets. Though these techniqueswere developed as neural networks whose structure could be automatically determined,their outcome can be interpreted as decision trees with nonlinear splits. Examples of thiswork include [173, 448, 46, 87, 207, 425, 102]. Techniques very similar to those used intree construction, such as information theoretic splitting criteria and pruning, can be foundin neural tree construction also. In addition to these methods, there exist other hybridtechniques between decision trees and neural networks. Sethi [435] described a methodfor converting a univariate decision tree into a neural net and then retraining it, resultingin tree structured entropy nets with sigmoidal splits. An extension of entropy nets, that



32converts linear decision trees into neural nets was described in [374]. Decision trees withsmall multilayer networks at each node, implementing nonlinear, multivariate splits, weredescribed in [184]. Jordan and Jacobs [233] described hierarchical parametric classi�erswith small \experts" at internal nodes. Training methods for tree structured Boltzmannmachines are described in [427].Other Methods: Use of polynomial splits at tree nodes is explored in decision theoryin [432]. In information theory, Gelfand and Ravishanker [161] describe a method to builda tree structured �lter that has linear processing elements at internal nodes. Heath et al.[204, 202] used simulated annealing to �nd the best oblique split at each tree node. Lubinsky[299, 298] attempted bivariate trees, trees in which some functions of two variables can beused as tests at internal nodes. Lubinsky considered the use of linear cuts, corner cuts andrectangular cuts, using ordered and unordered variables.2.3.3 Ordered vs. unordered attributesThe �elds of pattern recognition and statistics historically have considered ordered or nu-meric attributes as the default. This seems natural considering application domains such asspectral analysis and remote sensing [464]. In these �elds, special techniques [436] were de-veloped to accommodate discrete attributes into what are primarily algorithms for orderedattributes. Fast methods for splitting multiple valued categorical variables are described in[83]. In machine learning, a sub�eld of Arti�cial Intelligence, which in turn has been



33dominated by symbolic processing, many tree induction methods (e.g. [388] were originallydeveloped for categorical attributes. The problem of incorporating continuous attributesinto these algorithms is considered subsequently. The problem of meaningfully discretizinga continuous dimension is considered in [134, 245, 486, 343]. Methods of discretization thatoperate on a single continuous attribute at a time can be said to be \local" discretizationmethods. In contrast, \global" discretization methods simultaneously convert all continuousattributes [81].Fast methods for splitting a continuous dimension into more than two ranges isconsidered in the machine learning literature [135, 157]. Trees in which an internal node canhave more than 2 children, have also been considered in the vector quantization literature[431]. An extension to ID3 [391] that distinguishes between attributes with unordereddomains and attributes with linearly ordered domains is suggested in [88].2.4 Obtaining the right sized treesOne of the main di�culties of inducing a recursive partitioning structure is knowing when tostop. Obtaining the \right" sized trees may be important for several reasons, which dependon the size of the classi�cation problem [162]. For moderate sized problems, the criticalissues are generalization accuracy, honest error rate estimation 11 and gaining insight intothe predictive and generalization structure of the data. For very large tree classi�ers, thecritical issue is optimizing structural properties (height, balance etc.) [493, 71].11 For a general discussion about the relationship between complexity and predictive accuracy ofclassi�ers, see [380].



34Breiman et al. [44] pointed out that tree quality depends more on good stoppingrules than on splitting rules. E�ects of noise on generalization are discussed in [363, 253].Over�tting avoidance as a speci�c bias is studied in [507, 428]. E�ect of noise on classi�ca-tion tree construction methods is studied in the pattern recognition literature in [468].Several techniques have been suggested for obtaining the right sized trees. Themost popular of these is pruning, whose discussion we will defer to Section 2.4.1. Thefollowing are some alternatives to pruning that have been attempted in the literature.� Restrictions on minimum node size: A node is not split if it has smaller than k objects,where k is a parameter to the tree induction algorithm. This strategy, which is knownto be not robust, is used in some early methods [152].� Two stage search: In this variant, tree induction is divided into two subtasks: �rst,a good structure for the tree is determined; then splits are found at all the nodes. 12The optimization method in the �rst stage may or may not be related to that used inthe second stage. Lin and Fu [290] use K-means clustering for both stages, whereasQing-Yun and Fu [387] use multi-variate stepwise regression for the �rst stage andlinear discriminant analysis for the second stage.� Thresholds on Impurity: In this method, a threshold is imposed on the value of thesplitting criterion, such that if the splitting criterion falls below (above) the threshold,tree growth is aborted. Thresholds can be imposed on local (i.e., individual node)12 Techniques that start with a su�cient partitioning and then optimize the structure (e.g., [318])can be thought of as being a converse to this approach.



35goodness measures or on global (i.e., entire tree) goodness. The former alternative isused in [172, 413, 390, 312] and the latter in [437]. A problem with the former methodis that the value of most splitting criteria (Section 2.3.1) varies with the size of thetraining sample. Imposing a single threshold that is meaningful at all nodes in thetree is not easy and may not even be possible. Some feature evaluation rules, whosedistribution does not depend on the number of training samples (i.e., a goodness valueof k would have the same signi�cance anywhere in the tree) have been suggested inthe literature [286, 515, 235].
� Trees to rules conversion: Quinlan [393, 398] gave e�cient procedures for convertinga decision tree into a set of production rules. Simple heuristics to generalize andcombine the rules generated from trees can act as a substitute for pruning for Quinlan'sunivariate trees.
� Other: Cockett and Herrera [90] suggested a method to reduce an arbitrary binarydecision tree to an \irreducible" form, using discrete decision theory principles. Everyirreducible tree is optimal with respect to some expected testing cost criterion, andthe tree reduction algorithm has the same worst-case complexity as most greedy treeinduction methods. In the context of ordered binary decision diagrams, tree com-paction has been attempted using operations that merge, delete and exchange nodes[53].



362.4.1 PruningPruning, the method most widely used for obtaining right sized trees, was proposed byBreiman et al. ([44], Chapter 3). They suggested the following procedure: build the com-plete tree (a tree in which splitting no leaf node further will improve the accuracy on thetraining data) and then remove subtrees that are not contributing signi�cantly towardsgeneralization accuracy. It is argued that this method is better than stop-splitting rules,because it can compensate, to some extent, for the suboptimality of greedy tree induction.For instance, if there is very good node T2 a few levels below a not-so-good node T1, astop-splitting rule will stop tree growth at T1, whereas pruning may give a high rating for,and retain, the whole subtree at T1. Kim and Koehler [249] analytically investigate theconditions under which pruning is bene�cial for accuracy. Their main result states pruningis more bene�cial with increasing skewness in class distribution and/or increasing samplesize. Breiman et al.'s pruning method [44], cost complexity pruning (a.k.a. weakest linkpruning or error complexity pruning) proceeds in two stages. In the �rst stage, a sequenceof increasingly smaller trees are built on the training data. In the second stage, one ofthese trees is chosen as the pruned tree, based on its classi�cation accuracy on a pruningset. Pruning set is a portion of the training data that is set aside exclusively for pruningalone. Use of a separate pruning set is a fairly common practice. A method other than costcomplexity pruning that needs a separate pruning set is Quinlan's reduced error pruning[393]. This method, unlike cost complexity pruning, does not build a sequence of trees and



37hence is claimed to be faster. Chou et al.[85] extended Breiman et al.'s pruning method totree structured vector quantizers.The requirement for an independent pruning set might be problematic especiallywhen small training samples are involved. Several solutions have been suggested to getaround this problem. Breiman et al. [44] describe a cross validation procedure that avoidsreserving part of training data for pruning, but has a large computational complexity.Quinlan's pessimistic pruning [393, 398] does away with the need for a separate pruning setby using a statistical correlation test.Crawford [99] analyzed Breiman et al.'s cross validation procedure, and pointedout that it has a large variance, especially for small training samples. He suggested a .632bootstrap method 13 as an e�ective alternative. Gelfand et al. [162] claimed that thecross validation method is both ine�cient and possibly ine�ective in �nding the optimallypruned tree. They suggested an e�cient iterative tree growing and pruning algorithm thatis guaranteed to converge. This algorithm divides the training sample into two halves anditeratively grows the tree using one half and prunes using the other half, exchanging theroles of the halves in each iteration.Several other pruning methods exist. Quinlan and Rivest [402] used minimumdescription length [408] for tree construction as well as for pruning. An error in their13 In bootstrapping, B independent learning samples, each of size N are created by random sam-pling with replacement from the original learning sample L. In cross validation, L is divided ran-domly into B mutually exclusive, equal sized partitions. Efron [120] showed that, although crossvalidation closely approximates the true result, bootstrap has much less variance, especially for smallsamples. However, there exist arguments that cross validation is clearly preferable to bootstrap inpractice [256].



38coding method (which did not have an e�ect on their main conclusions) was pointed out in[491]. Forsyth et al. [149] recently suggested a pruning method that is based on viewing thedecision tree as an encoding for the training data. Use of dynamic programming to prunetrees optimally and e�ciently has been explored recently in [33].A few studies have been done to study the relative e�ectiveness of pruning methods[324, 91, 125]. Just as in the case of splitting criteria, no single pruning method has beenadjudged to be superior to the others. The choice of a pruning method depends on the sizeof the training set, availability of extra data for pruning etc.2.5 Other issuesTree construction involves many issues other than �nding good splits and knowing when tostop recursive splitting. In this section, we tie together several issues. The issues discussedin this section include feature subset selection, feature construction, chosing good subsam-ples, improving on greedy induction, use of fuzziness to remove data fragmentation andclass overlap, incorporating attribute measurement costs and misclassi�cation costs intotree construction, estimating class probabilities from trees, use of multiple trees to reducevariance and incremental induction of trees.2.5.1 Sample size vs. dimensionalityThe relationship between the size of the training set and the dimensionality of the problemis studied extensively in the pattern recognition literature. (For some pointers, see [212,



39238, 145, 77, 236, 268, 227, 156].) Researchers considered the problem of how sample sizeshould vary according to dimensionality and vice versa. Intuitively, an imbalance betweenthe number of samples and the number of features (i.e., too many samples with too fewattributes, or too few samples with too many attributes) can make induction more di�cult.Some conclusions from the above papers can be summarized, informally, as follows:� For a �nite sized data with little or no a priori information, the ratio of the samplesize to dimensionality must be as large as possible to suppress optimistically biasedevaluations of the performance of the classi�er.� For a given sample size used in training a classi�er, there exists an optimum feature sizeand quantization complexity (the latter refers to the number of ranges a dimension issplit into). This result is true for both two-class problems and multi-class problems. 14� The ratio of the sample size to dimensionality should vary inversely proportional tothe amount of available knowledge about the class conditional densities.In tasks where more features than the \optimal" are available, decision tree qualityis known to be a�ected by the redundant and irrelevant attributes [6, 424]. To avoid thisproblem, either a feature subset selection method (Section 2.5.1) or a method to form asmall set of composite features (Section 2.5.1) can be used as a preprocessing step to treeinduction. On the other hand, if the training sample has too many objects, a subsample14 Van Campenhout [67] argues that increasing the amount of information in a measurement subsetthrough enlarging its size or complexity never worsens the error probability of a truly Bayesianclassi�er. Even after this guarantee, the cost and complexity due to additional measurements maynot be worth the slight (if any) improvement in accuracy. Moreover, most real world classi�ers arenot truly Bayesian.



40selection method (Section 2.5.1) can be employed to �lter out the unnecessary observations.Feature subset selectionThere is a large body of work on choosing relevant subsets of features (for example, see thetexts [116, 35, 322]). Most of this work was not developed in the context of tree induction,but a lot of it has direct applicability. There are two components to any method thatattempts to choose the best subset of features. The �rst is a metric using which two featuresubsets can be compared to determine which is better. Feature subsets have been comparedin the literature using either a feature evaluation criterion discussed in Section 2.3.1 (e.g.Bhattacharya distance was used for comparing subsets of features in [358]), or using directerror estimation [148, 230].The second component of feature subset selection methods is a search algorithmthrough the space of possible feature subsets. Most existing search procedures are heuristicin nature, 15 as exhaustive search for the best feature subset is typically prohibitivelyexpensive. A heuristic commonly used is the greedy heuristic. In stepwise forward selection,we start with an empty feature set, and add, at each stage, the best feature according tosome criterion. In stepwise backward elimination, we start with the full feature set andremove, at each step, the worst feature. When more than one feature is greedily added orremoved, beam search is said to have been performed [445, 69]. A combination of forwardselection and backward elimination, a bidirectional search, was attempted in [445].15 An exception is the optimal feature subset selection method using zero-one integer programming,suggested by Ichino and Sklansky [217].



41Comparisons of heuristic feature subset selection methods resound the conclusionsof studies comparing feature evaluation criteria and studies comparing pruning methods |no feature subset selection heuristic is far superior to the others. Cover et al. [94, 484] showedthat heuristic sequential feature selection methods can do arbitrarily worse than the optimalstrategy. Mucciardi and Gose [342] compared seven feature subset selection techniquesempirically and concluded that no technique was uniformly superior to the others. There hasbeen a recent surge of interest in feature subset selection methods in the machine learningcommunity, resulting in several empirical evaluations. Some of these studies producedinteresting insights on how to increase the e�ciency and e�ectiveness of the heuristic searchfor good feature subsets. For examples of this work, see [251, 276, 69, 113, 336, 3].Composite featuresSometimes the aim is not to choose a good subset of features, but instead to �nd a few good\composite" features, which are arithmetic or logical combinations of the atomic features.In the decision tree literature, Henrichon and Fu [206] were probably the �rst to discuss\transgenerated" features, features generated from the original attributes. Friedman's treeinduction method [152] could consider with equal ease atomic and composite features. Tech-niques to search for multivariate splits (Section 2.3.2) can be seen as ways for constructingcomposite features. Use of linear regression to �nd good feature combinations is exploredrecently in [36].Discovery of good combinations of Boolean features to be used as tests at tree



42nodes is explored in the machine learning literature in [372] as well as in signal processing[17]. Ragavan and Rendell [403] describe a method that constructs Boolean features usinglookahead, and uses the constructed feature combinations as tests at tree nodes. Looka-head for construction of Boolean feature combinations is also considered in [515]. Linearthreshold unit trees for Boolean functions are described in [418]. Decision trees having �rstorder predicate calculus representations, with Horn clauses as tests at internal nodes, areconsidered in [497].Subsample selectionFeature subset selection attempts to choose useful features. Similarly, subsample selectionattempts to choose appropriate training samples for induction. Quinlan suggested \win-dowing", a random training set sampling method, for his programs ID3 and C4.5 [398, 506].A initially randomly chosen window can be iteratively expanded to include only the \im-portant" training samples. Several ways of choosing representative samples for NearestNeighbor learning methods exist (see [104, 105], for examples). Some of these may be help-ful for inducing trees e�ciently on large samples, if it is possible to choose good subsamplese�ciently.2.5.2 Incorporating costsIn most real-world domains, attributes can have costs of measurement, and objects can havemisclassi�cation costs. If the measurement (misclassi�cation) costs are not identical between



43di�erent attributes (classes), decision tree algorithms need to be designed explicitly to prefercheaper trees. Several attempts have been made to make tree construction cost-sensitive.These involve incorporating attribute measurement costs (see [365, 366, 469, 478] in machinelearning literature, [107, 340] in pattern recognition and [250] in statistics) and incorporatingmisclassi�cation costs [44, 96, 115, 72, 478]. Methods to incorporate attribute measurementcosts typically include a cost term into the feature evaluation criterion, whereas variablemisclassi�cation costs are accounted for by using prior probabilities or cost matrices.2.5.3 Missing attribute valuesIn real world data sets, it is often the case that some attribute values are missing fromthe data. Several researchers have addressed the problem of dealing with missing attributevalues in the training as well as testing sets. For training data, Friedman [152] suggestedthat all objects with missing attribute values can be ignored while forming the split at eachnode. If it is feared that too much discrimination information will be lost due to ignoring,missing values may be substituted by the mean value of the particular feature in the trainingsubsample in question. Once a split is formed, all objects with missing values can be passeddown to all child nodes, both in the training and testing stages. The classi�cation of anobject with missing attribute values will be the largest represented class in the union of allthe leaf nodes at which the object ends up. Breiman et al.'s CART system [44] more orless implemented Friedman's suggestions. Quinlan also considered the problem of missingattribute values [395].



442.5.4 Improving on greedy inductionMost tree induction systems use a greedy approach | trees are induced top-down, a nodeat a time. Several authors (e.g., [159, 405]) pointed out the inadequacy of greedy inductionfor di�cult concepts. The problem of inducing globally optimal decision trees has beenaddressed time and again. For early work using dynamic programming and branch-and-bound techniques to convert decision tables to optimal trees, see [338].Tree construction using partial or exhaustive lookahead has been considered instatistics [139, 122], in pattern recognition [197], for tree structured vector quantizers [410],for Bayesian class probability trees [62], for neural trees [102] and in machine learning[365, 403, 354]. Most of these studies indicate that lookahead does not cause considerableimprovements over greedy induction. Murthy and Salzberg [354] argued that one-levellookahead does not help build signi�cantly better trees, and that lookahead may actuallyworsen the quality of trees, causing pathology [360].Constructing optimal or near-optimal decision trees using a two-stage approach hasbeen attempted by many authors. In the �rst stage, a su�cient partitioning is induced usingany reasonably good (greedy) method. In the second stage, the tree is re�ned to be as closeto optimal as possible. Re�nement techniques attempted include dynamic programming[318], fuzzy logic search [494] and multi-linear programming [30].The build-and-re�ne strategy can be seen as a search through the space of allpossible decision trees, starting at the greedily built suboptimal tree. In order to escapelocal minima in the search space, randomized search techniques such as genetic programming



45[264] and simulated annealing [55, 303] have been attempted. These methods search thespace of all decision trees using random perturbations, additions and deletions of the splits.A deterministic hill-climbing search procedure has also been suggested for searching foroptimal trees, in the context of sequential fault diagnosis [463].Inducing topologically minimal trees, trees in which the number of occurrences ofeach attribute along each path are minimized, is the topic of [489]. Suen and Wang [462]described an algorithm that attempted to minimize the entropy of the whole tree and theclass overlap simultaneously. (Class overlap is measured by the number of terminal nodesthat represent the same class.)2.5.5 Use of fuzzinessTwo common criticisms of decision trees are the following: (1) As decisions in the lowerlevels of a tree are based on increasingly smaller fragments of the data, some of them maynot have much probabilistic signi�cance (data fragmentation). (2) As several leaf nodes canrepresent the same class, unnecessarily large trees may result, especially when the numberof classes is large (high class overlap). It has been shown that the use of fuzzy reasoningcan help reduce both the above problems.Several researchers have considered using soft splits of data for decision trees. Ahard split divides the data into mutually exclusive partitions. A soft split, on the otherhand, assigns a probability that each point belongs to a partition, thus allowing points tobelong to multiple partitions. C4.5 [398] uses a simple form of soft splitting (chapter 8).



46Use of fuzzy splits in pattern recognition literature can be found in [432, 494]. Jordanand Jacobs [233] describe a parametric, hierarchical classi�er with soft splits. Multivariateregression trees using fuzzy, soft splitting criteria, are considered [146]. Induction of fuzzydecision trees has also been considered in [281, 512].
2.5.6 Estimating probabilitiesDecision trees have crisp decisions at leaf nodes. On the contrary, class probability treesassign a probability distribution for all classes at the terminal nodes. Breiman et al. ([44],Chapter 4) proposed a method for building class probability trees. Quinlan discussed meth-ods of extracting probabilities from decision trees in [397]. Buntine [62] described Bayesianmethods for building, smoothing and averaging class probability trees. 16 Smoothing in thecontext of tree structured vector quantizers is described in [17]. An approach, which re�nesthe class probability estimates in a greedily induced decision tree using local kernel densityestimates has been suggested recently in [453].Assignment of probabilistic goodness to splits in a decision tree is described in[187]. A uni�ed methodology for combining uncertainties associated with attributes intothat of a given test, which can then be systematically propagated down the decision tree,is given in [335].16 Smoothing is the process of adjusting probabilities at a node in the tree based on the probabilitiesat other nodes on the same path. Averaging improves probability estimates by considering multipletrees.



472.5.7 Multiple treesA known peril of decision tree construction is its variance, especially when the samples aresmall and the features are many [111]. Variance can be caused by random choice of trainingand pruning samples, by many equally good attributes only one of which can be chosenat a node, due to cross validation or because of other reasons. A few authors suggestedusing a collection of decision trees, instead of just one, to reduce the variance in classi�cationperformance [274, 443, 444, 62, 203]. The idea is to build a set of (correlated or uncorrelated)trees for the same training sample, and then combine their results. 17 Multiple trees havebeen built using randomness [203] or using di�erent subsets of attributes for each tree[443, 444]. Classi�cation results of the trees have been combined using either simplisticvoting methods [203] or using statistical methods for combining evidence [443].2.5.8 Incremental tree inductionMost tree induction algorithms use batch training | the entire tree needs to be recomputedto accommodate a new training example. A crucial property of neural network trainingmethods is that they are incremental | network weights can be continually adjusted toaccommodate training examples. Incremental induction of decision trees is considered byseveral authors. Friedman's binary tree induction method [152] could use \adaptive" fea-17 A lot of work exists in the neural networks literature on using committees or ensembles ofnetworks to improve classi�cation performance. See [193] for example. An alternative to multipletrees is a hybrid classi�er that uses several small classi�ers as parts of a larger classi�er. Brodley [47]describes a system that automatically selects the most suitable among a univariate decision tree, alinear discriminant and an instance based classi�er at each node of a hierarchical, recursive classi�er.



48tures for some splits. An adaptive split depends on the training subsample it is splitting.(An overly simple example of an adaptive split is a test on the mean value of a feature.)Utgo� et al. proposed incremental tree induction methods in the context of univariate deci-sion trees [479, 481] as well as multivariate trees [482]. Crawford [99] shows that approacheslike Utgo�'s, which attempt to update the tree so that the \best" split according to theupdated sample is taken at each node, su�er from repeated restructuring. This occurs be-cause the best split at a node vacillates widely while the sample at the node is still small.An incremental version of CART [44] that uses signi�cance thresholds to avoid the aboveproblem is described in [99].2.5.9 Tree quality measuresThe fact that several trees can correctly represent the same data raises the question of howto decide that one tree is better than another. Several measures have been suggested toquantify tree quality. Moret [338] summarizes work on measures such as tree size, expectedtesting cost and worst-case testing cost. He shows that these three measures are pairwiseincompatible, which implies that an algorithm minimizing one measure is guaranteed not tominimize the others, for some tree. Fayyad and Irani [132] argue that, by concentrating onoptimizing one measure, number of leaf nodes, one can achieve performance improvementalong other measures.Generalization accuracy is a popular measure for quantifying the goodness learningsystems. The accuracy of the tree is computed using a testing set that is independent of



49the training set or using estimation techniques like cross-validation or bootstrap, and moreaccurate trees are preferred to the less accurate ones. Kononenko and Bratko [261] pointedout that comparisons on the basis of classi�cation accuracy are unreliable, because di�erentclassi�ers produce di�erent types of estimates (e.g., some produce yes-or-no classi�cations,some output class probabilities) and accuracy values can vary with prior probabilities ofthe classes. They suggested an information based metric to evaluate a classi�er, as aremedy to the above problems. Martin [311] argued that information theoretic measuresof classi�er complexity are not practically computable except within severely restrictedfamilies of classi�ers, and suggested a generalized version of CART's [44] 1-standard errorrule as a means of achieving a tradeo� between classi�er complexity and accuracy.Description length, the number of bits required to \code" the tree and the datausing some compact encoding, has been suggested as a means to combine the accuracy andcomplexity of a classi�er [402, 149] .2.5.10 MiscellaneousMost existing tree induction systems proceed in a greedy top-down fashion [464, 44, 391].Bottom up induction of trees is considered in [275]. Bottom up tree induction is alsocommon [378] in problems such as building identi�cation keys and optimal test sequences. 18A hybrid approach to tree construction, that combined top-down and bottom-up inductioncan be found in [247].18 Hierarchical unsupervised clustering can construct, using bottom-up or top-down methods, tree-structured classi�ers. As mentioned in Section 2.1, these methods are beyond the scope of the currentchapter.



50We concentrate in this chapter on decision trees that are constructed from la-belled examples. The problem of learning trees from decision rules instead of examples isaddressed in [224]. The problem of learning trees solely from prior probability distributionsis considered in [10]. Learning decision trees from qualitative causal models acquired fromdomain experts is the topic of [382].Several attempts at generalizing the decision tree representation exist. Chou [82]considered decision trellises, where trellises are directed acyclic graphs with class probabil-ity vectors at the leaves and tests at internal nodes (i.e., trellises are trees in which internalnodes may have multiple parents). Option trees, in which every internal node holds sev-eral optional tests along with their respective subtrees, are discussed in [61, 62]. Oliver[368] suggested a method to build decision graphs, which are similar to Chou's decisiontrellises, using minimum length encoding principles [490]. Rymon [415] suggested SE-trees,set enumeration structures each of which can embed several decision trees.All standard decision tree methods are applicable when rules are to be inducedabout one aspect, say, the presence or absence of a disease. However, it is sometimesnecessary to infer rules on separate, but related aspects of a problem using identical oroverlapping data sets. For example, as part of a scheduling process, decisions need to bemade regarding the release of new orders into the system as well as the assignment of workpieces to available workstations. Chaturvedi and Nazareth [80] discuss possible solutionsfor this problem and provide algorithms for conditional classi�cation.Cox [95] argues that classi�cation tree technology, as implemented in commercially



51available systems, is often more useful for pattern recognition than it is for decision support.He suggests several ways of modifying existing methods to be prescriptive rather thandescriptive.An interesting method for displaying decision trees on multidimensional data, usingblock diagrams, is proposed in [470]. Block diagrams can point out features of the data aswell as the de�ciencies in the classi�cation method. Issues in preprocessing data to be in aform suitable to decision tree induction are discussed in some detail in [475]. Parallelizationof tree induction algorithms is considered in [381]. Hardware architectures to implementdecision trees are described in [226].2.6 AnalysesSeveral researchers have tried to evaluate the tree induction method itself, to preciselyanswer questions such as is it possible to build optimal trees?, how good are particularheuristics (feature evaluation rules or pruning methods)? Most of these investigations aretheoretical, though there have been a few recent empirical ones.2.6.1 NP-completenessSeveral aspects of optimal tree construction are known to be intractable [160]. Hya�l andRivest [215] proved that the problem of building optimal decision trees from decision tables,optimal in the sense of minimizing the expected number of tests required to classify anunknown sample is NP-Complete. In the sequential fault diagnosis literature, Cox et al.[97]



52showed that, for an arbitrary distribution of attribute costs and for an arbitrary distributionof input vectors, the problem of constructing a minimum expected cost classi�cation treeto represent a simple function, the linear threshold function, is NP-complete. They showthat even the problem of identifying the root node in an optimal strategy is NP-hard.Building optimal trees from decision tables, in terms of the size of the tree (number ofnodes), is considered by Murphy and McCraw in [344], who proved that for most cases,construction of storage optimal trees is NP-complete. Naumov [361] proved that optimaldecision tree construction from decision tables is NP-complete under a variety of measures.The measures considered by the earlier papers on NP-completeness appear to be a subset ofNaumov's measures, though he does not reference any of the existing work. The problem ofconstructing the smallest decision tree which best distinguishes characteristics of multipledistinct groups is shown to be NP-complete in [476].Comer and Sethi [92] studied the asymptotic complexity of trie index constructionin the document retrieval literature. Megiddo [317] investigated the problem of polyhedralseparability (separating two sets of points using k hyperplanes), and proved that severalvariants of this problem are NP-complete. Results in the above three papers throw light onthe complexity of decision tree induction. Lin et al.[288, 287] disussed NP-hardness of theproblem of designing optimal pruned tree structured vector quantizers (TSVQ).Most of the above results consider only univariate decision tree construction. In-tuitively, linear or multivariate tree construction should be more di�cult than univariatetree construction, as there is a much larger space of splits to be searched. More precisely,



53hyperplanes can dichotomize a set of n d-dimensional vectors in at most 2 �Pdk=0 �(n�1)k �ways if n > d + 1 and 2n ways if n � d + 1, and for any given n and d, one can �nda set of vectors for which this bound is achieved ([473]). 19 Heath [202] proved that theproblem of �nding the split that minimizes the number of misclassi�ed points, given twosets of mutually exclusive points, is NP-complete. Hoe�gen et al. [208] proved that a moregeneral problem is NP-hard | they proved that, for any C � 1, the problem of �nding ahyperplane that misclassi�es no more than C � opt examples, where opt is the minimumnumber of misclassi�cations possible using a hyperplane, is also NP-hard.As the problem of �nding a single linear split is NP-hard, it is no surprise thatthe problem of building the optimal linear decision trees is NP-hard. However, one mighthope that, by reducing the size of the decision tree, or the dimensionality of the data, itmight be possible to make the problem tractable. This does not seem to be the case either. Blum and Rivest [32] showed that the problem of constructing an optimal 3-node neuralnetwork is NP-complete. Goodrich [176] proved that optimal (smallest) linear decision treeconstruction is NP-complete even in three dimensions.2.6.2 Other analytical resultsGoodman and Smyth [174] showed that greedy top-down induction of decision trees isdirectly equivalent to a form of Shannon-Fano pre�x coding [131]. A consequence of thisresult is that top-down tree induction (using mutual information) is necessarily suboptimal19 Thanks to Kevin Van Horn for pointing this out.



54in terms of average tree depth. Trees of maximal size generated by the CART algorithm[44] have been shown to have an error rate bounded by twice the Bayes error rate, and tobe asymptotically Bayes optimal [177]. Miyakawa [328] considered the problem of covertingdecision tables to optimal trees, and studied the properties of optimal variables, the classof attributes only members of which can be used at the root of an optimal tree.Eades and Staples [119] showed that the optimality in search trees, in terms ofworst-case depth, is very closely related to regularity. A c-regular tree is a tree in which allnodes have c children, and if one child of an internal node is a leaf, then so are all otherchildren. A tree is regular is it is c-regular for any c. As irregular trees are not likely to beoptimal, splitting rules (Section 2.3.1) that tend to slice o� small corners of the attributespace building highly unbalanced trees are less likely to �nd optimal trees.Computational Learning Theory is a young discipline that studies the \learn-ability" of speci�c concepts or concept classes. For a good introduction to the theory oflearnability, see [242]. We summarize below signi�cant learnability results for decision trees.Ehrenfeucht and Haussler [121] gave an algorithm for PAC-learning (without membershipqueries) decision trees of constant rank in polynomial time. They also gave a PAC-learningalgorithm for general polynomial size decision trees in time O(nO(log n)). Kushilevitz andMansour [273] gave a polynomial time PAC-learning algorithm with membership queriesfor decision trees under the uniform distribution. Hancock [189] gave a polynomial timealgorithm for PAC-learning read-k decision trees. Bshouty [54] showed that decision treesare learnable under the model of exact learning with membership queries and unrestricted



55equivalence queries. Recently, agnostic PAC-learning [13] and pruning [205] have beenstudied by the learnability theory community.In the context of ordered binary decision diagrams (OBDD), the bounds on thetree size have been investigated, as a function of the tree compaction operators and thespeci�c Boolean functions being represented (eg., [315, 457, 201]).
2.6.3 ToolsSome authors pointed out the similarity or equivalence between the problem of constructingdecision trees and existing, seemingly unrelated, problems. Such view points provide valu-able tools for analyzing decision trees. Wang and Suen [493] show that entropy-reductionpoint of view is powerful in theoretically bounding search depth and classi�cation error.Chou and Gray [84] view decision trees as variable-length encoder-decoder pairs, and showthat rate is equivalent to tree depth while distortion is the probability of misclassi�cation.Goodman and Smyth [174] establish the equivalence between decision tree in-duction and a form of Shannon-Fano pre�x coding, and show that this comparison leadsto several interesting insights. Brandman et al. [37] suggested a universal technique tolower bound the size and other characteristics of decision trees for arbitrary Boolean func-tions. This technique is based on the power spectrum coe�cients of the n-dimensionalFourier transform of the function. Turksen and Zhao [477] proved the equivalence betweena pseudo-Boolean analysis and the ID3 algorithm [391].



