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Integrating Exploration, Localization, Navigation and Planningwith a Common RepresentationALAN C. SCHULTZ, WILLIAM ADAMS, AND BRIAN YAMAUCHI�schultz@aic.nrl.navy.milNavy Center for Applied Research in Arti�cial Intelligence (NCARAI),Naval Research Laboratory, Washington, DC 20375-5337, U.S.A.Received ??; Revised ??Editors: ??Abstract.Two major themes of our research include the creation of mobile robot systems that are robust andadaptive in rapidly changing environments, and the view of integration as a basic research issue. Wherereasonable, we try to use the same representations to allow di�erent components to work more readily to-gether and to allow better and more natural integration of and communication between these components.In this paper, we describe our most recent work in integrating mobile robot exploration, localization, nav-igation, and planning through the use of a common representation, evidence grids.Keywords: mobile robots, localization, planning, navigation, exploration, evidence grids, integration1. IntroductionA central theme of our research is the view of in-tegration as a basic research issue, studying thecombination of di�erent, complementary capabil-ities. One principle that allows integration is theuse of unifying representations. Where reason-able, we try to use the same representations to al-low di�erent components to work more readily to-gether and to allow better and more natural inte-gration of and communication between these com-ponents. In the work reported here, the unifyingrepresentation is the evidence grid, a probabilis-tic metric map. In this paper, we describe howusing evidence grids as a unifying representationnot only allows for better integration across tech-�This work was sponsored by the O�ce of Naval Research

niques, but also allows reuse of data in learningand adaptation.We have developed and integrated techniquesfor autonomous exploration, map building, andcontinuous self-localization. Further, we have in-tegrated these techniques with methods for navi-gation and planning obtained from other researchgroups, modifying their systems to use our com-mon representation. In addition, this integratedsystem includes methods for adapting maps toallow for robust navigation in dynamic environ-ments. As a result of this integration, the systemallows a robot to enter an unknown environment,map it while remaining con�dent of its position,and robustly plan and navigate within the envi-ronment in real time.In the next section, we describe the commonrepresentation we use for integrating the varioustechniques. In Sections 3 and 4, we present our



2 ??results in localization and exploration, along withour integration of these techniques. The integra-tion of a mechanism to make the the map adap-tive to changes in the environment is presented inSection 5. In Sections 6 and 7 we introduce thecomponents for planning and reactive navigation,and show how they integrate into the system usingour representation. In Section 8, we describe theoverall integrated architecture and describe exper-iments to verify that the resulting system worksrobustly and repeatably, and present the resultsof these experiments.2. Unifying RepresentationWe use evidence grids (Moravec and Elfes, 1985)as our spatial representation. An evidence grid is aprobabilistic representation which uses Cartesiangrid cells to store evidence that the correspondingregion in space is occupied.Each cell contains a real value in the range(�1; 1) that represents the amount of evidencethat a cell is occupied (1) or unoccupied (-1), orindicates that there is not enough information todetermine the occupancy of the cell1.Evidence grids have the advantage of being ableto fuse information from di�erent types of sen-sors. To update an evidence grid with new sensorreadings, the sensor readings are interpreted withrespect to a sensor model that maps the sensor da-tum at a given pose to its e�ect on each cell withinthe evidence grid2 The interpretation is then usedto update the evidence in the grid cells in realtime using a probabilistic update rule. Evidencegrids have been created that use di�erent updat-ing methods, most notably, Bayesian (Moravecand Elfes, 1985), and Dempster-Shafer (Hughesand Murphy, 1992). In the results reported here,Bayesian updating is used.In this study, we use sonar sensors in combina-tion with a planar structured light range �nder.Sonar sensors can provide only coarse evidence ofoccupied space due to their wide �eld, but theyare very e�ective at determining empty space, asan object anywhere within that space would likelyhave resulted in a shorter sensed range. The struc-tured light range �nder has the opposite proper-ties. It can sense occupied space at a high reso-lution, but its horizontal, 2-D nature prevents it

from sensing objects above or below the structuredlight plane. It therefore cannot be used with anycon�dence to rule the intervening space as empty.For the sonar sensor model, grid cells in an arcat the sensed range receive a higher evidence of be-ing occupied, while cells between the sensor andthe sensed distance receive reduced evidence of be-ing occupied. Since a sonar sensor is more likelyto detect an object near its axis, cells closer tothe sensor's axis receive larger adjustments thancells far from the axis. More information on thesonar sensor model is available in (Moravec, 1988).The sensor model for the structured light range�nder provides strong evidence at the cell wherethe range datum lies, but makes no adjustment toany intermediate cells.In order to reduce the e�ect of specular reec-tions, we have developed a technique we call laser-limited sonar. If the laser returns a range readingless than the sonar reading, we update the evi-dence grid as if the sonar had returned the rangeindicated by the laser, in addition to increasingthe occupancy probability of the cells actually re-turned by the laser.Although evidence grids may represent a three-dimensional space, our initial results examine asingle horizontal layer of the evidence grid that islocated at the height of the sensors.We create two types of representations withthe evidence grids: short-term perception maps,and long-term metric maps. The short-term mapsstore very recent sensor data that does not con-tain signi�cant odometry error, and these mapsare used for obstacle avoidance and for localiza-tion. The long-term maps represent the environ-ment over time, and are used for navigation andpath-planning.2.1. Long-term mapsA long-term map is an evidence grid represen-tation of the environment that is built from manysensor readings, over a long time period in that re-gion of space. Typically, each long-term map willrepresent approximately one \room" in the envi-ronment. All sensor data contributes to this map,and this map can be used by other robotic pro-cesses, such as navigation and path planning. Fig.1 shows an evidence grid of the robotic laboratory



