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Abstract

This paper presents a new human motion tracking system using two wearable inertial sensors that are placed near the wrist and elbow joints
of the upper limb. Each inertial sensor consists of a tri-axial accelerometer, a tri-axial gyroscope and a tri-axial magnetometer. The turning
rates of the gyroscope were utilised for localising the wrist and elbow joints on the assumption that the two upper limb segment lengths are
known a priori. To determine the translation and rotation of the shoulder joint, an equality-constrained optimisation technique is adopted to
find an optimal solution, incorporating measurements from the tri-axial accelerometer and gyroscope. Experimental results demonstrate that
this new system, compared to an optical motion tracker, has RMS position errors that are normally less than 0.01 m, and RMS angle errors
that are 2.5–4.8◦.
© 2007 IPEM. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Stroke is the biggest cause of disability in the UK. About
110,000 people each year experience a first stroke, and a fur-
ther 30,000 have a further stroke. More than 75% of these
people require multi-disciplinary assessments and appropri-
ate rehabilitative treatments after they are discharged from
the hospital [1,2]. This places a large demand on community
healthcare services, which often have quite limited therapy
resources. As a result, there is considerable interest in train-
ing aids or intelligent systems that, as complementary tools,
can support rehabilitation in the patient’s home rather than in
hospital [3].

One of the goals of stroke rehabilitation is to enable a
stroke patient to regain the highest possible level of motor
function. Although some motor function may return subse-
quent to a stroke, recovery is an ongoing process and it is
known that rehabilitative strategies can improve the recov-

∗ Corresponding author. Tel: +44 1206 872297; fax: +44 1206 872788.
E-mail address: hhu@essex.ac.uk (H. Hu).

ery of functional movement [4]. There remains a dearth of
instrumented assessment equipment appropriate for use at
home that can augment and evaluate current rehabilitative
interventions [5]. The availability of this equipment, which
could be used at home with greater frequency and for a longer
period of time, may be a multi-disciplinary model and a more
cost-effective approach to deliver post-stroke rehabilitation
services [6].

Devices that can accurately track the position of the body
in space are an important component of such a rehabilitative
system. Using these devices, trajectories of human move-
ments can be immediately recovered. Physiotherapists in hos-
pitals can remotely “observe” the human movements via net-
working and then instruct the patients for the following recov-
ery process. Currently, these devices made motion detection
feasible by using inertial, magnetic, mechanical, or visual
sensors, etc. Next, we summarise the characteristics of the
existing sensor based systems.

Inertial sensors were first used in the detection of human
movements in the 1950s [7]. However, these sensors were
not commercially available until, in recent years, their
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doi:10.1016/j.medengphy.2006.11.010



Author's personal copy

124 H. Zhou et al. / Medical Engineering & Physics 30 (2008) 123–133

performance had been dramatically improved. Since inertial
sensors are sourceless, compact and light, they have been
a popular choice for applications such as motion tracking,
human–computer interface, and animation. For example,
Veltink et al. [8] investigated the difference between static
and dynamic activities using uniaxial accelerometers.
Similar techniques have also been reported in Boonstra et
al. [9], Lyons et al. [10], Mayagoitia et al. [11], Naja. et al.
[12]. Although these approaches were successful in their
particular applications, they are extremely problem-specific
and some seriously suffered from the drift problem. These
problems negatively affect the application of inertial sensors
in a poorly controlled environment (e.g. homes).

As a possible solution, robotics or mechatronics (i.e. MIT-
MANUS by Krebs et al. [13]) have been explored due to
their stable and reliable performance. These robotic systems
utilised potentiometers or gyroscopes to estimate limb rota-
tion. Other sensors such as CCD cameras can be integrated
within an inertial based system so as to mitigate drifts [14].
Kalman filters have been used for the purpose of sensor fu-
sion [15]. Many of these systems are complex to set-up with
intensive computation and are not suitable for a home envi-
ronment [16].

