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Abstract. These notes are a rough write-up of lectures presented at the workshop on

“Geometry and Integrability”, held at the University of Melbourne, 6-15 Feb, 2008. My

interest in Geometric Representation Theory stems from recent developments in the Geo-

metric Langlands program. These lectures are an introduction into material which are a

prerequisite to anyone interested in studying the Geometric Langlands program. Most of the

results I will discuss can be found in the textbooks by Pressley and Segal [PS], Chriss and

Ginzburg [CG], and Hotta, Takeuchi and Tanisaki [HTT], or the lecture notes by Bernstein

[Ber] and Gaitsgory [Gai]. Here one can also find references to the original papers. My pre-

sentation of the material was very much inspired by, and to some extent based on, lectures

given by Ian Grojnowski at the “Introduction to the Geometric Langlands Program” [Gro].

The lectures were aimed at Mathematical Physicists with a similar background as myself.

While I have tried to be reasonably precise, I have occasionally compromised and chosen to

convey an idea, often by example, rather than spelling out all the mathematical details, in

particular those that require more advanced knowledge of algebraic geometry.

Needless to say that in three one-hour lectures one can only scratch the surface of the sub-

ject. My hope is that these lectures at least convey the beauty of Geometric Representation

Theory and that they may motivate the reader to further study.

1



2 P BOUWKNEGT

Lecture 1

1.1. Coxeter groups and Weyl groups.

Definition 1.1. A Coxeter system (W, S) is a group W generated by reflections s ∈ S, such

that

s2
i = 1 , (sisj)

mij = 1 , i 6= j , si ∈ S , (1.1)

for some integers mij = mji = 2, 3, 4, . . . ,∞.

Note that we can write the second relation as

sisjsi . . .︸ ︷︷ ︸
mij

= sjsisj . . .︸ ︷︷ ︸
mij

(1.2)

An expression w = si1si2 . . . sir is reduced if r is minimal. In that case we call `(w) = r the

length of w.

We will be interested in Coxeter groups associated to either Weyl groups associated to

finite dimensional Lie algebras g or or Weyl groups associated to affine Lie algebras ĝ (i.e.

untwisted affine Kac-Moody algebras), henceforth referred to as finite and affine Weyl groups,

Wfin and Waff, respectively. We recall that the integers mij are in that case related to the

entries of the Cartan matrix aij by mij = 2, 3, 4, 6,∞, for aijaji = 0, 1, 2, 3,≥ 4, respectively.

If {s1, . . . , s`}, ` = rank g, is a system of generators for Wfin, then a system of generators

of Waff is given by adding the reflection s0 in the additional simple root α0 = δ−θ∨, where θ

is the longest root of g and δ the imaginary root of ĝ. One can show that the element s0sθ,

where sθ denotes the reflection in the hyperplane orthogonal to θ, acts by translations over

θ∨, and this leads to the identification

Waff ∼= Wfin
n R∨ (1.3)

where R∨ is the coroot lattice of g. If we denote by eλ the element in Waff corresponding to

λ ∈ R∨, then the semi direct product structure in (1.3) is explicitly given by

(weλ)(w′eλ′

) = ww′ew′−1(λ)+λ′

, w, w′ ∈ Wfin, λ, λ′ ∈ R∨ , (1.4)

or, equivalently,

w eλ w−1 = ew(λ) , w ∈ Wfin, λ ∈ R∨ . (1.5)

It is sometimes useful to replace Waff by a slightly bigger group, referred to as the extended

affine Weyl group W̃aff, by replacing the lattice R∨ by a slightly finer lattice Y ⊃ R∨,

invariant under the action of Wfin. In our case we will take Y to be the cocharacter lattice

a reductive Lie group G with Lie algebra g (an even bigger group is obtained by taking the

coweight lattice of g). Note, though, that W̃aff is in general not a Coxeter group.
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Example. In the case of G = SL2, the Weyl group is generated by a single reflection s1, in

the hyperplane of the (unique) positive root α of sl2. The affine Weyl group is generated

by two reflections s0 and s1, with no further relations. The element s0s1 can be identified

with eα, the translation over the root α. The extended Weyl group allows translations over

integer multiples of the fundamental weight 1
2
α.