562.6.4 Assumptions and biasesMost tree induction methods are heuristic in nature. They use several assumptions and bi-ases, hoping that together the heuristics produce good trees. Some authors have attemptedto evaluate the validity and relevance of the assumptions and biases in tree induction. 20� Assumption: Multi-stage classi�ers may be more accurate than single stage classi�ers.Analysis: However, the data fragmentation caused by multi-stage hierarchical clas-si�ers may compensate for the gain in accuracy. Michie [320] argues that top-downinduction algorithms may provide overly complex classi�ers that have no real concep-tual structure in encoding relevant knowledge. As a solution to this problem, Gray[179] suggested an induction method that generates a single disjuncts of conjunctsrule, using the same time complexity as tree induction. The e�cacy of multi-leveldecision trees is compared by Holte [209] to simple, one-level classi�cation rules. Heconcluded that, on most real world data sets commonly used by the machine learn-ing community [346], decision trees do not perform signi�cantly better than one levelrules. These conclusions, however, were refuted by Elomaa [123] on several grounds.Elomaa argued that Holte's observations may have been the peculiarities of the datahe used, and that the slight di�erences in accuracy that Holte observed were stillsigni�cant.20 It is argued empirically [111] that the variance in decision tree methods is more a reason thanbias for their poor performance on some domains.



57� Bias: Smaller consistent decision trees have higher generalization accuracy than largerconsistent trees (Occam's Razor). Analysis: Murphy and Pazzani [347] empiricallyinvestigated the truth of this bias. Their experiments indicate that this conjectureseems to be true. However, their experiments indicate that the smallest decision treestypically have lesser generalization accuracy than trees that are slightly larger. In anextension of this study, Murphy [345] evaluated the size bias as a function of conceptsize. He concluded that (1) bias for smaller trees is generally bene�cial in terms ofaccuracy and that (2) though larger trees perform better than smaller ones for high-complexity concepts, it is better to guess the correct size randomly than to have aprespeci�ed size bias.� Assumption: Locally optimizing information or distance based splitting criteria, (Sec-tion 2.3.1) tends to produce small, shallow, accurate trees. Analysis: Aclass of binarysplits S for a data set is said to be complete if, informally, for every partition ofthe data, there exists a member of S that induces the partition. Zimmerman [516]considered the problem of building identi�cation keys for complete classes of splits,given arbitrary class distributions. Garey and Graham [159] analyze the propertiesof recursive greedy splitting on the quality of trees induced from decision tables, andshowed that greedy algorithms using information theoretic splitting criteria can bemade to perform arbitrarily worse than the optimal. Kurzynski [270] showed that, forglobally optimum performance, decisions made at each node should \emphasize thedecision that leads to a greater joint probability of correct classi�cation at the next



58level", i.e., decisions made at di�erent nodes in the tree should not be independent.Loveland [296] analyzed the performance of variants of Gini index in the context ofsequential fault diagnosis.Goodman and Smyth [174, 175] analyzed mutual information based greedy tree induc-tion from an information theoretic view point. They proved that mutual information-based induction is equivalent to a form of Shannon-Fano pre�x coding, and throughthis insight argued that greedily induced trees are nearly optimal in terms of depth.This conjecture is substantiated empirically in [353], where it is shown that the ex-pected depth of trees greedily induced using information gain [391] and Gini index[44] is very close to that of the optimal, under a variety of experimental conditions.Relationship between feature evaluation by Shannon's entropy and the probability oferror is investigated in [263, 406].2.7 Comparisons with other exploration methodsThere exist several alternatives to decision trees for data exploration, such as neural net-works, nearest neighbor methods and regression analysis. Several researchers have comparedtrees to these other methods on speci�c problems.An early study comparing machine learning methods for learning from examplescan be found in [112]. Comparisons of symbolic and connectionist methods can be foundin [501, 440]. Quinlan empirically compared decision trees to genetic classi�ers [394] and toneural networks [400]. Thrun et al. [471] compared several learning algorithms on simulated



59Monk's problems. Palvia and Gordon [373] compared decision tables, decision trees anddecision rules, to determine which formalism is best for decision analysis.Multilayer perceptrons and CART (with and without linear combinations) [44] arecompared in [12] to �nd that there is not much di�erence in accuracy. Similar conclusionswere reached in [142] when ID3 [391] and backpropagation were compared. Talmon et al.[467] compared classi�cation trees and neural networks for analyzing electrocardiograms(ECG) and concluded that no technique is superior to the other. In contrast, ID3 is adjudgedto be slightly better than connectionist and Bayesian methods in [458]. Brown et al. [50]compared backpropagation neural networks with decision trees on three problems that areknown to be multimodal. Their analysis indicated that there was not much di�erencebetween both methods, and that neither method performed very well in its \vanilla" state.The performance of decision trees improved in [50] when multivariate splits were used, andbackpropagation networks did better with feature selection.Giplin et al. [171] compared stepwise linear discriminant analysis, stepwise logisticregression and CART [44] to three senior cardiologists, for predicting the problem of predict-ing whether a patient would die within a year of being discharged after an acute myocardialinfarction. Their results showed that there was no di�erence between the physicians andthe computers, in terms of the prediction accuracy. Kors and Van Bemmel [262] comparedstatistical multivariate methods with heuristic decision tree methods, in the domain of elec-trocardiogram (ECG) analysis. Their comparisons show that decision tree classi�ers aremore comprehensible and 
exible to incorporate or change existing categories. Pizzi and



60Jackson [384] compare an expert systems developed using traditional knowledge engineeringmethods to Quinlan's ID3 [391] in the domain of tonsillectormy. Comparisons of CART tomultiple linear regression and discriminant analysis can be found in [66] where it is arguedthat CART is more suitable than the other methods for very noisy domains with lots ofmissing values.Comparisons between decision trees and statistical methods like linear discriminantfunction analysis and automatic interaction detection (AID) are given in [313], where itis argued that machine learning methods sometimes outperform the statistical methodsand so should not be ignored. Feng et al. [138] present a comparison of several machinelearning methods (including decision trees, neural networks and statistical classi�ers) as apart of the European Statlog 21 project. Their main conclusions are that (1) no methodseems uniformly superior to others, (2) machine learning methods seem to be superior formultimodal distributions, and (3) statistical methods are computationally the most e�cient.Long et al. [295] compared Quinlan's C4 [398] to logistic regression on the problemof diagnosing acute cardiac ischemia, and concluded that both methods came fairly closeto the expertise of the physicians. In their experiments, logistic regression outperformedC4. Curram and Mingers [100] compare decision trees, neural networks and discriminantanalysis on several real world data sets. Their comparisons reveal that linear discriminantanalysis is the fastest of the methods, when the underlying assumptions are met, and that21 The Statlog project is initiated by the European Commission, and its full title is \The Compar-ative Testing of Statistical and Logical Learning Algorithms on Large-Scale Applications to Classi-�cation, Prediction and Control".



61decision trees methods over�t in the presence of noise. Dietterich et al. [110] argue thatthe inadequacy of trees for certain domains may be due to the fact that trees are unable totake into account some statistical information that is available to other methods like neuralnetworks. They show that decision trees perform signi�cantly better on the text-to-speechconversion problem when extra statistical knowledge is provided.2.8 Selected real-world applicationsThis section lists a few recent real-world applications of decision trees. The aim is to givethe reader a \feel" for the versatility and usefulness of decision tree methods for data explo-ration, and not to be useful for readers interested in �nding the potential of tree classi�ersin speci�c domains. Our coverage of applications is, by necessity, very limited. All theapplication papers cited below were published between 1993 and 1995 in refer-eed journals. We also restrict to application domains where the domain scientists tried touse decision trees, rather than where decision tree researchers tested their algorithm(s) onseveral application domains. The application areas are listed below in alphabetical order.� Agriculture: Application of a range of machine learning methods to problems inagriculture and horticulture is described in [316].� Astronomy: Astronomy has been an active domain for using automated classi�ca-tion techniques. 22 Use of decision trees for �ltering noise from Hubble Space Tele-22 For a general description of modern classi�cation problems in astronomy, which prompt the useof pattern recognition and machine learning techniques, see [269].



62scope images was reported recently in [424]. Decision trees have helped in star-galaxyclassi�cation [500], determining galaxy counts [499] and discovering quasars [244] inthe Second Palomar Sky Survey. Use of neural trees for ultraviolet stellar spectralclassi�cation is described in [183].� Biomedical Engineering: Use of decision trees for identifying features to be usedin implantable devices can be found in [169].� Control Systems: Automatic induction of decision trees was recently used for con-trol of nonlinear dynamical systems [213].� Financial analysis: Use of CART [44] for asserting the attractiveness of buy-writesis reported in [319].� Manufacturing and Production: Decision trees have been recently used to non-destructively test welding quality [124], for semiconductor manufacturing [225], forincreasing productivity [243], for material procurement method selection [103], toaccelerate rotogravure printing [126], for process optimization in electrochemical ma-chining [130], to schedule printed circuit board assembly lines [383], to uncover 
awsin a Boeing manufacturing process [407] and for quality control [185]. For a recent re-view of the use of machine learning (decision trees and other techniques) in scheduling,see [14].� Medicine: Medical research and practice have long been important areas of appli-cation for decision tree techniques. Recent uses of automatic induction of decision



63trees can be found in diagnosis [259], cardiology [295, 129, 258], psychiatry [314],gastroenterology [234], for detecting microcalci�cations in mammography [508], toanalyze Sudden Infant Death (SID) syndrome [504] and for diagnosing thyroid disor-ders [140].� Molecular biology: Initiatives such as the Human Genome Project and the Gen-Bank database o�er fascinating opportunities for machine learning and other dataexploration methods in molecular biology. Recent use of decision trees for analyzingamino acid sequences can be found in [442] and [423].� Object recognition: Tree based classi�cation has been used recently for recognizingthree dimensional objects [456, 57] and for high level vision [255].� Pharmacology: Use of tree based classi�cation for drug analysis can be found in[101].� Physics: Decision trees have been used for the detection of physical particles [34].� Plant diseases: CART [44] was recently used to assess the hazard of mortality topine trees [19].� Power systems: Power system security assessment [199] and power stability predic-tion [414] are two areas in power systems maintenance for which decision trees wereused.� Remote Sensing: Remote sensing has been a strong application area for patternrecognition work on decision trees (see [464, 247] ). A recent use of tree-based classi-



64�cation in remote sensing can be found in [416].� Software development: Regression trees (and backpropagation networks) were re-cently used to estimate the development e�ort of a given software module in [266],where it is argued that machine learning methods compare favorably with traditionalmethods.� Text processing: A recent use of ID3 [391] for medical text classi�cation can befound in [282].� Miscellaneous: Decision trees have also been used recently for building personallearning assistants [327] and for classifying sleep signals [267].2.9 A word of cautionThe hierarchical, recursive tree construction methodology is simple and intuitively appeal-ing. However, the simplicity of the methodology should not lead a practitioner to take aslack attitude towards using decision trees. Just as in the case of statistical methods orneural networks, building a successful tree classi�er for an application requires a thoroughunderstanding of the problem itself, and a deep knowledge of tree methodology.This chapter attempted a multi-disciplinary survey of work in automatically con-structing decision trees from data. We gave pointers to work in �elds such as patternrecognition, statistics, machine learning, mathematical programming, neural networks etc.We attempted to provide a self-contained, concise description of the directions which deci-



65sion tree work has taken over the years. Our larger goal is to help avoid some redundant,ad hoc e�ort, both from researchers and from system developers.
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Chapter 3Oblique decision trees
3.1 IntroductionMany variants of decision tree (DT) algorithms have concentrated on decision trees in whicheach node checks the value of a single attribute. In numeric attribute spaces, the tests havethe form xi > k, where xi is one of the attributes of an example and k is a constant.This class of decision trees may be called axis-parallel, because the tests at each node areequivalent to axis-parallel hyperplanes in the attribute space. An example of such a decisiontree is given in Figure 3.1, which shows both a tree and the partitioning it creates in a 2-Dattribute space.In this chapter, we examine decision trees that test a linear combination ofthe attributes at each internal node. More precisely, let an example take the formX = x1; x2; : : : ; xd; Cj where Cj is a class label and the xi's are real-valued attributes.2323 The constraint that x1; : : : ; xd are real-valued does not necessarily restrict oblique decision treesto numeric domains. Several researchers have studied the problem of converting symbolic (un-ordered) domains to numeric (ordered) domains and vice versa (Section 2.3.3). To keep the discus-
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Figure 3.1: The left side of the �gure shows a simple axis-parallel tree that uses two at-tributes. The right side shows the partitioning that this tree creates in the attribute space.The test at each node will then have the form:dXi=1 aixi + ad+1 > 0 (3.1)where a1; : : : ; ad+1 are real-valued coe�cients. Because these tests are equivalent to hy-perplanes at an oblique orientation to the axes, we call this class of decision trees obliquedecision trees. (Trees of this form have also been called \linear" (Section 2.3.2) and \mul-tivariate" [49] . We prefer the term \oblique" to aid geometric intuition and because\multivariate" includes non-linear combinations of the variables, i.e., curved surfaces.) It isclear that these are simply a more general form of axis-parallel trees, since by setting ai = 0for all coe�cients but one, the test in Eq. 3.1 becomes the familiar univariate test. Notethat oblique decision trees produce polygonal (polyhedral) partitionings of the attributespace, while axis-parallel trees produce partitionings in the form of hyper-rectangles thatare parallel to the feature axes.It should be intuitively clear that when the underlying concept is de�ned by asion simple, however, we will assume that all attributes have numeric values.
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Figure 3.2: The left side shows a simple 2-D domain in which two oblique hyperplanesde�ne the classes. The right side shows an approximation of the sort that an axis-paralleldecision tree would have to create to model this domain.polygonal space partitioning, it is preferable to use oblique decision trees for classi�cation.For example, there exist many domains in which one or two oblique hyperplanes will bethe best model to use for classi�cation. In such domains, axis-parallel methods will have toapproximate the correct model with a staircase-like structure, while an oblique tree-buildingmethod could capture it with a tree that was both smaller and more accurate.24 Figure 3.2gives an illustration.For a review of work on oblique (linear) decision trees, see Section 2.3.2. The pur-pose of the current chapter is to review the strengths and weaknesses of some of the existingmethods, to design a system that combines some of the strengths and overcomes the weak-nesses, and to evaluate that system empirically and analytically. The main contributionsand conclusions of the current chapter are as follows:� We have developed a new, randomized algorithm for inducing oblique decision trees24 Note that though a given oblique tree may have fewer leaf nodes than an axis-parallel tree|which is what we mean by \smaller"|the oblique tree may in some cases be larger in terms ofinformation content, because of the increased complexity of the tests at each node.



69from examples. This algorithm extends the work of Breiman et al.[44] (Chapter 5).Randomization helps signi�cantly in learning many concepts.� Our algorithm is fully implemented as an oblique decision tree induction system andis available over the Internet. The code can be retrieved by anonymous ftp fromftp://ftp.cs.jhu.edu/pub/oc1/oc1.tar.Z.� The randomized hill-climbing algorithm used in OC1 is more e�cient than otherexisting randomized oblique decision tree methods (described below). In fact, thecurrent implementation of OC1 guarantees a worst-case running time that is onlyO(log n) times greater than the worst-case time for inducing axis-parallel trees (i.e.,O(dn2 log n) vs. O(dn2)).� The ability to generate oblique trees often produces very small trees compared toaxis-parallel methods. When the underlying problem requires an oblique split, obliquetrees are also more accurate than axis-parallel trees. Allowing a tree-building systemto use both oblique and axis-parallel splits broadens the range of domains for whichthe system should be useful.The remaining sections of this chapter follow this outline: the remainder of thissection discusses the complexity issues involved in inducing oblique decision trees. Sec-tion 3.2 brie
y reviews some existing techniques for oblique DT induction, outlines somelimitations of each approach, and introduces the OC1 system. Section 3.3 describes theOC1 system in detail. Section 3.4 describes experiments that (1) compare the performanceof OC1 to that of several other axis-parallel and oblique decision tree induction methods on



70a range of real-world datasets, (2) demonstrate empirically that OC1 signi�cantly bene�tsfrom its randomization steps and (3) demonstrate that randomization is sparingly used inOC1, ensuring e�ciency.3.1.1 Complexity of inducing oblique decision treesOne reason for the relatively few papers on the problem of inducing oblique decision trees isthe increased computational complexity of the problem when compared to the axis-parallelcase. There are two important issues that must be addressed. In the context of top-downdecision tree algorithms, we must address the complexity of �nding optimal separatinghyperplanes (decision surfaces) for a given node of a decision tree. An optimal hyperplanewill minimize the impurity measure used; e.g., impurity might be measured by the totalnumber of examples mis-classi�ed. The second issue is the lower bound on the complexityof �nding optimal (e.g., smallest size) trees.Let us �rst consider the issue of the complexity of selecting an optimal obliquehyperplane for a single node of a tree. In a domain with n training instances, each describedusing d real-valued attributes, there are at most 2d ��nd� distinct d-dimensional oblique splits;i.e., hyperplanes that divide the training instances uniquely into two nonoverlapping subsets.This upper bound derives from the observation that every subset of size d from the n pointscan de�ne a d-dimensional hyperplane, and each such hyperplane can be rotated slightly in2d directions to divide the set of d points in all possible ways. Figure 3.3 illustrates theseupper limits for two points in two dimensions.
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Figure 3.3: For n points in d dimensions (n � d), there are at most n �d distinct axis-parallelsplits. However, there can be 2 �Pdk=0 �(n�1)k � oblique splits if n > d + 1 and 2n obliquesplits if n � d + 1. This �gure shows all distinct oblique and axis-parallel splits for twospeci�c points in 2-D.



72More precisely, hyperplanes can dichotomize a set of n d-dimensional vectors inat most 2 �Pdk=0 �(n�1)k � ways if n > d + 1 and 2n ways if n � d + 1, and for any givenn and d, one can �nd a set of vectors for which this bound is achieved [473]. For axis-parallel splits, on the other hand, there are only n � d distinct possibilities, and axis-parallelmethods such as C4.5 [398] and CART [44] can exhaustively search for the best split at eachnode. The problem of searching for the best oblique split is therefore much more di�cultthan that of searching for the best axis-parallel split. In fact, the problem is NP-hard(see Section 2.3.2) and any method for �nding the optimal oblique split is likely to haveexponential cost (assuming P 6= NP ). Intuitively, the problem is that it is impractical toenumerate all distinct hyperplanes and choose the best, as is done in axis-parallel decisiontrees. However, any non-exhaustive deterministic algorithm for searching through all thesehyperplanes is prone to getting stuck in local minima.On the other hand, it is possible to de�ne impurity measures for which the problemof �nding optimal hyperplanes can be solved in polynomial time. For example, if one mini-mizes the sum of distances of mis-classi�ed examples, then the optimal solution can be foundusing linear programming methods. However, classi�ers are usually judged by how manypoints they classify correctly, regardless of how close to the decision boundary a point maylie. Thus most of the standard measures for computing impurity (Section 2.3.1) base theircalculation on the discrete number of examples of each category on either side of the hy-perplane. Section 3.2 discusses the linear programming approach further, and Section 3.4.2presents comparisons of our approach with a method that uses linear programming to �nd



73splits. Now let us address the second issue, that of the complexity of building a smalltree. The problem of inducing the smallest axis-parallel decision tree is known to be NP-hard (Section 2.6.1). It is also easy to see that the problem of constructing an optimal(e.g., smallest) oblique decision tree is NP-hard. This conclusion follows from the work ofBlum and Rivest [32]. Their result implies that in d dimensions (i.e., with d attributes)the problem of producing a 3-node oblique decision tree that is consistent with the trainingset is NP-complete. More speci�cally, they show that the following decision problem isNP-complete: given a training set T with n examples and d Boolean attributes, does thereexist a 3-node neural network consistent with T ? From this it is easy to show that thefollowing question is NP-complete: given a training set T , does there exist a 3-leaf-nodeoblique decision tree consistent with T ?Note that one can generate the smallest axis-parallel tree that is consistent withthe training set in polynomial time if the number of attributes is a constant. This can bedone by using dynamic programming (e.g.: [318]) or branch and bound techniques (e.g.:[39]). But when the tree uses oblique splits, it is not clear, even for a �xed number ofattributes, how to generate an optimal (e.g., smallest) decision tree in polynomial time.Goodrich [176] showed that the problem of inducing the smallest oblique decision tree isNP-hard even in three dimensions. This suggests that the complexity of constructing goodoblique trees is greater than that for axis-parallel trees.As a result of these complexity considerations, we took the pragmatic approach of



74trying to generate small trees, but not looking for the smallest tree. The greedy approachused by OC1 and virtually all other decision tree algorithms implicitly tries to generatesmall trees. In addition, it is easy to construct example problems for which the optimalsplit at a node will not lead to the best tree; thus our philosophy as embodied in OC1 isto �nd locally \good" splits, but not to spend excessive computational e�ort on improvingthe quality of these splits.3.2 Details of some existing methodsBefore describing the OC1 algorithm, we will brie
y discuss some existing oblique DTinduction methods. The methods discussed are CART with linear combinations, LinearMachine Decision Trees, Simulated Annealing of Decision Trees and Linear Programmingbased tree building methods. For a more comprehensive list of pointers to existing work onoblique trees, see Section 2.3.2.CART-LC:The �rst oblique decision tree algorithm to be proposed was CART with linear combinations[44, chapter 5]. This algorithm, referred to henceforth as CART-LC, is an important basisfor OC1. Figure 3.4 summarizes (using Breiman et al.'s notation) what the CART-LCalgorithm does at each node in the decision tree. The core idea of the CART-LC algorithmis how it �nds the value of � that maximizes the goodness of a split. This idea is also usedin OC1, and is explained in detail in Section 3.3.1.



75To induce a split at node T of the decision tree:Normalize values for all d attributes.L = 0While (TRUE)L = L+ 1Let the current split sL be v � c, where v =Pdi=1 aixi.For i = 1; : : : ; dFor 
 = -0.25,0,0.25Search for the � that maximizes the goodness of the split v � �(ai + 
) � c.Let ��,
� be the settings that result in highest goodness in these 3 searches.ai = ai � ��, c = c� ��
�.Perturb c to maximize the goodness of sL, keeping a1; : : : ; ad constant.If jgoodness(sL) - goodness(sL�1)j � � exit while loop.Eliminate irrelevant attributes in fa1; : : : ; adg using backward elimination.Convert sL to a split on the un-normalized attributes.Return the better of sL and the best axis-parallel split as the split for T .Figure 3.4: The procedure used by CART with linear combinations (CART-LC) at eachnode of a decision tree.After describing CART-LC, Breiman et al.point out that there is still much roomfor further development of the algorithm. OC1 is an extension of CART-LC that includessome signi�cant additions. It addresses the following limitations of CART-LC:� CART-LC is fully deterministic. There is no built-in mechanism for escaping localminima, although such minima may be very common for some domains. Figure 3.5shows a simple data set, containing just 8 points in 2 dimensions, for which CART-LCgets stuck in a local minimum.� CART-LC sometimes makes adjustments that increase the impurity of a split. Thisfeature was probably included to allow it to escape some local minima. Because ofthis feature, there is no upper bound on the time spent at any node in the decisiontree. CART-LC halts when no perturbation changes the impurity more than �, but
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Figure 3.5: The deterministic perturbation algorithm of CART-LC fails to �nd the correctsplit for this data, even when it starts from the location of the best axis-parallel split. OC1�nds the correct split using one random jump.



77because impurity may increase and decrease, the algorithm can spend arbitrarily longtime at a node. We found several simple data sets for which CART-LC does not halt,unless an arbitrary stopping condition is imposed.To emphasize that the above two characteristics of CART-LC are indeed limita-tions in real-world data, we trace in Figure 3.6 typical runs of CART-LC and OC1 on theDim Star/Galaxy data set described in Section 3.4.2. This �gure plots the value of theimpurity at every perturbation. It can be seen from the �gure that (1) CART-LC does not�nd as good a split as OC1 because of local minima, and (2) the impurity of the split foundby CART-LC's does not monotonically decrease with time.
LMDT:Another oblique decision tree algorithm, one that uses a very di�erent approach from CART-LC, is the Linear Machine Decision Trees (LMDT) system [483, 48], which is a successorto the Perceptron Tree method [480, 482]. Each internal node in an LMDT tree is a LinearMachine [364]. The training algorithm presents examples repeatedly at each node untilthe linear machine converges. Because convergence cannot be guaranteed, LMDT usesheuristics to determine when the node has stabilized. To make the training stable evenwhen the set of training instances is not linearly separable, a \thermal training" method[150] is used, similar to simulated annealing.



78

5

5.2

5.4

5.6

5.8

6

6.2

6.4

6.6

0 50 100 150 200

Im
p
u
ri
ty

 (
T

w
o
in

g
 v

a
lu

e
)

Perturbation

best axis parallel split
CART

OC1
random jumps
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79SADT:A third system that creates oblique trees is Simulated Annealing of Decision Trees (SADT)[204] which, like OC1, uses randomization. SADT uses simulated annealing [252] to �ndgood values for the coe�cients of the hyperplane at each node of a tree. SADT �rst placesa hyperplane in a canonical location, and then iteratively perturbs all the coe�cients bysmall random amounts. Initially, when the temperature parameter is high, SADT acceptsalmost any perturbation of the hyperplane, regardless of how it changes the goodness score.However, as the system \cools down," only changes that improve the goodness of the splitare likely to be accepted. Though SADT's use of randomization allows it to e�ectivelyavoid some local minima, it compromises on e�ciency. It runs much slower than eitherCART-LC, LMDT or OC1, sometimes considering tens of thousands of hyperplanes at asingle node before it �nishes annealing.
Linear Programming:An alternative way of �nding splits is through the use of linear programming (LP). (SeeSection 2.3.2 for pointers to work using LP for tree construction.) Typically, LP methodswould �nd a split by minimizing the distance of misclassi�ed points to the decision boundary.In our experience, we found this approach to be very competitive, in terms of e�ciencyand e�ectiveness, with methods that optimize a discrete count-based goodness measure.However, there seem to be three signi�cant problems with LP-based tree building methods.
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Figure 3.7: Trees induced on the POL data by OC1 and LP.� LP methods are unlikely to be robust to non-uniformly distributed noise in the data.We are currently experimenting with the LP formulations of [117, 25] to verify thishypothesis, and our preliminary results support the hypothesis.� For some multimodal class distributions, impurity-based methods can \shave-o�"homogeneous corners of the attribute space, successively reducing the problem sizeand complexity. LP-based methods instead attempt to �nd a split that is good forthe whole data set, which may not exist. As a result, LP can produce overly largetrees. This is illustrated in Figure 3.7, which shows the partitionings generated byOC1 and LP for the POL data set described in Section 3.4.3.� Most LP-based methods produce null/useless solutions when the two sets to be sep-arated have the same centre. Figure 3.8 shows a simple data set for which the LPformulations in [117, 25] fail to produce any split.Our experimental section includes results showing how each of these methodscompares to OC1. Our algorithm, OC1, uses deterministic hill climbing most of the time,
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Figure 3.8: Linear programming formulations have trouble �nding a split when the centresof the data sets to be separated coincide. The two LP formulations we experimented withdid not �nd any split for this data set.ensuring computational e�ciency. In addition, it uses two kinds of randomization to avoidlocal minima. By limiting the number of random choices, the algorithm is guaranteed tospend only polynomial time at each node in the tree. In addition, randomization itselfhas produced several bene�ts: for example, it means that the algorithm can produce manydi�erent trees for the same data set. This o�ers the possibility of a new family of classi�ers:k-decision-tree algorithms, in which an example is classi�ed by the majority vote of k trees(see Section 2.5.7 for pointers to work on using multiple trees). Finally, our experimentsindicate that OC1 e�ciently �nds small, accurate decision trees for many di�erent types ofclassi�cation problems.3.3 Oblique Classi�er 1 (OC1)In this section we discuss details of the oblique decision tree induction system OC1. Aspart of this description, we include:



82To �nd a split of a set of examples T :Find the best axis-parallel split of T . Let I be the impurity of this split.Repeat R times:Choose a random hyperplane H.(For the �rst iteration, initialize H to be the best axis-parallel split.)Step 1: Until the impurity measure does not improve, do:Perturb each of the coe�cients of H in sequence.Step 2: Repeat at most J times:Choose a random direction and attempt to perturb H in that direction.If this reduces the impurity of H, go to Step 1.Let I1 = the impurity of H. If I1 < I, then set I = I1.Output the split corresponding to I.Figure 3.9: Overview of the OC1 algorithm for a single node of a decision tree.� the method for �nding coe�cients of a hyperplane at each tree node,� methods for computing the impurity or goodness of a hyperplane,� a tree pruning strategy, and� methods for coping with missing and irrelevant attributes.Section 3.3.1 focuses on the most complicated of these algorithmic details; i.e. thequestion of how to �nd a hyperplane that splits a given set of instances into two reasonably\pure" non-overlapping subsets. This randomized perturbation algorithm is the main novelcontribution of OC1. Figure 3.9 summarizes the basic OC1 algorithm, used at each nodeof a decision tree. This �gure will be explained further in the following sections.3.3.1 Perturbation algorithmOC1 imposes no restrictions on the orientation of the hyperplanes. However, in order to beat least as powerful as standard DT methods, it �rst �nds the best axis-parallel (univariate)



83split at a node before looking for an oblique split. OC1 uses an oblique split only when itimproves over the best axis-parallel split.25The search strategy for the space of possible hyperplanes is de�ned by the proce-dure that perturbs the current hyperplane H to a new location. Because there are an expo-nential number of distinct ways to partition the examples with a hyperplane, any procedurethat simply enumerates all of them will be unreasonably costly. The two main alternativesconsidered in the past have been simulated annealing, used in the SADT system [204], anddeterministic heuristic search, as in CART-LC [44]. OC1 combines these two ideas, usingheuristic search until it �nds a local minimum, and then using a non-deterministic searchstep to get out of the local minimum. (The non-deterministic step in OC1 is not simulatedannealing, however.)We will start by explaining how we perturb a hyperplane to split the trainingset T at a node of the decision tree. Let n be the number of examples in T , d be thenumber of attributes (or dimensions) for each example, and k be the number of categories.Then we can write Tj = (xj1; xj2; : : : ; xjd; Cj) for the jth example from the training set T ,where xji is the value of attribute i and Cj is the category label. As de�ned in Eq. 3.1,the equation of the current hyperplane H at a node of the decision tree is written asPdi=1(aixi) + ad+1 = 0. If we substitute a point (an example) Tj into the equation for H,we get Pdi=1(aixji) + ad+1 = Vj , where the sign of Vj tells us whether the point Tj is above25 As pointed out in [44, Chapter 5], it does not make sense to use an oblique split when thenumber of examples at a node n is less than or almost equal to the number of features d, becausethe data under�ts the concept. By default, OC1 uses only axis-parallel splits at tree nodes at whichn < 2d. The user can vary this threshold.