To develop a home based rehabilitation system, our main
intention in this paper was to design a motion detector us-
ing body-mounted inertial sensors, which is able to provide
measurements of upper limb motion (the work developed can
easily be extended to the case of lower limb motion detec-
tion). Kinematic models using two commercially available
sensors were first designed. This configuration allowed us to
recover the position of the wrist and elbow joints. To esti-
mate the position of the shoulder joint, a Lagrangian based
optimisation technique was then presented, which integrated
the values of acceleration and the estimated value of rotation
measured from both the inertial sensors. The novelty of this
study is that a new motion detection strategy was proposed,
where the position of three joints on the human arm could be
obtained only deploying two inertial sensors. Each inertial
sensor consists of a tri-axial accelerometer, a tri-axial gyro-
scope and a tri-axial magnetometer. This feature made our
system different from the classical devices, which normally
demanded more sensors to reach the same goal.

2. Methods

2.1. General

Since we are interested in tracking a human arm, we use
a skeleton structure with two segments linked by a revolute
joint. Only the position of the wrist (in the middle between
the radial and ulnar styloid processes), elbow (lying ante-
rior to the olecranon process) and shoulder joints (the centre
of the humeral head) were calculated. The arm movements
were sampled using two commercially available MT9B in-
ertial sensors (Xsens, The Netherlands), placed on the two

segments, respectively. The whole motion tracking system
(see Fig. 1) was implemented in the environment of Visual
Studio C++, where the computer is a Media PC with a VIA
Nehemiah/1.2 GHz CPU.

Measurements from the proposed tracking system were
compared to the ground-truthed data from: (1) the designed
paths for a subject’s arm to follow (detailed in a later sec-
tion), and (2) an optical motion tracker, CODA (Charnwood
Dynamic Ltd., UK), which as a reference provided absolute
position of the moving arm. For system comparison, the co-
ordinate system of the proposed tracker can be aligned with
that of the reference data using a direct 3D coordinate trans-
formation. To relate the movements of the sensor to those
of the segments, a sensor calibration needs to be conducted
[17]. Errors in motion estimation can be presented using the
mean, standard deviation, and root of the mean of the squared
errors (RMS). Additionally, correlation coefficients and non-
parametric tests (Wilcoxon sign rank tests) were used for
evaluating the similarity between the outcomes of our sys-
tem and the CODA system.

2.2. Estimation of the joint position

The flowchart of the dynamic estimation is illustrated in
Fig. 2. The raw acceleration signals were low-passed filtered
(cut-off frequency: 10 Hz) to remove high-frequency noise,
while the raw gyroscopic signals were high-pass filtered (cut-
off frequency: 0.05 Hz) to reduce the internal drift. To deter-
mine the position of an arm in a world (global) coordinate
system, we need to transform the inertial measurements from
the sensor coordinate system to the world (global) coordinate
system.

Consider a rigid body moving in the earth frame. The
world frame is w, and the sensor body frame is b. Rw

b , a 3×3
rotation matrix, indicates the orientation transformation from
the b-frame to the w-frame:

vw = Rw
b vb, (1)

where vw and vb represent the linear velocity vector of the
sensor in the w- and b-frames, respectively. The state of Rw

b

at the next instant, Rw′
b , can be updated as follows:

Ṙw
b = Rw

b S(ωb), (2)

where S(ωb) ≡ [ωb×] is the skew-symmetric matrix that is
formed using the cross-product operation of the angular ve-
locity estimates ωb [18, p. 141]. In fact, the new rotation
matrix Rw′

b will be equivalent to the previous Rw
b plus Ṙw

b

multiplied by a time interval (1/25 s herewith). Once the rota-
tion matrix has been obtained, then the acceleration readings
in the w-frame will be deduced as

aw = Rw
b ab + Gw, (3)

where Gw = [0, 0, 9.81]T m s−2 is the local gravity vector
whose effect on the acceleration needs to be eliminated. Euler
angles can be estimated using a strapdown integration method
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Fig. 1. Illustration of the designed tracking system.

reported in Luinge [15]. In this study, we used Euler angles
rather than quaternion to represent the angular changes as the
latter demands a non-linear and intensive computation.