1.2. Hecke algebras. We now turn to Hecke algebras

Definition 1.2. The Hecke algebra associated to the Coxeter group (W, S) is the Z[q, q−1]-

algebra HW with generators Ts, s ∈ S, subject to the relations

(Ts + 1)(Ts − q) = 0 , s ∈ S ,

Tsi
Tsj

Tsi
. . .︸ ︷︷ ︸

mij

= Tsj
Tsi

Tsj
. . .︸ ︷︷ ︸

mij

, si, sj ∈ S . (1.6)

Note that the first relation is equivalent to

T 2
s = (q − 1)Ts + q , (1.7)

or

Ts
−1 = q−1Ts − (1 − q−1) . (1.8)

In practice it is difficult to check the second relation in (1.6). An equivalent definition of

the Hecke algebra HW, is provided by the following

Theorem 1.3. The Hecke algebra HW, associated to W, has a free Z[q, q−1]-basis {Tw, w ∈

W} such that

(Ts + 1)(Ts − q) = 0 , s ∈ S ,

TwTw′ = Tww′ , if `(w) + `(w′) = `(ww′) . (1.9)

We will denote the Hecke algebras associated to Wfin(G) and Waff(G) by Hfin(G), and

Haff(G), respectively. The extended affine Hecke algebra H̃aff(G), associated to W̃aff will be

introduced in Section 2.1

1.3. Convolution algebras. Let G be a group, acting on a set X. We denote by F(X) =

{f : X → C} the set of functions on X, and by

FG(X) = {f ∈ F(X) | f(g · x) = f(x)}

the set of G-invariant functions. We can think of FG(X) as F(X/G), i.e. functions on the

orbit space X/G. The space FG(X) is a vector space over C with a basis given by the

characters χO corresponding to the orbits O of G on X. I.e.

χO(x) =





1 x ∈ O ,

0 otherwise .
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If φ : X → Y is a G-map, i.e. g · φ(x) = φ(g · x) for all x ∈ X, g ∈ G, then we have maps

φ∗ : FG(Y ) → FG(X) , φ∗(f)(x) = f(φ(x)) ,

and, provided all the fibers φ−1(y), y ∈ Y are finite,

φ∗ : FG(X) → FG(Y ) , φ∗(f)(y) =
∑

x∈φ−1(y)

f(x) .

Now we apply all of this to the case where X itself is a group. If X = G is a finite group,

then F(G) is an algebra with unit under convolution, i.e.

f1 ? f2 = m∗(f1 ⊗ f2) ,

where m : G × G → G denotes group multiplication, and m∗ : F(G × G) ∼= F(G) ×F(G) →

F(G). Explicitly

(f1 ? f2)(x) =
∑

y∈G

f1(xy−1)f2(y) .

The unit, i.e. the orbit of x = 1 under the trivial action, is of course given by the function

1(x) =





1 x = 1 ,

0 otherwise .

Let K be a subgroup of G. Then the algebra structure on F(G) descends to an algebra

structure on FK×K(G), where

(k1, k2) · g = k1gk−1
2 .

We define H = H(G, K) = FK×K(G) as the Hecke algebra belonging to the pair (G, K).

Obviously, the dimension of H equals the number of double cosets K\G/K. Alternatively,

we can think of H as F(K\G/K), FK(G/K), or FG(G/K × G/K). From the geometric point

of view it appears that thinking of H as FK(G/K) is the most convenient, hence we will use

this point of view.

The convolution product on FK(G/K) is explicitly given by

(f1 ? f2)(xK) =
∑

y∈G/K

f1(xy−1)f2(y) =
1

|K|

∑

y∈G

f1(xy−1)f2(y) , (1.10)

where the last equality holds provided |K| < ∞. [All formulas make sense in the infinite

setting as well, with sum replaced by integrals, etc.]
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1.4. The finite Hecke algebra. Suppose we take G = G(Fq), a reductive group over the

field Fq, and K = B = B(Fq) a Borel subgroup. Then the claim is that H = FB×B(G) is the

(finite) Hecke algebra based on the group G.