84or below the hyperplane H; i.e., if Vj > 0, then Tj is above H. If H splits the training setT perfectly, then all points belonging to the same category will have the same sign for Vj .i.e., sign(Vi) = sign(Vj) i� category(Ti) = category(Tj).OC1 adjusts the coe�cients of H individually, �nding a locally optimal value forone coe�cient at a time. This key idea was introduced by Breiman et al.. It works asfollows. Treat the coe�cient am as a variable, and treat all other coe�cients as constants.Then Vj can be viewed as a function of am. In particular, the condition that Tj is above His equivalent to Vj > 0am > amxjm � Vjxjm def= Uj (3.2)assuming that xjm > 0, which we ensure by normalization. Using this de�nition of Uj, thepoint Tj is above H if am > Uj , and below otherwise. By plugging all the points from Tinto this equation, we will obtain n constraints on the value of am.The problem then is to �nd a value for am that satis�es as many of these constraintsas possible. (If all the constraints are satis�ed, then we have a perfect split.) This problemis easy to solve optimally: simply sort all the values Uj , and consider setting am to themidpoint between each pair of di�erent values. This is illustrated in Figure 3.10. In the�gure, the categories are indicated by font size; the larger Ui's belong to one category, andthe smaller to another. For each distinct placement of the coe�cient am, OC1 computes theimpurity of the resulting split; e.g., for the location between U6 and U7 illustrated here, twoexamples on the left and one example on the right would be misclassi�ed (see Section 3.3.4
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Figure 3.10: Finding the optimal value for a single coe�cient am. Large U's correspond toexamples in one category and small u's to another.for di�erent ways of computing impurity). As the �gure illustrates, the problem is simplyto �nd the best one-dimensional split of the Us, which requires considering just n�1 valuesfor am. The value a0m obtained by solving this one-dimensional problem is then consideredas a replacement for am. Let H1 be the hyperplane obtained by \perturbing" am to a0m. IfH has better (lower) impurity than H1, then H1 is discarded. If H1 has lower impurity, H1becomes the new location of the hyperplane. If H and H1 have identical impurities, then H1replaces H with probability Pstag.26 Figure 3.11 contains pseudocode for our perturbationprocedure.Now that we have a method for locally improving a coe�cient of a hyperplane, weneed to decide which of the d + 1 coe�cients to pick for perturbation. We experimentedwith three di�erent methods for choosing which coe�cient to adjust, namely, sequential,best �rst and random.Seq: Repeat until none of the coe�cient values is modi�ed in the For loop:26 The parameter Pstag , denoting \stagnation probability", is the probability that a hyperplane isperturbed to a location that does not change the impurity measure. To prevent the impurity fromremaining stagnant for a long time, Pstag decreases by a constant amount each time OC1 makes a\stagnant" perturbation; thus only a constant number of such perturbations will occur at each node.This constant can be set by the user. Pstag is reset to 1 every time the global impurity measure isimproved.



86Perturb(H,m)For j = 1; : : : ; nCompute Uj (Eq. 3.2)Sort U1; : : : ; Un in non-decreasing order.a0m = best univariate split of the sorted Ujs.H1 = result of substituting a0m for am in H.If (impurity(H1) < impurity(H))f am = a0m ; Pmove = Pstag gElse if (impurity(H) = impurity(H1))f am = a0m with probability PmovePmove = Pmove � 0:1 � Pstag gFigure 3.11: Perturbation algorithm for a single coe�cient am.For i = 1 to d, Perturb(H; i)Best: Repeat until coe�cient m remains unmodi�ed:m = coe�cient which when perturbed, results in themaximum improvement of the impurity measure.Perturb(H;m)R-50: Repeat a �xed number of times (50 in our experiments):m = random integer between 1 and d+ 1Perturb(H;m)
Our previous experiments [350] indicated that the order of perturbation of the coe�cientsdoes not a�ect the classi�cation accuracy as much as other parameters, especially the ran-domization parameters (see below). Since none of these orders was uniformly better thanany other, we used sequential (Seq) perturbation for all the experiments reported in Sec-



87tion 3.4.3.3.2 RandomizationThe perturbation algorithm halts when the split reaches a local minimum of the impuritymeasure. For OC1's search space, a local minimum occurs when no perturbation of anysingle coe�cient of the current hyperplane will decrease the impurity measure. (Of course,a local minimum may also be a global minimum.) We have implemented two ways ofattempting to escape local minima: perturbing the hyperplane with a random vector, andre-starting the perturbation algorithm with a di�erent random initial hyperplane.The technique of perturbing the hyperplane with a random vector works as follows.When the system reaches a local minimum, it chooses a random vector to add to thecoe�cients of the current hyperplane. It then computes the optimal amount by which thehyperplane should be perturbed along this random direction. To be more precise, whena hyperplane H = Pdi=1 aixi + ad+1 cannot be improved by deterministic perturbation,OC1 repeats the following loop J times (where J is a user-speci�ed parameter, set to 5 bydefault).� Choose a random vector R = (r1; r2; : : : ; rd+1). 2727 One needs to be careful in choosing a random vector. If the components of the vector arerandomly chosen independently of each other, the resulting random vectors will not be uniformlydistributed. Their distribution will be biased towards the corners of a hyperrectangle, and the biasincreases with increasing dimensionality. This implies that such a strategy to choose random vectorsmay be ine�ective in escaping local minima for higher dimensional data. A better strategy is tochoose the polar coordinates of the point at random, independently of each other, and then convertthem to the rectilinear coordinates.



88� Let � be the amount by which we want to perturb H in the direction R. In otherwords, let H1 =Pdi=1 (ai + �ri)xi + (ad+1 + �rd+1).� Find the optimal value for �.� If the hyperplane H1 thus obtained decreases the overall impurity, replace H with H1,exit this loop and begin the deterministic perturbation algorithm for the individualcoe�cients.Note that we can treat � as the only variable in the equation for H1. Therefore each of then examples in T , if plugged into the equation for H1, imposes a constraint on the value of�. OC1 therefore can use its coe�cient perturbation method (see Section 3.3.1) to computethe best value of �. If J random jumps fail to improve the impurity, OC1 halts and usesH as the split for the current tree node.An intuitive way of understanding this random jump is to look at the dual spacein which the algorithm is actually searching. Note that the equation H =Pdi=1 aixi + ad+1de�nes a space in which the axes are the coe�cients ai rather than the attributes xi.Every point in this space de�nes a distinct hyperplane in the original formulation. Thedeterministic algorithm used in OC1 picks a hyperplane and then adjusts coe�cients one ata time. Thus in the dual space, OC1 chooses a point and perturbs it by moving it parallelto the axes. The random vector R represents a random direction in this space. By �ndingthe best value for �, OC1 �nds the best distance to adjust the hyperplane in the directionof R. Note that this additional perturbation in a random direction does not signi�cantly



89increase the time complexity of the algorithm (see Section 3.3.3). We found in our exper-iments that even a single random jump, when used at a local minimum, proves to be veryhelpful. Classi�cation accuracy improved for every one of our data sets when such pertur-bations were made. See Section 3.4.3 for some examples.The second technique for avoiding local minima is a variation on the idea of per-forming multiple local searches. The technique of multiple local searches is a natural ex-tension to local search, and has been widely mentioned in the optimization literature (seeRoth [412] for an early example). Because most of the steps of our perturbation algorithmare deterministic, the initial hyperplane largely determines which local minimum will beencountered �rst. Perturbing a single initial hyperplane is thus unlikely to lead to the bestsplit of a given data set. In cases where the random perturbation method fails to escapefrom local minima, it may be helpful to simply start afresh with a new initial hyperplane.We use the word restart to denote one run of the perturbation algorithms, at one node ofthe decision tree, using one random initial hyperplane.28 That is, a restart cycles throughand perturbs the coe�cients one at a time and then tries to perturb the hyperplane in arandom direction when the algorithm reaches a local minimum. If this last perturbationreduces the impurity, the algorithm goes back to perturbing the coe�cients one at a time.The restart ends when neither the deterministic local search nor the random jump can �nda better split. One of the optional parameters to OC1 speci�es how many restarts to use.If more than one restart is used, then the best hyperplane found thus far is always saved.28 The �rst run through the algorithm at each node always begins at the location of the bestaxis-parallel hyperplane; all subsequent restarts begin at random locations.



90In all our experiments, the classi�cation accuracies increased with more than one restart.Accuracy tended to increase up to a point and then level o� (after about 20{50 restarts,depending on the domain). Overall, the use of multiple initial hyperplanes substantiallyimproved the quality of the decision trees found (see Section 3.4.3 for some examples).Our initial hyperplanes are chosen uniformly randomly. Goodrich et al.[176] eval-uated the bene�ts of choosing the initial hyperplanes in a data sensitive manner. Theirmethod chooses d (= dimensionality) points randomly from the input, �ts a hyperplane tothem, and uses it as an initial hyperplane for a restart of OC1. In addition to making itpossible to analytically quantify how close the perturbation algorithm comes to the opti-mal split, data sensitive restarts produce trees of almost identical quality to OC1's defaultrestarts.Best Axis-Parallel Split. It is clear that axis-parallel splits are more suitable for somedata distributions than oblique splits. To take into account such distributions, OC1 com-putes the best axis-parallel split and an oblique split at each node, and then picks the betterof the two.29 Calculating the best axis-parallel split takes an additional O(dn log n) time,and so does not increase the asymptotic time complexity of OC1. As a simple variant ofthe OC1 system, the user can opt to \switch o�" the oblique perturbations, thus buildingan axis-parallel tree on the training data. Section 3.4.2 empirically demonstrates that thisaxis-parallel variant of OC1 compares favorably with existing axis-parallel algorithms.29 Sometimes a simple axis-parallel split is preferable to an oblique split, even if the oblique splithas slightly lower impurity. The user can specify such a bias as an input parameter to OC1.



913.3.3 Computational complexityBy carefully combining hill-climbing and randomization, OC1 ensures a an e�cient worstcase time for inducing a decision tree. In the following, we show that for a data set withn examples (points) and d attributes per example, OC1 uses at most O(dn2 log n) time forinducing the tree. We assume n > d for our analysis.For the analysis here, we assume the coe�cients of a hyperplane are adjusted insequential order (the Seq method described in Section 3.3.1). The number of restarts at anode will be r, and the number of random jumps tried will be j. Both r and j are constants,�xed in advance of running the algorithm.Initializing the hyperplane to a random position takes just O(d) time. We need toconsider �rst the maximum amount of work OC1 can do before it �nds a new location forthe hyperplane. Then we need to consider how many times it can move the hyperplane.1. Attempting to perturb the �rst coe�cient (a1) takes O(dn+n log n) time. ComputingUi's for all the points (equation 3.2) requires O(dn) time, and sorting the Ui's takesO(n log n). This gives us O(dn+ n log n) work.2. If perturbing a1 does not improve things, we try to perturb a2. Computing all the newUi's will take just O(n) time because only one term is di�erent for each Ui. Re-sortingwill take O(n log n), so this step takes O(n) +O(n log n) = O(n log n) time.3. Likewise a3; : : : ; ad will each take O(n log n) additional time, assuming we still have notfound a better hyperplane after checking each coe�cient. Thus the total time to cycle



92through and attempt to perturb all these additional coe�cients is (d�1)�O(n log n) =O(dn log n).4. Summing up, the time to cycle through all coe�cients isO(dn log n)+O(dn+n logn) =O(dn log n).5. If none of the coe�cients improved the split, then we attempt to make up to j randomjumps. Since j is a constant, we will just consider j = 1 for our analysis. This stepinvolves choosing a random vector and running the perturbation algorithm to solve for�, as explained in Section 3.3.2. As before, we need to compute a set of Ui's and sortthem, which takes O(dn+n log n) time. Because this amount of time is dominated bythe time to adjust all the coe�cients, the total time so far is still O(dn log n). This isthe most time OC1 can spend at a node before either halting or �nding an improvedhyperplane.6. Assuming OC1 is using the Sum Minority or Max Minority error measure (Sec-tion 3.3.4), it can only reduce the impurity of the hyperplane n times. This isclear because each improvement means one more example will be correctly classi-�ed by the new hyperplane. Thus the total amount of work at a node is limitedto n � O(dn log n) = O(dn2 log n). In practice, we have found that the number ofimprovements per node is much smaller than n.7. The measures Information Gain, Gini Index and Twoing Rule (Section 3.3.4) can take�(n2) values at a node with n points belonging to one of two classes. (More precisely,information gain can take on (n+ 2)2=8 distinct values. Gini index and Twoing rule



93can take on fewer values, as they have more inherent symmetry than information gain,but the upper bound is �(n2) for all three measures.) So, the time bounds derived formax minority and sum minority increase by a linear factor for these measures. Thebounds derived are not applicable to a measure that, for example, uses the distancesof mis-classi�ed objects to the hyperplane.Assuming that OC1 only adjusts a hyperplane when it improves the impuritymeasure, it will do O(dn2 log n) work in the worst case. However, OC1 allows a certainnumber of adjustments to the hyperplane that do not improve the impurity, although itwill never accept a change that worsens the impurity. The number allowed is determined bya constant known as \stagnant-perturbations". Let this value be s. This works as follows.Each time OC1 �nds a new hyperplane that improves on the old one, it resetsa counter to zero. It will move the new hyperplane to a di�erent location that has equalimpurity at most s times. After each of these moves it repeats the perturbation algorithm.Whenever impurity is reduced, it re-starts the counter and again allows s moves to equallygood locations. Thus it is clear that this feature just increases the worst-case complexity ofOC1 by a constant factor, s.Finally, note that the overall cost of OC1 is also O(dn2 log n), i.e., this is an upperbound on the total running time of OC1 independent of the size of the tree it ends upcreating. (This upper bound applies to Sum Minority and Max Minority; an open questionis whether a similar upper bound can be proven for Information Gain or the Gini Index.)Thus the worst-case asymptotic complexity of our system is comparable to that of systems



94that construct axis-parallel decision trees, which have O(dn2) worst-case complexity. Tosketch the intuition that leads to this bound, let G be the total impurity summed over allleaves in a partially constructed tree (i.e., the sum of currently misclassi�ed points in thetree). Now observe that each time we run the perturbation algorithm on any node in thetree, we either halt or improve G by at least one unit. The worst-case analysis for one nodeis realized when the perturbation algorithm is run once for every one of the n examples,but when this happens, there would no longer be any mis-classi�ed examples and the treewould be complete.3.3.4 Other detailsImpurity measuresOC1 attempts to divide the d-dimensional attribute space into homogeneous regions; i.e.,regions that contain examples from just one category. The goal of adding new nodes toa tree is to split up the sample space so as to minimize the \impurity" of the trainingset. Some algorithms measure \goodness" instead of impurity, the di�erence being thatgoodness values should be maximized while impurity should be minimized. Many di�erentmeasures of impurity have been studied (Section 2.3.1).The OC1 system is designed to work with a large class of impurity measures.Stated simply, if the impurity measure uses only the counts of examples belonging to everycategory on both sides of a split, then OC1 can use it. (See Chapter 7 for ways of mappingother kinds of impurity measures to this class of impurity measures.) The user can plug



95in any impurity measure that �ts this description. The OC1 implementation includes siximpurity measures. Though all six of the measures have been de�ned elsewhere in theliterature, in some cases we have made slight modi�cations that are de�ned precisely below.In each of the following de�nitions, the set of examples T at the node about to besplit contains n (> 0) instances that belong to one of k categories. (Initially this set is theentire training set.) A hyperplane H divides T into two non-overlapping subsets TL andTR (i.e., left and right). Lj and Rj are the number of instances of category j in TL and TRrespectively. All the impurity measures initially check to see if TL and TR are homogeneous(i.e., all examples belong to the same category), and if so return minimum (zero) impurity.1. Information Gain: This measure of information gained from a particular split waspopularized in machine learning by Quinlan (1986). Quinlan's de�nition makes infor-mation gain a goodness measure; i.e., something to maximize. Because OC1 attemptsto minimize whatever impurity measure it uses, we use the reciprocal of the standardvalue of information gain in the OC1 implementation.2. Gini Index: The Gini criterion (or index) was proposed for decision trees by Breimanet al.(1984). The Gini Index as originally de�ned measures the probability of misclas-si�cation of a set of instances, rather than the impurity of a split. We implement thefollowing variation: GiniL = 1:0� kXi=1 (Li=jTLj)2GiniR = 1:0� kXi=1 (Ri=jTRj)2



96Impurity = (jTLj �GiniL + jTRj �GiniR)=nwhere GiniL is the Gini Index on the \left" side of the hyperplane and GiniR is thaton the right.3. Twoing Rule: The Twoing Rule was �rst proposed by Breiman et al. (1984). Thevalue to be computed is de�ned as:TwoingValue = (jTLj=n) � (jTRj=n) � ( kXi=1 jLi=jTLj �Ri=jTRjj)2where jTLj (jTRj) is the number of examples on the left (right) of a split at node T ,n is the number of examples at node T , and Li (Ri) is the number of examples incategory i on the left (right) of the split. The TwoingValue is actually a goodnessmeasure rather than an impurity measure. Therefore OC1 attempts to minimize thereciprocal of this value.4. Max Minority: The measures Max Minority, Sum Minority and Sum Of Varianceswere de�ned in the context of decision trees by Heath, Kasif, and Salzberg [204].Max Minority has the theoretical advantage that a tree built minimizing this measurewill have depth at most log n. Our experiments indicated that this is not a greatadvantage in practice: seldom do other impurity measures produce trees substantiallydeeper than those produced with Max Minority. The de�nition is:MinorityL = kXi=1;i6=maxLi LiMinorityR = kXi=1;i6=maxRiRi



97Max Minority = max(MinorityL;MinorityR)5. Sum Minority: If MinorityL and MinorityR are de�ned as for the Max Minoritymeasure, then Sum Minority is just the sum of these two values. This measure is thesimplest way of quantifying impurity, as it simply counts the number of misclassi�edinstances. Though Sum Minority performs well on some domains, it has some obvious
aws. As one example, consider a domain in which n = 100; d = 1, and k = 2 (i.e., 100examples, 1 numeric attribute, 2 classes). Suppose that when the examples are sortedaccording to the single attribute, the �rst 50 instances belong to category 1, followedby 24 instances of category 2, followed by 26 instances of category 1. Then all possiblesplits for this distribution have a sum minority of 24. Therefore it is impossible whenusing Sum Minority to distinguish which split is preferable, although splitting at thealternations between categories is clearly better. 306. Sum Of Variances: 31 The de�nition of this measure is:VarianceL = jTLjXi=1 (Cat(TLi)� jTLjXj=1Cat(TLj )=jTLj)2VarianceR = jTRjXi=1 (Cat(TRi)� jTRjXj=1Cat(TRj )=jTRj)2Sum of Variances = VarianceL + VarianceRwhere Cat(Ti) is the category of instance Ti. As this measure is computed using theactual class labels, it is easy to see that the impurity computed varies depending on30 Lubinsky [298] also used this measure for tree construction, referring to it as inaccuracy. Hesuggested an improvement to inaccuracy called weighted inaccuracy.31 Sum Of Variances was called Sum of Impurities by Heath et al.. The earliest use of this measurewe found was in the Automatic Interaction Detection (AID) program [139].



98how numbers are assigned to the classes. For instance, if T1 consists of 10 points ofcategory 1 and 3 points of category 2, and if T2 consists of 10 points of category 1and 3 points of category 5, then the Sum Of Variances values are di�erent for T1 andT2. To avoid this problem, OC1 uniformly reassigns category numbers according tothe frequency of occurrence of each category at a node before computing the Sum OfVariances.Our experiments indicated that, on average, Information Gain, Gini Index andthe Twoing Rule perform better than the other three measures for both axis-parallel andoblique trees. The Twoing Rule is the current default impurity measure for OC1, and itwas used in all of the experiments reported in Section 3.4. There are, however, arti�cialdata sets for which Sum Minority and/or Max Minority perform much better than the restof the measures. For instance, Sum Minority easily induces the exact tree for the POL dataset described in Section 3.4.3, while all other methods have di�culty �nding the best tree.PruningVirtually all decision tree induction systems prune the trees they create in order to avoidover�tting the data. Many studies have found that judicious pruning results in both smallerand more accurate classi�ers, for decision trees as well as other types of machine learningsystems (see Section 2.4.1). For the OC1 system we implemented an existing pruningmethod, but note that any tree pruning method will work �ne within OC1. Based onthe experimental evaluations of Mingers [324] and other work, we chose Breiman et al.'s



99Cost Complexity (CC) pruning [44] as the default pruning method for OC1. This method,which is also called Error Complexity or Weakest Link pruning, requires a separate pruningset. The pruning set can be a randomly chosen subset of the training set, or it can beapproximated using cross validation. OC1 randomly chooses 10% (the default value) of thetraining data to use for pruning. In the experiments reported below, we only used thisdefault value.Brie
y, the idea behind CC pruning is to create a set of trees of decreasing size fromthe original, complete tree. All these trees are used to classify the pruning set, and accuracyis estimated from that. CC pruning then chooses the smallest tree whose accuracy is withink standard errors squared of the best accuracy obtained. When the 0-SE rule (k = 0) isused, the tree with highest accuracy on the pruning set is selected. When k > 0, smallertree size is preferred over higher accuracy. For details of Cost Complexity pruning, seeBreiman et al.[44] or Mingers [324].Irrelevant attributesIrrelevant attributes pose a signi�cant problem for most machine learning methods. Decisiontree algorithms, even axis-parallel ones, can be confused by too many irrelevant attributes(see Section 2.5.1 for pointers to existing work). Because oblique decision trees learn thecoe�cients of each attribute at a DT node, one might hope that the values chosen for eachcoe�cient would re
ect the relative importance of the corresponding attributes. Clearly,though, the process of searching for good coe�cient values will be much more e�cient when



100there are fewer attributes; the search space is much smaller. For this reason, oblique DTinduction methods can bene�t substantially by using a feature selection method (an algo-rithm that selects a subset of the original attribute set) in conjunction with the coe�cientlearning algorithm [44, 49].Currently, OC1 does not have a built-in mechanism to select relevant attributes.However, it is easy to include any of several standard methods (e.g., stepwise forwardselection or stepwise backward selection) or even an ad hoc method to select features beforerunning the tree-building process. For example, in separate experiments on data from theHubble Space Telescope (Section 6.1), we used feature selection methods as a preprocessingstep to OC1, and reduced the number of attributes from 20 to 2. The resulting decisiontrees were both simpler and more accurate. Work is currently underway to incorporate ane�cient feature selection technique into the OC1 system.Regarding missing values, if an example is missing a value for any attribute, OC1uses the mean value for that attribute. One can of course use other techniques for handlingmissing values, but those were not considered in this study.3.4 ExperimentsIn this section, we present three experiments to support the following three claims, respec-tively.1. OC1 compares favorably over a variety of real-world domains with several existingaxis-parallel and oblique decision tree induction methods.



1012. Randomization, both in the form of multiple local searches and random jumps, im-proves the quality of decision trees produced by OC1.3. OC1 uses randomization sparingly, ensuring e�cient search.The experimental method used for all the experiments is described in Section 3.4.1.Sections 3.4.2, 3.4.3 and 3.4.4 describe experiments corresponding to the above three claims.Each experimental section begins with a description of the data sets, and then presents theexperimental results and discussion.3.4.1 The setupWe used �ve-fold cross validation (CV) in all our experiments to estimate classi�cationaccuracy. A k-fold CV experiment consists of the following steps.1. Randomly divide the data into k equal-sized disjoint partitions.2. For each partition, build a decision tree using all data outside the partition, and testthe tree on the data in the partition.3. Sum the number of correct classi�cations of the k trees and divide by the total numberof instances to compute the classi�cation accuracy. Report this accuracy and theaverage size of the k trees.Each entry in Tables 3.1 and 3.2 is a result of ten 5-fold CV experiments; i.e., the result oftests that used 50 decision trees. Each of the ten 5-fold cross validations used a di�erentrandom partitioning of the data. Each entry in the tables reports the mean and standard



102deviation of the classi�cation accuracy, followed by the mean and standard deviation of thedecision tree size (measured as the number of leaf nodes). Good results should have highvalues for accuracy, low values for tree size, and small standard deviations.In addition to OC1, we also included in the experiments an axis-parallel versionof OC1, which only considers axis-parallel hyperplanes. We call this version, described inSection 3.3.2, OC1-AP. In all our experiments, both OC1 and OC1-AP used the TwoingRule (Section 3.3.4) to measure impurity. Other parameters to OC1 took their default valuesunless stated otherwise. (Defaults include the following: number of restarts at each node:20. Number of random jumps attempted at each local minimum: 5. Order of coe�cientperturbation: Sequential. Pruning method: Cost Complexity with the 0-SE rule, using 10%of the training set exclusively for pruning.)In our comparison, we used the oblique version of the CART algorithm, CART-LC. We implemented our own version of CART-LC, following the description in Breimanet al.[44, Chapter 5]; however, there may be di�erences between our version and otherversions of this system (note that CART-LC is not freely available). Our implementationof CART-LC measured impurity with the Twoing Rule and used 0-SE Cost Complexitypruning with a separate test set, just as OC1 does. We did not include any feature selectionmethods in CART-LC or in OC1, and we did not implement normalization. Because theCART coe�cient perturbation algorithm may alternate inde�nitely between two locationsof a hyperplane (see Section 3.2), we imposed an arbitrary limit of 100 such perturbationsbefore forcing the perturbation algorithm to halt.



103We also included axis-parallel CART and C4.5 in our comparisons. We used theimplementations of these algorithms from the IND 2.1 package [63]. The default cart0 andc4.5 \styles" de�ned in the package were used, without altering any parameter settings.The cart0 style uses the Twoing Rule and 0-SE cost complexity pruning with 10-fold crossvalidation. The pruning method, impurity measure and other defaults of the c4.5 style arethe same as those described in Quinlan [398].The last method we included in our comparisons is a modi�cation of OC1 thatuses linear programming (LP) to �nd the split at each node. We call this variation OC1-LP.To implement this method, we replaced OC1's hyperplane-�nding routine with a routinethat formulates and solves a LP problem. The LP formulation we used is the one suggestedin [25]. 32 We used LOQO to solve the linear programs. LOQO is a linear and quadraticprogramming problem solver written by Robert J. Vanderbi, Program in Statistics andOperations Research, Princeton University. 33 Note that we have implemented the LP-formulation only for 2-class problems.3.4.2 OC1 vs. existing tree methodsTable 3.1 compares the performance of OC1 to three well-known decision tree inductionmethods, OC1-AP and OC1-LP on six di�erent real-world data sets. In the next section wewill consider arti�cial data, for which the concept de�nition can be precisely characterized.32 Thanks to Kristin Bennett for providing the code, and for helpful discussions.33 Though LOQO is a commercial product, academic institutions can obtain a free copy for researchpurposes only. Contact Robert Vanderbi at rvdb@jazz.princeton.edu.



104Description of data setsStar/Galaxy Discrimination. Two of our data sets came from a large set of astronom-ical images collected by Odewahn et al.[367]. In their study, they used these images totrain arti�cial neural networks running the perceptron and back propagation algorithms.The goal was to classify each example as either \star" or \galaxy." Each image is char-acterized by 14 real-valued attributes, where the attributes were measurements de�ned byastronomers as likely to be relevant for this task. The objects in the image were divided byOdewahn et al.into \bright" and \dim" data sets based on the image intensity values, wherethe dim images are inherently more di�cult to classify. (Note that the \bright" objects areonly bright in relation to others in this data set. In actuality they are extremely faint,visible only to the most powerful telescopes.) The bright set contains 2462 objects and thedim set contains 4192 objects.In addition to the results reported in Table 3.1, the following results have appearedon the Star/Galaxy data. Odewahn et al. (1992) reported accuracy of 99.8% accuracy onthe bright objects, and 92.0% on the dim ones, although it should be noted that this studyused a single training and test set partition. Heath [202] reported 99.0% accuracy on thebright objects using SADT, with an average tree size of 7.03 leaves. This study also useda single training and test set. Salzberg [422] reported accuracies of 98.8% on the brightobjects, and 95.1% on the dim objects, using 1-Nearest Neighbor (1-NN) coupled with afeature selection method that reduces the number of features.



105Breast Cancer Diagnosis. Mangasarian and Bennett have compiled data on the prob-lem of diagnosing breast cancer to test several new classi�cation methods [309, 25, 26]. Thisdata represents a set of patients with breast cancer, where each patient was characterizedby nine numeric attributes plus the diagnosis of the tumor as benign or malignant. Thedata set currently has 683 entries and is available from the UC Irvine machine learningrepository [346]. Heath et al.[204] reported 94.9% accuracy on a subset of this data set (itthen had only 470 instances), with an average decision tree size of 4.6 nodes, using SADT.Salzberg [421] reported 96.0% accuracy using 1-NN on the same (smaller) data set. Hermanand Yeung [207] reported 99.0% accuracy using piece-wise linear classi�cation, again usinga somewhat smaller data set. Bennett and Mangasarian [25] reported 97.4% accuracy usingtheir MSM1 algorithm, using a di�erent experimentation method from the one we employ.Classifying Irises. This is Fisher's famous iris data, which has been extensively studiedin the statistics and machine learning literature. The data consists of 150 examples, whereeach example is described by four numeric attributes. There are 50 examples of each ofthree di�erent types of iris 
ower. Weiss and Kapouleas [501] obtained accuracies of 96.7%and 96.0% on this data with back propagation and 1-NN, respectively. Note that Table 3.1does not report results of OC1-LP on the Iris data. This is because we have implementedthe LP-formulation for only two-class problems.Housing Costs in Boston. This data set, also available as a part of the UCI ML repos-itory, describes housing values in the suburbs of Boston as a function of 12 continuous



106Algorithm Bright S/G Dim S/G Cancer Iris Housing DiabetesOC1 98.9�0.2 95.0�0.3 96.2�0.3 94.7�3.1 82.4�0.8 74.4�1.04.3�1.0 13.0�8.7 2.8�0.9 3.1�0.2 6.1�3.0 5.4�3.8CART-LC 98.8�0.2 92.8�0.5 95.3�0.6 93.5�2.9 81.4�1.2 73.7�1.23.9�1.3 24.2�8.7 3.5�0.9 3.2�0.3 5.8�3.2 8.0�5.2OC1-LP 99.2�0.1 95.5�0.1 96.7�0.3 85.8�0.9 75.5�0.92.5�0.5 6.4�3.1 3.0�1.2 4.2�1.9 6.6�4.3OC1-AP 98.1�0.2 94.0�0.2 94.5�0.5 92.7�2.4 81.8�1.0 73.8�1.06.9�2.4 29.3�8.8 6.4�1.7 3.2�0.3 8.6�4.5 11.4�7.5CART-AP 98.5�0.5 94.2�0.7 95.0�1.6 93.8�3.7 82.1�3.5 73.9�3.413.9�5.7 30.4�10 11.5�7.2 4.3�1.6 15.1�10 11.5�9.1C4.5 98.5�0.5 93.3�0.8 95.3�2.0 95.1�3.2 83.2�3.1 71.4�3.314.3�2.2 77.9�7.4 9.8�2.2 4.6�0.8 28.2�3.3 56.3�7.9Table 3.1: Comparison of OC1 and other decision tree induction methods on six di�erentdata sets. The �rst line for each method gives accuracies, and the second line gives averagetree sizes.attributes and 1 binary attribute [194]. The category variable (median value of owner-occupied homes) is actually continuous, but we discretized it so that category = 1 if value< $21000, and 2 otherwise. For other uses of this data, see [20, 399].
Diabetes diagnosis. This data catalogs the presence or absence of diabetes among PimaIndian females, 21 years or older, as a function of eight numeric-valued attributes. Theoriginal source of the data is the National Institute of Diabetes and Digestive and KidneyDiseases, and it is now available in the UCI repository. Smith et al. [452] reported 76%accuracy on this data using their ADAP learning algorithm, using a di�erent experimentalmethod from that used here.