Once having the representation of accelerations and Euler
angles in the world frame, we can locate the position of the
wrist and elbow joints in the world frame using the estimated
Euler angles. Before this computation starts, let us assume
that the length of the lower arm (ulna styloid to olecranon
process) is L1, and the length of the upper arm (olecranon
process to acromian process) is L2. In the static state, the x-
axis of these two inertial sensors was collinear with the direc-
tion of the upper and lower arm. During dynamic movements,
the elbow position Pe in the shoulder-originated coordinate
system was calculated as

Pe = ResPe0 , (4)

where Res is the rotation matrix of the upper arm, and Pe0 =
[L1, 0, 0]T. Based on the estimation of the elbow position,
the wrist position Pw in the shoulder-originated coordinate
system was deduced as

Pw = RwePw0 + Pe, (5)

where Rwe is the rotation matrix of the lower arm (the origin
is the elbow joint), and Pw0 = [L2, 0, 0]T.

The position of the shoulder joint was also computed as
this is an important outcome measure during upper limb reha-
bilitation. We assume that total displacements of the wrist (or
elbow) joint result from the combination of the pure transla-
tion of the shoulder joint and the pure rotation of the forearm
and upper arm. The rotation component was calculated us-

ing the gyroscope signals. The translation component can
be estimated using the acceleration measurements from both
MT9B sensors. By double-integrating these accelerations, an
over-determined solution for the translation component of the
shoulder joint was generated. However, this solution results in
significant drifts due to sensor noise or offsets. To maximally
suppress the potential drifts, a Lagrangian based optimisation
technique was envisaged, where the rotation and translation
components of the shoulder joint were combined with the
length-constraint of each segment. This expectedly reduces
drifts buried in the estimated displacements of the shoulder
joint.

Let Dw be the displacement vector of the wrist joint only
due to the angular variations of the lower arm (the elbow joint
is the pivot of this rotation), and Ps the displacement vector
of the shoulder joint only using the accelerations from the
sensor placed on the upper arm. There exists two constraints
as follows:

∫ t1

0

∫ t2

0
ae dt − Pe − Ps → 0 (6)

and

∫ t1

0

∫ t2

0
aw dt −

∫ t1

0

∫ t2

0
ae dt − Dw → 0, (7)

where aw and ae represent the acceleration vectors of the two
sensors placed on the lower and upper arms, respectively. t1
and t2 are two time instants.
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Fig. 2. Illustration of estimating the joint position during trajectory.

The determination of Ps can be treated as an equality-
constrained optimisation problem, which is described as

L(t, λ) = Sa − λTSb, (8)

where Sa = ∫ t1
0

∫ t2
0 ae dt − Pe − Ps, and Sb = ∫ t1

0

∫ t2
0 aw

dt − ∫ t1
0

∫ t2
0 ae dt − Dw. λ is a Lagrange-like multiplier and

a diagonal matrix with diag[λ11, λ22, λ33]. Ps can be derived
if L(t, λ) is minimised.

Using the Karush–Kuhn–Tucker (KKT) condition, we
have

∂L(t, λ)

∂t
= ∂Sa

∂t
− λT ∂Sb

∂t
= 0, (9)

where λ can be deduced if ∂Ps/∂t is a constant. To obtain such
a constant, in a pre-calibration stage, we kept the shoulder still
during repeated movements (20 times), and then used a poly-
nomial regression technique [19] to estimate λ via Eq. (9).
In a home-based environment, the sensor kit will be placed
on an upper limb of a healthy adult before it is applied to
any stroke patient. This subject will be asked to keep his/her
shoulder still during the required sampling so as to deduce a
proper λ. In theory, λ is dependent on Sa and Sb, which are
only determined by the arm length. Sensor positions on arms

do not affect the computation of λ unless the rigidness of the
arm movements cannot be met.

After λ had been available, we were able to render Ps

when the left side of Eq. (8) was minimized [20], while the
shoulder moved during the data sampling.

2.3. Experimental set-up

Motivated by the evaluation methods described in Section
2.1, two experimental environments were set-up individually:
one was with the designed paths, and the other was with the
CODA tracker.