Example. Consider

G = SL2(Fq) =

{(
a b

c d

)
, a, b, c, d ∈ Fq, ad − bc = 1

}
,

and take

K = B = B(Fq) =

{(
a b

0 a−1

)
, a, b ∈ Fq, a 6= 0

}
,

To determine G/B we observe that G acts transitively on the projective line P(F2
q) = P 1 =

{(z1, z2) ∈ Fq | (z1, z2) ∼ (az1, az2), a 6= 0}. Since the stabilizer subgroup of the line

[z1, z2] = [1, 0] is precisely B we immediately conclude G/B = P 1.

Explicitly, each orbit on G/B can be parametrized by

(
z1 ?

z2 ?

)
, and since the action of B

on G/B is given by (
z1 ?

z2 ?

)(
a ?

0 a−1

)
=

(
az1 ?

az2 ?

)

we have

G/B =

{(
z1 ?

z2 ?

) ∣∣∣(z1, z2) ∼ (az1, az2)

}
= P 1 .

Note that |G/B| = q + 1.

To determine the orbits of B on G/B we note
(

a b

0 a−1

)(
z1 ?

z2 ?

)
=

(
az1 + bz2 ?

a−1z2 ?

)
.

Hence there are two orbits of B on G/B. Namely, for z2 = 0 the orbit is given by the coset

B, while for z2 6= 0 the orbit covers all cosets xB, x /∈ B. Denote the characteristic functions

of these orbits by χ1 and χs, respectively. We have seen that they form a vector basis of the

Hecke algebra H(SL2(Fq), B(Fq)). Explicitly,

χ1(xB) =





1 x ∈ B ,

0 x /∈ B ,
χs(xB) =





1 x /∈ B ,

0 x ∈ B .

To determine the algebra structure we need to compute χ1 ? χ1, χ1 ? χs, and χs ? χs. Here

we give an explicit computation of χs ? χs. By a similar calculation it is easily seen that χ1
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is the identity element.

For x ∈ B

(χs ? χs)(x) =
1

|B|

∑

y∈G

χs(xy−1)χs(y)

=
1

|B|
#{y ∈ G | y /∈ B, xy−1 /∈ B}

=
1

|B|
#{y ∈ G | y /∈ B}

=
1

|B|
(|G| − |B|) = q ,

while for x /∈ B

(χs ? χs)(x) =
1

|B|

∑

y∈G

χs(xy−1)χs(y)

=
1

|B|
#{y ∈ G | y /∈ B, xy−1 /∈ B}

=
1

|B|
#{y ∈ G | y /∈ B, y /∈ xB}

=
1

|B|
(|G| − |B| − |B|) = q − 1 .

Hence,

χs ? χs = (q − 1)χs + qχ1 .

Thus we see that H(SL2(Fq), B(Fq)) is isomorphic to the finite Hecke algebra of SL2.

In general we have

Theorem 1.4.

Hfin(G) ∼= H(G(Fq), B(Fq)) .

To see this, we note that due to the Bruhat decomposition

G =
∐

w∈W

B ŵ B ,

where W is the Weyl group of G, there exists a basis {Tw, w ∈ W} of H, where Tw is the

character corresponding to the orbit BwB. We denote T1 = 1. An explicit computation then

yields the relations (1.9).

In other words, the orbits of B on G/B are labeled by elements of the Weyl group W =

N(T)/T, and we have a decomposition of G/B into ‘Schubert cells’ Xw

G/B =
∐

w∈W

Xw .
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One can show that Xw = (Fq)
`(w), hence

|G/B| =
∑

w∈W

q`(w) =

rank g∏

i=1

(
1 − qdi+1

1 − q

)
≡ w(q) ,

where the {di, i = 1, . . . , rank g} are the so-called exponents of g. E.g. for G = SLn we have

{di} = {1, 2, 3, . . . , n − 1}. Note that

lim
q→1

w(q) =

rank g∏

i=1

(di + 1) = 2|∆+| = dimR (G(C)/B(C)) .