?? 3at NCARAI. The white space represents cells thathave evidence of the cell not being occupied (freespace), the darker areas represent evidence of thecell being occupied, and the grey areas (like in theouter parts of Fig. 1) indicate cells where neutralevidence exists.2.2. Short-term perception mapsA short-term (or local) perception map representsthe immediate temporal and spatial environmentof the robot as an evidence grid. Only very recentsensor readings of the robot contribute to the localperception map. Several local perception maps ofthe robot's environment may exist at the sametime, each with a di�erent amount of sensor datacontributing to the \maturity" of that map. Alocal perception map is considered mature when ithas accumulated the maximum desirable amountof positional error. After a map has matured, itis used and then discarded.Fig. 2 shows a local perception map recordedby the robot while it was in the upper, left handcorner of the room in Fig. 1. (The short-termmap is rotated 45 degrees with respect to the long-term map.) The white and dark areas have thesame meaning as in the previous �gure. Note thatobjects are present in the local perception mapthat were not present when the long-term mapwas created.

Fig. 1. Long-term map of laboratory

Fig. 2. A short-term perception map3. Learning Where You Are: ContinuousLocalizationEvidence grids provide a uniform representationfor fusing temporally and spatially distinct sen-sor readings. However, the use of evidence gridsrequires that the robot be localized within itsenvironment. Due to odometric drift and non-systematic errors such as slippage and unevenoors, odometry errors typically accumulate overtime making localization estimates degrade. Thiscan introduce signi�cant errors into evidence gridsas they are built. We have addressed this problemby developing a method for continuous localiza-tion, in which the robot corrects its position esti-mates incrementally and on the y (Schultz andAdams, 1998).Continuous localization exploits the fact thatthe robot's odometric error usually increases grad-ually over time, except in extreme cases such aswhen the robot hits an obstacle. By re-localizingoften, less e�ort is required to correct the error inodometry.Continuous localization builds local perceptionmaps of the robot's local environment. Thesemaps typically contain very small amounts of er-ror, and are used to locate the robot within aglobal, long-term map via a registration process.(In section 4 we will describe how these long-termmaps are created.) The results from this processare used to correct the robot's odometry.
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Fig. 3. Continuous localizationFig. 3 shows the process of continuous local-ization. The robot builds a continuous series oflocal perception maps of its immediate environ-ment. At the beginning of each interval, a newlocal perception map is created. During the timeinterval, new sensor data are fed to the new mapand the previous maps still in memory. Each localperception map is of short duration and containsonly a small amount of dead reckoning error. Afterseveral time intervals, the oldest (most \mature")local perception map is used to position the robotwithin the long-term map by registering the twomaps and is then discarded. The number of localperception maps that exist simultaneously and theamount of data that is entered into each map areruntime parameters of the system.The registration process involves a search inthe space of o�sets in translation and rotationthat minimizes the error in the match betweenthe short-term and long-term maps. Since we ex-pect the odometry error to be small, we restrictthe registration search to be between � 6 inchesin translation and �2� in rotation. (These val-ues can also be changed as runtime parameters.)This restricted search space allows the search to becompleted quickly, speci�cally before the intervalexpires and the next registration is attempted.For each tested pose in the registration search,the mature local perception map is rotated andtranslated by the di�erence in pose (the o�set)and a match score is calculated based on agree-ment between the cell values of the local percep-