107DiscussionThe table shows that, for the six data sets considered here, OC1 consistently �nds bettertrees than the original oblique CART method. Its accuracy was greater in all six domains,although the di�erence was signi�cant (more than 2 standard deviations) only for the dimstar/galaxy problem. The average tree sizes were roughly equal for �ve of the six domains,and for the dim stars and galaxies, OC1 found considerably smaller trees. These di�erenceswill be analyzed and quanti�ed further by using arti�cial data, in the following section.The oblique methods (OC1, OC1-LP and CART-LC) generally �nd much smallertrees than the axis-parallel methods. This di�erence can be quite striking for somedomains|note, for example, that OC1 produced a tree with 13 nodes on average for thedim star/galaxy problem, while C4.5 produced a tree with 78 nodes, 6 times larger. Ofcourse, in domains for which an axis-parallel tree is the appropriate representation, axis-parallel methods should compare well with oblique methods in terms of tree size. In fact,for the Iris data, all the methods found similar-sized trees.OC1-LP has the highest accuracy among all the methods, for all the domains itwas applied to. This result substantiates our claim that oblique decision trees are moreaccurate and concise in some domains. However, it is surprising that linear programming(LP) beats our randomized search method, considering that LP methods may be over-sensitive to outliers (Section 3.2). One possible reason for this is that the underlying treesare small for all the data sets we used. The bright star/galaxy data is almost linearlyseparable and the cancer and iris data sets have very accurate trees that have just more



108than 3 leaf nodes. We are currently investigating the properties of OC1-LP in more detail.3.4.3 Randomization helps OC1In our second set of experiments, we examine more closely the e�ect of introducing random-ized steps into the algorithm for �nding oblique splits. Our experiments demonstrate thatOC1's ability to produce an accurate tree from a set of training data is clearly enhancedby the two kinds of randomization it uses. More precisely, we use three arti�cial data sets(for which the underlying concept is known to the experimenters) to show that OC1's per-formance improves substantially when the deterministic hill climbing is augmented in anyof three ways:� with multiple restarts from random initial locations,� with perturbations in random directions at local minima, or� with both of the above randomization steps.In order to �nd clear di�erences between algorithms, one needs to know that theconcept underlying the data is indeed di�cult to learn. For simple concepts (say, twolinearly separable classes in 2-D), many di�erent learning algorithms will produce veryaccurate classi�ers, and therefore the advantages of randomization may not be detectable.It is known that many of the commonly-used data sets from the UCI repository are easyto learn with very simple representations [209]; therefore those data sets may not be idealfor our purposes. Thus we created a number of arti�cial data sets that present di�erent



109problems for learning, and for which we know the \correct" concept de�nition. This allowsus to quantify more precisely how the parameters of our algorithm a�ect its performance.A second purpose of this experiment is to compare OC1's search strategy withthat of two existing oblique decision tree induction systems { LMDT [48] and SADT [204].We show that the quality of trees induced by OC1 is as good as, if not better than, that ofthe trees induced by these existing systems on three arti�cial domains. We also show thatOC1 achieves a good balance between amount of e�ort expended in search and the qualityof the tree induced.Both LMDT and SADT used information gain for this experiment. However, wedid not change OC1's default measure (the Twoing Rule) because we observed, in exper-iments not reported here, that OC1 with information gain does not produce signi�cantlydi�erent results. The maximum number of successive, unproductive perturbations allowedat any node was set at 10000 for SADT. For all other parameters, we used default settingsprovided with the systems.Description of arti�cial dataLS10 The LS10 data set has 2000 instances divided into two categories. Each instance isdescribed by ten attributes x1,: : : ,x10, whose values are uniformly distributed in the range[0,1]. The data is linearly separable with a 10-D hyperplane (thus the name LS10) de�nedby the equation x1 + x2 + x3 + x4 + x5 < x6 + x7 + x8 + x9 + x10. The instances were allgenerated randomly and labelled according to which side of this hyperplane they fell on.



110Because oblique DT induction methods intuitively should prefer a linear separator if oneexists, it is interesting to compare the various search techniques on this data set where weknow a separator exists. The task is relatively simple for lower dimensions, so we chose10-dimensional data to make it more di�cult.POL This data set is shown in Figure 3.12. It has 2000 instances in two dimensions, againdivided into two categories. The underlying concept is a set of four parallel oblique lines(thus the name POL), dividing the instances into �ve homogeneous regions. This concept ismore di�cult to learn than a single linear separator, but the minimal-size tree is still quitesmall.RCB RCB stands for \rotated checker board"; this data set is also used in Chapter 7for a di�erent set of experiments. The data set, shown in Figure 3.12, has 2000 instancesin 2-D, each belonging to one of eight categories. This concept is di�cult to learn for anyaxis-parallel method, for obvious reasons. It is also quite di�cult for oblique methods, forseveral reasons. The biggest problem is that the \correct" root node, as shown in the �gure,does not separate out any class by itself. Some impurity measures (such as Sum Minority)will fail miserably on this problem, although others (e.g., the Twoing Rule) work muchbetter. Another problem is that a deterministic coe�cient perturbation algorithm can getstuck in local minima in many places on this data set.Table 3.2 summarizes the results of this experiment in three smaller tables, onefor each data set. In each smaller table, we compare four variants of OC1 with LMDT



111
Linearly Separable 10-D (LS10) dataR:J Accuracy Size Hyperplanes0:0 89.8�1.2 67.0�5.8 27560:20 91.5�1.5 55.2�7.0 382420:0 95.0�0.6 25.6�2.4 2491320:20 97.2�0.7 13.9�3.2 30366LMDT 99.7�0.2 2.2�0.5 9089SADT 95.2�1.8 15.5�5.7 349067Parallel Oblique Lines (POL) dataR:J Accuracy Size Hyperplanes0:0 98.3�0.3 21.6�1.9 1640:20 99.3�0.2 9.0�1.0 36020:0 99.1�0.2 14.2�1.1 323020:20 99.6�0.1 5.5�0.3 4852LMDT 89.6�10.2 41.9�19.2 1732SADT 99.3�0.4 8.4�2.1 85594Rotated Checker Board (RCB) dataR:J Accuracy Size Hyperplanes0:0 98.4�0.2 35.5�1.4 5730:20 99.3�0.3 19.7�0.8 177820:0 99.6�0.2 12.0�1.4 643620:20 99.8�0.1 8.7�0.4 11634LMDT 95.7�2.3 70.1�9.6 2451SADT 97.9�1.1 32.5�4.9 359112Table 3.2: The e�ect of randomization in OC1. The �rst column, labelled R:J, shows thenumber of restarts (R) followed by the maximum number of random jumps (J) attempted byOC1 at each local minimum. Results with LMDT and SADT are included for comparisonafter the four variants of OC1. Size is average tree size measured by the number of leaf nodes.The third column shows the average number of hyperplanes each algorithm considered whilebuilding one tree.
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Figure 3.12: The POL and RCB data setsand SADT. The di�erent results for OC1 were obtained by varying both the number ofrestarts and the number of random jumps. When random jumps were used, up to twentyrandom jumps were tried at each local minimum. As soon as one was found that improvedthe impurity of the current hyperplane, the algorithm moved the hyperplane and startedrunning the deterministic perturbation procedure again. If none of the 20 random jumpsimproved the impurity, the search halted and further restarts (if any) were tried. The sametraining and test partitions were used for all methods for each cross-validation run (recallthat the results are an average of ten 5-fold CVs). The trees were not pruned for any of thealgorithms, because the data were noise-free and furthermore the emphasis was on search.Table 3.2 also includes the number of hyperplanes considered by each algorithmwhile building a complete tree. Note that for OC1 and SADT, the number of hyperplanesconsidered is generally much larger than the number of perturbations actually made, becauseboth these algorithms compare newly generated hyperplanes to existing hyperplanes beforeadjusting an existing one. Nevertheless, this number is a good estimate of much e�ort



113each algorithm expends, because every new hyperplane must be evaluated according to theimpurity measure. For LMDT, the number of hyperplanes considered is identical to theactual number of perturbations.DiscussionThe OC1 results here are quite clear. The �rst line of each table, labelled 0:0, gives theaccuracies and tree sizes when no randomization is used | this variant is very similarto the CART-LC algorithm. As we increase the use of randomization, accuracy increaseswhile tree size decreases, which is exactly the result we had hoped for when we decided tointroduce randomization into the method.Looking more closely at the tables, we can ask about the e�ect of random jumpsalone. This is illustrated in the second line (0:20) of each table, which attempted up to 20random jumps at each local minimum and no restarts. Accuracy increased by 1-2% on eachdomain, and tree size decreased dramatically, roughly by a factor of two, in the POL andRCB domains. Note that because there is no noise in these domains, very high accuraciesshould be expected. Thus increases of more than a few percent in accuracy are not possible.Looking at the third line of each sub-table in Table 3.2, we see the e�ect of multiplerestarts on OC1. With 20 restarts but no random jumps to escape local minima, theimprovement is even more noticeable for the LS10 data than when random jumps alonewere used. For this data set, accuracy jumped signi�cantly, from 89.8 to 95.0%, while treesize dropped from 67 to 26 nodes. For the POL and RCB data, the improvements were



114comparable to those obtained with random jumps. For the RCB data, tree size droppedby a factor of 3 (from 36 leaf nodes to 12 leaf nodes) while accuracy increased from 98.4 to99.6%. The fourth line of each table shows the e�ect of both the randomized steps. Amongthe OC1 entries, this line has both the highest accuracies and the smallest trees for all threedata sets, so it is clear that randomization is a big win for these kinds of problems. Inaddition, note that the smallest tree for the RCB data should have eight leaf nodes, andOC1's average trees, without pruning, had just 8.7 leaf nodes. It is clear that for thisdata set, which we thought was the most di�cult one, OC1 came very close to �ndingthe optimal tree on nearly every run. (Recall that numbers in the table are the averageof 10 5-fold CV experiments; i.e., an average of 50 decision trees.) The LS10 data showhow di�cult it can be to �nd a very simple concept in higher dimensions|the optimal treethere is just a single hyperplane (two nodes), but OC1 was unable to �nd it with the currentparameter settings.34 The POL data required a minimum of 5 leaf nodes, and OC1 foundthis minimal-size tree most of the time, as can be seen from the table. Although not shownin the Table, OC1 using Sum Minority performed better for the POL data than the TwoingRule or any other impurity measure; i.e., it found the correct tree using less time.The results of LMDT and SADT on this data lead to some interesting insights.Not surprisingly, LMDT does very well on the linearly separable (LS10) data, and doesnot require an inordinate amount of search. Clearly, if the data is linearly separable, one34 In a separate experiment, we found that OC1 consistently �nds the linear separator for the LS10data when 10 restarts and 200 random jumps are used.



115should use a method such as LMDT or linear programming. OC1 and SADT have di�culty�nding the linear separator, although in our experiments OC1 did eventually �nd it, givensu�cient time.On the other hand, for both of the non-linearly separable data sets, LMDT pro-duces much larger trees that are signi�cantly less accurate than those produced by OC1and SADT. Even the deterministic variant of OC1 (using zero restarts and zero randomjumps) outperforms LMDT on these problems, with much less search.Although SADT sometimes produces very accurate trees, its main weakness wasthe enormous amount of search time it required, roughly 10-20 times greater than OC1 evenusing the 20:20 setting. One explanation of OC1's advantage is its use of directed search,as opposed to the strictly random search used by simulated annealing. Overall, Table 3.2shows that OC1's use of randomization was quite e�ective for the non-linearly separabledata. It is natural to ask why randomization helps OC1 in the task of inducing decisiontrees. Researchers in combinatorial optimization have observed that randomized searchusually succeeds when the search space holds an abundance of good solutions [186]. Fur-thermore, randomization can improve upon deterministic search when many of the localmaxima in a search space lead to poor solutions. In OC1's search space, a local maximumis a hyperplane that cannot be improved by the deterministic search procedure, and a \so-lution" is a complete decision tree. If a signi�cant fraction of local maxima lead to badtrees, then algorithms that stop at the �rst local maximum they encounter will perform



116poorly. Because randomization allows OC1 to consider many di�erent local maxima, if amodest percentage of these maxima lead to good trees, then it has a good chance of �ndingone of those trees. Our experiments with OC1 thus far indicate that the space of obliquehyperplanes usually contains numerous local maxima, and that a substantial percentage ofthese locally good hyperplanes lead to good decision trees.3.4.4 Di�erent kinds of perturbationsIn this experiment, we examine the relative e�ectiveness of OC1's three types of perturba-tions: hill climbing, jumps in random directions and stagnant perturbations. Our aim is tosee how often each kind of perturbation is used. If either random jumps or stagnant per-turbations are being used excessively, that will indicate that OC1 might be wasting search.On the other hand, if most of the time is being spent in hill climbing perturbations, withrandom jumps and stagnant perturbations being used judiciously, that will indicate thatOC1 combines the strengths of methods like CART-LC and SADT.We use the LS10 data set (Section 3.4.3) for this experiment. As the aim isto evaluate the search and not tree quality, we build only one internal node trees | westart with a random hyperplane and apply OC1's perturbation algorithm until no moreperturbations can be made. We don't use any restarts. We use the sequential method ofperturbation, trying a maximum of 100 random jumps at every local maximum. If none ofthe 100 random jumps are e�ective in �nding a better position for the hyperplane, we stopthe search. Else, we go back to the hill climbing procedure. After every perturbation, we



117record the resulting impurity (information gain) value and the type of the perturbation.Figure 3.13 shows how the impurity value changes in a typical application of OC1'sperturbation procedure. The X-axis shows the serial number of the perturbation, and theY-axis shows the value of the impurity after the perturbation. So, a point (54; 6:74) on thegraph means that the impurity was 6.74 after the 54th perturbation. The perturbationsare counted consecutively in spite of their type. So, the 54th perturbation can be a randomjump, a stagnant perturbation or a hill climbing move. There are three curves in Fig. 3.13,corresponding to three di�erent thresholds for it stagnant perturbations. When stag = k,the hyperplane is allowed at most k consecutive stagnant perturbations before trying arandom jump. The curves are identical for the �rst 30 or so perturbations, after which theydiverge. The �rst perturbation, for all three values of stag, was a hill climbing perturbationwhich brought the impurity down from 427.64 to 38.11. As showing such a large drop willreduce the clarity of the rest of the �gure, the �rst perturbation is omitted for all curves inFig. 3.13. On each curve, the locations of random jumps are marked.DiscussionSeveral interesting observations can be made from Figure 3.13.� The �rst few (30 to 40) hill climbing perturbations bring the impurity down from427 to about 7. Even if we had aborted the search after these few perturbations, wewould have obtained a good solution, spending much less time. We observed that the�rst few perturbations are the most e�ective for several domains. We are currently
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Figure 3.13: A typical search space of OC1 for the LS10 data. The �rst hill climbingperturbation for all the curves shown reduces the impurity from 427.64 to 38.11, and is notshown to improve clarity. The locations where random perturbations are made are markedon all curves.



119investigating ways to take advantage of this property. One possible application is todetect bad restarts early-on. For example, we can have a \checkpoint" after a fewinitial perturbations for each restart. From the second restart onwards, if the impurityat the checkpoint is much worse than that in the previous unaborted restart, we maybe able to avoid the rest of the search in the current restart, without compromisingon the solution.
� Random jumps are much rarer compared to hill climbing moves, in all the curves. Forinstance, when stag = 100, only 5 out of 600 perturbations were random jumps. Thisis in accordance with our earlier claim that randomization is used judiciously in OC1.
� As the number of stagnant perturbations allowed is increased, the search increasesand increasingly large plateaus appear in the impurity curve. This is to be expected,as all the stagnant perturbations are tried before any random jump. However, thissituation is not easy to rectify. If we swap the order of doing random and stagnantperturbations (i.e., try random jumps whenever the hill climbing is ine�ective, beforetrying any stagnant perturbations) this can slow down the algorithm signi�cantly,as random jumps are more computationally expensive than stagnant perturbations.Judicious choice of the number of stagnant perturbations is needed to ensure thatsearch is not wasted. OC1's current default is to try ten stagnant perturbationsbefore attempting a random jump.



1203.5 ConclusionsThis chapter described OC1, a new system for constructing oblique decision trees. We haveshown experimentally that OC1 can produce good classi�ers for a range of real-world andarti�cial domains. We have also shown how the use of randomization improves upon theoriginal algorithm proposed by Breiman et al. (1984), without signi�cantly increasing thecomputational cost of the algorithm. 35 We argued that the ability to produce obliquesplits at a node broadens the capabilities of decision tree algorithms, especially as regardsdomains with numeric attributes.Finding the best split at a node and �nding the best decision tree are basicallysearch problems. Axis-parallel tree methods use exhaustive search to �nd the best splitat a node, and greedy search to choose the best tree. For oblique trees, we retained thelatter of these heuristics, and showed that the former (exhaustively searching for the bestoblique split at a node) is impractical. We demonstrated that one particular local searchalgorithm, augmented with two speci�c types of randomization, is e�ective for �nding a goodsplit at a node. There are obviously other local search strategies and randomization stepsone could use. For instance, one may use linear programming in place of our deterministicperturbation algorithm, and perhaps impose limits on the amount of deterministic search tobe performed before the random perturbations are attempted. Random search methods likesimulated annealing or threshold accepting [118] may be used in place of our randomization35 OC1's deterministic coe�cient perturbation algorithm was constructed independently of CART,and this is the reason for the slight di�erences in the algorithm. We realized the similarity withCART subsequently.



121steps. However, we think that, with any search heuristics, an analysis of the search spaceshould be done to identify the heuristics that are likely to be most useful. The experimentin Section 3.4.4 was intended to serve this purpose, but several alternate experiments canbe designed. Interesting analyses of search methods, though not in the context of decisiontree induction, can be found in [239, 166, 434].



122
Chapter 4Limited lookahead search

The standard algorithm for constructing decision trees from a set of examples isgreedy induction | a tree is induced top-down with locally optimal choices made at eachnode, without lookahead or backup. As the greedy approach can produce suboptimal trees[174], it is naturally of interest to explore ways to improve the greedy strategy. Fixed-depthlookahead search is a standard technique for improving greedy algorithms [426]. Thoughscattered uses of lookahead exist in the literature (Section 2.5.4), there have not beenany systematic evaluations (analytical or empirical). The advantages, or lack thereof, oflookahead search have not been systematically quanti�ed in the context of decision tree orrule induction. 36With the rapid increases in computing power in recent years, limited lookaheadis now feasible for moderately large data sets. The question that therefore arises is, what36 Quinlan and Jones recently experimentally analyzed \oversearching" in the context of rule in-duction [401]. Their conclusions are similar in spirit to ours, namely that oversearching does nothelp, and can hurt.



123are the bene�ts (if any) that we might gain from employing this more costly approach? Inthe current chapter, we attempt to answer this question empirically. We systematicallycompare, using a large number of real and arti�cial data sets, the quality of axis-paralleldecision trees induced by the greedy approach to that of axis-parallel trees induced usingone-level lookahead. The main observations from our experiments are:� Limited lookahead search does not produce signi�cantly better decision trees. Onaverage, it produces trees with approximately the same classi�cation accuracy andsize as greedy induction, with slightly shorter longest paths.� Limited lookahead search produces inferior (less accurate, larger and/or deeper) de-cision trees in a signi�cant number of cases; i.e., decision tree induction exhibits thesame pathology that has been observed in game trees [360].� Tree post-processing techniques such as pruning are at least as bene�cial as limitedlookahead for a variety of real-world data sets.Our empirical evaluations are based on both synthetic and real-world data sets.To create the synthetic data, we de�ned two concept classes C and CS , and built all possibledecision trees in these classes, many thousands of trees. We then created training and testssets for all of these concepts. We also experimented with seven real-world domains from theUCI machine learning repository [346]. Our experiments only consider one level lookaheadin this chapter. Although deeper lookahead might also be interesting, it is prohibitivelyexpensive for the experimental design we employed.



124Section 4.1 describes related work on using lookahead to improve greedy search.Section 4.2 describes our experimental method. Sections 4.3 and 4.4 present the resultswith synthetic and real world data respectively. Section 4.5 provides general conclusions.4.1 Related workDecision tree induction is fundamentally an optimization problem. Optimization algorithmstypically consider a set of choices at each step towards a solution, improving things alongthe way. A greedy algorithm makes the choice that looks best at the moment, and does notreturn later to reconsider that choice. That is, it makes locally optimal choices in the hopethat they will lead to a globally optimal solution. Greedy algorithms do not always yieldoptimal solutions, but for some problems they do. Examples of the latter variety includemethods for constructing minimum spanning trees [178] and methods for producing optimalHu�man codes for data compression [283].Greedy search is used as a heuristic for a number of well-known NP-hard problems.Examples are the 0/1 knapsack problem [419], multiprocessor scheduling [210] and theproblem under consideration here, decision tree induction. For these problems, greedypolynomial algorithms obviously can not guarantee optimal solutions, assuming P 6= NP .It is natural, therefore, to look for techniques that systematically bridge the gap betweenthe approximate solutions provided by greedy search and the optimal solutions. Fixed-depth lookahead search is one such technique. The idea is to repeatedly apply a greedyalgorithm to selected subproblems in order to make less greedy (and hopefully more prudent)



125decisions. Sarkar et al.[426] show theoretically that lookahead search can guarantee �-bounded solutions for the 0/1-knapsack problem and for a scheduling problem, where �depends on the depth of lookahead.Several variations of optimal decision tree induction are known to be NP-Complete(Section 2.6.1). Virtually all implemented decision tree systems use a greedy, top-down ap-proach. There have been, however, some attempts to augment the simple greedy algorithm.(See Section 2.5.4 for a more comprehensive list of pointers.) Hartmann et al.[197] describe atree induction algorithm based on an information theoretic criterion between branching lev-els in a tree. With the appropriate parameter settings, their Generalized Optimum TestingAlgorithm (GOTA) can do �xed depth lookahead, varying depths of lookahead at di�erentlevels of the tree or even exhaustive search. However, Hartmann et al. do not demonstratethat lookahead yields any improvements over greedy search. The ideas in GOTA motivatedNorton's IDX system [365], which is a variant of ID3 [391] that performs lookahead. Nortonconducted experiments on a voting records database (see Section 4.4) using ID3, IDX andGOTA, and found that lookahead reduced the average decision tree depth. With a fewexceptions, though, the advantages of lookahead were very small in Norton's experiments.Moreover, since this study only considered a single data set, it is not clear how well theseresults generalize to other domains.Interesting approaches to slightly di�erent problems include Ragavan and Rendell'sLookahead Feature Construction (LFC) algorithm [403]. This method uses lookahead toconstruct composite Boolean features, and uses the constructed features to induce concise



126decision trees. This method is more e�cient than methods like IDX because it cachesthe features found while looking ahead. Ragavan and Rendell describe experiments thatshow that LFC outperforms more straightforward approaches to feature construction andlookahead, on symbolic domains.4.2 Experimental methodOur goal in this chapter is to evaluate systematically the gains (or losses) of limited looka-head search for decision tree induction. The greedy and one level lookahead algorithmswe used in all our experiments are described below. S is a set of training examples whoseattributes are assumed to be all numeric.Algorithm Greedy(S)1. If S contains examples from only one class, halt.2. Consider all distinct tests T of the form x < k on the features of S.The k's are chosen to be the midpoints between adjacent feature values.Choose the best test T � according to a pre-de�ned goodness measure.3. Split S into two subsets S1 and S2 using T �.4. Recursively run this procedure on S1 and S2.The algorithm for one level lookahead, Look, uses the same set of candidate splitsas Greedy. However, the goodness of a candidate split T is computed by examining all splitsone level down from T .Algorithm Look(S)1. Execute step 1 of algorithm Greedy.2. For each test T of the form x < k, do:(a) Split S into sets S1 and S2 using T.(b) Find the best split of S1 into sets S11 and S12, usingsteps 1-3 of algorithm Greedy.(c) Repeat (b) on S2, forming sets S21 and S22.(d) Compute the goodness of splitting S into S11, S12, S21, and S22,



127using the same goodness measure as in Greedy. This is T's goodness.3. Execute steps 3,4 of algorithm Greedy.We experimented with two pre-de�ned goodness measures, namely, the Gini indexof diversity [44] and information gain [391]. 37 This gave us four algorithms, which we namedGreedy-Gini, Greedy-Info, Look-Gini, and Look-Info. Note that Greedy-Gini is essentiallyidentical to the CART algorithm [44] and Greedy-Info to the ID3 algorithm [391].All our experiments measured tree quality in terms of four measures. Accuracy isthe classi�cation accuracy on either an independently generated test set (for the syntheticdomains) or obtained by cross validation (for the real world domains). Tree Size is thenumber of leaf nodes in a tree. Maximum Depth is the length of the longest path, from theroot to a leaf node. Number of candidate splits is the total number of splits evaluated bythe tree induction algorithm while building a tree. The �nal measure quanti�es the amountof search performed during tree induction.4.2.1 Synthetic dataFor a systematic evaluation of the bene�ts of lookahead, we compared the trees induced withlimited lookahead to those induced with greedy search over entire classes of decision trees.(This style of empirical investigation has been made possible by the existence of extremelyfast, inexpensive workstations. Murphy and Pazzani [347] used this style of experimentation37 We chose Gini index and information gain because they have been widely used for real worldapplications. Experiments with other goodness measures may be interesting, but we suspect theresults would be similar.



128to evaluate the Occam's Razor principle by constructing all decision trees consistent with a�xed concept.) In the current study, we have de�ned two classes of decision trees C and CS ,which are small enough to be amenable to systematic experimentation on the entire class,and general enough to be interesting. We built decision trees for all possible concepts in Cand CS with and without lookahead, and compared the results. The precise de�nitions of Cand CS and the experimental results are given in Section 4.3.For our experiments with synthetic data, we �rst generated an unlabeled trainingset TRAIN and an unlabeled test set TEST. TRAIN has 500 examples and TEST has5000 examples, with two real-valued attributes for each example, and all attribute valuesgenerated uniformly at random in the interval (0; 10). The same unlabeled training andtest sets are used in all the experiments. As TRAIN is noise-free, no pruning was used.We performed the following experiment on classes C and CS , using both Gini index andinformation gain.For each of the decision trees D in the class:{ label TRAIN and TEST according to D;{ greedily induce a decision tree D1 on TRAIN;{ induce a decision tree D2 on TRAIN using lookahead;{ and record the accuracy on TEST, tree size, max. depth andthe number of splits considered, for D1 and D2.4.2.2 Real-world dataIn addition to synthetic data, we have also experimented with noisy, real world data sets forwhich the underlying concepts are unknown. We evaluated the e�ects of one-level lookaheadon seven data sets taken from the University of California at Irvine repository of machine



129learning databases [346].If a greedy method can induce a highly accurate, concise classi�er for a domain(the well-known Iris data is one such example), it is unlikely that we can observe signi�cantbene�ts of lookahead on that domain. It has been observed that most of the data sets inthe UCI repository can be described by very simple classi�cation rules [209]. So, we neededto be careful in our choice of real world domains. We used a survey of results on severalUCI data sets provided by Holte [209] to choose six \di�cult" domains { domains for whichthe best known accuracy is at most 90%. Though the low accuracies may be due to factorsother than the inadequacy of greedy induction, such as an overly small or noisy training set,there is no straightforward way of knowing this a priori. In addition to these six \di�cult"domains, we also experimented with two variants of the congressional voting records dataused by Norton [365] for his lookahead experiments. Brief descriptions of all our real worlddomains, and the results of the experiments are given in Section 4.4.We augment all our algorithms (Greedy-Gini, Look-Gini, Greedy-Info and Look-Info) with pruning for the experiments with real world data { in e�ect, we experimentedwith eight di�erent tree induction algorithms. We used Breiman et al.'s cost complexitypruning ([44], Chapter 3) with the one standard error rule, reserving 10% of the trainingdata as the pruning set. We used 5-fold cross validation to estimate accuracy, as can beseen in the following summary of our experimental method for the real world domains. Foreach of our data sets DATA, we repeated this procedure with Greedy-Gini, Greedy-Info,Look-Gini and Look-Info, with and without pruning.



130repeat ten times with di�erent random seeds:{ divide DATA randomly into 5 equal disjoint partitions;{ foreach partition P{ induce a decision tree on (DATA - P);{ record tree size, max. depth and no. of misclassi�ed examples in P;{ report the accuracy on DATA and the average size and depth;
4.3 Experiments with synthetic data4.3.1 C: A class of simple data setsOur �rst set of experiments are designed to measure how close to optimal are the treesproduced by greedy induction on a �xed concept class. More precisely, we consider aclass of concepts C, all members of which are simple enough for one-level lookahead tobe equivalent to exhaustive search, and systematically evaluate the e�ectiveness of greedyinduction over this entire class. C is a class of binary decision trees de�ned as follows:� Each member of C has 3 test nodes and 4 leaves, and is balanced. The tests at thethree internal nodes (root, left, and right) are all non-trivial, in the sense that theysplit heterogeneous sets of examples.� C contains only two attributes, x1 and x2 (to enable graphical display and comparisonof trees).� The tests are restricted to be of the form xi < k where k is an integer in (0; 10).� C contains exactly two classes, 1 and 2.
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Figure 4.1: Class C consists of all balanced decision trees on a 10 X 10 grid such that eachtree has three test (internal) nodes and no test node is trivial.
See Figure 4.1 for a graphical de�nition of the class C, which has a total of 5844distinct trees. (Trees that are equivalent except for having their class labels swapped arenot considered distinct.) C is de�ned to make systematic exhaustive search on all possibleconcepts computationally feasible. One reason for de�ning class C in this form is that onelevel of lookahead from the root will always �nd the optimal decision tree in terms of thesize and depth. Trees in this class may realistically occur in many situations as subtrees ofa larger tree, and it is reasonable to ask if we should constantly check one level ahead to\�nish o�" a subtree. However, even one level of lookahead is very costly, so we wish toquantify its possible advantages. (The work done at a single node by the standard greedyalgorithm is at most O(dn log n) for d attributes and n examples. One level of lookaheadrequires at most O(d2n2) work.)
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Figure 4.2: Summary of experiments with class C. The mean and one quartile ranges foraccuracy, tree size and maximum depth are shown for Greedy-Gini, one-level lookahead andGreedy-Info. The accuracies shown are the amounts above a baseline value of 95%; e.g., theaccuracy of lookahead was 99.74%.We used the experimental method de�ned in Section 4.2.1. Each decision tree in Cwas used to label TRAIN and TEST. Two sets of 5844 trees each were induced on TRAINusing Greedy-Info and Greedy-Gini. A third set of 5844 trees was induced on C using onelevel lookahead. Note that, as one level lookahead is the same as exhaustive search on C,Look-Info and Look-Gini produce identical trees for this class. Figure 4.2 summarizes thedi�erences between the quality of decision trees induced by Greedy-Gini, Greedy-Info, andexhaustive search, over the entire class C. The �gure shows the mean and one quartileranges of the accuracy, tree size and maximum depth. (One quartile range is the intervalthat includes 25% of the samples above and below the mean.)As the �gure shows, the di�erences between Greedy-Gini, Greedy-Info, and Lookare quite small, in spite of the fact that greedy induction uses only about 0:004 times as much



133search as exhaustive search. Greedy-Gini evaluates 1798 candidate splits on average per tree,and Greedy-Info evaluates 1718 splits. In contrast, Look evaluates 419,301 splits for eachtree, on average. The di�erences in average accuracy between the greedy algorithms andLook are negligible. The di�erence in average tree size between Greedy-Info and exhaustivesearch is 0.36 nodes, less than one standard deviation of 0.4 nodes . The di�erence of 0.63between the average tree size of Greedy-Gini and Look is slightly more pronounced. Theonly aspect in which greedily induced trees are signi�cantly worse than the optimal trees ismaximum depth. Exhaustive search produces trees that are on average one level shallowerthan the greedy algorithms.
Figures 4.3 and 4.4 show the e�ects of one-level lookahead (equivalently, exhaus-tive search) for class C in more detail. The horizontal axis plots the improvement due tolookahead. Thus the line for accuracy shows the increase in accuracy due to lookahead,measured by percentage change. The lines for tree size and depth show the decrease inthese measures when lookahead is used. The vertical axis plots the number of trees inwhich lookahead causes a particular improvement. For instance, a point (x; y) on the line\accuracy" in the graph means that, for y trees out of the total of 5844, accuracy improvedby x when lookahead was used. For points on X = 0, lookahead had no e�ect, and forpoints to the right of X = 0, lookahead was bene�cial. For points to the left of the lineX = 0, greedy induction was better than lookahead; i.e., the tree induction task exhibitedpathology.
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Figure 4.3: E�ect of one level lookahead in trees produced with information gain, for classC. Improvements in accuracy, size and maximum depth are shown, along with the numberof trees in which these improvements occur. Negative values on the X-axis mean thatlookahead produced inferior trees.
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Figure 4.4: E�ect of one level lookahead in trees produced with gini index, for class C.Improvements in accuracy, size and maximum depth are shown, along with the numberof trees in which these improvements occur. Negative values on the X-axis mean thatlookahead produced inferior trees.
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RFigure 4.5: A tree with maximum depth of 3 produced by Greedy-Info. It is easy to seethat this tree can be balanced. By making Root the left child of R, and R the root, thedepth can be reduced to 2, without changing the partitioning induced (and the accuracy)We discuss only the measurements for information gain (Fig. 4.3) as the graphfor Gini index (Fig. 4.4) looks almost identical. Fig. 4.3 o�ers several interesting insights.First, each of the three lines has a single, prominent peak. The peaks for the accuracy andtree size lines are at X = 0, and the peak for depth is at X = 1. The peaks at X = 0show that for a large number of trees, lookahead did not make any di�erence in terms ofaccuracy and number of leaves. The depth peak at X = 1 shows that the maximum depthof most of the greedily induced trees is exactly one more than optimal. To understand whythe greedy approach builds deeper trees, we looked at several of these trees individually,and found that many had a structure similar to the one shown in Figure 4.5. Althoughthis tree partitions the data optimally, it is deeper than necessary. Section 4.3.4 describesa simple post-processing step to rebalance a greedily induced tree, in order to reduce itsworst-case classi�cation cost.