Example. As we have seen, for G = SL2 we have two orbits of B on G/B. This corresponds

to the Bruhat decomposition

(
a b

c d

)
=







a b

0 d



 ∈ B , for c = 0 ,



1 ac−1

0 1







0 −1

1 0







c d

0 c−1



 ∈ B ŝB , for c 6= 0 .

where

ŝ =

(
0 −1

1 0

)
∈ N(T) ,

is a representative of the nontrivial element in W = N(T)/T = {1, s}.
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Lecture 2

2.1. The affine Hecke algebra. The affine Hecke algebra is defined as in (1.9), but now

where w ∈ Waff. Recall that Waff = Wfin n R∨, where R∨ is the co-root lattice of G.

Obtaining the affine Hecke algebra as a convolution algebra is completely analogous to

Theorem 1.4, using an ‘affinization’ of G. Concretely, we let F = Fq((z)) be the field of

Laurent series (with finite negative part), and O = Fq[[z]] be the subfield of Taylor series.

We consider the algebraic groups G(F) and G(O).

We have an evaluation homomorphism ev : G(O) → G(Fq), defined by ev(γ(z)) = γ(0)

(i.e. evaluation at z = 0). The Iwahori subgroup I ⊂ G(O) is defined by

I = ev−1(B) = {γ ∈ G(O) | γ(0) ∈ B} .

Using the affine analogue of the Bruhat decomposition

G(F) =
∐

w∈Waff

I ŵ I , (2.1)

one can show, in complete analogy with the finite dimensional case, that

Theorem 2.1 (Iwahori-Matsumoto).

Haff(G) ∼= H(G(F), I) .

2.2. The center of Haff. Recall that Waff ∼= Wfin n R∨. A similar statement holds for the

associated Hecke algebra

Theorem 2.2.

Haff ∼= Hfin ⊗ Z[R∨]

Note, in particular, that only the finite Weyl group part of Waff gets deformed.

The affine Hecke algebra has a vector space basis {Tweλ} indexed by elements of W n

R∨. Naively, given the statement of the theorem above, one might think that the elements

{Teλ λ ∈ R∨} span the commutative subalgebra Z[R∨], but in fact the elements Teλ neither

form a subalgebra, nor commute.

Example. Consider SL2. We have eα = s0s1, while e−α = s1s0. Consequently

Ts0s1
Ts1s0

= Ts0
(Ts1

Ts1
) Ts0

= Ts0
((q − 1)Ts1

+ q)Ts0

= (q − 1)Ts0s1s0
+ qTs0

Ts0
= (q − 1)Ts0s1s0

+ q(q − 1)Ts0
+ q2 ,

while similarly

Ts1s0
Ts0s1

= (q − 1)Ts1s0s1
+ q(q − 1)Ts1

+ q2 .

This shows both that TeαTe−α 6= Te−αTeα, and TeαTe−α 6∈ span{Teλ , λ ∈ R∨}.
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However, from the observation that

`(eλ) = 〈2ρ, λ〉 , λ ∈ R∨

+

where ρ = 1
2

∑
α>0 α is the Weyl vector, and R∨

+ = R∨/W the set dominant coroots, it

follows immediately that {Teλ , λ ∈ R∨
+} is a commutative subalgebra of Waff, i.e.

Corollary 2.3. For λ, λ′ ∈ R∨
+ we have

`(eλ) + `(eλ′

) = `(eλ+λ′

) ,

and thus

TeλTeλ′ = Teλ+λ′ = Teλ′Teλ

Now, for λ ∈ R∨ we choose λ1, λ2 ∈ R∨
+ such that λ = λ1 − λ2. Then we define

Θλ ≡ Teλ1Teλ2

−1q−(ρ,λ) . (2.2)

It can be shown that this definition does not depend on the choice of λ1, λ2. Also note

that Teλ1 and Teλ2 , and hence Teλ1 and Teλ2
−1 commute. This also immediately implies that

ΘλΘλ′ = Θλ′Θλ, for all λ, λ′ ∈ R∨.