tion map and the long-term map, summed acrossall cells. The match scores for all tested poses arethen used to determine the o�set that is likely tohave the highest match score. This o�set is ap-plied to the robot's odometry, placing it at thepose which causes its local perceptions to bestmatch the long-term map. After the registrationtakes place the most mature map is discarded, anda new local perception map is created.Two experiments were performed to determinethe e�ectiveness of continuous localization at re-ducing odometric error, and to determine which ofseveral match functions and search functions yieldbetter results.3.1. E�ectiveness of Continuous LocalizationThe �rst experiment was conducted in a roommeasuring roughly 26 feet by 30 feet, open in thecenter with bookcases, desks, and chairs aroundthe edges of the room. The robot was commandedto follow a square path near the center of theroom, 8 feet on each side, by traveling to eachcorner's coordinates in turn. Continuous local-ization ran independently of the motion process,maintaining 4 short-term perception maps and re-localizing approximately every 8 feet (each matureshort-term map contained sensor data gatheredduring the most recent 32 ft of travel). The reg-istration search method used was center-of-masswith the binary match function (described in de-tail in section 3.2).Ten runs were made, with each run consisting of80 laps around the square, a distance of 2560 feet(approximately 2 hours duration). The distancebetween the robot's odometic position and its trueposition was computed at the same corner for eachlap. This measure includes rotational error, asmotion causes error in orientation to be reectedas an error in position.The results are displayed in Fig. 4 as an averageacross all ten runs. The robot's non-localized pose(simple dead-reckoning) steadily drifted, grow-ing without bound. The localized curve showsthat continuous localization was able to keep therobot's pose error at a constant level, averaging5.35 inches (136 mm) with a standard deviation of2.08 inches (53 mm) across all points of all runs.
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LocalizedFig. 4. E�ect of continuous localization3.2. Search and Match FunctionsThe second set of experiments were run to de-termine the best of several search routines andmatching functions that could be used to registerthe long-term and short-term perception maps.In order to describe the search routines, it isuseful to �rst describe the search space in whichthey work. The search space is all possible poseswithin � 6 inches in translation and �2� in rota-tion of the robot's current pose. This correspondsto a three dimensional space with axes x, y andtheta.The two search routines tested were an iteratedhill climber and a center-of-mass calculation.The iterated hill climber search (designated inthe text and graphs as H) uses an initial resolu-tion to divide the space into pose cells. The matchbetween the short-term perception map and thelong-term map is computed for the robot's poseand the center of the 26 immediately neighboringpose cells (33 � 1). If a neighbor is found with abetter match, then the process repeats using thatpose cell as the center. If no neighbor is foundto be better, then the hill climber re-divides thespace at double the resolution and repeats the pro-cess. The search stops when a predetermined res-olution is reached. For the experiments reportedhere, an initial step size of 1.5 inches and 1.25degrees was used, with a �nal resolution of 0.375inches and 0.3125 degrees.

The \center-of-mass" search (designated in thispaper as C) similarly divides the search space intopose cells, but picks a random pose within eachpose cell and uses those random poses to computea set of match scores that are distributed through-out the search space. The match scores are nor-malized to the range [0,1], raised to the fourthpower to exaggerate the peak, and then a center-of-mass calculation is performed for all cells. Theexaggeration of the peak is necessary because thematch score is typically very at within the smallsearch space, and without it the center-of-masscalculation would always pick a pose near the cen-ter of the search space (very close to the robot'scurrent pose). The center-of-mass calculation ispreferable to simply choosing the pose cell withthe maximum score because the sparse samplingof the space (one pose per pose cell) can createadditional noise, and sampling at a higher resolu-tion would be computationally prohibitive for realtime operation.The two match functions examined in this workare designated the binary match (referred to inthis paper as B), and the product match (referredto in this paper as P ). For both functions, theshort-term map is aligned with the long-term mapaccording to the test pose currently being pro-cessed by the search. The evidence from each gridcell of the short-term map is compared to the ev-idence stored in the spatially-correspondent gridcell of the long-term map, and the score summedacross all grid cells. Given the alignment for whichthe match score is to be computed, if CL is thecorresponding cell in the long-term map to theshort-term map cell CS , then we de�ne the matchscore:MatchScore = Xall CS CellScore(CSi ; CLi)For each match function, the cell scores are de-termined as follows. The binary match function(B) compares the cells' evidence for simple agree-ment. It returns 1 if the cells agree occupied oragree empty, and returns 0 if they disagree or ifeither cell has no evidence (a value of 0):CellScoreb(CSi ; CLi) = 8<: 1 if CSi > 0 ; CLi > 01 if CSi < 0 ; CLi < 00 otherwise



6 ??The product match function (P ) determines thedegree of agreement, taking the product of thecells' actual evidence, each cell's evidence being avalue between -1 (empty) and 1 (occupied). Cellsin agreement produce a score in the range (0, 1],depending on the con�dence of their individualevidence. Cells in disagreement produce a score inthe range [-1, 0), and if either cell has no evidence,a score of 0 is produced:CellScorep(CSi ; CLi) = CSi CLiEarly work with the continuous localizationmethod revealed that the search space had largeregions in which many registration poses resultedin the same match scores. This e�ect was sus-pected of causing the hill climber to give up earlydue to the inability to �nd a better neighbor in thesearch space, resulting in a non-optimal choice ofpose. To counter this problem, interpolation (des-ignated with I in the following text and graphs)can be performed on the long-term grid cells, suchthat the center of each grid cell retains its originalevidence, but other locations within that grid cellhave evidence values bilinearly interpolated withneighboring grid cells. When the search routinealigns the center of the short-term map cells withthe long-term map cells, the interpolated evidencevalue of the long-term map is used for computingthe match score. Small variations in pose (mapalignment) can thus yield di�ering correspondinginterpolated long-term map cell values and thusdi�ering overall match scores.To evaluate the various combinations, the sameenvironment was used as in the �rst experiment,with the robot following the same square pathand with pose error being measured at the samecorner. Eight trials were conducted, with eachtrial being a unique combination of search rou-tine, match function and interpolation. (In thefollowing �gures and discussion, each trial is des-ignated by the combination of letters H;C;B; P; Iindicating which of the above techniques are be-ing used. For each trial, 5 runs were made (exceptCP and CPI which had 10 runs). Each run con-sisted of 40 measured points (40 laps), with thepose error measured as before.Shown in Fig. 5 is the average pose erroracross all runs for each trial. Error bars in-dicate a 95% con�dence interval. As a group,
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Fig. 5. Di�erent search and match functions comparedthe center-of-mass combinations were signi�cantlybetter (p = :01) than those using the hill climber.In all cases, the binary and product match func-tions performed equivalently. Being of roughlycomparable computational cost, we have chosenthe product match function (P ).The CP and CPI combinations did not have sig-ni�cantly di�erent performance, nor did interpo-lation have any consistent e�ect overall. Inter-polation's smoothing of the search space appearsunnecessary when used with the center-of-masssearch, which performs its own smoothing dur-ing the averaging process inherent to it. Sinceinterpolation incurs additional computational costwithout providing any additional bene�t, the CPcombination was selected for future work.3.3. Related Localization ApproachesIn (Yamauchi, 1996), Yamauchi uses evidencegrids to perform occasional localization by match-ing evidence grids. In that study, evidence gridsare created for each speci�c \place" along therobots path. When the robot revisited a speci�cplace, it created a new evidence grid to matchagainst the evidence grid for that location to cor-rect its position.An alternate search method by Lu (Lu and Mil-ios, 1994) looks promising although it is intendedfor free-form scans without the use of evidence