137Second, it is interesting to note that lookahead actually hurts accuracy in almost asmany trees as those in which it enhances accuracy. This property, where lookahead search�nds inferior solutions, is known as pathology in the context of game trees [356, 360]. Wediscuss pathology for decision trees further in Section 4.3.2, where this trend is exhibitedmore prominently. Pathology cannot occur for tree size or depth for class C, because one-level lookahead is equivalent to exhaustive search. However, our next class CS includesdeeper trees, and limited lookahead can and does produce trees that are worse in terms ofsize and depth.Third, we can see from Figure 4.3 that there are some greedily induced trees thathave as many as 4 leaves more than those induced with lookahead. We looked at all suchlarge trees, and found that they all had several \minimally useful" splits. For example,consider the tree shown in Figure 4.6. We can usually avoid such splits with a simple stop-splitting rule. Pruning will also tend to remove them, but pruning is not fully justi�ed onour synthetic data sets as they are noise-free.4.3.2 CS : A more di�cult classIn section 4.3.1, we experimented on a class C of concepts for which one-level lookahead isequivalent to exhaustive search, and showed that the bene�ts of lookahead are negligible.This section extends C to a class CS , where one level of lookahead does not perform exhaus-tive search. CS is a more realistic concept class than C, because in practice we can do onlylimited lookahead. CS is an extension of C obtained as follows:
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Figure 4.6: A tree with 8 nodes and maximum depth of 4 produced by Greedy-Gini. Eachthick line consists of three or four splits, very close to each other. A simple stop-splittingrule can avoid most splits in this tree, without signi�cantly changing the accuracy.CS = ;For each tree T in C, do:1. Remove T from C.2. Randomly choose one of the four leaf nodes of T . Call this L.3. Split L with a randomly chosen, non-trivial split S of the formxi < k, where k is an integer in the range (0; 10). If there is novalid split, go to step 2 and choose a di�erent leaf.4. Assign one side of S to class 1 and the other side to class 2.5. Add T to CS.Each decision tree in CS is a binary tree with four decision nodes and has a maxi-mum depth of 3. Note that while CS has 5844 trees, the same as C, another run of the aboveprocedure would create a di�erent de�nition of CS because of the randomized steps. Weconsidered using exhaustive enumeration in place of these random choices, but that wouldproduce a class that is vastly larger, too large for systematic experimentation. The experi-mental method used for CS is identical to that used for C, and is described in Section 4.2.1.
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Figure 4.7: Summary of experiment with class CS . The mean and one quartile ranges foraccuracy, tree size and maximum depth are shown for Greedy-Gini, Look-Gini, Greedy-Info,and Look-Info. The accuracies shown are the amounts above a baseline value of 95%.One important di�erence is that, since one-level lookahead is not equivalent to exhaustivesearch on CS , Look-Gini and Look-Info do not produce identical trees for this class.The experimental results with class CS substantiate the conclusions drawn fromexperiments with class C, in section 4.3.1. Figure 4.7 summarizes the di�erences in accuracy,tree size and maximum depth between Greedy-Gini, Look-Gini, Greedy-Info, and Look-Infoon class CS . It can be seen from this �gure that there is no signi�cant improvement inaccuracy due to one level lookahead. The di�erences between accuracy with and withoutlookahead are actually smaller here than they were for class C, despite the fact that the rel-ative cost of lookahead search was higher for this class. On average, Greedy-Gini considered1952 candidate tests per tree and Greedy-Info considered 1847 splits. Look-Gini and Look-Info, in contrast, considered 745,689 and 747,037 tests respectively. The di�erences in tree
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Figure 4.8: E�ect of one level lookahead for trees in class CS . Improvements in accuracy, sizeand maximum depth of trees built using Look-Info versus Greedy-Info are shown. Negativevalues on the x-axis show instances where lookahead produced inferior trees.size are insigni�cant for both goodness measures. The only quantity for which one-levellookahead caused noticeable improvement for class CS was maximum depth, where treesinduced with lookahead were on average 0.6 levels shallower than greedily induced trees.Figure 4.8 shows the e�ect of one-level lookahead for class CS in more detail forGreedy-Info. The corresponding picture for Greedy-Gini looks nearly identical and is shownin Fig. 4.9. As in Figure 4.3, points to the left of X = 0 are concepts in CS for which limitedlookahead performs worse than greedy search; i.e., the problem exhibits pathology. Pointson X = 0 are concepts for which lookahead makes no di�erence at all. Points to the right
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Figure 4.9: E�ect of one level lookahead for trees in class CS . Improvements in accuracy, sizeand maximum depth of trees built using Look-Gini versus Greedy-Gini are shown. Negativevalues on the x-axis show instances where lookahead produced inferior trees.
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Figure 4.10: A data set in class CS on which information gain exhibits pathology.of X = 0 are concepts for which limited lookahead search produces better trees. The peaksfor accuracy, tree size and maximum depth in Fig. 4.8 coincide with those in Figure 4.3.It is interesting to note that there were more trees for which lookahead hurt accuracy thanthere were those for which it bene�ted. lookahead produced worse trees in terms of treesize also. It produced trees that had as many as six more leaves (�ve more decision nodes)than greedy induction. Section 4.3.3 shows an example of pathology.4.3.3 An example of pathologyFig. 4.10 shows a labeling of TRAIN, the training set we used for all our experimentswith synthetic data. This labeling was obtained by a tree in class CS . Information gainexhibits pathology on this data { Greedy-Info produces a better tree than that producedwith Look-Info, in terms of all our three measures, accuracy, size and maximum depth.We show below the tree induced by Greedy-Info and Look-Info on the data in



143Fig. 4.10, both in terms of the equations for the splits in the trees and the partitioninginduced on the training data. Each equation of a split is of the form label :equation.label is a character string comprising of characters l and r, denoting left and right. Allexamples answering yes to the question at a decision node take the left branch, and allothers take the right branch. The split at the root of the decision tree has an empty label.Every other split has a label specifying where in the tree the split occurs. For example, asplit at the \l"eft child of the \r"ight child of the root has the label rl. Leaf nodes haveclass labels instead of equations. Figure 4.11 graphically shows the partitions induced bythe Greedy-Info and Look-Info trees, making it obvious that greedy induction induces amuch better tree for this domain.
Greedy-Info Tree: x2 < 4:99?l :x1 < 6:04?ll :class 1lr :x1 < 7:01?lrl :class 2lrr :class 1r :class 2

Look-Info Tree: x2 < 3:05?l :x1 < 6:04?ll :class 1lr :x1 < 7:01?lrl :class 2lrr :class 1r :x2 < 4:59?rl :x1 < 6:32?rll :class 1rlr :x1 < 6:98?rlrl :class 2rlrr :class 1rr :x2 < 4:82?rrl :x2 < 4:81?rrll :class 1rrlr :class 2rrr :x2 < 4:99?rrll :class 1rrlr :class 2
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Figure 4.11: Trees induced by information gain without and with lookahead for the datain the previous �gure. The tree induced by Greedy-Info has size 4, maximum depth 3 andaccuracy 99.74% on an independent test set. On the other hand, Look-Info induces a treewith size 10, maximum depth 4 and accuracy of 99.10%. Greedy-Info considers a total of1545 splits while inducing its tree, whereas Look-Info considers a total of 1,455,901 splits.4.3.4 \Rebalancing" greedy treesSome examples of methods to \re�ne" greedily induced trees are given in Section 2.5.4. Weoutline here a simple re�ning method, which we call tree rebalancing. Given a decisiontree D for a training set TRAIN, we want to produce a tree DB that induces the samepartitioning as D on TRAIN, but has lower average depth than D (i.e., DB is more \bal-anced" than D). The average depth of a tree is the path length between the root and aleaf node, averaged over all the leaf nodes. (This measure is also used in the experimentsin Chapter 5.)Although little if any work has been done on balancing decision trees, a great dealof research has considered balanced search trees (e.g., see [16, 79, 461, 93, 357]). Roughlyspeaking, this literature deals with techniques to restructure search trees when elements are



145inserted or deleted, in order to restrict the depth of these trees to a logarithmic function ofthe number of search keys. Examples of balanced search trees include AVL trees, B-trees,and red-black trees. An axis-parallel decision tree in a continuous space can be interpretedas a multi-dimensional binary search tree, where each internal node stores an axis numberand a search key along that axis. Such an interpretation makes it possible to use searchtree balancing techniques on decision trees.The main primitives used for rebalancing a tree in balanced search tree methodsare rotations. Rotations are operations in which the parent-child links of some nodes inthe tree are rearranged locally, while guaranteeing that the functionality of the whole treeremains invariant. We have adapted two simple tree rotation operators, left-rotate andright-rotate, to decision trees. These operators, illustrated in Figure 4.12, take constanttime for each rotation. The following procedure can be used for balancing a decision treeT . Note that as this procedure itself is a greedy heuristic, it may not result in optimallybalanced trees.Algorithm Balance(T)if T = then halt;if T and right-subtree(T) test the same attribute at the rootT1 = left-rotate(T);if avg. depth(T1) < avg. depth(T ) then T = T1;skip the next If statement;if T and left-subtree(T) test the same attribute at the rootT1 = right-rotate(T);if avg. depth(T1) < avg. depth(T) then T = T1;Balance (left-subtree(T));Balance (right-subtree(T));Figures 4.13 and 4.14 show the e�ect of post-processing on the greedily induced
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L3 L4

Figure 4.12: Left and right rotations of a binary decision tree. Rotation operators can helpreduce the average depth, and thus the expected cost of classi�cation, of a decision treewithout changing its accuracy. The leaf nodes L1, L2 etc. in this �gure can be replacedwith arbitrary subtrees.trees in class C and class CS respectively. Results for Greedy-Gini are shown, and results forGreedy-Info look very similar. Each �gure consists of �ve stacked bars, the �rst three corre-sponding to maximum depth and the last two to tree size. Each bar shows the distributionof 5844 trees into bins of equal size or depth. The three maximum depth bars correspondto (i) no post-processing, (ii) tree balancing as a post-processing step and (iii) tree balanc-ing and stop-splitting. The two tree size bars show the distribution of the trees with nopostprocessing and with stop-splitting. (Note that tree size is not altered by balancing.)Figures 4.13 and 4.14 show that tree balancing reduces the maximum depth ofseveral trees in classes C and CS . In addition, the stop-splitting rule reduces tree sizeand depth substantially. Note that stop-splitting, unlike balancing, decreases classi�cationaccuracy because it allows for heterogeneous partitions. However, this reduction was small
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Figure 4.13: Improvement due to post-processing in greedily induced trees for class C. Firstthree bars show the distribution of class C trees according to maximum depth (i) with nopostprocessing, (ii) with tree balancing and (iii) with stop-splitting and balancing. Thelast two bars show distribution of tree size (i) without any postprocessing and (ii) withstop-splitting. All the results are for Greedy-Gini.
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Figure 4.14: Improvement due to post-processing in greedily induced trees for class CS .First three bars show the distribution of trees according to maximum depth (i) with nopostprocessing, (ii) with tree balancing and (iii) with stop-splitting and balancing. The lasttwo bars show distribution of trees according to size (i) without any postprocessing and (ii)with stop-splitting. Results for Greedy-Gini are shown.



149for both classes. For class C, the average accuracy with stop-splitting was 99.3, as opposedto 99.6 when no post-processing was used. For class CS , average accuracy dropped from99.5 to 99.0 when stop-splitting was used.4.4 Experiments with real-world dataThe experiments with synthetic data, presented in Section 4.3, do not suggest how looka-head search might perform on real world, noisy, higher dimensional domains. This sectiondescribes experiments we did with seven data sets available in the UCI Machine Learningrepository [346]. Brief descriptions of each of the real data sets we used are given below.A brief rationale for choosing these particular data sets, and our experimental method forreal world domains are given in Section 4.2.2.BC Breast cancer recurrence data [38]. Contains 286 instances, each described by 9 at-tributes and one class label. The task is to predict if a breast cancer event is torecur.CL Cleveland Clinic Foundation's heart disease diagnosis data [89]. Contains 303 instances,each described by 14 attributes including the class label. We use the \processed"data in the UCI repository, where there are only two classes, namely the presence andabsence of heart disease.GL Glass identi�cation data. Contains 214 instances described using ten continuous valuedattributes and a class label. The �rst attribute \Id number" is not used in our



150experiments.HE Hepatitis domain. Contains 155 instances, described using 20 attributes including theclass label. The task is to classify patients that die from hepatitis from those that donot.LA Final settlements in labor negotiations in Canadian industry. 57 instances each de-scribed using 16 features.LY Lymphography domain [304]. Contains 148 instances, each described using 19 at-tributes, including the class attribute.VO 1984 United States congressional voting records database. This data is used by Norton[365] in his experiments. The data contains 435 instances, each described by 16 nom-inal attributes and one class label. The task is to classify democrats from republicanson the basis of their voting records.V1 This data, used in [59, 209], is identical to the VO data, except that the \best" attributephysician-fee freeze is removed.All the experimental results reported in this section are obtained with informationgain. The experiments with Gini index did not o�er any more insights, and are omitted forbrevity. Figures 4.15, 4.16 and 4.17, one for each of the three measures accuracy, tree sizeand maximum depth, summarize the results of our experiments on the real-world data sets.In each �gure we plot the values of a measure obtained using four induction methods: (i)
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Figure 4.15: E�ect of one level lookahead on accuracy for eight real-world data sets. Theaccuracies with and without lookahead, and with and without pruning are shown for infor-mation gain.Greedy-Info, (ii) Look-Info, (iii) Greedy-Info with pruning and (iv) Look-Info with pruning.Each value is the average of ten 5-fold cross validations, as explained in Section 4.2.2. Thereare eight lines in each �gure, corresponding to eight data sets.Consider the accuracy plot in Fig. 4.15. The �rst observation is that the accuraciesdo not vary much between various induction methods. On closer observation, accuracy dropsfor six out of the eight data sets (all except V1 and GL) when lookahead is used, though notsigni�cantly for all of them. In addition, Greedy-Info with pruning produces more accuratetrees than Look-Info for the V1 data (and four others). Pruning, which is a much lessexpensive technique than lookahead, seems to be more bene�cial in terms of accuracy. Itis of course unfair to expect lookahead to compensate for pruning on noisy domains. So,we evaluated lookahead plus pruning versus just pruning (columns four and three), to see
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Figure 4.16: E�ect of one level lookahead on tree size for eight real-world data sets. The treesizes with and without lookahead, and with and without pruning are shown for informationgain.if pruning complements lookahead induction better than it complements greedy induction.This doesn't seem to be the case | Look-Info doesn't do very well with pruning either.The di�erences in accuracy, between Greedy-Info with pruning and Look-Info with pruningare insigni�cant for all domains except one, the BC data. For this data, Greedy-Info withpruning is better than Look-Info with pruning. Our overall impression from the accuracyplot in Fig. 4.15 is that lookahead doesn't a�ect the accuracy signi�cantly. Better bene�tsthan lookahead can be obtained with pruning, which is a much less expensive alternative.Now consider the tree size plot in Fig. 4.16. Lookahead does reduce the treesize, signi�cantly for two domains (BC and GL) and slightly for �ve others. These bene�ts,however, are over-shadowed by the bene�ts of pruning. For all domains except the LA data,pruning helps produce much smaller trees than both the greedy and lookahead methods.
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Figure 4.17: E�ect of one level lookahead on maximum tree depth for eight real-world datasets. The depths with and without lookahead, and with and without pruning are shown forinformation gain (IG).
As lookahead and pruning independently help reduce the tree size, it is natural to ask ifusing them together would accumulate the bene�ts. From the results in the third andfourth columns, it is clear that this is not the case. The di�erences between Greedy-Infowith pruning and Look-Info with pruning are negligible for most domains. In the only casewhere this di�erence is signi�cant (for the BC data), Look-Info with pruning produces worsetrees than Greedy-Info with pruning.The plot for maximum depth in Fig. 4.17 looks similar to the size plot in Fig: 4.16.Look-Info produces shallower trees for all eight domains than Greedy-Info, but the bene�tsdue to lookahead are over-shadowed by the bene�ts due to pruning. Combining pruningwith lookahead doesn't produce any signi�cant improvements over just pruning.



154Overall, the results of our experiments with real data substantiate our results withthe synthetic data. Limited lookahead did not bene�t signi�cantly in terms of classi�cationaccuracy or size, despite the fact that it is enormously more expensive. It helped produceshallower trees, but tree post-processing techniques (pruning in this case) which are muchless expensive than lookahead were adequate to obtain comparable bene�ts. Finally, bothgoodness measures we used (Gini index and information gain) exhibited pathology on thereal-world domains also.4.5 ConclusionsMost existing decision tree induction methods use a greedy strategy { decisions in the treeare induced one node at a time. It is known that all these methods are necessarily suboptimal[174]. It is desirable, particularly in view of the huge increase in the available computingpower, to have techniques that can systematically bridge the gap between greedily inducedtrees and the optimal trees. Limited lookahead search is commonly believed to be one suchtechnique.In this chapter, we described experiments that aimed to precisely quantify thebene�ts of limited lookahead search for tree induction. We restricted ourselves to onelevel lookahead. Our experiments used both synthetic and real world domains. For theexperiments with synthetic data, we de�ned two moderately large classes of concepts andinduced trees with greedy induction and limited lookahead on all possible concepts in theseclasses. For the experiments with real world data, we used seven domains from the UCI



155repository of machine learning databases. The tree induction methods we used are verysimilar to CART [44] and ID3 [391].The bene�ts of limited lookahead search in all our experiments are marginal in spiteof the enormous increase in the computational complexity. Greedy induction consistentlyproduces trees that are as accurate and small as those produced with lookahead. The onlysigni�cant bene�t of lookahead is in producing slightly shallower trees than greedy induction.However, tree post-processing techniques, such as pruning and \balancing", narrow thedi�erence between greedy and limited lookahead induction even further. Moreover, wemeasured maximum depth in all our experiments. The longest paths in a tree may betrying to split a small area of the attribute space, and thus may be used very rarely foractual classi�cation. One can claim that lookahead produces shallow trees only on the basisof expected depth, the number of tests needed to classify an unseen example. We presentexperiments in the next chapter, which show that the expected depth of greedily inducedtrees is very close to the optimum, leaving little scope for improvement by lookahead orother techniques.Not only does lookahead search not produce signi�cant bene�ts, it can actuallyhurt tree quality. We discovered several synthetic and real world data sets for which limitedlookahead search produces worse trees than greedy induction, in terms of accuracy, tree sizeand max. depth. Intuitively, doing more search (lookahead) should produce better decisiontrees, just as deeper search in game trees (e.g., for chess) produces better game-playingprograms. However, it has been observed that for some games, deeper search can actually



156produce an inferior program, both with two players [360] and with multiple players [356].Decision trees, one can argue, are analogous to a one-player game tree. Our discovery thatdeeper search can lead to inferior decision trees thus extends the earlier pathology resultsto a new domain.It is intriguing that limited lookahead search can produce inferior decision treesas compared to greedy search. Pathology may be caused by the way heuristic goodnessmeasures are de�ned. Greedy methods grow a decision tree by optimizing measures suchas class entropy or diversity at each node of the tree (Section 2.3). However, as indicatedby pathology, each such optimization is not necessarily improving the tree globally. It iscommonly believed that information gain helps induce shallow trees [391, 403]. Our �ndingsthat Look-Info generally produces shallower trees than Greedy-Info are in accordance withthis common belief. However, pathology in terms of maximum depth indicates that a splitthat optimizes information gain can in fact lead to a deeper tree.Finally, a word of caution. Most of our experiments in this chapter are based onsynthetic data. Experiments with synthetic data are necessarily limited in the generalityand applicability of their conclusions. We used synthetic data in this chapter mainly toshow the existence of pathology. To determine how often pathology occurs in real-world,more detailed analyses will be necessary.
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Chapter 5On the e�ectiveness of the greedyheuristic

Chapter 4 presented extensive experimentation which indicated that one-levellookahead does not produce better trees than the traditional greedy tree induction algo-rithm. This is surprising, as one would expect that more search should mean better results.One plausible explanation for this seemingly unintuitive result is that greedily induced treesare themselves so close to the optimal that improvement is hard to achieve. The currentchapter investigates in this direction: it attempts to measure how close greedily inducedtrees are to the optimal.We cannot, however, use the same synthetic data here as we had used in Chapter 4.Classes of small, shallow decision trees were chosen for the lookahead experiments so thatone-level lookahead can have an e�ect. On these trees, there can obviously be not muchdi�erence between the greedily constructed and optimal trees. For the experiments in thischapter, we use much larger trees, varying dimensionality, varying levels of noise, etc.



158What we mean by greedy tree induction is the standard top-down method: recur-sively do the following until no more nodes can be split: choose the best possible test atthe current node according to some goodness measure and split the current node using thattest; after a complete tree is grown, prune it back to avoid over�tting the training data.The choice of a \best" test is what makes this algorithm greedy. The best test at a giveninternal node of the tree is only a locally optimal choice; and a strategy choosing locallyoptimal splits necessarily produces suboptimal trees [174]. Optimality of a decision treemay be measured in terms of prediction accuracy, size or depth. It should be clear that itis desirable to build optimal trees in terms of one or more of these criteria. Maximizingclassi�cation accuracy on unseen data (within the constraints imposed by the training data)is obviously desirable. Smaller, shallower decision trees imply better comprehensibility andcomputational e�ciency. Shallow trees are also more cost-e�ective, as the depth of a tree isa measure of its classi�cation cost. However, because the problem of building optimal treesis known to be intractable (Section 2.6.1), a greedy heuristic might be wise given realisticcomputational constraints.Although the greedy approach is suboptimal, it is commonly believed to producereasonably good trees. In the current chapter, we attempt to verify this belief. We askthe question, if we had unlimited resources and could compute the optimal tree, how muchbetter should we expect to perform? An alternative way of asking the same question is,what is the penalty that decision tree algorithms pay in return for the speed gained by thegreedy heuristic? We quantify the goodness of greedy tree induction empirically in this



159chapter, using the popular decision tree algorithms, C4.5 [398] and CART [44]. We inducedecision trees on thousands of synthetic data sets and compare them to the correspondingoptimal trees, which in turn are found using a novel map coloring idea. We measure thee�ect on greedy induction of variables such as the underlying concept complexity, trainingset size, noise and dimensionality. The main observations from the experiments in thischapter are the following.
� The expected depth of greedily induced decision trees is consistently very close to theoptimal.� The prediction accuracy of a greedily induced tree is not dependent on concept com-plexity, provided there is adequate training data.� Greedily induced trees are not much larger than the optimal, even for complex con-cepts. However, the variance in tree size increases with increase in concept complexityand/or dimensionality.� There is almost no di�erence between the greedy goodness measures of CART andC4.5, in terms of the predictive accuracy, size or depth of trees they generate.

Section 5.1 describes our experimental method and Section 5.2 presents the results.Section 5.3 provides general conclusions.



1605.1 Experimental setupOur experimental framework is quite simple | we use C4.5 [398] and CART [44] to inducedecision trees on a large number of random data sets, and in each case we compare thegreedily induced tree to the optimal tree. The implementation of this framework raisessome interesting issues.Optimal Decision Tree for a Training Set. The problem of computing the shallowestor smallest decision tree for a given data set is NP-complete (Section 2.6.1), meaning that itis highly unlikely that a polynomial solution will be found. Previous studies that attemptedcomparisons to optimal trees (e.g., [97]) used approaches like dynamic programming togenerate the optimal trees. Because it is slow, this option is impractical for our study, inwhich we use hundreds of thousands of arti�cial data sets. Our solution is to �rst generatea random decision tree D, and then generate data sets for which D is guaranteed to be theoptimal tree. The main idea behind ensuring the optimality of a random decision tree iscoloring its leaf nodes with appropriate class labels.An instance is a real valued vector Xi = (xi1; xi2; :::; xid) plus a class label ci.xis are the attributes of Xi, and d is its dimensionality. Consider a binary decision treeD in two attributes. (The ensuing argument applies to arbitrary dimensions.) D inducesa hierarchical partitioning of the attribute space, which can be drawn as a map M . Theboundaries of M are the splits (test nodes) in D, and the regions of M are the leaf nodesin D. Assuming that each leaf node of D contains instances of only one class, we can color



161M by assigning a distinct color to each class in D. Now consider a data set S consistentwith D, which has the additional property that S requires every leaf node of D, i.e., everyleaf node of D contains at least one instance of S.It should be clear that D is the smallest binary decision tree consistent with S,provided no two neighboring regions of M have the same color. Informally, any decisiontree that has fewer leaves than D needs to either ignore some decision regions of D, ormerge (parts of) two or more regions into one. The former possibility is ruled out becauseS requires all decision regions in G. The latter is impossible because no decision regionsof the same color are adjacent, so no two regions can be merged. Hence, any decision treeconsistent with S has to have at least as many leaf nodes as D. Moreover, if D was aperfectly balanced tree to start with, then any decision tree consistent with S has to be atleast as deep as D.In our experiments, we start with perfectly balanced, empty trees. We then gen-erate random tests at the decision nodes, ensuring that no leaf region is empty. Finally wecolor the leaves to ensure optimality with respect to size, using the following procedure. We�rst compute the adjacency information of the leaf nodes. After initializing the class labelsat all leaf nodes to k (� number of leaves), we go back and change the label of each leafto be the smallest number in [1; k] that is not yet assigned to any neighbor. This heuristicprocedure worked quite well in all our experiments. (For instance, decision trees of 64 leafnodes in the plane were colored with 5 classes on average.) Fig. 5.1 shows a sample randomdecision tree in 2-D, along with the class labels assigned by the above coloring procedure.
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Figure 5.1: The partitioning induced by a random decision tree of 32 leaf nodes. Classlabels assigned by our coloring procedure are shown (for most nodes).



163Tree Quality Measures. In all our experiments, we report tree quality using six mea-sures:� Classi�cation accuracy: accuracy on the training data;� Prediction accuracy: accuracy on an independent, noise-free testing set;� Tree size: number of leaf nodes;� Maximum depth: distance from the root to the farthest leaf node; (distance from Ato B is the number of nodes between, and including, A and B)� Average depth: mean distance from the root to a leaf node in the tree;� Expected depth: number of tests needed to classify an unseen example. We computeexpected depth by averaging, over all the examples in the testing set, the length ofthe path that the example followed in the tree. If all attributes have equal costsof measurement, expected depth is equal to the expected cost of using the tree forclassifying one example.Control Variables. The e�ectiveness of greedy induction can not be measured indepen-dently of training data characteristics. For instance, if the training data is very noisy, itis likely that no induction method will be able to generate accurate trees. In this paper,we study the e�ectiveness of greedy induction in controlled settings with respect to thefollowing parameters:� concept complexity (measured as the size of the optimal decision tree),



164� size of the training set,� amount and nature of noise in the training data (noise in class labels versus noise inattributes), and� dimensionality (number of attributes).Tree Induction Methods Used. The tree induction methods we use are C4.5 [398] andCART [44]. One main di�erence between C4.5 and CART is the goodness criterion, thecriterion used to choose the best split at each node. C4.5 uses the information gain 38criterion, whereas CART uses either the Gini index of diversity or the twoing rule. All theexperiments in this chapter were repeated using information gain, Gini index and twoingrule. In no case did the results show statistically signi�cant di�erences between goodnessmeasures|the di�erences in accuracies, sizes and measurements of depth were always muchless than one standard deviation. For brevity, we report only the results with informationgain (i.e., C4.5) in the rest of this chapter. We implemented all the goodness measures usingthe OC1 system (Chapter 3). Although C4.5 and CART di�er in respects other than thegoodness measures, we have not implemented these di�erences. In the experiments in whichthe training data is noise-free, no pruning was used with either method. In the experimentsusing noisy training sets, we augment both methods with cost complexity pruning [44],reserving 10% of the training data for pruning.38 Quinlan suggested gain ratio as an improvement over information gain. However the two mea-sures are equivalent in our experiments as all our decision trees are binary.



1655.2 ExperimentsThis section describes six experiments, each of which is intended to measure the e�ectivenessof greedy induction as a function of one or more control variables described in Section 5.1.The procedure is more or less the same for all experiments.{ generate 100 random trees with no class labels;{ for each tree Dopt generated in the above step:{ color Dopt with class labels (Sec. 5.1);{ generate a large, noise-free testing set for which Dopt is optimal;{ generate 50 training sets using Dopt;{ for each training set T :{ greedily induce a tree D on T ;{ record the size, depth, accuracy etc. of D and Dopt;{ report the mean and std. dev. of the quality measures for the 5000 trees.
The instances in the training and testing sets are always generated uniformly randomly,and are labeled using the optimal decision tree. The size of the testing set is linearlydependent on the concept complexity and the dimensionality of the data, whereas the sizeof the training set is a control variable. More precisely, jT j = C � (D � 1) � 500, wherejT j is the size of the testing set, C is the concept complexity and D is the number ofattributes. For instance, for a size 16 concept in 4 dimensions, we use a testing set of size



166Optimal Training Prediction Tree Size DepthTree Size Set Accuracy Maximum Average Expected8 1000 99.5�0.1 9.8�1.7 4.8�0.7 (3) 3.6�0.3 (3) 2.9�0.3 (3)16 1000 98.7�0.3 20.7�3.3 7.2�1.0 (4) 5.0�0.4 (4) 3.9�0.4 (4)32 1000 97.2�0.6 40.4�6.8 9.3�1.0 (5) 6.3�0.5 (5) 5.0�0.5 (5)64 1000 94.3�0.9 71.7�10.3 11.5�1.2 (6) 7.4�0.5 (6) 5.8�0.5 (6)Table 5.1: E�ect of concept complexity. There is no noise in data, so all trees have 100.0%classi�cation accuracy. Numbers in parenthesis are for optimal trees.16 � (4 � 1) � 500 = 24; 000. We ensure that no subtree of the optimal decision tree isconsistent with the testing set.In all the tables in this chapter, each entry comprises of the average value of a treequality measure over 5000 trees and the standard deviation (one �). Numbers in parenthesiscorrespond to the optimal trees. The �'s are omitted when they are zero. Optimal valuesare omitted when their values are obvious. The optimal trees always give 100% predictionaccuracy in our experiments, because the testing set has no noise. In addition, they give100% classi�cation accuracy when the training data is noise-free.
Experiment 1: The purpose of this experiment is to evaluate the e�ectiveness of greedyinduction as a function of concept complexity. All training sets comprise of 1000 random2-D instances. There is no noise in the training data. Table 5.1 summarizes the results.Greedily induced trees give 100% classi�cation accuracy in this experiment as there is nopruning.