The other crucial relation is

TsΘλ − Θs(λ)Ts = (q − 1)
Θλ − Θs(λ)

1 − Θ−α∨

, s ∈ S, λ ∈ R∨ . (2.3)

In fact, using (2.3), we can extend Haff to a slightly bigger algebra by allowing λ ∈ Y , where

Y is the cocharacter lattice of G. So, we define (cf. Theorem 2.2) H̃aff = Hfin ⊗ Z[Y ]. I.e.

H̃aff is the Hecke algebra associated to the extended affine Weyl group W̃aff.

Note that it immediately follows that, for s ∈ S, λ ∈ Y ,

Ts(Θλ + Θs(λ)) = (Θλ + Θs(λ))Ts . (2.4)

It follows

Corollary 2.4. For λ ∈ Y we have

cλ ≡
∑

w∈Wfin

Θw(λ) ∈ Z(H̃aff)

In fact, the center is generated by the elements cλ

Theorem 2.5.

Z(H̃aff) ∼= 〈cλ〉λ∈Y+
.
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2.3. Classical Satake correspondence. Define Hsph = H(G(K), G(O)).

Theorem 2.6 (Classical Satake correspondence). We have

Hsph ∼= Z[Y ]W = Z(H̃aff) .

G(F) ∼=
∐

λ∈Y

G(O) zλ G(O)

where we have denoted by zλ the image of z ∈ C
× in T under λ ∈ Y .

We will now show that Hsph is commutative. This is based on a technique known as

the Gelfan’d trick. The trick consists of constructing an anti-automorphism of G(F), which

descends to Hsph, and acts as the identity on Hsph. First we observe that we have an

involution ϑ of G, uniquely defined by the requirements

ϑB ∩ B = T , ϑ(t) = t−1 , t ∈ T .

For instance, for G = SLn, we take ϑ(x) = (x−1)T . We then use ϑ to define a map ϑ̃ :

G(F) → G(F) by

ϑ̃(x) = ϑ(x)−1 .

The map ϑ̃ has the following properties

(i) ϑ̃ is an anti-automorphism, i.e. ϑ̃(xy) = ϑ̃(y)ϑ̃(x)

(ii) ϑ̃ preserves G(O), i.e. ϑ̃(G(O)) ⊂ G(O)

(iii) ϑ̃(zλ) = zλ

Now, (ii) implies that ϑ̃ descends to an anti-automorphism ϑ̃∗ on Hsph, while (iii) implies

that ϑ̃∗(χλ) = χλ for all characters in Hsph, i.e. ϑ̃∗ = 1 on Hsph. But then

fg = ϑ̃∗(fg) = ϑ̃∗(g)ϑ̃∗(f) = gf

for all f, g ∈ Hsph, hence Hsph is commutative.
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Lecture 3

3.1. The Langlands dual group. Let G be a reductive algebraic group over C, B a Borel

subgroup, and T ⊂ B a maximal torus. We denote the corresponding Lie algebras by g, b

and t, respectively. We denote by

X = Hom(T, C×) = charG ,

Y = Hom(C×, T) = cocharG ,

the character and cocharacter lattices of G, respectively, and by

∆ = {α ∈ X\{0} | gα 6= 0} ,

the set of roots of G. For each root α we have a coroot α∨ ∈ Y defined as follows: The root

α defines an embedding (SL2)α → G, such that the maximal torus C× ⊂ (SL2)α maps to T,

hence it defines a map α∨ : C× → T. The set of coroots is defined as

∆∨ = {α∨ : C
× → (SL2)α → G |α ∈ ∆} ⊂ Y .

Let R and R∨ be the lattices generated by ∆ and ∆∨, respectively. The root datum of G is

defined to be the quadruple (X, Y, ∆, ∆∨). A classical theorem states that the group G can

be reconstructed from its root datum. If, in addition, we denote the lattices dual to R∨ and

R by P and P ∨, respectively (the so-called weight and coweight lattices), then we have the

following inclusions

R ⊂ X ⊂ P ,

R∨ ⊂ Y ⊂ P ∨ .