2.3.1. The “designed paths” experiment
By using Velcro straps, one of the MT9B sensors was

attached to the upper arm with 2-cm distance to the elbow
joint, and the other was tied with the lower arm with 2-cm
distance to the wrist joint. These sensors faced outwards the
arm. Four healthy male adults (20–40 years old) participated
in this experiment. They started performing arm movements
after being given simple instructions of where and how to
move their arms. Two motion patterns were carefully de-
signed and printed on two white paper, respectively. The
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Fig. 3. Set-up in the “designed paths” experiment.

first is a circle (radius: 0.1 m), and the second is a rectan-
gle (0.2 m×0.14 m). These parameters were chosen so that
the subjects could freely and comfortably change their arm
posture during the movements. The subjects (one-by-one) sat
still in a solid chair with the pattern paper placed on a desk
(height: 0.75 m) in front of them (Fig. 3). For the proposed
tracking system, data was collected using the sample rate of
25 Hz.

2.3.2. The “optical tracker” experiment
Subjects sat in a chair in front of the CODA system while

permitting their left arms to conduct specified movements in
the viewing direction of the cameras on the CODA system
(Fig. 4). The CODA system sampled with a rate of 200 Hz,
and the data later can be re-sampled at 25 Hz for compari-
son to the outcomes of the proposed motion detector. This
re-sampling possibly cause small details (or high-frequency
components) in the measurements of the CODA system to be
lost; however, it does not affect our measurements as the hu-
man movements in our experiments were not fast (≤12 Hz).

One MT9B sensor was placed as close to the wrist centre
as possible on the palmer aspect (PA). The second MT9B
sensor was placed on the lateral aspect of the upper arm on the
line between the lateral epicondyle and the Acromian process
(AP) (5 cm from the AP). Six CODA markers were placed
on the following position for representing the upper limb’s
movements: (1) centre of the wrist midway between the ulner
and radial styloid, (2) lateral epicondyle at the elbow, (3) AP,
(4) trapezious, (5) T5 (spine of vertebrae), and (6) C7 (ventral
ramus of root). Two wand markers were used to assess arm
rotation: 5 cm wand was placed midway between the wrist

Fig. 4. Set-up in the “CODA optical tracker” experiment.

marker and the elbow. The second wand was placed midway
between the elbow and the AP. Two reference markers were
placed on the chair to define the vertical direction.

Three tests have been performed, which consist of tar-
get reaching, shoulder shrugging and forearm rotation. In the
first experiment, the shoulder joint was fixed without mov-
ing. Theoretically, if the shoulder moves, the wrist and elbow
positions will be under- or over-estimated. For the second
experiment, the arm was naturally straight down before con-
ducting the entire test. The forearm was rotated around the
elbow joint in the third experiment.

3. Experimental results

For the purpose of clarity, the experimental results are
shown in two parts: (1) the “designed paths” experiment, and
(2) the “optical tracker” experiment.

3.1. The “designed paths” experiment

The experiment can be divided into two groups: (1) cir-
cular motion detection, and (2) square motion detection. For
each group, we first present the Euler angles estimated from
the two MT9B sensors using the proposed kinematic model.
Then, we plot the position measurements against sample
numbers. Finally, to discover the accuracy of the estimated
position of the sensor mounted on the lower arm, we cal-
culated the mean position for a period of 2 min, which was
compared to the real shape of the designed path. The mean
position of the sensor nearer the shoulder joint will also be
presented but no expected value or ground-truth was available
in our experiments. Fig. 5 illustrates the periodically changed
tri-axial Euler angles for a subject in 40 s, estimated from the
two sensors in the square motion. The tri-axial angle vari-
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Fig. 5. Euler angle estimation of the two segments in square motion. (a) Lower arm: Euler angle (x); (b) lower arm: Euler angle (y); (c) lower arm: Euler angle
(z); (d) upper arm: Euler angle (x); (e) upper arm: Euler angle (y); (f) upper arm: Euler angle (z).

ations are of 20◦, 35◦, and 50◦(peak-to-peak), respectively.
One can observe that the motion repetition had been stably
recovered. As a result, the position estimation of the inertial
sensors can be properly performed (see Fig. 6), where period-

icity appears in the overall sub-figures. The circular motion
has similar outcomes. We found that these errors were mainly
due to the shaking arm, which did not exactly match the de-
signed paths. For the position estimates from the all subjects,
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Fig. 6. Position estimation of the two joints in square motion. (a) Wrist: position (x); (b) wrist: position (y); (c) wrist: position (z); (d) elbow: position (x); (e)
elbow: position (y); (f) elbow: position (z).

mean, standard deviation, and RMS errors are tabulated in
Table 1.