167Observations: The prediction accuracy of greedily induced trees decreases with increasein concept complexity. This can be either be due to the inadequacy of greedy search or dueto inadequate training data. (The training set size remained at 1000 though the conceptcomplexity increased from 8 to 64.) In Experiment 2, we increase the size of the trainingset in proportion with the concept complexity, in order to better isolate the e�ects due togreedy search.The di�erence between the sizes of greedily induced and optimal trees increaseswith increasing concept complexity. However, it can be seen on closer observation that thevariances, not just the di�erences in size, are increasing. Greedily induced tree sizes arejust more than one � away from the optimal in 3 out of 4 rows in Table 5.1, and less thanone std. dev. away for concepts of size 64.The maximum depth measurements in Table 5.1 show that greedily induced treescan have decision paths which are about twice as long as those in the optimal trees, evenfor moderately complex concepts. However, the average depth measurements show thatthe decision paths in greedily induced trees only have about one test more than those inthe optimal trees. In terms of the third depth measurement, the expected depth, greedilyinduced trees are almost identical to the optimal ones, for all the concept sizes considered inthis experiment. This is a very desirable, although somewhat counterintuitive, trend whichis seen consistently throughout our experiments. (Note that no pruning was used in thisexperiment.)



168Optimal Training Prediction Tree Size DepthTree Size Set Accuracy Maximum Average Expected8 200 97.5�0.7 8.5�1.5 4.4�0.6 (3) 3.4�0.3 (3) 2.8�0.3 (3)16 400 97.1�0.7 17.5�3.3 6.6�0.9 (4) 4.7�0.5 (4) 3.8�0.5 (4)32 800 96.6�0.7 38.0�7.1 9.1�1.0 (5) 6.2�0.5 (5) 4.8�0.5 (5)64 1600 96.4�0.6 76.3�12.2 11.6�1.2 (6) 7.5�0.6 (6) 5.8�0.6 (6)Table 5.2: E�ects of concept complexity and training set size. There is no noise in the data,so all trees give 100.0% classi�cation accuracy. Numbers in parentheses correspond to theoptimal trees.Experiment 2: The purpose of this experiment is to isolate the e�ects of concept com-plexity on greedy induction, from those of the training set size. The size of the training setsnow grows linearly with the concept complexity|25 training points on average are usedper each leaf. There is no noise. Table 5.2 summarizes the results.Observations: It is interesting to note that the prediction accuracy does not drop asmuch with increase in concept complexity as it does in Experiment 1. In fact, when theconcept complexity increased by 8-fold (from 8 to 64), the accuracy went down by justmore than one standard deviation. In addition, none of the di�erences in tree size betweengreedily induced and optimal trees in Table 5.2 are more than one standard deviation. Thisis surprising, considering no pruning was used in this experiment. In terms of the threedepth measures, the observations made in Experiment 1 hold here also.Comparing the entries of Tables 5.1 and 5.2, line by line, one can see the e�ectof the training set size on prediction accuracy. When the training set size increases, theprediction accuracy increases and its variance goes down. In other words, the more (noise-



169Concept Prediction Tree Size DepthSize Accuracy Maximum Average Expected8 98.3�0.5 8.9�1.6 4.4�0.8 (3) 3.4�0.4 (3) 3.0�0.4 (3)16 96.7�0.9 17.2�3.2 6.3�1.0 (4) 4.6�0.4 (4) 3.9�0.4 (4)32 93.9�1.4 31.1�6.2 8.2�0.9 (5) 5.6�0.4 (5) 4.8�0.5 (5)64 89.4�2.0 50.2�9.0 10.1�1.1 (6) 6.6�0.5 (6) 5.7�0.5 (6)Table 5.3: E�ect of concept complexity. All classes are equally likely. As there is noise, alltrees give 100.0% classi�cation accuracy.free) training data there is, the more accurately and reliably greedy induction can learn theunderlying concept.
Experiment 3: This experiment is intended to evaluate the e�ects of training data dis-tribution on the quality of greedily induced trees. Each training set comprises of 100 planarinstances per each class. There is no noise. Data in each class is uniformly randomlydistributed. Table 5.3 summarizes the results.Consider a situation in which a particular class is much rarer than the others,but it is important to predict that class accurately. (e.g., Patients with cancer are a lotrarer than those without cancer.) The uniform distribution in Experiments 1 and 2 maygenerate too few training instances in the rare class, thus producing unbalanced trainingsets. The data distribution in this experiment ensures that all classes are well-representedin the training data. It is common practice in the real world to collect training instances inall (known) classes before using a learner on the data.



170Observations: Prediction accuracy decreases in this experiment as the concept complex-ity increases, just as in Experiment 1. The reason for this decrease in accuracy may againbe the inadequacy of training data or the inadequacy of the greedy heuristic for complexconcepts. 39Tree sizes increase much slower with increasing concept complexity in this exper-iment, than in Experiment 1. In fact, the greedily induced trees are signi�cantly smallerthan the optimal trees when concept size = 64. This result, however, can not be taken insupport of the greedy heuristic, for two reasons. First, for concepts of size 64, the trainingset size was about 500. It is possible that several decision regions are not even representedby such a small training set. Moreover, as all classes have the same number of traininginstances, larger classes (classes that span a lot of decision regions) have a large probabilityof having decision regions with no training instances in them. Both these reasons can causeoverly general decision trees that are smaller than the optimal trees but much less accurate.Similar reasoning can be used to explain smaller values of maximum and average depth inthis experiment. The expected depth, however, is very close to the expected depth of theoptimal trees, as in Experiment 1.Experiment 4: This experiment is intended to evaluate the e�ectiveness of greedy in-duction in the presence of noise in class labels. The training sets are all in 2-D, and consist39 Note that the training set sizes varied slightly across concept complexities in this experimentunlike in Experiment 1. The average number of classes assigned to the optimal trees by the coloringalgorithm (Section 5.1) were 3.43, 4.04, 4.55 and 5.02 for concept sizes 8, 16, 32 and 64. As weused 100 training points per class, the size of the training set increased by about 50 when conceptcomplexity doubled.



171Class Classi�cation Prediction Tree Size DepthNoise Accuracy Accuracy Maximum Average Expected0 100.0 (100.0) 93.9�1.4 31.1�6.2 8.2�0.9 5.6�0.4 4.8�0.55 92.1�1.3 (95.1�0.01) 89.5�2.4 21.9�5.1 7.0�0.8 4.9�0.5 4.4�0.410 87.7�1.3 (90.5�0.02) 88.2�2.6 22.2�5.1 7.0�0.8 4.9�0.4 4.4�0.415 83.5�1.3 (86.1�0.05) 86.6�2.9 22.4�5.4 7.0�0.8 4.9�0.5 4.4�0.420 79.7�1.4 (81.9�0.05) 84.9�3.1 22.7�5.2 7.1�0.8 4.9�0.5 4.4�0.425 76.1�1.4 (77.8�0.03) 83.1�3.4 23.3�5.7 7.1�0.8 4.8�0.5 4.4�0.4Table 5.4: E�ects of noise in class labels. Concept complexity=32. Numbers in parenthesesare for the optimal trees.of 100 instances per class, uniformly randomly distributed in each class. k% noise is addedinto each training set by incrementing by 1 the class labels of a random k% of the trainingpoints. All concepts are of size 32, so all optimal tree depth values are equal to 5.0. Pruningwas used when noise level is greater than 0%. Table 5.4 summarizes the results.Observations: As is expected, the classi�cation and prediction accuracies decrease whenthe amount of noise is increased. The tree size and depth measurements vary signi�cantlywhen the �rst 5% of noise is introduced (obviously because pruning is started), and remainsteady thereafter.One needs to be careful in analyzing the results of experiments 4 and 5, in orderto separate out the e�ects of noise and the e�ect of the greedy search. What we want toinvestigate is whether the greedy heuristic becomes less and less e�ective as the noise levelsincrease, or if it is robust. For instance, the fact that the classi�cation accuracy decreaseslinearly with increase in noise in Table 5.4 is perhaps not as signi�cant as the fact that the



172prediction accuracy decreases more slowly than classi�cation accuracy. This is because theformer is an obvious e�ect of noise whereas the later indicates that greedy induction mightbe compensating for the noise.Several patterns in Table 5.4 argue in favor of the e�ectiveness of pruning, whichhas come to be an essential part of greedy tree induction. Classi�cation accuracies ofthe greedy trees are close to, and less than, those of the optimal trees for all the noiselevels, indicating lack of over�tting. Prediction accuracies of greedily induced trees withpruning are better than their classi�cation accuracies, again indicating that there is nostrong over�tting. Tree size and depth measurements remained virtually unchanged in thepresence of increasing noise, certifying to the robustness of pruning.Experiment 5: This experiment is similar to the previous one, in that we measure thee�ectiveness of greedy induction as a function of noise in the training data. However,this time we consider noise in attribute measurements. The training sets again comprise100 2-D instances per class, uniformly randomly distributed in each class. k% noise isintroduced into each training set by choosing a random k% of the instances, and by addingan � 2 [�0:1; 0:1] to each attribute. All the concepts are of size 32, so all the optimal depthmeasurements are equal to 5.0. Cost complexity pruning was used in cases where the noiselevel was greater than 0%. The results are summarized in Table 5.5.Observations: There results with attribute noise (Table 5.5) and noise in class labels(Table 5.4) are very similar, except for the classi�cation accuracies. The values for prediction



173Attribute Classi�cation Prediction Tree Size DepthNoise Accuracy Accuracy Maximum Average Expected0 100.0 (100.0) 93.9�1.4 31.1�6.2 8.2�0.9 5.6�0.4 4.8�0.55 95.2�1.3 (98.0�0.4) 90.0�2.3 22.2�5.3 7.0�0.8 4.9�0.5 4.4�0.410 93.5�1.4 (96.0�0.7) 88.7�2.6 22.6�5.5 7.0�0.8 4.9�0.5 4.4�0.415 92.1�1.6 (94.1�1.0) 87.4�2.8 23.3�5.6 7.0�0.8 5.0�0.5 4.4�0.420 90.7�1.8 (92.2�1.3) 86.2�3.1 23.7�5.6 7.0�0.8 4.9�0.5 4.4�0.425 89.4�2.0 (90.6�1.6) 85.0�3.4 23.7�5.5 7.0�0.8 4.9�0.5 4.3�0.4Table 5.5: E�ects of noise in attribute values. Concept complexity=32.accuracy, tree size and depth measurements in the presence of k% noise are almost the samewhether the noise is in attribute values or class labels. The classi�cation and predictionaccuracies decrease with increasing noise. The tree size and depth measurements decreasewhen the �rst 5% of the noise is introduced (due to pruning) and remain steady thereafter.However, introducing k% attribute noise is not equivalent to introducing k% classnoise. Changing the attributes of an instance by a small amount a�ects the classi�cationof only those instances lying near the borders of decision regions, whereas changing theclass labels a�ects the classi�cation of all the instances involved. This can be seen fromthe classi�cation accuracies of the optimal trees in Tables 5.4 and 5.5. The classi�cationaccuracy of the greedy trees is quite close to, and less than that of the optimal trees in bothtables. All the prediction accuracy values in Table 5.5, unlike those in Table 5.4, are lessthan the corresponding classi�cation accuracies.Experiment 6: Our �nal experiment attempts to quantify the e�ect of dimensionalityon the greedy heuristic. All the training sets consist of 1000 uniformly randomly generated



174#Dim. Prediction Tree Size DepthAccuracy Maximum Average Expected2 98.7�0.3 20.7�3.3 7.2�1.0 5.0�0.4 3.9�0.44 98.3�0.7 23.9�6.0 6.6�0.9 5.0�0.5 4.0�0.48 98.0�0.8 24.5�6.5 6.3�0.9 4.9�0.5 4.1�0.212 97.9�0.9 25.4�6.8 6.3�0.9 4.9�0.5 4.1�0.2Table 5.6: E�ect of dimensionality. Training set size=1000. As there is no noise, all treesgive 100.0% classi�cation accuracy. Concept complexity=16.
instances, with no noise, as in Experiment 1. No pruning was used. All concepts are of size16, so the optimal tree depths are 4.0. Table 5.6 summarizes the results.
Observations: There is no statistically signi�cant di�erence in any tree quality measurewhen dimensionality of the data is increased from 2 to 12. This result is surprising because,intuitively, higher dimensional concepts should be more di�cult to learn than lower dimen-sional ones, when the amount of available training data does not change. Our experimentsindicate that the e�ects due to dimensionality do not seem to be as pronounced as the ef-fects due to concept complexity (Table 5.1) or noise. The quantity that does increase withincreasing dimensionality is the variance. Both prediction accuracy and tree size 
uctuatesigni�cantly more in higher dimensions than in the plane. This result suggests that methodsthat help decrease variance, such as combining the classi�cations of multiple decision trees(Section 2.5.7), may be useful in higher dimensions.



1755.3 DiscussionIn this chapter, we presented six experiments for evaluating the e�ectiveness of the greedyheuristic for decision tree induction. In each experiment, we generated thousands of ran-dom training sets, and compared the decision trees induced by C4.5 and CART to thecorresponding optimal trees. The optimal trees were found using a novel graph coloringidea. We summarize the main observations from our experiments below. 40 Whererelevant, we brie
y mention related work in the literature.� The expected depth of greedily induced decision trees was consistently very close to theoptimal. Garey and Graham (1974) showed that a recursive greedy splitting algorithmusing information gain (not using pruning) can be made to perform arbitrarily worsethan the optimal in terms of expected tree depth. Goodman and Smyth (1988) argued,by establishing the equivalence of decision tree induction and a form of Shannon-Fanopre�x coding, that the average depth of trees induced by greedy one-pass (i.e., nopruning) algorithms is nearly optimal.� Cost complexity pruning [44] dealt e�ectively with both attribute and class noise. How-ever, the accuracies on the training set were overly optimistic in the presence of at-tribute noise.� Greedily induced trees became less accurate as the concepts became harder, i.e., as40 As mentioned at the end of Chapter 4, experimental results with synthetic data are necessarilylimited in their applicability. We had experimented with a spectrum of training data characteristicsin this chapter, so we hope that our conclusions will prove to be general.



176the optimal tree size increased. However, increasing the training data size linearlywith concept complexity helped keep the accuracy stable.� Greedily induced trees were not much larger than the optimal, even for complexconcepts. However, the variance in tree size was more for higher dimensional andmore complex concepts. Dietterich and Kong (1995) empirically argued that even interms of prediction accuracy, variance is the main cause for the failure of decisiontrees in some domains.� For a �xed training set size, increasing the dimensionality did not a�ect greedy in-duction as much as increasing concept complexity or noise did. Several authors (e.g.,[156]) have argued that for a �nite sized data with no a priori probabilistic infor-mation, the ratio of training sample size to the dimensionality must be as large aspossible. Our results are consistent with these studies. However, with a reasonablylarge training set (1000 instances), the drop in tree quality was quite small in ourexperiments, even for a 6-fold (2 to 12) increase in dimensionality.� The goodness measures of CART and C4.5 were identical in terms of the quality oftrees they generated. It has been observed earlier (e.g.,[44, 325]) that the di�erencesbetween these goodness criteria are not pronounced. Our observation that thesemeasures consistently produced identical trees, in terms of six tree quality measures, ina large scale experiment (involving more than 130,000 synthetic data sets) strengthensthe existing results. Note that the fact that we only used binary splits in real-valueddomains may be one reason why information gain, Gini index and twoing rule behaved



177similarly.Many researchers studied ways to improve upon greedy induction (Section 2.5.4),by using techniques such as limited lookahead search and more elaborate representationsthan trees. The results in the current chapter throw light on why it might be di�cult toimprove upon the simple greedy algorithm for decision tree induction.



178
Chapter 6Domain speci�c data massaging:Two Illustrations from Astronomy

The goal of this thesis is to �nd techniques that help build \good" decision treesfrom data. Chapter 3, 4 and 5 described ways of achieving this aim through algorithmicextensions such as non axis-parallel splits and limited lookahead search. However, algorith-mic enhancements alone are seldom adequate to grow good trees, especially if the data isnot in the \right" form. For instance, if the features do not contain su�cient informationabout the concept to be learnt, or if the concept can not be concisely represented usingthe given features, no learning method can expect to do well. \Massaging" the data intoa form suitable for the given learning method is a crucial step in building good real-worldclassi�ers.Although anyone that applied data exploration methods to real world data oughtto be aware of the importance of data massaging, very few papers seem to explicitly discussdata massaging. The most detailed discussion about data massaging that the author is



179aware of is from two recent workshop proceedings [222, 332]. Both these forums discussedthe problem of structuring, or engineering the data into a form suitable for inductive learn-ing. Each paper at these two workshops, like the current chapter, argues data massagingmostly relies on domain knowledge. However, we feel that some domain-independent datamassaging is possible, and pursue that issue in Chapter 7. More precisely, we discuss au-tomated ways of engineering any data set into a form more appropriate for a particularlearning method.The data massaging procedure to use for a given problem depends heavily on theproblem and on the learning method to be used. Data massaging encompasses tasks suchas choosing a set of features that is likely to be useful for learning the concept, weedingout inconsistant/redundant instances and features, and sometimes even de�ning what tolearn. Most of the time the classi�cation problem needs to be understood using domainknowledge, so that the data can be re-represented in a suitable form.The current chapter illustrates domain-speci�c data massaging in the context oftwo new classi�cation problems in astronomy, namely:1. Identifying cosmic rays in the Hubble Space Telescope images, and2. Classifying stars and galaxies in Sloan Digital Sky Survey images.The raw data for both problems consisted of images of parts of the sky, which were notdirectly useful to the classi�cation method. The main e�ort in solving the problems wasspent on �nding the appropriate training data points (objects), and the appropriate featuresto represent the objects. The author worked as part of a group of three astronomers and two



180computer scientists 41 for about 3.5 years to solve these problems. We iterated the following(roughly de�ned) procedure several times to before �nding the best data representation foreach of these problems.1. Using expert knowledge as well as empirical observation, de�ne a set of features thatare potentially good discriminators.2. Build and test classi�ers using these features. Stop if the astronomers are satis�edwith the performance of the classi�er.3. Modify the feature set and the data. Go to step 1.The rest of this chapter outlines this iterative process, and presents our results forthe above problems. Our primary goal in this work has been to develop techniques thatclassify with high accuracy, in order to ensure that celestial objects are not stored in thewrong catalogs. In addition, classi�cation time must be fast due to the large number ofclassi�cations and to future needs for on-line classi�cation systems. For both problems, weobtained small, highly accurate decision tree classi�ers using OC1 (Chapter 3).OutlineSection 6.1 reports on our experiments for using decision tree classi�ers to identify cosmicray hits in Hubble Space Telescope (HST) images. This method produces classi�ers with41 The Astroexplorer group comprised of the author and Steven Salzberg from the Departmentof Computer Science, Johns Hopkins University; Holland Ford and Rupali Chandar from the De-partment of Physics and Astronomy, Johns Hopkins University; and Rick White from the SpaceTelescope Science Institute. The work described in this chapter and Appendix A was done jointlywith these researchers.



181over 95% accuracy using data from a single, unpaired image. Accurate prediction wasachieved both for the old and aberration-corrected images from the Hubble Telescope. Ourexperiments indicate that this accuracy will get even higher if methods for eliminatingbackground noise improve.Section 6.2 describes ongoing work on the classi�cation of stars and galaxies inthe Sloan Digital Sky Survey (SDSS) images. SDSS is a large-scale survey of the northernhemisphere, expected to produce photographic images of hundreds of millions of stars,galaxies and quasars, and high resolution spectra for millions of bright galaxies and quasars.We were able to obtain decision trees with very high classi�cation accuracies in this domainalso, using noisy and extremely faint object lists.As our main emphasis in this thesis is on machine learning, we present mostastronomy-speci�c details separately in Appendix A. This is also appropriate because theauthor's contributions are minor in the astronomy-speci�c parts of the project. As thepurpose of this chapter is to illustrate the importance of data massaging, and not to �nd thebest algorithm for the given data, we do not attempt comparison of di�erent classi�cationmethods here | we use the default OC1 system (Chapter 3) for all our experiments. Someresults with other classi�cation methods on these data sets can be found in [424].6.1 Cosmic ray hits in Hubble Space Telescope imagesThis section describes the results of an e�ort to identify accurately the types of noisecommonly present in Hubble Space Telescope (HST) data, especially cosmic ray hits, which



182are very common in the Wide Field Planetary Camera (WFPC) images. Below we �rstoutline the star/cosmic ray classi�cation problem for HST images. We then present ourexperiments with the data from the aberrated HST images, describing in detail the datamassaging involved. We describe in Section 6.1.7 our results on the aberration-correctedHST images, which are being obtained with the new WFPC (WFPC2) that was installedin the HST by the crew of the Space Shuttle Endeavor in December 1993.6.1.1 The taskCosmic rays (CR) are a common type of noise in HST images. During a typical 20-minuteexposure, each of the four CCDs 42 detect approximately 2,000 CR events. Many of thelow amplitude CR events look like faint stars, and need to be �ltererd out before catalogingthe stars.The method commonly used to �lter cosmic rays is to take two images of the sameregion in the sky at di�erent times, and to identify as stars objects that appear above noisein both images. The goal of our work was to �nd classi�ers that separated CRs and starswith high reliability in individual images. Eliminating the need for split exposures savesthe signi�cant amount of spacecraft time that is required to prepare the camera for thesecond exposure. We also wish to eliminate the noise penalty that is incurred by takingtwo exposures. (Whenever the exposure is split and then subsequently summed after CRremoval, the noise is increased by p2. See Appendix A for details.)42 Loosely speaking, Charge Coupled Detectors (CCDs) are akin to photographic plates. Incidentphotons or rays leave electron-hole pairs on the CCDs. The magnitude of the current generated isa measure of the intensity of the incident light.



183We began our study by selecting two images of a �eld in the nearby galaxy M81taken at two di�erent times. Figure 6.1 shows part of an image from one of the four CCDs(CCD WF1). The entire �eld, which was centered on a portion of a spiral arm in M81,contains thousands of faint stars. Because the stars are faint and close to one another, theimage is a di�cult test case. Moreover, this image provides a di�cult test case becausesome of the CCD's fall directly on the galactic bulge.Our �rst objective was to create a highly reliable catalog of the positions andidentities of stars and cosmic rays. We used standard astronomy software packages (seeAppendix A for details) to detect and locate objects (stars in this case) that are statisticallyabove the noise in each image, and reject objects (CRs) that appear in only one image. Notethat we use the combined images only to �nd positions of the objects. Features are alwaysextracted from single images.A relatively small number of cosmic rays (287 out of 4689 objects) were superposedon the images of stars. These blends (stars plus CRs) are a third class of objects that wewish to classify at a later date when we have a su�cient number of examples. We removedthese blends from our database for all the experiments described below.Experimental MethodIn some of our experiments, we used cross-validation to estimate accuracy. As a furthercheck on these accuracy �gures, we collected additional data from a di�erent CCD andused a tree built on the �rst CCD to classify this data. The database consisted of two sets
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Figure 6.1: A portion of a 900 second CCD WF1 image of M81 taken through a yellow�lter (F555W), containing stars, cosmic rays, and other sources of CCD and sky noise.



185of objects, taken from two adjacent CCDs, WF1 and WF2, from a 4-CCD array. WF1was used to develop the decision tree classi�ers, and give initial estimates of accuracy. Wereserved WF2 to provide an independent test of the accuracy of each classi�er. We choseadjacent CCDs in order to equalize global conditions such as background sky brightness asmuch as possible. Including blends, WF1 contained 2430 objects and WF2 contained 2484objects. After removing the blends, WF1 contained 2259 objects and WF2 contained 2368objects. In both cases about 60% of the objects were cosmic rays.To estimate the accuracy of a classi�er on the WF1 data, we ran a �ve-fold cross-validation experiment. Each of the WF1 numbers given in below is an average of ten 5-foldcross-validation (CV) experiments. \Tree size" refers to the number of leaf nodes; i.e., thenumber of regions that the data is divided into by the tree. After training our program onthe WF1 data, we used the same decision trees, without any further training, to classify theWF2 data. The experimental design here was simple: we built a tree using the entire WF1data set of 2259 objects (rather than 4/5 of the objects, as was done in the cross-validationstudy above), and then calculated the classi�cation accuracy of that tree on the WF2 dataset of 2368 objects. Because OC1 is randomized, we randomly chose 80% of the WF1 dataas the training set and reserved 20% as a test set. We then built a decision tree with OC1on the training set and measured its accuracy on the test set. We repeated this procedurewith di�erent random training/test partitions ten times, and chose the best (in terms ofoverall accuracy on its test set) of the 10 trees as the tree to use for the WF2 data.In all experiments, we report three accuracy �gures: overall, stars, and cosmic



186Data Accuracy (%) Tree SizeOverall Stars Cosmic RaysWF1 81.1 83.3 77.1 21.6WF2 74.1 87.0 52.1 9Table 6.1: OC1 accuracies: Using 9 raw pixel intensities. No blendsrays. Overall accuracy is just the percentage of correct classi�cations over the whole testset, where \correct" means the decision tree agreed with the class label provided with theinput data. Accuracy on stars (and respectively cosmic rays) is the percentage of the timethat a prediction of \star" was correct.
6.1.2 Iteration 1: Using raw dataAny classi�cation method uses a set of features to characterize each object; obviously, thefeatures should be tailored to the task at hand. The �rst approach we took to extractingfeatures has the appeal of maximum simplicity, and very liitle data massaging e�ort: simplygive the classi�er the raw data. A 3 � 3 array of pixels centered on a faint star containsmost of the information about the star. Consequently, we extracted a 3�3 \postage stamp"centered on each star and each CR, and used the nine intensity values as our only features.Our results using the nine raw pixel values as the only features are presented in Table 6.1.These numbers obviously are not satisfactory, because not only are the accuracies low onWF1, but the trees built on WF1 do not generalize well on the WF2 data.



1876.1.3 Iteration 2: An appropriate feature setAfter the preliminary trials with the raw pixel intensities, we determined that we couldimprove our results substantially by using additional features relevant to the problem. Theastronomers know in great detail how aberration and di�raction determine the HST inten-sity distribution from point light sources (i.e., stars), the so-called point spread function orPSF. If we �t a PSF to the stars and CRs, the parameters of the �t should be very di�erentfor the two classes. We used parameters from the PSF �t plus other knowledge about thedi�erences between stars and CRs to de�ne 11 additional features. This gave us a total of20 parameters, listed below. Computation of these features is based entirely on an object'slocation on the CCD and on the pixel intensities in a 3x3 grid centered on the object.
Feature set for Star-Cosmic Ray discrimination:9 raw pixel values in a 3x3 gridx-moment: computed from �rst intensity momentsy-moment: computed from �rst intensity momentsellipticity: computed from a formula combining second intensity momentsratio: average of 4 pixels (above, below, left, and right of central pixel)divided by the intensity in the central pixel.r1: magnitude calculated for a radius of 1 pixelr1.5: magnitude (radius=1.5pixels) / magnitude (radius=1.0 pixels)



188Data Accuracy (%) Tree SizeOverall Stars Cosmic RaysWF1 91.8 87.9 94.1 7.5WF2 91.7 87.6 95.1 5Table 6.2: OC1 accuracies: Using 20 features. No blends
r2: magnitude (radius=2.0pixels)/ magnitude (radius=1.0 pixels)peak intensity: intensity of the central pixel (radius=0.55 pixels)Computed as: total counts (in this radius) - area*(avg. sky)p2: peak intensity/ magnitude (radius=2.0 pixels)mean: mean value of pixels in 3x3 postage stampstddev: standard deviation of pixels in 3x3 postage stamp
Signi�cantly better results than those with the raw pixel intensities were obtainedwhen the feature set included the PSF parameters, as shown in Table 6.2. Note that thetrees produced using WF1 data were still very good classi�ers for the WF2 data.To give an example of what a particular classi�er looks like, one relatively smalltree that OC1 produced on the WF1 data is shown in Fig. 6.2. This tree gave 93.2%accuracy on the WF1 training set. The same tree applied to the WF2 data gave 91.9%overall accuracy.



189

Figure 6.2: Small, accurate tree produced by OC1-AP.In Figure 6.2, x20 is the standard deviation of the pixels in the 3x3 map, and x16is the ratio of the magnitude at a radius of 2 pixels to the magnitude at 1 pixel. BecauseOC1 found a tree that used only two features, the partitioning induced by this tree can beviewed using those two features as the coordinate axes. As many trees produced by OC1used these two features at the top levels, it might be a good idea to run OC1 using onlythese two features to describe the examples, an idea which we pursue in Section 6.1.5.6.1.4 Iteration 3: Removing noiseAlthough 91% represents a very respectable accuracy, we wanted to improve this �gure.With this goal in mind, we re-examined the CCD WF1 data in an attempt to locate othersources of error. One source of noise are the \hot" pixels, which occur where the \darkcurrent" is large. The dark current appears when long exposures are taken with no light



190incident on the CCD.The hot pixels occur in all of the images in our database (10 images that arewithin 1 pixel of each other). We combined all 10 images so that we would have bettersignal-to-noise, making it easier to see the hot pixels. We used a routine called DoPhot43which is fairly accurate at �nding cosmic rays. Since the hot pixels are usually singlepixel events resembling cosmic rays, all the objects DoPhot identi�ed as cosmic rays in thecombined image are presumably hot pixels. (Note that cosmic rays do not appear in thecombined image.) We found between 100 and 225 hot pixels this way, depending on theCCD examined, but not all of them were bright enough to be detected.After �nding the hot pixels, we removed them from the WF1 and WF2 data sets,and re-ran our experiments to measure accuracy. For WF1, removing the hot pixels reducedthe data set from 2259 objects to 2211, and for WF2 the number of objects dropped from2368 to 2282. The accuracy on both data sets improved substantially when hot pixelswere removed, as shown in Table 6.3. As in the �rst experiments, the WF1 accuracieswere estimated using 10 �ve-fold cross-validation experiments. The WF2 accuracies wereproduced by using a single tree, created from WF1 data only, to classify the entire WF2data set.
43 Thanks to Abhijit Saha of STScI for providing this software.



191Data Accuracy (%) Tree SizeOverall Stars Cosmic RaysWF1 94.0 91.8 95.3 8.4WF2 95.1 95.1 95.0 4Table 6.3: OC1 accuracies: 20 features, no blends, no hotpixelsData Accuracy (%) Tree SizeOverall Stars Cosmic RaysWF1 96.6 96.6 96.6 2WF2 95.4 95.9 94.9 2Table 6.4: OC1 accuracies: 2 features, no blends, no hot pixels6.1.5 Iteration 4: Reducing the feature setThe performance of OC1 and many other machine learning methods can su�er when a dataset is characterized by a large number of features (Section 2.5.1). Because OC1 searches anexponentially large space of hyperplanes, reducing the number of attributes dramaticallyreduces the size of the search space, improves the e�ciency of OC1's search, and results inbetter oblique trees. We observed earlier that many of the trees used as few as two features:attributes 16 and 20. We therefore ran a �nal experiment in which we used the same datasets, but this time using just those two attributes. Our best results came from this �nalrun using fewer features. These results appear in Table 6.4. As before, the results on WF2were produced by training on the entire WF1 data set, and then testing on WF2. Theseresults point out the importance of selecting the right features, which in this case was doneby using a decision tree method as the selection mechanism.