Moreover, we have, R = X, P ∨ = Y iff Z(G) = 0, and R∨ = Y , P = X iff π1(G) = 0.

The crucial observation is that (X, Y, ∆, ∆∨) is a root datum iff (Y, X, ∆∨, ∆) is a root

datum. This leads to

Definition 3.1. If G is a reductive group with root datum (X, Y, ∆, ∆∨), then the Lang-

lands dual group LG is defined to be the reductive group corresponding to the root datum

(Y, X, ∆∨, ∆).

Example. For G = SL2(C), the elements in Hom(T, C×) are given by
(

t 0

0 t−1

)
7→ tn , n ∈ Z (3.1)

hence X = Z, while the nonzero (positive) root α follows from the observation
(

Ad

(
t 0

0 t−1

))(
0 x

0 0

)
=

(
0 t2x

0 0

)
= t2

(
0 x

0 0

)
, (3.2)
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hence

α

((
t 0

0 t−1

))
= t2 . (3.3)

I.e. ∆ = {2} ∈ Z. Similarly, the elements in Hom(C×, T) are given by

t 7→

(
tn 0

0 t−n

)
, n ∈ Z , (3.4)

while the coroot α∨ : C× → T is clearly given by

α∨(t) =

(
t 0

0 t−1

)
, (3.5)

hence ∆∨ = {1} ∈ Z = Y . To summarize, the root datum for SL2(C) is given by

(X, Y, ∆, ∆∨) = (Z, Z, {2}, {1}).

On the other hand, for G = PSL2(C) = SL2(C)/Z2, i.e. matrices
{

A =

(
a b

c d

)
∈ SL2

∣∣∣ A ∼ −A

}

the elements in Hom(T, C×) are given by
(

t 0

0 t−1

)
7→ t2n , n ∈ Z , (3.6)

such that A and −A in T have the same image, while elements in Hom(C×, T) are given by

t 7→

(
tn/2 0

0 t−n/2

)
, n ∈ Z . (3.7)

Here we are allowed to take a square root since A ∼ −A in PSL2. The expressions for the

positive root and coroot are the same as before. Hence the root datum for PSL2(C) is given

by (X, Y, ∆, ∆∨) = (Z, Z, {1}, {2}). This shows that for G = SL2(C) we have LG = PSL2(C).

The following table lists a few more examples of Langlands dual groups

G LG

GLn GLn

SLn PSLn

Spin2n SO2n/Z2

SO2n+1 Sp2n

E8 E8
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3.2. Geometric Satake correspondence. If we denote by Rep G the abelian semigroup

of finite dimensional representations of G, and by K(Rep G) the corresponding Grothendieck

goup, the representation ring of G, then from the previous section it is clear that Z[Y ]W ∼=

K(Rep LG). Hence we can reinterpret the classical Satake correspondence as the statement

that

Hsph ∼= K(Rep LG) . (3.8)

This correspondence underlies many of the recent developments in the geometric Langlands

program, as it states that somehow the Langlands dual group LG acts on objects having to

do with G (e.g. the moduli space of G-bundles, etc).

The geometric Satake correspondence is a ‘categorification’ of (3.8), i.e. a refinement of the

statement at the level of objects and morphisms. It is clear how to categorify the right hand

side of (3.8), we simply replace it by the category of (finite dimensional) representations of
LG, i.e. RepLG. We note that RepLG is a so-called Tannakian category (i.e. an abelian tensor

category with additional structure).

The categorification of the left hand side is more subtle. One may ask what the geometric

significance is of the function χλ ∈ Hsph, λ ∈ X, which maps under (3.8) to chLλ
, the

character of the irreducible representation with highest weight λ. It turns out, as discovered

by Lusztig, that χλ = χKλ
, the characteristic function of the irreducible D-module (or,

equivalently, perverse sheaf) attached to the orbit Kλ = G(O)zλG(O). More generally, if we

define PG to be the abelian category of G(O)-equivariant D-modules (perverse sheaves) on

the loop Grassmannian GrG = G(F)/G(O), then the geometric Satake correspondence is the

statement

Theorem 3.2 (Geometric Satake correspondence). We have an equivalence of categories

PG
∼= RepLG .