We also investigate the consequence of placing two sen-
sors at different positions on the arm. For example, both sen-

sors were moved from their original position and away from
their respective joints. Experimental results indicate that less
than 0.5% averaging variations against 100 s arose from the
sensor re-allocation.
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Table 1
The wrist position (m) in the “designed paths” experiment

Location Motion manners Mean S.D. RMS Correlation p-Value

Wrist Circular 0.006 0.014 0.015 0.96 0.48
Square 0.004 0.011 0.012 0.98 0.56

3.2. The “optical tracker” experiment

Three tests have been conducted: reaching, shrugging and
forearm rotation. The sample period is 20 s. Each subject was

Fig. 7. (a–f) Example measurements of the wrist and elbow position in the reach test (circle lines, our system; solid lines, optical motion tracker).

free to do individual tests with a normal speed. For the reach-
ing test, the elbow flexion/extension angle is up to 100◦. Fig.
7 illustrates example measurements of the wrist and elbow
position in the reach test. This demonstrates that the measure-
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Table 2
The wrist and elbow positions (m) in the “optical tracker” experiment

Test Location Mean S.D. RMS Correlation p-Value

Reaching Wrist 0.003 0.006 0.007 0.98 0.31
Elbow 0.006 0.009 0.01 0.97 0.43

Table 3
Elbow flexion/extension angles (◦) in the “optical tracker” experiment

Test Reaching
Mean 0.41
S.D. 2.34
RMS 2.41
Correlation 0.98
p-Value 0.44

ments by our method are accurate. The mean, standard devia-
tion, and RMS with respect to the error residuals between the
measurements of the CODA and our motion detectors have
been shown in Table 2 (only the wrist and elbow positions
are here provided). Since the measurements are tri-axial, we
have calculated the mean values over the tri-axial estimates
and only show these mean values in the table (and hereafter).
Correlation coefficients and p values computed for the out-
comes of these two systems are also shown in Table 2. These
values can be used to show non-significance between the two
data groups. In this application, we investigated each cycle
(rather than the overall outcomes) of the periodic movements
during the sample period. Meanwhile, statistical analysis of
the estimated Euler angles are revealed in Table 3. From these
two tables, it is evident that the proposed motion detector was
effective due to the small RMS and large correlation coeffi-
cients.

For the shrugging test, the shoulder position changed
with a displacement of 8 cm (approximately). Table 4 re-
veals very small errors in the estimation of the three joint
positions. Similar to the reaching test, Table 5 shows the re-
sults of the forearm rotation test. It has been noticed that,
although the proposed method has good performance in the
angular estimation of the forearm (an example of the esti-
mated Euler angle around the Z-axis is illustrated in Fig.
8), the statistic errors show that the mean and RMS val-
ues are larger than the estimated angles in the reaching test.
Taking a closer look at these values, the errors might be
due to the relative movements between the underlying bone
and the sensors. The errors may also be due to the iner-
tia of the gyroscopes. Compared to the latter problem, the
former one is much easier to be solved if the sensor at-
tachment is properly designed. For the time being, the sen-
sors are attached to the arms using Velcro straps. The vi-
able straps may lead to free motion of the sensors so a rel-

Table 4
The three joints’ position (m) in the “optical tracker” experiment

Test Location Mean S.D. RMS Correlation p-Value

Shrugging Wrist −0.003 0.006 0.007 0.98 0.63
Elbow −0.004 0.006 0.005 0.98 0.43
Shoulder −0.002 0.005 0.004 0.96 0.46

Table 5
Forearm rotation angles (◦) in the “optical tracker” experiment

Test Rotation
Mean 0.06
SD 4.82
RMS 4.83
Correlation 0.94
p-Value 0.35

Fig. 8. An example of the estimated Euler angle z in the forearm rotation
test.

atively rigid sensor attachment needs to be produced (see
Section 4).