192The tree produced by OC1 in this last experiment is displayed in Fig. 6.3. This�gure shows the data from WF1 displayed in two dimensions, with the tree induced by OC1superimposed. A small number of outliers have been omitted from the �gure in order toimprove the resolution for the rest of the data. 44 We have also not shown some objectsin the middle of the dense clusters in the �gure, to help the clarity.This very small tree (just two internal nodes) is easy to understand and even easierto interpret once displayed graphically. After the data massaging described here, a realisticestimate of accuracy for OC1 on the WF2 data increased from just over 92% to over 95%.We believe that this may represent the limit of accuracy for any method using the data wehave available. However, larger data sets, which provide a more complete picture of therange of possible star and cosmic ray images, might lead to additional increases.6.1.6 Using decision trees to con�rm labellingIn a preliminary study using paired images, OC1 produced a decision tree that discoverederrors made by a standard labelling procedure used as an HST analysis tool. For this study,we produced two new images from the pair. The �rst was a CR-clipped image produced bysumming the original images with the STSDAS program Combine. In principle this imagecontains only stars. The second image was the di�erence of the original images, and containsonly positive and negative CRs. By learning to recognize the di�erence in background for44 More precisely, 68 objects out of a total of 2259 objects on WF1 lie far outside the boundingbox of this graph. Of these, all except six are correctly classi�ed by the OC1 tree shown. 5 ofthe misclassi�ed objects are cosmic rays, and lie to the left of the oblique line. The remainingmisclassi�ed object is a star, and lies on the right of the oblique line, just above the line X20 = 5:25.
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dividedbymagnitudeat1pixel)and20(standarddeviationofpixelsin3x3postagestamp).
TheOC1treeissuperimposedonthedata.



194the stars in the summed image and the CRs in the di�erence image, OC1 produced a nearlyperfect decision tree from a training set of 2,221 objects. (The only features used for thisstudy were the nine intensity values from the 3x3 postage stamp centered on each object.)When we classi�ed the remaining objects, 11 objects found in the combined image wereclassi�ed as CRs. Inspection of these showed that 6 objects were in fact CRs that hadsurvived the Combine program because they appeared in both images; independent cosmicrays had struck the same pixels in both images, thus fooling the Combine software. In otherwords, our decision tree detected errors in the labelling resulting from using Combine. Aftercorrecting the labelling in our catalogs, OC1 only mis-labelled (at most) four objects: onestar and 3 CRs, for an overall accuracy of 99.8%.6.1.7 The aberration-corrected imagesAll the work described so far was done before the First Servicing and Repair Mission ofthe HST during the December 1993. The images taken after the repair have very di�erentcharacteristics than the ones taken before. Thus it was important to extend the above workto the aberration-corrected images.The cosmic ray signature is essentially the same in the new camera as that seenin the old devices. However CR events impact scienti�c imaging di�erently with the newcamera in two ways.� The CCDs in the new camera have thickness around 10 micrometers, compared to the8 micrometers for the old CCDs. This leads to a higher total number of electrons being



195deposited on the CCDs per event. In addition, the new camera has a signi�cantly lowerreadnoise. Due to these \improvements", a larger number of faint (low-amplitude)events are detected than before, leading to a larger number of pixels contaminated byCRs.� As the new images are aberration-corrected, they have more light concentrated on asmaller number of pixels. So, small stars look more like cosmic rays in the new images.In spite of the above di�culties, the distinctive signature of the point spreadfunction (the sharp core surrounded by the �rst ring in the di�raction pattern) is moreprominent in the new images, contributing to our con�dence that our classi�cation methodsmay be successful on the corrected imagery also.Experimental design and resultsWe used four images (two separate pairs) of the M100 galaxy for classi�cation. These twopairs are o�set from each other by slightly more than one pixel. The �rst two images (set A)contain far more hotpixels than the second pair (Set B). In our previous set of experiments(Section 6.1.2), we combined two exposures to remove cosmic ray events. However, asthe number of pixels contaminated by CRs per exposure have increased, there are higherchances that the same pixels are contaminated in both exposures. (See Appendix A fordetails.) We experimented with combining more than two images to identify the cosmicrays and to reduce contamination in star catalogs.The star images proved to be a bit more di�cult. The sky background varied



196Data Accuracy (%) Tree SizeOverall Stars Cosmic RaysWF1 95.0 93.9 95.6 8WF2 95.1 95.3 94.9 7WF1 (new) 97.6 87.4 99.7 7Table 6.5: OC1-AP accuracies: 2 featureswidely in 3 of the 4 CCDs making accurate detection very di�cult. Also the bulge of thegalaxy falls in two CCDs. We tried di�erent techniques (Appendix A) in order to �nd theone that gave the best star catalog on the the di�erent CCDs.We then ran the following experiment. We built decision trees on the data from(set A) CCD1 of the old camera using an axis-parallel version of OC1 and estimated theiraccuracies on (set A) CCD1 of the new camera. We used only features 16 and 20, whichproved to be very good discriminants for the old images (Section 6.1.5). Table 6.5 shows theresults of OC1-AP on the old WF1 and WF2, and on the new WF1. Note that trees werealways built using the old WF1 data. Use of oblique hyperplanes did not improve resultssigni�cantly over the axis-parallel ones. Similar results were obtained for data from the setB images, which contained fewer hotpixels.CCD4 required the use of slightly di�erent techniques than those described above,because it contained very bright as well as very dark sky regions. Appendix A gives detailsof how we extracted objects from CCD4. A 5-fold cross validation on the CCD4 data usingOC1-AP and all 20 parameters gave the following accuracies: 92.4% overall, 95.1% for thecosmic rays and 86.9% for the stars. A signi�cant problem for the CCD4 data set is that of



197blended objects. To deal with this problem, we de�ned a blend as a star and a cosmic raythat fall within two pixels of each other. There were approximately 290 blended objects onCCD4, which when deleted improved the accuracies as follows: 93.3% overall, 96.5% forcosmic rays and 86.6% for stars.Our analyses of the aberration-corrected data (by hand) indicates that the widevariations in the sky background are the major source of the di�culty of this data as opposedto the earlier one. For example, CCD3 contains part of the central bulge of the galaxy. Wetried to eliminate most of the objects in that region from the data set, because it was verydi�cult to get accurate catalogs there. After we deleted spurious objects from the catalogs,the accuracies improved to about 94% overall, 93.5% on stars and 95.7% for the cosmicrays. Although the M100 images obtained by the new camera appear quite di�cult toclassify, we found that once sources of noise are eliminated from the catalogs, OC1 is ableto classify objects quite accurately, especially when the sky background does not vary toomuch across the CCD.6.2 Star/galaxy classi�cation for Sloan Digital Sky SurveyThe Sloan Digital Sky Survey (SDSS), a large-scale digital survey of the northern galacticcap, is currently underway. The aim of the survey is to produce a detailed photometricmap of half of the northern sky at about the 23rd magnitude. The detected objects wouldcontain about 108 galaxies, similar number of stars and a million quasar candidates. From



198these, about one million bright galaxies and 100,000 bright quasars will be selected for whichhigh-resolution spectra will be obtained. This project is being executed under the auspicesof the Astrophysical Research Consortium by researchers at the University of Chicago,Fermi National Accelerator Laboratory, the Institute for Advanced Study, Johns HopkinsUniversity, the National Observatory of Japan, and Princeton University. The survey workis expected to take �ve years, with a one year test period, and the total budget is $29.3M.The database that will result from SDSS will be enormous: a processed pixel map of thewhole region will occupy about 8.2 tera bytes. The extracted spectra will occupy another50 Gigabytes.Because of the large amount of incoming data from the survey, e�cient and robustdata processing is a necessary component of the survey. An important part of SDSS's dataprocessing pipeline is a classi�cation module. Stars, galaxies and quasars in the photometricimages need to be separated from each other, and from the various types of noise. We wereable to build small decision tree classi�ers for discriminating very accurately between starand galaxy images, down to the detection limit of the survey.A set of simulated images and object catalogs are being made available to theSDSS researchers. The procedures for generating the simulated data are quite elaborate,and some details can be found in [114]. Considerable e�ort is being expended in makingthe simulated data as close to reality as possible, in terms of the noise levels, magnitudes,colors, atmospheric e�ects, distributions of objects etc. All the results reported in thissection are on the simulated SDSS data. (The real survey data is not available yet. The



199�rst set will be released at the end of the second year of the survey, probably in 1997 or1998.) We were able to get very high accuracies on this data, almost down to the detectionlimit of the survey.
6.2.1 The taskThere are three basic categories of simulated data sets [114]: catalogs, images and tapes. Acatalog is a list of objects, each of which has a position, magnitude, colors, shape parametersand so forth. An image represents a CCD frame, or a subsection of a frame. A tape (whichmight be a physical tape or a disk �le) is a series of images, in the form of a data streamthat looks as if it is coming from the telescope. Every image or tape has a correspondingcatalog, so that one can run image or tape data through a pipeline module, and thencompare the output to the \real" catalog of objects in the simulated universe. In theexperiments reported below, we started with the positions of objects given in the catalogs,extracted from the images features we thought were relevant to classi�cation (independentlyof the features listed in the catalogs), built decision trees using our features, and estimatedaccuracy against the \ground truth" (i.e., true class labels) provided by the catalogs.The SDSS data is in �ve color bands, g, i, r, u and z. In each color, there are20 frames. We used only eight of the 20 frames for our experiments. Each frame consistsof 2048x1500 pixels. Each of the 8 frames we used contained approximately 1000 objects,together summing up to 9056 objects. The objects were classi�ed into stars and galaxies.



200(Quasars have not been included in the simulated data yet.) 45 The SDSS images can beat �ve levels of increasingly more noise. All the data we used in the following experimentshas noise level 5. This includes both local and global noise, encompassing such e�ects asreadout noise, photon noise, ghosts, satellite tracks, airplanes , sky background 
uctuation,atmospheric refraction, time delay of di�erent color bands due to camera geometry andband-dependent positional shifts of objects (toward zenith) due to atmospheric di�erentialrefraction.Throughout this section, we only report accuracies obtained with OC1-AP. We didtry other methods such as OC1, CART, C4.5 and nearest neighbor, but the performanceswere not very di�erent from that of OC1-AP. All the accuracy values given in this section arethe averages of ten 10-fold cross validation experiments, each experiment using a di�erentrandom seed for data partitioning.6.2.2 Iteration 1: A \borrowed" feature setFor our �rst set of experiments, we tried to classify stars and galaxies using the same featureset that we found useful for cosmic ray identi�cation (Section 6.1.2). Recall that there werea total of 20 features out of which 9 were raw pixel intensities. We did not use raw pixelvalues for star/galaxy classi�cation, so there were 11 features. As the image features couldbe measured in any one of 5 color bands, this gave us a total of 55 features. We includedsome additional features that we thought might be helpful for di�erentiating between stars45 The SDSS data divides galaxies into elliptical galaxies, four types of spiral galaxies and irregulargalaxies. For the experiments described in this section, we combined all of these into a single classgalaxy. We may attempt subclassi�cation of galaxies in the future.



201and galaxies | we included 3 new features per color band and 4 magnitude di�erencesacross color bands. The total set of 74 features is listed below. The features that were notused for star-cosmic ray discrimination are shown in bold face.
Features for Iteration 1:In color bands g,i,r,u and z:x, y moments, ellipticity, ratio, r1, r1.5, r2peak intensity, p2, mean, stddevRMAG: magnitudePEAK: intensity of the central pixelFWHM: full width at half maximum: #pixels containing half the light.magnitude di�erences u-g, g-i, g-r and g-z

Out of the 9056 objects in 8 frames, there were several very faint objects in thedata. These had inde�nite values for many features, because the object detection routineshad di�culty in locating the faint objects and in measuring the features. For example,several objects had inde�nite values for RMAG in one or more color bands, and severalhad peak intensity values � 0. (Note that peak intensity is the intensity of the brightestpixel, so has to be positive.) There were also objects very close to the border of the image,whose features can not be accurately measured by any detection routine. The problem with



202near-border objects was easy to rectify: we used only the objects that were more than 20pixels away from all four borders.The problem of faint objects was much more di�cult to solve. In fact, a mainobstacle in solving the SDSS star-galaxy classi�cation problem was to �nd a way of reliablyquantifying magnitude of an object. It should be intuitively clear why a good measureof magnitude (brightness) is helpful: human experts classify brighter objects better, soone would expect automated classi�ers to do the same. One can also divide objects intobrightness ranges, and build separate classi�ers for di�erent brightness ranges. (The latterapproach was taken in [367].)At �rst, we tried several heuristic, empirically derived rules to �lter out the faint objects.The following is an example of the kind of rules we considered:Rule: Retain only the objects that have a peak intensity value � 20 in at leastone color band. From these, remove objects that have an inde�nite RMAG valuein the u-band.An application of the above rule resulted in retaining only 1754 objects out of the total 9056.Let us call this subset of presumably bright objects Bright-R. The accuracies obtained byOC1-AP on Bright-R are given in Table 6.6. Note that Table 6.6 has a new column,Coverage, which speci�es what portion of the total data is used in the current experiment.In the case of Bright-R, the coverage is 1754 out of 9056, which is 19.4%.The accuracies in Table 6.6 are clearly not satisfactory. For instance, on brightstars, astronomers expect close to 100% accuracy, whereas the above numbers are in thehigher 80s. A possible, and likely reason for this is that the objects in Bright-R are not



203Data Coverage (%) Accuracy (%)Overall Stars GalaxiesBright-R 19.4 91.5 86.7 94.7Table 6.6: OC1-AP accuracies: 74 featuresreally bright. The parameter peak intensity, which we used to identify the bright objects,measured the amount of light incident on the central pixel in a 3 � 3 pixel array. Thismeasure is unreliable, as the objects can be o�-center and the object centers vary from onecolor band to the other.Moreover, none of our features measured the size of an object. In star/cosmic rayclassi�cation, a measure of size was not crucial because both the faint stars and cosmicrays are usually small. However, size can be an important discriminator between stars andgalaxies, when combined with a peak intensity estimate. For instance, a star and a galaxyboth having the same peak intensity values may be easily distinguished from the fact thatthe galaxy is larger than the star.In addition, as machine learning methods are adversely a�ected by irrelevant orredundant features (Section 2.5.1), it may be bene�cial to reduce the feature set from itscurrent size of 75 by removing features that are clearly not useful.6.2.3 Iteration 2: Re�ning the feature setTo address the problems outlined at the end of the last section, we added a new featurepeaksig, which measures the intensity of the brightest pixel in the 3�3 pixel array. This is a



204more reliable brightness measure than peak intensity, which assumes that the central pixelis the brightest. In addition, we added two features, radius and numpix, which quantifysize. We removed some features that were redundant/irrelevant. These included x and ymoments, RMAG, PEAK and magnitude di�erences. We identi�ed irrelevant features usingstandard feature subset selection methods (Section 2.5.1). We also studied several decisiontrees built in the previous experiments to identify, and remove, features that were neverused. The modi�ed feature set consisted of 61 features, listed below. � denotes the skybackground. New features are shown in bold face.
Features for Iteration 2:In color bands g,i,r,u and z:radius: average weighted distance between the object border to center.numpix: #connected pixels above 1:5 � �, in a region of max. size 41� 41.ellipticity, ratio, r1, r1.5, r2, peak intensity, p2, mean, stddevpeaksig: intensity of the brightest pixel in a 3x3 box around the objectFWHM in the r-band

With this set of features, we used OC1-AP to construct decision trees on the datafrom 8 frames (9056 objects). At di�erent cuto� thresholds for peaksig, we estimated theaccuracy using ten 10-fold cross validation experiments with OC1-AP. The results are shown



205Cuto� Coverage (%) Accuracy (%)Overall Stars Galaxies0 99.8 90.2 60.1 98.12.5 70.4 89.7 66.8 97.45 26.7 90.2 88.2 92.17.5 19.7 92.1 92.4 91.810 16.2 92.2 93.8 89.2Table 6.7: Accuracy of OC1-AP. The larger the peaksig cuto�, the brighter the set of objects.61 features.in Table 6.7. A cuto� threshold of k means that only objects that have a peaksig value morethan k in at least one color band are retained in the data set. The format of Table 6.7 issimilar to that of Table 6.6.As seen from Table 6.7, peaksig is a reasonably good feature to quantify bright-ness, because the classi�cation performance increased monotonically with brightness cuto�s.However, the classi�er is guessing at the fainter end that all objects are galaxies, which isthe more prevalent class. As the cuto� threshold increases, the proportion of stars in thetraining data increase, balancing the accuracies. The best results in Table 6.7 are betterthan the best results in iteration 1. At cuto�= 7:5, the coverage is about the same as thatin Table 6.6 but the accuracies for stars and galaxies are better balanced.6.2.4 Iteration 3: A multi-stage classi�erAssuming that peaksig is a good feature to quantify brightness, it may be bene�cial to buildseparate classi�ers for di�erent brightness ranges. We divided the data into 3 subsets andbuilt a di�erent classi�er for each subset.



206� The bright objects have a peaksig value � 15 in at least one color band. For these,we used the set of 61 attributes described in Section 6.2.3 and ran ten 10-fold crossvalidation experiments using OC1-AP.� The detectable objects have a peaksig � 5 in at least one color band, but havepeaksig � 15 in all color bands. We extracted a new set of features for classifyingthese objects, as described below.� The very faint objects do not have a peaksig � 5 in any color band. 73% of theobjects in �elds 1 through 8 are very faint. As a majority of these objects (88.8%)are galaxies, we extracted empirical rules that cover as many galaxies as possible. Aconcise and e�ective rule we found was the following.Rule: if peaksig < 1 in the g-band, then object is a galaxy.Detectable Objects: Most parameters used so far were computed using a 3x3 postagestamp image. However, as dim objects can occupy larger areas, features need to be com-puted using the entire image of the object. We found the boundary of an object by startingat its center and spreading out in all directions until the intensity � k � � (� is avg. skybrightness. We chose k = 1:7 and k = 3:5 on the recommendation of the astronomers). Allpixels inside the boundary were used to compute the features. This method of computingfeatures is clearly more powerful than the postage stamp method, and produced good pa-rameters for the bright and very faint objects also (Section 6.2.5). The 51 features used inthe classi�cation of detectable objects are listed below. As before, new features are shown



207in bold face. We ran ten 10-fold cross validation experiments using OC1-AP and these 51features.
Features for Detectable objects:In color bands g,i,r and z:for k = 1:7 and k = 3:5npix: #pixels above k � �s-parm: \Gaussian-ness" of the core, for pixels above k � �mean: average transmission for pixels above k � �stddev: std. dev. of transmission for pixels above k � �r2, peak intensityr3: magnitude (radius=3.0) / magnitude(radius=1.0)r4: magnitude (radius=4.0)magnitude: Equal to �2:5 � log10 fluxsharpness: (Roughly) equal to objectwidth2 � PSFwidth2chisquare: Di�. between the object and the PSF. Should be high for galaxies.

Table 6.8 summarizes the results of the multiple classi�ers described above. Thesenumbers are better than the accuracies we got with one-stage classi�ers so far, because the3-stage classi�er has a much larger coverage. However, these numbers were also not very



208Data Coverage (%) Accuracy (%)Overall Stars GalaxiesBright 12.6 92.7 95.1 85.8Detectable 14.1 89.3 75.4 93.6Very Faint 9.9 93.9 0 100Total 36.6 91.3 85.5 94.6Table 6.8: Multiple classi�ers based on brightness cuto�s.satisfactory to the astronomers.Though our multi-stage classi�er was not very successful, we stumbled upon twovery useful things in trying to come up with a feature set for the \Detectable" objects.1. The method for computing feature values from the whole image of an object (whichwas used for the \Detectable" objects above) is clearly more powerful than the methodwe have been using, which computes features from a 3X3 postage stamp.2. The features magnitude, sharpness and chisquare appear very powerful. Magnitudehas an almost linear relation with the catalog magnitude of the objects in the simulatedSDSS, as shown in Fig. 6.4. So it provides a better basis for brightness cuto�s thaneither peak intensity or peaksig. Sharpness estimates the intrinsic angular size of themeasured object outside the atmosphere. It should have values close to zero for singlestars, large positive values for blended doubles and partially resolved galaxies, andlarge negative values for cosmic rays and blemishes. The chisquare parameter shouldhave near zero values for stars and high values for galaxies.
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210With the help of three new features and the whole-object method of extracting fea-tures, we built star/galaxy classi�ers that achieved very high accuracies upto the detectionlimit of the survey. We will describe these experiments next.6.2.5 The �nal iterationAt the end of the previous iteration, we found that the features magnitude, sharpness andchisquare have a variety of useful characteristics. We had also empirically observed thatthe feature FWHM was used in the highest levels of many trees for the \Bright" objects(Section 6.2.4). Drawing from these two pieces of evidence, we formed our �nal feature set.
Final Feature setIn color band r:magnitudesharpnesschisquareFWHM

We used OC1-AP to build decision trees using these 4 features, and estimatedaccuracy using the average of ten 10-fold cross validation experiments, at di�erentmagnitudecuto�s. At a cuto� of k, only objects whose magnitude is � k are retained. (Note that



211Magnitude Coverage (%) Accuracy (%)Cuto� Overall Stars Galaxies-2 85.4 89.8 64.2 98.0-2.5 56.4 89.4 73.9 96.3-3 39.7 91.5 85.0 95.4-3.5 29.3 94.6 95.2 94.1-4 22.4 96.6 97.4 95.7-4.5 16.9 98.7 98.7 98.7-5 12.6 99.1 98.9 99.6-5.5 9.5 99.1 99.0 99.3-6 7.5 98.9 98.8 98.9Table 6.9: Accuracies with OC1-AP. Objects get brighter at lower cuto�s. 4 features.magnitude is a negative number, and the smaller the magnitude, the brighter the objects.)Out of the 9056 objects in frames 1 through 8, magnitude could be measured for 7319objects. The other objects were too faint to be detected by the ALLSTAR program, whichwe used to measure features.Very bright objects \saturate" the CCD pixels, so it is di�cult to tell the di�erencebetween two very bright objects. There were many bright stars that were saturated in the r-band. When a star saturates the CCD pixels, it tends to have high values for FWHM, whichmakes it more similar to galaxies. We discovered that most of the stars that are saturatedin the r-band are not saturated in the u-band. So, we used the parameters computed in theu-band for all objects whose catalog magnitude was greater than 13.6.Table 6.9 shows the results of this experiment. At the faintest end, the classi�erguesses that everything is a galaxy, giving poor accuracies on stars. But this situationimproves rapidly. The accuracies on both the stars and galaxies increase signi�cantly when



212the magnitude cuto� is raised. The accuracies for both stars and galaxies are > 94% atmagnitude cuto� �3:5. ALLSTAR magnitude �3:5 is equivalent to catalog magnitude 22.35(see Fig. 6.4), which is close to the detection limit of the SDSS survey. (Recall that thedetection limit on the photometric survey in SDSS is at about the 23rd magnitude.) Onemain purpose of the photometric survey in SDSS is to identify the bright objects, for whichhigh-resolution spectral analysis can be performed. SDSS aims to produce high resolutionspectra for galaxies brighter than catalog magnitude 18.3. Even at a magnitude cuto� of-4.5, which is equivalent to catalog magnitude 21:35 and considerably fainter than the limitfor spectroscopic survey, our classi�er gets 98.7% accuracy on stars and galaxies.It is interesting to note that the accuracies on both stars and galaxies go downslightly at the brightest ends. The reason for this is that there are fewer objects at thebright end. We observed that the same 5 stars and one galaxy were being misclassi�ed atmagnitude cuto�s -5, -5.5 and -6. We are currently looking into why these six objects aredi�cult to classify.6.2.6 Con�dence estimationA common feature of all the experimental results we presented on SDSS data is that pre-dictive accuracy decreases as objects become fainter. Though this is similar to the factthat the classi�cation performance of humans deteriorates as the objects become fainter,there is a crucial di�erence. Humans typically know that they don't know | astronomersdo not attempt to classify very faint objects, and even if they do, their con�dence in the



213classi�cation will be very little. It is desirable to be able to compute some estimate ofcon�dence for pipelined systems like the Simulated Digital Sky Survey | if one classi�ercan accurately identify objects on which it is not con�dent, other, more elaborate, types ofprocessing could be used on these objects.A way of quantifying con�dence in decision tree classi�cation is by outputting classprobabilities. Most decision tree methods used so far in this thesis output crisp decisionssuch as \this object is a star" or \this object is a galaxy". Instead, if the decision treeoutputs \this object is a star with probability 0.6 and a galaxy with probability 0.4",then one identify objects for which the classi�er is very certain, say, probability � 0:95.Some techniques to augment decision tree methods to output class probabilities have beenexplored in the literature (Section 2.5.6). We experimented with one such technique [62] onthe SDSS data.The most obvious way of determining class probabilities is to compute them di-rectly from the counts of training examples at the leaf nodes. That is, if an object O that isbeing classi�ed ends up at a leaf node which has 100 objects (90 stars + 10 galaxies) fromthe training set, then the probability of O being a star may be output as 0.9. This estimateis often not be reliable because (1) the number of training examples at individual leaf nodesis typically quite small, not allowing reliable probability estimates, and (2) the distributionat the training data at a leaf node may be particular to the choice of the training andpruning partitions used.We improved the naive probability estimates at the leaf nodes using two techniques,



214smoothing and averaging. Smoothing is the process of combining the probability estimatesat the leaf nodes with those at nodes higher up in the tree, whereas averaging is done acrosstrees, combining the probability estimates of several trees built on the same data.We started by dividing the data into a training set and a test set. Our trainingset consisted of all the objects from frames 1 through 4, and the test set had all objectsfrom frames 5 through 8. (So far, we are doing cross validation experiments using the entiredata | data from frames 1 through 8. An alternate way of getting reliable estimate of theaccuracy on unseen data is to divide the data into training and test sets, as we had donein Section 6.1.) We �rst built ten trees on the training data. The only di�erence betweenthe trees was the way the training data was partitioned into training and pruning sets. 46In each tree, we smoothed the probabilities at each leaf by combining them along the pathsfrom the root to the leaf, giving di�erent weights to di�erent ancestor nodes. (We do notdiscuss the smoothing algorithm in detail here. The interested reader is referred to [62].)Once the probability estimates are smoothed in each tree, we classify the test instances usingthe ten trees. Each tree outputs two probabilities for each test instance: the con�dence ofthe object being a star and the con�dence of it being a galaxy. We average these numbersacross the ten trees, to get our con�dence measures for each test instance.Fig. 6.5 and Fig. 6.6 show the con�dence measures outputted by the above method,as a function of ALLSTAR magnitude, for stars and galaxies respectively. There is one line46 Note that OC1 being a randomized method produces a di�erent tree each time it is executed.However, as we used the axis-parallel version, OC1-AP, for all our experiments in this section, weused generated di�erent trees by randomly setting aside 30% of the training data each time forpruning.
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217� There are much fewer galaxies than stars at the brighter end. More bright galaxies arebeing misclassi�ed than bright stars, however the bright stars are more con�dentlybeing misclassi�ed. For example, if we decide to not take into account any objectfor which the con�dence in both categories is less than 90%, we will not misclassifyany galaxies (we will just drop them as being \unsure"), but we will misclassify bothbright and faint stars.� All the stars below magnitude of about �3:0 are con�dently (80{90% con�dence)classi�ed as galaxies. However, all galaxies at this magnitude are still being con�dently(> 90%) correctly classi�ed. These facts are in accordance with our earlier observationthat, at very faint magnitudes, the classi�ers are just guessing that everything is agalaxy.In both Figure 6.5 and 6.6, there are a lot of objects in the magnitude range -3to -4.5, for which the classi�ers are \wavering" | the con�dences are 70/30 or 60/40 forthese objects. We found that some of the bright galaxies and stars are misclassi�ed by theclassi�er because the fainter objects in the training set confuse it. By excluding the fainterstars and galaxies from the training set, we may be able to avoid this confusion, at theexpense of losing some accuracy at the faint end. This is one of the directions we would liketo explore. Another is to use the error in feature measurements to compute the con�dence.The program ALLSTAR, which computed the features magnitude, sharpness and chisquare,outputs a measure of error in each of these features. We are currently trying to e�ectivelyuse these error measures for building reliable classi�ers.
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Chapter 7Domain-independent datamassaging: StatisticalPreprocessing

The previous chapter argued that (1) data massaging is a crucial step in buildingclassi�ers from real-world data, and (2) most data massaging requires domain knowledge. Inthe current chapter, we argue that it is posible to (partially) automate some data massagingtasks. We argue that, irrespective of the speci�c problem under consideration, decisiontree methods can bene�t by the use of \structure" information in numeric domains. Wepropose statistical preprocessing as a means to furnish decision tree methods with structureinformation.The criterion used to measure the goodness of a split (goodness measure or featureevaluation criterion) is clearly an important factor in tree construction. Most existinggoodness measures (Section 2.3.1) may be inadequate for some numeric domains for thefollowing reasons:



219� A majority of the existing goodness measures are either information theory based orclass distance based. Both these kinds of measures compute the goodness of a splitbased solely on the discrete counts of each class in each partition. Other factors whichmay be relevant, such as distribution of the objects in the attribute space, are nottaken into account at all.� Several decision tree methods, especially in the machine learning literature, were orig-inally proposed for symbolic domains. The \adoption" of these methods into numericdomains may be less than ideal, as numeric domains have their own peculiarities[485, 245, 486, 481].In this chapter, we present a framework for augmenting decision tree inductionso it can take advantage of patterns in numeric attribute spaces that would otherwise beignored. We suggest a way preprocess (massage) data in numeric domains to extract some\structure" information, which can in turn be used by any tree induction program. As acase study, we demonstrate empirically that clustering, when used as a preprocessing step,can improve the quality of decision trees induced.Scatterd attempts exist in literature which qualify as examples of domain-independent data massaging. Nearest Neighbor classi�cation is used to preprocess trainingdata before using a neural network, in [362]. Flach [143] discusses inductive data engineer-ing, an interactive process of restructuring a knowledge base by means of rule induction.Section 7.1 presents some \simple" arti�cial data sets for which several commongoodness measures fail to produce good trees. Section 7.2 suggests a framework in which
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Figure 7.1: The CB, RCB and RGC data setsdata is processed by statistical methods prior to tree induction. As an example of the useof this framework, Section 7.3 uses Minimum Spanning Tree clustering as a preprocessingstep with univariate and multivariate decision tree methods.7.1 Three simple data setsFig. 7.1 displays three synthetic, no-noise 2-D data sets, each having 2000 objects belongingto two classes, 0 or �. The CB (checker board) data set can be described perfectly byan axis-parallel decision tree with 8 leaves. The RCB (rotated checkerboard) data canbe described exactly by an oblique decision tree (Section 2.3.2) of 16 leaves. The RGC(randomly generated clusters) data consists of 20 circular clusters, and need not necessarilyhave a clear decision tree partitioning. But since the generation process produced clusters,trees that separate each cluster into a distinct region are clearly preferable.Each of these arti�cial data sets has well-separated, dense, homogeneous regionsof the attribute space that call out to be separated. Now consider typical decision trees
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Figure 7.2: Tree induced on CB data by C4.5 using information gain
data/synthetic/rap15.dta-documents/rcbcart.dt
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Figure 7.3: Trees induced on RCB data by multivariate CART and OC1, using Gini indexinduced on these data sets by existing tree induction methods. Figure 7.2 displays thedecision trees generated for the CB data by C4.5 [398]. Figure 7.3 shows the trees generatedby multivariate CART [44] and multivariate OC1 on the RCB data. Figure 7.4 displays thetrees induced by C4.5 and multivariate CART on the RGC data.These �gures show that some otherwise successful tree induction methods havetrouble in these apparently simple domains. The source of this di�culty is that the onlyinformation available to the goodness measures used is the distribution of object classesacross the splits. However, building the ideal tree requires knowing that there are well-
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Figure 7.4: Trees induced on RGC data by C4.5 (information gain) and multivariate CART(Gini index)de�ned homogeneous clusters in the attribute space. Existing decision tree methods cannotuse any such \structure" information. Some thought should convince the reader that thisproblem is speci�c to numeric attribute spaces. In nominal-valued domains, attribute simi-larity is used for generating the partitions and class similarity follows due to instance spaceproximity. But in numeric attribute spaces, this process is reversed. Class similarity guidesthe generation of decision regions and the proximity of instances is a side e�ect of thedivide-and-conquer process.One solution to this problem is to augment the de�nition of the goodness mea-sures, to somehow take into account the \structure" of the examples in addition to theclass distribution. Van de Merckt [486] used this approach to de�ne a selection criterionthat combines proximity with class entropy. Though this certainly is a step towards usingstructure, it leaves open some potential problems.� de Merckt considers only one kind of structure information, namely clusters. It is notclear how to deal with other important kinds of structure information, for e.g., empty