?? 7grids, and the e�ect of using it on the arti�ciallyrasterized data of evidence grids is an open ques-tion.In an approach similar to that presented here,Schiele and Crowley (Schiele and Crowley, 1994)compared grid matching to other localizationmethods that included detecting and matchingedge segments in the evidence grids. Their workdid not give quantitative results on matching ev-idence grids, nor did it examine various methodsfor matching or searching for poses. The workpresented here seeks to determine the sensitivityof grid matching to changes in some of its funda-mental parameters and determine suitable valuesfor them.Many localization techniques rely on structuresin the environment that can serve as landmarks,for example, vertical structures such as door postsand poles (Chenavier and Crowley, 1992), largeplanes (Horn and Schmidt, 1995), geometric bea-cons (Leonard, 1992), or regions classi�ed by type(e.g. corridor, intersection, doorway, room) aidedby assumptions about the geometry of such struc-tures (Koenig and Simmons, 1998).Using speci�c landmarks often requires therobot to perform special maneuvers in order to lo-cate or recognize these landmarks (Bauer, 1995).In our work, such maneuvers are unnecessary. Be-cause our method uses all available sensor datawithout the requirement of speci�c features in theenvironment, the robot can localize itself trans-parently while carrying out its assigned task.4. Learning New Environments: Frontier-Based ExplorationIn preceding sections we have presented a methodfor localization that requires a long-term map ofthe environment. In additional to localization,other robotic tasks also generally require somesort of map. In order to operate in previously un-known environments without assistance, the robottherefore needs the ability to explore and buildmaps autonomously.We have developed an exploration strategybased on the concept of frontiers, regions on theboundary between open space and unexploredspace. When a robot moves to a frontier, it can seeinto unexplored space and add the new informa-

(a) evidence grid (b) frontier edge 
      segments

(c) frontier regionsFig. 6. Frontier detectiontion to its map. As a result, the mapped territoryexpands, pushing back the boundary between theknown and the unknown. By moving to succes-sive frontiers, the robot can constantly increaseits knowledge of the world. We call this strategyfrontier-based exploration(Yamauchi, 1997).A process analogous to edge detection and re-gion extraction in computer vision is used to �ndthe boundaries between open space and unknownspace in the evidence grid. Any open cell adja-cent to an unknown cell is labeled a frontier edgecell. Adjacent edge cells are grouped into fron-tier regions. Any frontier region above a certainminimum size (roughly the size of the robot) isconsidered a frontier. Fig. 6a shows an evidencegrid built by a real robot in a hallway adjacent totwo open doors. Fig. 6b shows the frontier edgesegments detected in the grid. Fig. 6c shows theregions that are larger than the minimum frontiersize. The centroid of each region is marked bycrosshairs. Frontier 0 and frontier 1 correspond toopen doorways, while frontier 2 is the unexploredhallway.Once frontiers have been detected within a par-ticular evidence grid, the robot attempts to nav-igate to the nearest accessible, unvisited frontier.When the robot reaches its destination (or if thenavigation routine determines that the robot can-not get to the frontier), it performs a sensor sweepusing laser-limited sonar, and adds the new infor-mation to the evidence grid. The robot then de-tects frontiers in the updated grid, and navigatesto the nearest remaining accessible, unvisited fron-tier.