4. Discussion

Our main contribution in this paper is the integration of
accelerometers and gyroscopes, which has been fully justi-
fied in detection of upper limb movements. Literature shows
that accelerometers have been used to objectively estimate
body movements. These sensors were extremely valuable to
discriminate between a static and dynamic segments or el-
ements, e.g. a disabled human limb due to strokes. Follow-
ing Veltink’s work [8], Uiterwaal et al. [21] and Lyons et al.
[10] used predetermined fixed threshold levels to define indi-
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vidual activity classification, e.g. sitting, standing and lying.
Since binary decisions were made in terms of discrimina-
tion between two activities, the posture threshold method is
applicable in these situations. However, this method cannot
be used in the case of continuous movements of the upper
limb due to unknown thresholds and higher degrees of free-
dom of the arm motion. Gyroscopes have been used to im-
prove accuracy of the estimates by accelerometers [9]. Al-
though this reported data fusion works in specific circum-
stances, e.g. standing and sitting, it will need more accelerom-
eters and gyroscopes than our system in order to locate the
whole arm in space. This will add more costs to the designed
system.

The effectiveness of our motion detector has been demon-
strated by comparing its outcomes to the ground-truth gen-
erated by a standard optical motion analysis system. In most
circumstances, the proposed motion detector has RMS po-
sition errors that are less than 1 cm, and RMS angle errors
that are 2.5–4.8◦. These results suggest that under the testing
circumstance, the proposed motion analysis can reach a high
accuracy. In other words, the proposed kinematic model and
Lagrangian based optimisation method have been appropri-
ately established for detection of upper arm movements. The
experimental results also reveal that, even though the tests
only last a few minutes, it clearly shows that no significant
drift appears in the estimates of the arm movements. This
indicates that the proposed strategy ideally handles the drift
problem usually buried in an inertial sensing based imple-
mentation. Based on these positive outcomes, in the future
work we will study the performance of the proposed system
in a longer term.

Nevertheless, this proposed motion tracker failed to ac-
curately detect smaller movements, e.g. less than 0.5 cm or
2◦. This outcome is similar to those reported by Luinge [15],
where the Kalman filter was used to provide stable orienta-
tional estimation. These errors may also be caused by relative
movements of sensors (or markers) regarding the underlying
bony anatomy [22], incorrect marker placement, joint centre
mistaken, etc. [23]. To improve systematic accuracy, we have
considered a properly designed sensor attachment in order to
produce kinematic data with less noise. This attachment will
allow the sensors to be rigidly mounted on the upper limb. It
may maximally reduce the relative motion between the sen-
sors and the underlying bones. Moreover, our current system
requires the subject to sit down during the movement assess-
ment. A potential solution is to add the lower limb kinematic
models to the current model, which is similar to the one for
the upper limb. In due course, we may release the subject’s
mobility constraint.

Donning and doffing of this motion sensor system has not
been formally addressed in this paper. However, it has been
recognized that the accuracy of measurements and coopera-
tion of patients fully relies on this factor if the system is used
at home. Furthermore, to allow a physiotherapist to observe
the motion samples performed by patients, a touch screen
based platform is being designed. This configuration is sim-

ilar to that shown in Fig. 1 but the graphic interface is still
under development.

5. Conclusion

An upper limb motion tracking system with two com-
mercial inertial sensors has been presented in this paper. A
kinematic model of the arm allows the wrist and elbow joints
to be located. In order to estimate the shoulder position, a
Lagrangian based optimisation method was then adopted, in-
tegrating the translation and rotation components of the wear-
able inertial sensors. We then evaluated the performance of
the proposed motion detector which measures the position
of the upper limb during movements. The results were very
promising, indicating that the proposed motion detector could
be integrated into a home based rehabilitation system to re-
port the upper limb movements of a patient.

In future work, we intend to improve the sensor attach-
ment and also generate a more comprehensive human motion
model that describes the movements of human lower and up-
per limbs.
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