The proof of this theorem is based on the fact that PG is a semi-simple Tannakian cat-

egory, which admits fibre functors. This implies that PG is equivalent to the category of

representations of a reductive group H. Finally one shows that H = LG. Note, in fact, that

this gives us an alternative, intrinsic, definition of the Langlands dual group, i.e. not using

character lattices and root/weight systems.

To prove, or even explain all ingredients in, Theorem 3.2 is beyond the scope of these

lectures. Instead we will just give a brief introduction into D-modules and their relevance to

representation theory (i.e. the Beilinson-Bernstein theorem).

3.3. D-modules. let X be an algebraic variety (or, in the analytic context, a manifold) and

let DX be the sheaf of rings of differential operators on X. DX is an associative algebra



14 P BOUWKNEGT

generated by (algebraic) functions OX and vector fields ΘX , subject to the (local) relations

ξf − fξ = Lξf , f ∈ OX , ξ ∈ ΘX ,

ξ1ξ2 − ξ2ξ1 = [ξ1, ξ2] , ξ1, ξ2 ∈ ΘX , (3.9)

where Lξ denotes the Lie derivative and [ , ] the Lie bracket of vector fields. We can think

of DX as the universal enveloping algebra of ΘX .

As an example, for the affine line A1, we have DA1 = C〈x, ∂x〉/(x∂x − ∂xx = 1), i.e. the

Weyl algebra.

Definition 3.3. A D-module is a sheaf of modules over the sheaf of rings DX .

Note that there exists an equivalence between (finite rank) algebraic vector bundles over

X and (locally free) OX -modules. In that sense a D-module is just a generalization of a

vector bundle.

3.4. Beilinson-Bernstein localization. Suppose we are given a variety X with an action

of G. By considering the infinitesimal action of G on U ⊂ X we obtain a map g → ΘX .

Consequently, we have a map

Γ : U(g) → Γ(X,DX) ,

where Γ(X,DX) denotes the sheaf of sections of DX . Thus, by pull-back

Γ∗ : Mod(DX) → Mod(U(g)) .

Beilinson-Bernstein localization is the existence of a map in the opposite direction

∆ : Mod(U(g)) → Mod(DX) .

defined by

∆M = DX ⊗U(g) M .

[Cf. the associated vector bundle construction, i.e. for a principal G-bundle P , and a G-

module V , one can construct the associated vector bundle P ×G V .]

Interesting results are obtained by taking suitable spaces X, e.g. by taking X = G/B. In this

case we find a 1–1 correspondence (or, more precisely, an equivalence of categories) between

certain U(g)-modules and D-modules. In order to get a general class of U(g)-modules we need

to slightly generalize the construction above, i.e. we need to twist the differential operators

by a G-equivariant line bundle.

An algebraic vector bundle E → X is an equivariant vector bundle if we are given an

action of the algebraic group G on the algebraic variety E, satisfying g(Ex) = Egx for x ∈ X,

g ∈ G, and the map g : Ex → Egx is a linear isomorphism. Recall that G-equivariant vector

bundles E over X = G/B are in 1–1 correspondence with (finite dimensional) modules V

of B. It is clear that the fiber EB at B ∈ G/B is a B-module. [Recall that the set X of
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Borel subgroups of G is in bijection with G/B, namely, G acts on X by conjugation and the

stabilizer of an element B ∈ X in G is B itself.] Conversely, for any B-module V we can

construct a G-invariant vector bundle E on X such that EB = V through the associated

vector bundle construction E = G ×B V , i.e. by quotienting G × V by the action of B given

by b · (g, v) = (gb−1, b · v). Clearly, E carries an action of G by g′ · (g, v) = (g′g, v).

In particular, G-equivariant line bundles are in 1–1 correspondence to 1-dimensional B-

modules. Since the action of the unipotent radical N = Ru(B) of B is necessarily trivial,

1-dimensional B-modules correspond to characters λ ∈ X = Hom(T, C×) of T = B/N.