8 ??We have demonstrated that frontier-based ex-ploration can successfully map real-world o�ceenvironments (Yamauchi, 1997), and that thistechnique scales well for use in multi-robot envi-ronments (Yamauchi, 1998). In relatively smallenvironments, such as a single o�ce, frontier-based exploration was capable of mapping accu-rately using dead reckoning for position estima-tion. However, for larger environments, dead reck-oning errors would generate large errors in thegenerated maps. In the next section, we show howcontinuous localization and frontier-based explo-ration were integrated to allow accurate mappingof large environments.4.1. Integrated Exploration and LocalizationFrontier-based exploration provides a way to ex-plore and map an unknown environment, giventhat a robot knows its own location at all times.Continuous localization provides a way for a robotto maintain an accurate estimate of its own po-sition, as long as the environment is mapped inadvance. The question of how to combine explo-ration with localization raises a "chicken-and-egg"problem: the robot needs to know its position inorder to build a map, and the robot needs a mapin order to determine its position. By integratingcontinuous localization and frontier-based explo-ration, we can solve this problem, allowing therobot to explore and build a map while maintain-ing an accurate estimate of its position (Yamauchiet al., 1998).This works because the exploration strategy willonly take the robot as far as the edge of its \knownworld," such that about half of its sensors canstill see the old, known environment, which canbe used to localize, while its other sensors are ex-tending the map into the unknown environment.Frontier-based exploration and continuous local-ization run in parallel. Whenever the robot ar-rives at a new frontier, it adds to the map of theenvironment and passes this map to continuous lo-calization. Continuous localization uses this mapof the known world as its long-term map. As therobot navigates to the next frontier, continuous lo-calization constructs local perception maps basedon the robot's recent perceptions, and comparesthem to the long-term map to correct the robot's

position estimate. When the robot arrives at thenew frontier, its position estimate will be accurate,and new sensor information will be integrated atthe correct location within the map.4.2. E�ectiveness of Integrated Exploration andLocalizationTo measure the e�ectiveness of our combinedsystem we conducted a set of experiments in ahallway environment (70 feet long). This hallway,like many of those in o�ce buildings, is clutteredwith obstacles, and also contains large alcoves.We initially constructed a ground truth grid(Fig. 7) for a hallway environment by manu-ally positioning the robot at viewpoints through-out the hallway and sweeping the robot's sensors.This ground truth grid is used only to measurethe accuracy of the learned map, and not as anaid to exploration or localization. The �ve Xscorrespond to the robot's starting locations forthe exploration trials, and the four crosshairs in-dicate reference points for measuring map error.By measuring the di�erence between the actualposition of these reference points and the positionof these points in the learned map, the amount ofpositional error incorporated into the learned mapcan be estimated. We refer to this metric as thereference point error for the learned map.Our �rst set of trials measured the perfor-mance of frontier-based exploration without con-tinuous localization. Five exploration trials wereconducted from starting locations distributedthroughout the hallway. Fig. 8 shows a maplearned with the robot starting at the positionmarked with the X. As the robot explored, po-

Fig. 7. Ground truth evidence grid for hallway
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Fig. 8. Map learned without localizationsitional error constantly accumulated. This par-ticular map has a reference point error of 7.0 feet.Frontier-based exploration without localizationwas successful at mapping the entire hallway in60% of the trials. In the two unsuccessful trials,the positional error was su�ciently large to pre-vent further exploration. In the successful trials,the average reference point error for the learnedmaps was 7.9 feet.Our second set of trials measured the system'sperformance using frontier-based exploration incombination with continuous localization. Weused the same hallway environment, the samestarting points for the robot, and the same groundtruth evidence grid. Frontier-based explorationagain directed the robot to explore the environ-ment, but continuous localization also regularlyupdated the robot's position estimate as the robotexplored.Fig. 9 shows the map learned with continuouslocalization enabled starting from the same initialposition as in Fig. 8. This map has a referencepoint error of only 0.4 feet, which is equal to thewidth of a single grid cell. The entire hallway wassuccessfully mapped in all of the trials, and the

Fig. 9. Map learned with localization

reference point error averaged over the �ve learnedmaps was 2.1 feet.4.3. Related Exploration ApproachesWhile other systems have been developed for mo-bile robot exploration, they have been limited toconstrained environments, e.g. where walls are ei-ther parallel or perpendicular to each other (Lee,1996), (Thrun and B�ucken, 1996) and su�cientlyuncluttered as to allow reliable line �tting to thesensor data (Thrun, 98), or where the entire en-vironment can be explored using wall-following(Mataric, 1992). Our system di�ers in being ableto explore unstructured environments where wallsand obstacles may be of any shape and orienta-tion.5. Learning Dynamic Environments: Adap-tive Long-Term MapsIn addition to initial mapping of an unknown en-vironment, we are also interested in learning andrepresenting changes that occur after the robothas �nished exploration but do not require com-plete re-exploration. These changes can includeopened or closed doors, moved furniture, tempo-rary storage of bulky items, and stationary people.To this end, we have extended the continuous lo-calization algorithm to allow the long-termmap tobe updated with recent sensor data from the short-term perception maps, making the long-term mapadaptive to the environment (Graves et al., 1997).In the continuous localization process, after themature short-term perception map is used to cor-rect the robot's dead reckoning, the odometry cor-rection is also applied to the short-term percep-tion map itself. Its cells are then combined withthe spatially corresponding cells of the long-termmap using Bayesian updating (dashed lines in Fig.3). The cells are weighted by a learning rate thatcontrols the e�ect the short-term map has on thelong-term map.Because the short-term maps are constructedover time, the correction produced by the regis-tration actually corrects the average error accu-mulated during that time. If there is systematicpose error (e.g. due to the mechanics of the robot),then the correction reects the amount of error at