223regions in attribute space, in his framework.� de Merckt uses unsupervised clustering. This approach fails when each class is clearlymultimodal, but the entire set of examples is not. (Consider, for example, variationsof �g. 7.1 data sets with no \space" between clusters.)� As de Merckt incorporates structure information into the de�nition of the goodnessmeasure, this information needs to be calculated once for every split considered. Thiscan be very expensive, especially for multivariate tree methods that consider largenumbers of candidate splits.An alternative way of incorporating structure, that overcomes the above problems,is presented in the next section.7.2 A FrameworkGiven that structure information is important for constructing good decision trees in somenumeric domains, an e�ective strategy is to �nd the structure using other (e.g., statistical)methods and to incorporate it into the information that the tree induction methods can use{ namely, attributes or classes. This suggests the two-layered architecture in Fig. 7.5, inwhich tree induction is preceded by a data massaging step, namely, statistical preprocessing.The training data is �rst fed into the statistical \structure extraction" module,which outputs information about patterns in the data. Patterns can include:� clusters,
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Decision Tree 1

Decision Tree 2

Undo Attribute/Class

Modifications

Figure 7.5: Statistical Preprocessing for Decision Tree Induction� attributes irrelevant to inducing the classi�er,� instances that are useless/crucial in inducing the classi�er,� large empty regions in attribute space,� sudden variations in the distribution of instances, etc.The above information, referred to here as \structure" information for lack of abetter phrase, is incorporated into the training data by modifying attributes and/or classlabels. For example, if we know which subsets of instances form well-separated clusters,we can change the training set by marking each homogeneous cluster as a distinct class, toensure that the decision tree separates out the clusters. If it is known that there exist large\voids" or empty spaces in the attribute space, we can generate \null" instances in these



225voids, so that the decision tree is forced not to overgeneralize.An advantage of the above framework is the clear separation between the structureextraction and tree induction stages. Structure extraction methods of varying complexitycan be used in conjunction with univariate, multivariate and/or incremental decision treemethods in this model. The complexity of the resulting system is only a sum of the com-plexities of the preprocessing and tree building stages, as opposed to a product as in [486].7.3 A Concrete ExampleThis section illustrates that �ve decision tree methods (three axis-parallel and two oblique)bene�t by using Euclidean minimum spanning tree (EMST) clustering as a preprocessingstep, on the CB, RCB and RGC domains and two real-world data sets taken from the UCImachine learning repository [346].7.3.1 Minimum Spanning Tree ClusteringA host of unsupervised clustering methods have been developed in the �elds of psychology,statistics and machine learning. (See [127, 241] for a tutorial.) The choice of which clusteringtechnique to use for a given data set is often very di�cult. Most techniques require theuser to de�ne the number of clusters in advance, and those that do not, often requiretuning of various parameters. Most clustering methods also require well-formed, convexclusters if they are to do a good job. In our experiments, we use a clustering method basedon minimum spanning trees. The criteria we used to select this method from the many



226alternatives were (1) MST-clustering is intuitive and easy to implement, and (2) it has beenresearched extensively, and shown to work well on a variety of distributions [178, 513, 232].A minimum spanning tree of a weighted graph G is the minimum-weight connectedacyclic subgraph G0 of G containing all vertices of G. Many robust and e�cient algorithmsare available to compute MSTs. An optimal algorithm runs inO(E log V ) time andO(E+V )space, whereE and V are the number of edges and number of vertices in G, respectively. Thevariation of MSTs that we use is the Euclidean minimum spanning tree (EMST). An EMSTof a set of points S is the minimum length acyclic graph spanning all points of S, where\length" of a graph is de�ned as the sum of the edge lengths. E�cient algorithms for MSTsdo not do very well for EMSTs, because if we let V = jSj, then E = O(V 2) for EMSTs.EMSTs in two dimensions can be constructed in an optimal O(V log V ) time and O(V )space by constructing the Delaunay triangulation of the points [386]. Unfortunately, thistechnique does not extend to higher-dimensional spaces, because the size of the Delaunaytriangulation grows exponentially in the number of dimensions.It is easy to see how EMSTs can be a basis for clustering. By de�nition, each edgein the EMST of a set of points S is the smallest edge connecting two partitions A and S�Aof S. Thus points in di�erent clusters in S should intuitively be connected by longer edgesin the EMST than points in the same cluster. So, cutting the largest edges in the EMSTmay separate the most prominent clusters of points. Cutting by edge length alone may notbe su�cient to split the correct clusters, because the clusters thus obtained may not be ofreasonable size and/or concentration. To obtain good clusters, one needs, in most cases, to



227impose some additional constraints on the edges to be cut.Our method computes the MST of labeled examples and arti�cially sets the edgelengths between examples of di�erent classes to be much greater than edges between exam-ples of the same class. In this way, the MST connects all regions of like examples beforemaking any connections between unlike examples. When the heaviest edges in an MSTare cut, we obtain homogeneous clusters. (For more details of our clustering method, see[352].) In most of our experiments, the clustering algorithm did not do a perfect job, butour clusters were distinct enough that the tree induction methods did quite well. Obviously,the success of the clustering method will a�ect the quality of the decision tree induced.7.3.2 ExperimentsWe have experimented with the synthetic data sets CB, RCB, RGC (Fig. 7.1), as well astwo real-world data sets from UC Irvine machine learning repository [346]. The BUPA liverdisorders data contains patients that have speci�c liver disorders. It has 345 instances, eachdescribed using 6 numeric attributes. The ION data [446] contains classi�cations of radarreturns from the ionosphere. 351 observations, each with 34 continuous attributes, wereclassi�ed as good or bad, depending on whether they were genuine or erroneous signals.The decision tree induction programs used in our experiments were C4.5 [398],CART [44], and OC1 (Chapter 3). Both the univariate and multivariate versions of CARTand OC1 were used, unless we knew the correct bias for a data set in advance. For example,on the CB data only univariate algorithms were considered. C4.5 used information gain



228(IG) as its goodness measure, and CART and OC1 used the twoing rule (TW). Additionalexperiments (not reported here due to space limitations) indicated that no other impuritymeasures did signi�cantly better for the data sets used. The univariate CART and C4.5implementations are part of the IND2.0 package developed by Wray Buntine. We imple-mented our own version of multivariate CART based on [44], with error complexity pruningusing a separate test set. All the methods were run using default parameters.All the classi�cation accuracies and tree sizes (given as number of leaves) reportedare averages of ten 5-fold cross validation experiments. A 5-fold cross validation consistsof �rst dividing the training set randomly into 5 disjoint partitions of equal size. Then, foreach partitions p, we built a tree using the rest of the data as training, and tested it onp. We report the error rate on the entire data set (number of examples misclassi�ed/totalnumber of examples), and the average size of the �ve trees built.Table 7.1 summarizes the results of our experiments, giving classi�cation accura-cies and tree sizes (number of leaves) with and without the use of clusters as a pre-processingstep. Each entry lists the mean and standard deviation of ten 5-fold cross-validation exper-iments. The results on arti�cial data were unequivocal: the use of clustering allowed allthe methods to get much smaller, more accurate trees. For the CB data, all three methodsfound the perfect tree every time, where without clustering they never found the right tree.These tree contains just eight leaf nodes, corresponding to the eight regions in Fig. 1. Forthe RCB data, only the oblique methods were used because we knew the tree required
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OC1 C4.5 CARTData Set Univariate Multivariate Univariate MultivariateWith No PreprocessingCB 99.7�1.08 99.7�0.27 99.9�0.1313.6�3.63 23.6�2.70 16.0�3.50RCB 97.1�0.76 97.0�0.4625.7�1.75 33.7�2.9RGC 98.5�0.34 97.4�1.55 98.8�0.21 98.3�1.21 96.6�1.6418.1�2.87 17.3�2.65 26�3.54 18�1.22 17.8�2.77Bupa 62.1�3.66 67.5�2.13 67.3�6.69 62.9�3.15 62.7�2.064.2�2.28 3.4�2.63 37.2�7.19 8.4�2.5 3.6�1.35ION 88.6�1.8 86.0�1.1 92.0�2.92 88.7�2.13 79.2�4.313.5�0.92 3.4�0.82 12.2�2.39 3.8�1.3 4.6�1.9With Clustering as a preprocessing stepCB 100�0.0 100�0.0 100�0.08�0.0 8�0.0 8�0.0RCB 99.6�0.44 99.5�0.717.2�1.2 21.0�2.53RGC 99.4�0.2 99.6�0.29 99.6�0.16 99.5�0.21 99.4�0.2217.7�1.39 17.2�0.45 17.1�1.89 17.6�1.33 17.3�1.2Bupa 62.9�3.09 67.0�1.2 64.4�1.2 62.8�2.77 62.9�2.125.0�2.13 3.4�1.7 5.6�2.67 5.0�2.21 3.5�1.22ION 89.2�1.43 87.6�1.39 91.4�1.95 89.3�1.4 79.1�1.63.7�0.63 3.5�1.3 7.8�2.16 3.7�0.67 4.8�1.55Table 7.1: E�ect of clustering as a data massaging step



230oblique splits. These methods showed a similarly dramatic improvement with clustering:in many cases they found the minimal tree with 16 nodes, and occasionally the tree wasslightly larger. OC1 only had one non-essential leaf node on average. For the RGC datathe results were improved but not as dramatic. For the two real data sets, the accuraciesremained roughly the same but in some cases the trees were much smaller. For example,the tree size for C4.5 dropped from 37.2 to 5.6 leaf nodes. These data sets do not containsuch well-formed clusters as our synthetic data.Of course, accuracy and tree size alone do not completely capture the qualityof a decision tree in a continuous attribute space. For example, some trees displayed inFigures 7.2 and 7.4 are quite small and accurate, but impose a counterintuitive structureon the data. Alternative ways to quantify the goodness of decision trees would be usefulin numerical domains [486]. In our experiments, after clustering information was providedto the tree induction programs, the trees induced were consistently identical to the originalconcept descriptions for the synthetic data. This indicates that using structure informationhelps induce better decision trees in some domains. However, in higher dimensional real-world domains, clusters obtained may be arbitrary, confusing the decision tree method. Theresults reported in this chapter are of a preliminary nature. We believe that the idea ofstatistical preprocessing in the context of decision trees has merit, and needs to be explored.
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Chapter 8Conclusions

In this dissertation, we explored a speci�c paradigm for data exploration and classi-�cation, namely, decision trees. We started by undertaking an extensive, multi-disciplinarysurvey of existing work on decision trees. We then studied in detail two algorithmic ex-tensions to tree building methods, namely (1) using more general classes of splits at treenodes, and (2) using less greedy search to determine the splits. Finally, we illustrated theimportance of data massaging (domain-speci�c and domain-independent) for inducing gooddecision trees.We recapitulate in Section 8.1 the main results in the dissertation, chapter bychapter. In Section 8.2, we point out some interesting directions for future research.8.1 SummaryChapter 2 presented a multi-disciplinary survey of work on automatically constructing de-cision trees from data. We gave pointers to work in �elds such as pattern recognition,



232statistics, decision theory, machine learning, mathematical programming, neural networks,signal processing etc. We attempted to provide a self-contained, concise description of thedirections which decision tree work has taken over the years. In addition to familiarizing thereader with the diversity and extent of work on decision trees, the larger goal of this surveyis to help avoid some redundant, ad hoc e�ort in decision tree work, both from researchersand from system developers.Chapter 3 described OC1, a new system for constructing oblique decision trees. Wehave shown experimentally that OC1 can produce good classi�ers for a range of real-worldand arti�cial domains. We have also shown how the use of randomization improves upon theoriginal algorithm by Breiman et al.[44], without signi�cantly increasing the computationalcost of the algorithm. If a domain is best captured by a tree that uses oblique hyperplanes,it is desirable to have a system that can generate that tree. OC1 is the �rst such publiclyavailable system.Chapter 4 considered the implications of increasing the amount of search for in-ducing axis-parallel splits, beyond the commonly used greedy heuristic. Using experimentson a very large number of synthetic and real-world data sets, we demonstrated that limitedlookahead search does not improve decision tree quality signi�cantly. The only advantageof lookahead search in our experiments was to produce trees with slightly smaller worst-case classi�cation cost than greedy search. However, lookahead produced worse trees thangreedy search in a signi�cant number of cases, in terms of prediction accuracy, tree size anddepth (classi�cation cost), exhibiting pathology. We observed instances of pathology both



233for real and synthetic data sets.Chapter 5 is a continuation of the work in Chapter 4. After observing that limitedlookahead search is not particularly bene�cial for decision tree induction, we explored thequestion of whether this was because greedy induction itself produced trees so close tothe optimal that any improvement was di�cult. We built decision trees on thousands ofsynthetic data sets using CART [44] and C4.5 [398], and compared each one to the respectiveoptimal tree. We found that, for a wide range of data characteristics, the greedy heuristic(along with pruning) produced decision trees whose expected classi�cation cost was veryclose to the optimal.We changed our focus after Chapter 5. Algorithmic extensions alone are notadequate for building \better" decision trees. Another important, if not crucial, step is tomassage, or re-represent, the data in an appropriate fashion. We distinguished betweendomain-speci�c and domain-independent data massaging in this thesis.We illustrated domain-speci�c data massaging in detail in Chapter 6, where wedescribed applications of decision trees to two real-world classi�cation problems. The �rstproblem was to identify cosmic rays in Hubble Space Telescope images, and the secondwas to classify stars and galaxies in Sloan Digital Sky Survey images. For both theseproblems, we could not work with o�-the-shelf data sets, as is common practice in machinelearning research. In collaboration with researchers in astronomy, we went through severaliterations of extracting useful data and features for classi�cation. In both the astronomicalclassi�cation problems we worked on, we were able to obtain very high accuracies using



234small decision tree classi�ers.Finally, in Chapter 7, we suggested a simple framework for domain-independentdata massaging. Many existing tree induction methods can not take into account certainkinds of \structure" information in numeric attribute spaces. We suggested to use statisticalmethods to extract structure information from data, and represent that information in aform usable to tree induction. We gave a simple illustration of the e�ectiveness of thisapproach by using clustering as a preprocessing step for tree induction, on both real andarti�cial datasets. The results were uniformly excellent on the arti�cial data, which is notsurprising given that these data sets were designed with this problem in mind. The resultson real data were less convincing.8.2 Research directionsOne of the ideas we put forth in this thesis is the use of randomization for inducing obliquedecision trees (Chapter 3). Randomization can also be bene�cial for axis-parallel tree meth-ods. Note that although greedy axis-parallel tree methods do �nd the optimal test (withrespect to an impurity measure) for each node of a tree, they are necessarily suboptimal[174]. It will be interesting to explore the uses of randomization to build optimal or near-optimal axis-parallel trees. Randomized search techniques, such as genetic programming[264] and simulated annealing [55, 303] have already been used to improve axis-parallel deci-sion trees. These methods search the space of all decision trees using random perturbations,additions and deletions of the splits. We believe that randomization is a powerful tool in



235the context of decision trees, and our experiments in Chapter 3 are just one example of howit might be exploited.It will be interesting to design algorithms to e�ciently �nd splits which are moregeneral than oblique splits, say, a class of hypercurves. However, caution must be exercisedin such an e�ort. A main advantage of decision trees in particular, and hierarchical methodsin general, is that they divide the classi�cation problem into a sequence of subproblemswhich are, in principle, simpler to solve than the original problem. Allowing more and moregeneral splits implies that some advantages of the divide-and-conquer paradigm may belost. In addition, axis-parallel splits are simpler than oblique splits or hypercurves. Itcan be argued that a n node oblique tree in d dimensions is no smaller than a n � d nodeaxis parallel tree. In other words, it is desirable to use complicated splits only when theextra complexity of the split is commensurate with its contribution to tree quality. OC1uses oblique splits only when their impurity is less than a user-de�ned constant k times theimpurity of the best axis-parallel split; however, we do not know how to determine the bestvalue for k. Finding a good compromise between the complexity and e�ectiveness of a splitremains an area for further research.Observing incidences of pathology (as we did in Chapter 4) is only the �rst stepin several interesting research directions. Concept classes for which a particular goodnessmeasure exhibits pathology can be studied, analytically or quantitatively, to determinewhen pathology might occur. Conversely, one can attempt to isolate characteristics of data



236which have bearing on when lookahead is likely to help. As we only studied lookaheadin the context of two concept classes C and CS in Chapter 4, several other interestingconcepts remain to be explored. In addition, we considered only one-level lookahead. Onecan attempt to evaluate the bene�ts of lookahead as a function of search depth. We feelthat such a systematic evaluation is not only going to be computationally prohibitive, butalso probably not very useful. Norton [365] presents experiments comparing one and twolevel lookahead for decision tree induction, on one particular data set. Another interestingquestion for further study is whether there exist e�ective goodness measures that guaranteeno pathology.Section 4.3.4 described a decision tree rebalancing method. We used rotationoperations to locally adjust the structure of the tree, in order to reduce its classi�cationcost. Note that, in addition to attempting to re�ne the structure of the tree, rotationsprovide an opportunity for recomputing splits at some tree nodes. This is because theychange the portions of the training set associated with some nodes. We are in generalinterested in �nding methods that can systematically re�ne the splits and structure ofgreedily induced trees.Greedy decision tree induction is e�ective under many conditions (Chapter 5) andis quite e�cient. For the situations in which greedy induction is not e�ective, we may needto augment it with appropriate preprocessing or postprocessing methods. We described,in Chapter 7 and Section 4.3.4, preliminary attempts at augmenting greedy decision treeinduction. We suggested the use of statistical preprocessing to extract and use structure



237information in �nding splits, and rebalancing greedily induced trees. Clearly more workneeds to be done in these directions. The e�ectiveness of these approaches needs to beevaluated on more real-world data. Our experiments only explored incorporating structureinformation into class distributions. It will be interesting to incorporate structure intoattributes instead. By doing this in conjunction with feature selection, it may be possibleto identify what kinds of structure information are most useful for speci�c problems.One premise of this work in Chapter 7 is that information about structure shouldbe useful to learning algorithms. We do not yet know what other kinds of structuralinformation besides clusters might be bene�cial for decision tree induction, or to whatextent. Besides clusters, descriptions of empty regions of attribute space might help buildtrees that do not overgeneralize (under�t). Sudden changes in the density of examples in theattribute space may tell us something about possible splits. One direction for future work isto identify and quantify the kinds of structure information useful in decision tree induction,and then explore the question of how to take advantage of this structure in building decisiontrees and other classi�ers.Last, but certainly not the least, it is always very educational and exciting to applydata exploration techniques like decision trees in new application areas. Each signi�cantreal-world classi�cation problem has its own peculiarities, requirements and challenges.Algorithmic improvements often take place in the context of a particular application. Wefeel that continued application of existing techniques to new problems is a prerequisite forprogress in data exploration technology.



238A �nal word of caution. The hierarchical, recursive tree construction methodol-ogy itself is simple and intuitively appealing. However, the simplicity of the methodologyshould not lead a practitioner to take a slack attitude towards using decision trees. Experi-mental researchers should guard against the tendency to \try out" interesting ideas as andwhen they occur. There is a large body of previous work on decision trees, and signi�cantextensions to this work are not easy to come up with.
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Appendix AProcessing HST images

This chapter presents some details of the image processing techniques we used todetect objects and measure features from the Hubble Space Telescope images. It should beread in conjunction with Section 6.1 where we describe the process of building classi�ers onthe extracted data. Most of the material presented in this chapter is astronomy-related, andwas originally prepared by astronomers Holland Ford, Richard White and Rupali Chandar,with whom the author had collaborated.A.1 The aberrated imagesCosmic ray (CR) primaries and secondaries striking the CCD detectors in the HST's �rstWide Field and Planetary Camera (WF/PC-1) created electron-hole pairs in the siliconthat were detected along with the electron-hole pairs created by the photons striking theCCD. The traditional way to �lter cosmic rays is to work with twin exposures of thesame region of the sky. Split exposures increase the readnoise in the images, in addition



240to needing the extra time required to prepare the spacecraft for an additional exposure.More precisely, the quadratic sum of the root mean square (rms) read noise and pre
ashnoise in CCD WF1 was � 20 electrons per pixel. The rms read noise in WFPC2 is � 5:2electrons per pixel. Whenever the exposure is split and then subsequently summed afterCR removal, the read noise is increased by p2. This noise competes with the noise in thesky-background in short exposures or in exposures made through narrow band �lters.Our images for the cosmic ray identi�cation project are taken from HST \KeyProject" aimed at measuring the Hubble Constant, i.e., the rate at which the universe isexpanding. The images are two 900-second WFC exposures through a yellow �lter (F555W).Four CCDs (CCD WF1, WF2,WF3 and WF4) were exposed simultaneously when a picturewas taken by WF/PC1.We combined the two exposures using the task \Combine" in the Space TelescopeInstitute's software package STSDAS, with one-sided, three sigma cuto�. We next used theprogram DAOFIND to catalog the (x; y) positions of the stars in the image. 47 The meanbackground of the combined image varied from 27 to 33 counts in WF1, with an average of31 counts. The standard deviation varied from 2.1 to 2.8, with an average of 2.55. Similarmeans and standard deviations were found for the other three CCDs. The threshold usedfor object detection by DAOFIND was 9 counts above the background, which along with the2.55 standard deviation of the background gives a 3:5� detection limit. By subtracting thecombined image from each of the individual images, we obtained two images which contain47 The expected number of corresponding pixels with CR hits in both images is (roughly)15742=8002 � 4. These can not be found by the above procedure of combining two images.



241only CRs. We then used DAOFIND on each of the CR images to catalog the positions ofthe CRs.As an external check on the completeness of this CR catalogue, we found thesurface density of the CRs and compared it to the values recently determined in [505]. TheFinal Orbital/Science Veri�cation Report by the WF/PC-1 Investigation De�nition Teamlists zeropoint o�sets for the M81 �eld for WF2 [214]. Consequently, we used the same CCDfor our CR surface density determination. We de�ned a cosmic ray to be a single pixel inthe CR image with a threshold of 4:0��local in ADU 
ux. A fairly high threshold was usedbecause the noise in the two input images was heavily correlated, leading to an arti�ciallylow rms noise in the di�erence (CR) image. The (x; y) catalog of these CR positions onWF2 was used as input to the IRAF task DAOPHOT.PHOT, which performed 0.55 pixelaperture photometry. This essentially gives the counts in a single pixel, which is appropriatefor cosmic rays. The V magnitude given by PHOT treats CRs as if they were real objects onthe sky, and is de�ned as Cv � 2:5 logADU , where ADU is the ADU 
ux a CR would havegenerated in the image during the total exposure time. We histogramed the V magnitudesfrom both images.Before plotting the histogram, we needed to �nd the correct zeropoint magnitudefor our data, in order to use it as an o�set. We followed a procedure similar to that outlinedin [151]. We located the 5 Cepheids listed for CCD WF2 and did core �tting with anaperture of 2.5 pixels. In order to perform the aperture correction, we used a theoreticalPSF generated by TinyTim for WF2. From this we found that � 14:3% of the light falls



242within a 2.5 pixel radius. We ignored color corrections as was done in [214], but we didperform aperture corrections. Comparing our F555W V magnitudes to the V magnitudeslisted by the IDT, we con�rmed the zeropoint magnitude of 23.0 to within 0.1 magnitudes(or 10%), and used this number as our o�set. Figure A.1 plots the (log of the) number ofpixels a�ected by cosmic rays as a function of V magnitude. The peak of our CR surfacedensity occurs around magnitude 26, whereas it is around magnitude 27 in Windhorst etal.'s paper. This di�erence is most likely due to the much longer exposure times used inWindhorst et al.'s paper. We �nd that the di�erential CR "magnitude counts" closely followan apparent power law, down to V ' 27 magnitude, with a slope 
 ' 0:57 (when countedas N(m) / m
), compared to 
 ' 0:6 in Windhorst et al.'s paper. Our observed surfacedensity of CR hits is 3.96 pix/sec/CCD. This corresponds to � 3 events cm�2sec�1. (Notethat we have de�ned a CR event to consist of one pixel which has signal above a certainthreshold in the image containing only CRs.) In general, however, our results are consistentwith theirs.A.2 Hot PixelsHot pixels are caused due to the thermal generation (i.e., the CCD is not at 0� Kelvin)of electron-hole pairs at the interfaces between the silicon and oxide layers of the CCDcauses the dark currents. At normal CCD temperature, the dark current is about 0.01electrons/pixel/second for WF/PC. The hot pixels are caused by hits from high energyCRs which damage the lattice in the bulk silicon near the CCD channel stops. Because of
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Figure A.1: HST/WFC Cosmic Ray \counts" (F555W)



244the high electric �elds near the channel stops, the lattice damage results in the creation ofelectron-hole pairs at the interface between the bulk silicon and the overlying silicon oxidelayer. Some of the damaged sites in the silicon lattice anneal whenever the temperatureof the CCD is raised from the cold operating temperature of �87� C to the warm decon-tamination temperature of � 5� C; consequently, dark frames taken months before the mostrecent CCD temperature cycling are not a reliable guide for �nding hot pixels. We used thefollowing method to identify hot pixels. We combined all 10 images using STSDAS \com-bine" so that we would have better signal-to-noise, making it easier to see the hot pixels.Fig. A.2 shows a portion of the combined WF1 image (not the same portion as shown inFig. 6.1). We ran DoPhot on the combined image using a threshold of 10 counts above thebackground. The mean sky varied from 33 to 42 counts with an average of 39, while thestandard deviation varied from 1.6 to 2.5 with an average of 2.2, giving a detection levelof � 4:5�. We found between 100 and 225 hot pixels this way, depending on the CCDexamined. However not all of these were su�ciently intense to be detected by DAOFINDin the image from which we made the catalogue.The last step, in order to �nd the (x; y) values of the hot pixels and remove themfrom the images, was to match the (x; y) coordinates of the hot pixels given by DoPhotwith our star catalogue using a radius of 1.5 pixels. (The reason that we had to do thismatching is that DAOFIND and DoPhot give slightly di�erent coordinates for detections,and we needed the exact coordinates of objects to delete.)
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Figure A.2: A 900 sec WF1 image of M81 which has been combined to improve signal-to-noise. This picture shows a portion of the WF1 image.



246A.3 The aberration-corrected imagesWFPC II CCDs have a thickness around 10 micrometers, compared to the 8 micrometersfor the WF/PC I CCDs, and a recombination length of 8{10 microns in the substrate. Thisleads to a higher total number of electrons being deposited on the CCDs per event. WFPCII also has a signi�cantly lower readnoise than WF/PC I 48, so low amplitude events aredetected leading to a larger apparent number of CR events. This leads to a larger numberof pixels that are contaminated by CR in a WFPC II image, even though the underlyingevent rate is similar to that experienced by WF/PC I.Stellar images are still undersampled, but with the correction of the spherical aber-ration, stars and cosmic rays look more alike and are more di�cult to tell apart. Faint stellarimages and low amplitude CRs are indistinguishable. Long observations are thus brokenup into at least two exposures (CR-SPLIT) to ensure that CR events can be identi�ed.Approximately 3.7% of the pixels in WFPC2 CCDs are a�ected by cosmic raysin a 2000 sec. exposure. Since cosmic rays hit random locations on the CCDs, about 1000pixels per chip may be hit in both the exposures to be combined, making CR identi�cationfor these pixels impossible. These a�ected pixels obviously can contaminate the data set.The �rst step to classi�cation was to create accurate catalogs of star and cosmicray positions on the CCDs. We used the STSDAS.COMBINE routine in IRAF to combineeach pair of images. This algorithm retains objects that are statistically above the noise in48 The quadratic sum of the root mean square (rms) read noise and pre
ash noise in CCD WF1was � 20 electrons per pixel. The rms read noise in WFPC2 is � 5:2 electrons per pixel.



247both images (stars in our case) and rejects objects that appear in only one image (cosmicrays). If the resulting image (containing stars, hotpixels, and CR events that occurred inthe same place in both images) is subtracted from one of the original images, the result isan image containing only cosmic rays. We ran DAOFIND on this cosmic ray image, usinga 4 sigma detection limit, to get a catalog of cosmic rays.Set A images were taken at the higher instrument temperature of around -77degrees Celsius. Set B images was taken with instrument temperature around -88 degreesCelsius, and were the �rst chronologically taken images at that lower temperature. Imagestaken later at the lower temperature contain more and more hotpixels since long termradiation from cosmic rays leads to an increase in the dark noise, primarily in the creationof hotpixels. The solution to this in HST has been to anneal the CCD's periodically to wipeout these hotpixels. All four of our images are 1800 second exposures taken at di�erenttimes through a yellow �lter (F555W).Let the combination of the two images in set A (with lots of hot pixels) createdto get rid of cosmic rays be called C1 and the combination of the images in set B (withfewer hotpixels) be called C2. We �rst created C1 and C2 for all the CCDs. We thenused a technique which took advantage of the fact that C2 is shifted by about one pixelfrom C1. We shifted and combined C1 and C2 (using IRAF task PROTO.IMALIGN andSTSDAS.COMBINE), to get rid of most of the hotpixels. We then subtracted the combinedimage from C1, and ran a detection routine to get a map of all of the hotpixels. Some starsleaked through to this image, and we deleted them by hand. This gave us a map of all the



248hotpixels in the �rst set of images, which were matched and deleted from the star catalogcreated by running DAOFIND on the combined image.CCD4 required the use of slightly di�erent techniques than those described above,because it contained very bright as well as very dark sky regions. The sky varied fromapproximately 30 counts to 60 counts depending on location in the chip. The standarddeviation of the sky also varied by location. One of the di�erent methods we used forCCD4 is the following: we took C1 and C2 for this CCD and aligned the images in thesame way as discussed above. The shifted images were put through STSDAS.COMBINEagain. However, instead of using this to catalog the hotpixels and then delete them fromthe data set, we used the combined image of all four images (sets A and B) to catalog thestars. The stars are a bit dimmer, but this technique has the advantage that not only doesit eliminate the hotpixels, but it also gets rid of many of the cosmic ray events that occurredin the same location in both the images that were used to make C1 or C2. The chancesthat cosmic ray hits were sustained in all four CCD's in the same location is decreasedsigni�cantly. We ran DAOFIND on this combined image. These coordinates were shiftedwhen used on the images of set B. We ended up with 1751 stars for CCD 4.
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