Denote the line-bundle over G/B, corresponding to λ ∈ X, by L(λ), and let Mod(Dλ
G/B

) ≡

Mod(DL(λ)) denote the category of twisted D-modules.

On the other hand we let Mod(U(g))χ denote the abelian category of U(g)-modules with

central character χ, i.e. U(g)-modules modules M such that

z · m = χ(z)m , ∀z ∈ Z(U(g)), m ∈ M . (3.10)

Because of the Harish-Chandra homomorphism Z(U(g)) → U(h), central characters are in

1–1 correspondence with λ ∈ h∗. We denote by χλ the character corresponding to λ ∈ h∗.

Without elaborating on exactly what kind of sheaves or U(g)-modules we allow, the main

theorem in this context is, loosely speaking,

Theorem 3.4 (Beilinson-Bernstein). The map ∆ provides an equivalence of categories

Mod(U(g))χλ
∼= Mod(Dλ

G/B
) .

We illustrate the above in an example.

Example. SL2(C):

As we have seen before, for G = SL2(C), we can identify G/B = CP 1. Explicitly

G/B =
{(z1 ?

z2 ?

)
| (z1, z2) ∼ (az1, az2), a ∈ C

×

}
.

We can cover G/B by two open sets U1 and U2, with local coordinates z and x, respectively,

i.e.

U1 = {[z1, z2] ∈ CP 1 | z2 6= 0} , z =
z1

z2
,

U2 = {[z1, z2] ∈ CP 1 | z1 6= 0} , z =
z2

z1

such that on the overlap U1 ∩ U2, we have

z =
1

x
.
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The generating vectorfield on U1 and U2 are obviously given by d/d and d/dx, respectively.

I.e. we have

DG/B(U1) = 〈z,
d

dz
〉/(z

d

dz
−

d

dz
z = −1) ,

and similarly for U2, such that on the overlap U1 ∩ U2

d

dz
= −x2 d

dx
.

The action of G on G/B follows from
(

a b

c d

)(
z1 ?

z2 ?

)
=

(
az1 + bz2 ?

cz1 + dz2 ?

)
. (3.11)

I.e. on U1 we have (
a b

c d

)
· z =

az + b

cz + d
, (3.12)

while on U2 (
a b

c d

)
· x =

cx + d

ax + b
. (3.13)

The infinitesimal action on functions on G/B is given by

x · f(z) =
d

dt
f(exp(−tx) · z)

∣∣∣
t=0

, for x ∈ g , (3.14)

such that, for the generators of g

e =

(
0 1

0 0

)
, h =

(
1 0

0 −1

)
, f =

(
0 0

1 0

)
, (3.15)

the map Γ : U(g) → DG/B(Ui), on U1 and U2, respectively, is given by

e 7→ −
d

dz
x2 d

dx
,

h 7→ −2z
d

dz
2x

d

dx
, (3.16)

f 7→ z2 d

dz
−

d

dx
.

To twist this construction by an equivariant line bundle, recall that equivariant line bun-

dles L(n) over G/B = CP 1 are parametrized by n ∈ Z = Hom(T, C×). Explicitly, the

representation ρn : B → C× is given by

ρn

((
a b

0 a−1

))
= an .

Accordingly, in order to construct L(n), we glue U1 × C and U2 × C, by identifying

(z, u) ∼ (x, v) , x =
1

z
, v = znu , on (U1 ∪ U2) × C ,



INTRODUCTION TO GEOMETRIC REPRESENTATION THEORY 17

while the action of G on U1 × C ⊂ L(n) is given by
(

a b

c d

)
· (z, u) = (

az + b

cz + d
, (cz + d)nu) , (3.17)

and similarly on U2 ×C. This results in the following map Γ : U(g) → DG/B(Ui), for U1 and

U2, respectively, defined on generators by

e 7→ −
d

dz
x2 d

dx
+ nx ,

h 7→ −2z
d

dz
− n 2x

d

dx
+ n , (3.18)

f 7→ z2 d

dz
+ nz −

d

dx
.
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