10 ??some point in the recent past, not the current er-ror. A small amount of error will therefore remainin the pose-corrected mature short-term map andwill be added into the long-term map, causing aslow blurring of the long-term map.5.1. E�ectiveness of Adaptive Long-term MapsTwo experiments were run to determine, for achanging environment, if the mean odometry er-ror is comparable under both the learning andnon-learning techniques, if the learning techniquecould provide accurate maps of the modi�ed envi-ronment, and the e�ect of the slow long-term mapblurring on localization.The �rst experiment established a mean odom-etry error for each localization technique whenthe long-term map represented the true room con-�guration, The experiment was composed of onelearning trial and one non-learning trial, each hav-ing eight runs. All runs used the same room con-�guration. Each run consisted of the robot be-ginning at a randomly determined pose and thenwandering around the room randomly for �ftyminutes, avoiding obstacles while continuous lo-calization corrected its odometry. At one minuteintervals the robot stopped to allow recording ofits internal odometry and true location. Thesepaired pose readings allowed us to compute theerror in the robot's odometry over the course ofeach run.The second experiment tested each technique'sability to provide accurate localization when thea priori long-term map signi�cantly di�ered fromthe robot's true environment. Before each run,eight objects (such as chairs, desks, etc) weremoved in the real world, though their positionsin the a priori map did not change. Each objectwas displaced thirty inches in a random directionfrom its original position and then rotated a ran-dom amount between -30 and +30 degrees fromthe original orientation. During each run the ob-jects remained static. For each of eight distinctroom con�gurations, one learning and one non-learning run were conducted. The learning ratewas set to 10% (a weight of 0.1) and the randomwandering scheme from the �rst experiment was

used. Again, the robot was stopped each minuteto record its internal odometry and true location.The results are summarized in Fig. 10. Eachdata point in the graph represents the averageof the eight runs for each of the learning (dot-ted line) and non-learning (solid line) trials. Thedata points on the left show the average transla-tional error when the true room did not deviatefrom the a priori map, and the data points on theright show the experiments where the room dif-fered signi�cantly from the a priori map.As expected, in cases where the room hadno changes, continuous localization with learningperformed no better than the non-learning ver-sion (4.91 inches of translational error comparedto 4.54 inches of error).In the second experiment, where the room dif-fered signi�cantly from the map, the learning tech-nique's mean odometry error of 9.29 inches per-formed marginally better than the non-learningresult of 10.02 inches of error.In addition to the odometry data collected, thelong-term maps used during the learning experi-ments were recorded at each update. These wereused to produce an animation of the state of thelong-term map while it was adapting to the en-vironment in one of the learning trials with relo-cated objects. In Fig. 11a, the initial frame of
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Fig. 11. (a) Initial long-term map; (b) Long-term mapafter several minutesthis animation is shown. This map is accurate fora room with no di�erence from the original map,but is incorrect for the current, altered room ofthis run. In Fig. 11b, a frame from several min-utes into the run shows how the map quickly con-verged to the true room con�guration.Three observations can be made from these re-sults. First, the original, unmodi�ed continu-ous localization technique performed much bet-ter than anticipated when the true room deviatedfrom the a priori map used for localization. Thisrobustness seems to be a result of the way reg-istration is performed, which uses a match scorethat tends to ignore di�erences between the maps,and concentrates on similar regions. Note that inthese experiments, furniture was moved, but notall of the furniture nor the walls of the room. If thewalls of the room were moved, we would expect tosee a corresponding error in the localization.A second observation is that with learning, themap quickly adapts to the changes in the environ-

ment, and learns the correct room layout. In theanimations, it is possible to see rapid changes inthe evidence grid as the map adapts due to thenew sensor readings.The third observation, noticed from the anima-tions, is that after a long period of updating theodometry, some noise would start accumulatingin the long-term map because of errors in the con-tent and registration of the short-term map (theshort-term maps are only localized to an averageerror of about 5 inches as exhibited in section 3.1).This e�ect was noticed only after long periods ofupdating (30 to 60 minutes after the map hadadapted to reect the relocated objects new posi-tions). Despite the accumulated noise when learn-ing, for each room con�guration the robot's posewas kept to the same accuracy whether learningwas employed or not.6. Learning to Get Around: TrullaWhile experiments up to this point used simplenavigation schemes, we have extended our systemto use Trulla, a propagation-based path planner(Hughes et al., 1992). Trulla uses a navigabilitygrid to describe which areas in the environmentare navigable (considering oor properties, obsta-cles, etc). In order to integrate Trulla into oursystem, we note that Trulla's notion of a naviga-bility grid is similar to our long-term metric map,providing an opportunity to use our common evi-dence grid representation to support navigation.Trulla works as follows: beginning from the cellcontaining the goal, the neighboring cells are ex-plored outward, and each is assigned its own sub-
(a) native representation (b) paths using long term map (c) paths after adaptationFig. 12. Paths generated by Trulla



12 ??goal. Each newly tested cell is assigned the clos-est subgoal of its already-tested neighbors, if thatsubgoal is visible from the new cell. If none ofthe neighbors' subgoals are directly visible, thenthe new cell lies around the corner of an obstacle,and the neighbor with the closest subgoal is itselfassigned as the subgoal of the new cell. In thismanner, the shortest paths to the goal are prop-agated out to all cells. Since each cell can onlypoint to a closer subgoal, the paths that Trullaproduces do not su�er from local minima. Oncethe subgoals are determined, each cell is assignedthe direction to its subgoal, resulting in a �eld ofvectors that point in the direction of the shortestpath to the goal. See (Hughes et al., 1992) formore details on Trulla.We have replaced Trulla's navigability grid withour long-term map { cell occupancy probabilitiesare mapped to navigability values. As the long-term map adapts to changes in the environment,as described in Section 5, Trulla can update itspaths in real time to reect the robot's currentknowledge about the world.Fig. 12a shows an example of a native Trullanavigability grid and the vectors to get from anygrid cell to the goal, located in the upper, left-hand corner. Fig. 12b shows the the same areaas represented by the long-term map. Fig. 12cshows the vectors produced for the same goal aftera change has occurred to the environment and thelong-term map has been updated by continuouslocalization.Although the long-termmap can adapt to some-what rapid and persistent changes in the environ-ment, very fast changes, such as a person walkingthrough the room, will not appear in the long-term
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map. Paths generated by Trulla will avoid persis-tent obstacles but are not su�cient to prevent col-lisions with transient obstacles. In related work,Trulla has previously been combined with reac-tive navigation to avoid collisions with unmodeledobstacles (Murphy et al., 1996). In the work re-ported here, Trulla is combined with Vector FieldHistogram navigation to avoid transient obstaclesand to perform reactive navigation.7. Reactive Navigation: VFHVector Field Histogram (VFH) is a reactive navi-gation method that uses recent, local sensor per-ception to drive a robot towards a speci�ed goal(Borenstein and Koren, 1991). It was chosen overother methods because of its performance, and be-cause it uses a similar representation of the envi-ronment, making integration easier.VFH uses the Histogrammic In-Motion Map-ping (HIMM) method to construct an occupancygrid from sensor readings �ltered through a simplesensor model. The area of the HIMM grid imme-diately surrounding the robot is divided into arcs,and for each arc an object density is computed asthe weighted sum of the occupancy values of thegrid cells contained by the arc.Given a goal, VFH searches for the contigu-ous set of arcs with su�ciently low object den-sity which best matches the direction to the goal.Because the method models the robot as a pointobject, the free path cannot be blindly followed {the robot's body would collide with the edges andcorners of obstacles.To compensate for this assumption, the HIMMgrid is also used to compute a potential �eld. Theresulting repulsion vector is added to the vectorfrom the chosen set of arcs to provide a force awayfrom nearby obstacles while generally heading inthe chosen direction. The robot is steered in thedirection of this summed heading vector.In our integration, illustrated in Fig. 13, wereplace the HIMM occupancy grid with our unify-ing evidence grid representation, speci�cally, theshort-term perception map produced by continu-ous localization. The short-term perception mapallows VFH to consider all sensors, and yieldsa more consistent and less noisy picture of therobot's immediate environment.
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LocalizationFig. 14. Architecture of integrated system8. Integrated ArchitectureFig. 14 illustrates the complete architecture.When heading into an unknown environment, therobot autonomously maps the environment, pro-ducing the initial long-term map3. Continuous lo-calization runs in parallel, regularly correcting theodometry of the robot. While continuous localiza-tion maintains the robot's odometry, it regularlyproduces the short-term perception maps and up-dates the long-term map, both of which are sent toa separate Map Server process. The Map Serverallows the sensor-fused perceptions of the imme-diate environment to be shared among the vari-ous processes, reducing the sensor bottleneck andreplicated sensor data gathering and fusion code.The user (or possibly some other high-level pro-cess) speci�es a navigation goal to Trulla, whichconsults the Map Server for the current long-termmap and computes the vector �eld describing thebest path from each cell to the goal. Trulla sendsthe vector �eld to VFH, which uses the robot'scurrent position to index the vector �eld and getthe direction to the goal. VFH then retrieves theshort-term map from the Map Server, computesthe object density and potential �eld, and steersthe robot. VFH repeats this sequence until thegoal is reached.While VFH is steering the robot, continuouslocalization continues to correct odometry andproduce short-term and adapted long-term maps.When a new long-term map is available, Trulla

replans and sends the new vector �eld to VFH.When new vector �elds or a new short-term mapis available, VFH uses them to reactively navigatealong the current path to the goal.8.1. E�ectiveness of Integrated SystemTo demonstrate the capability of our integratedsystem to plan and navigate reliably in environ-ments with unexpected changes, we conductedfour experiments. All four experiments used anenvironment of two rooms separated by a commonwall that contained two passages through whichthe robot could move from one room to the other.The robot was required to navigate from one roomto the other starting with a long-term map learnedthrough exploration. One of the passages was thenchanged (blocked or unblocked), requiring contin-uous localization to adapt the map and Trulla toreplan accordingly, with VFH providing reactivenavigation.In the �rst two experiments, the system wasgiven the long-term map shown in Fig. 15a, withboth passages open. However, the left passage wasphysically blocked as shown in Fig. 15b. Thiswas the "unexpected blockage" con�guration. Inthe second two experiments, the robot was giventhe long-term map from Fig. 15b, which showedthe left passage blocked, but the environment wasactually con�gured as shown in Fig. 15a, withboth passages open. This was the "unexpectedopening" con�guration.Each room con�guration was repeated usinglearning rates of 0.1 and 0.5. Ten runs were per-formed for each experiment, with varying start
(a) both passages open (b) left passage blockedFig. 15. Initial room maps
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(a) unexpected blockage, rate 0.1
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(b) unexpected blockage, rate 0.5
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(c) unexpected opening, rate 0.1
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(d) unexpected opening, rate 0.5Fig. 16. E�ect of learning on long-term mapsand goal locations chosen near the left side of theenvironment to ensure the robot would have anopportunity to sense the changes.We expected that the higher learning rate wouldyield faster adaptation and replanning and moreblurring around the edges of the map, while thelower learning rate would take longer to adapt butcause less blurring of the map edges. The match ofthe left passage area of the adapted map with thea priori map for the actual con�guration (how wellit learned the change) was expected to be roughlythe same with either learning rate.For the unexpected blockage experiments, therobot, as expected, planned a path through theleft opening, which its map indicated was open.Approaching the blockage, VFH detected andtried to navigate around the blockage. Continuouslocalization accumulated evidence of the block-age and updated the long-term map. When thelong-term map su�ciently represented the block-

age, Trulla replanned its next path through theright passage, which VFH then followed to thegoal. The run ended when the robot reached thegoal. For the unexpected opening experiments,the robot planned a path through the right pas-sage according to its map, unaware of the short-cut. As the robot passed by the closer openingon its way to the planned passage, sensor read-ings showing that the left passage was in fact openwere obtained as chance permitted, and the long-term map updated. After one or more traversalspast the opening, the long-term map indicated theleft passage was open and Trulla planned a paththrough it as the shorter route.In both the unexpected blockage and unex-pected opening experiments, the runs continueduntil the robot actually traversed the unexpectedopening. In the two unexpected blockage experi-ments, the change is considered learned when theplanned paths change enough to cause the robot



?? 15to follow a path through the right passage, evenif the left passage is not completely blocked o� inthe long-term map. In the two unexpected open-ing experiments, the change is considered learnedwhen Trulla can �rst plan a path through theopening in the current direction of travel whichhas a signi�cant e�ect on the overall vector �eld,even if the robot's current position at that timecauses it to instead follow a path through the rightpassage.All runs were completed without any collisions.During one run of the unexpected opening experi-ment with learning rate 0.1, the robot's odometrywas corrupted (due to a communication networkerror) and the robot was unable to complete therun. All results for that experiment are based onthe nine successful runs.Fig. 16 shows the e�ectiveness of learning interms of the match between the learned mapsand the actual environment con�guration as rep-resented by the initial maps. Values shown arethe percentage of cells in agreement { occupied,empty, or unknown. The average time to learnthe change in the environment (as de�ned above)and the average error in the robot's pose (peri-odically measured during each run) are shown inTable 1.The lower set of lines in each graph of Fig. 16illustrates the percentage of matching cells in thelocal area around the left passage between theadapted map and the initial long-term map whichincluded the change. Initially there is a low matchscore because the robot started with a map thatdid not match the environment, but the match im-proves over time as the long-term map adapts tothe true state of the environment. Although thematch score would ideally rise to 100 percent, itdoes not because of blurring and incomplete learn-ing. The blockage is incompletely learned becausethe robot can only see the front until it replansthrough the alternate opening and passes to therear of the blockage. The upper set of lines ineach graph shows the match between the remain-der of the adapted map and the initial long-termmap. Before learning has had any e�ect the matchis perfect, but over time the edges blur from theinaccuracies in pose.As shown in Table 1, for a given learning rate,learning the blocked passage case was faster than

learning in the unexpected opening case becausethe robot could gather a lot of sensor data whileVFH was trying to navigate the blocked passageprior to the replanning. Learning that the passagewas open took longer because it was dependent ongetting occasional readings of the area while therobot followed its path through the other passage.As expected, the learning rate had a signi�cante�ect on the ability to quickly adapt to changes.A higher learning rate results in a faster abilityto learn the changes in the environment. In ad-dition, there are no signi�cant di�erences in thepose error as corrected by continuous localization.Table 1. E�ects of learning rate: summaryLearning Rate0.1 0.5Unexpected avg time: 123 sec 46 secBlockage avg pose error: 10.3 in 10.3 inUnexpected avg time: 493 sec 120 secOpening avg pose error: 7.8 in 6.4 inBy examining the di�erences across the 10 runsfor each of the four experiments, we can examinethe ability of the system to perform reliably andrepeatably. As can be seen within each graph inFig. 16, the di�erence among the runs was verysmall. The shape of the curves is almost identical,with the main di�erence being in the length oftime required to notice the di�erence.9. ConclusionWe have created a system which allows robot canenter a previously unknown indoor environment,map that environment while maintaining accurateposition information, and robustly plan and nav-igate within that environment. The system isdesigned to be adaptive to rapid changes in theenvironment. Using a uni�ed representation forlocalization, exploration, reactive navigation andplanning components enhanced the ability to in-tegrate these components, allowing for more e�-cient data reuse. The common representation notonly helped in integrating our own modules, butalso made it easy to integrate the modules of otherresearch groups.Experimental results were presented for the ef-fect of the learning rate on adaptation to changingenvironments, and also to show that the system
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