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Abstract: We approximate the error density of a nonparametric regression model by a mixture

of Gaussian densities with means being the individual error realizations and variance a con-

stant parameter. We investigate the construction of a likelihood and posterior for bandwidth

parameters under this Gaussian-component mixture density of errors in a nonparametric

regression. A Markov chain Monte Carlo algorithm is presented to sample bandwidths for

the kernel estimators of the regression function and error density. A simulation study shows

that the proposed Gaussian-component mixture density of errors is clearly favored against

wrong assumptions of the error density. We apply our sampling algorithm to a nonparametric

regression model of the All Ordinaries daily return on the overnight FTSE and S&P 500 returns,

where the error density is approximated by the proposed mixture density. With the estimated

bandwidths, we estimate the density of the one-step-ahead point forecast of the All Ordinaries

return, and therefore, a distribution-free value-at-risk is obtained. The proposed Gaussian-

component mixture density of regression errors is also validated through the nonparametric

regression involved in the state-price density estimation proposed by Aït-Sahalia and Lo

(1998).

Key words: Bayes factors, Gaussian-component mixture density, Markov chain Monte Carlo,

state-price density, value-at-risk.

JEL Classification: C11, C14, C15, G15

1Department of Econometrics and Business Statistics, Monash University, Wellington Road, Clayton, VIC
3800, Australia. Telephone: +61-3-99052449. Fax: +61-3-99020215. Email: max.king@monash.edu.

1



1 Introduction

Nonparametric regression has been widely used for exploring the relationship between a

response variable and a set of explanatory variables without specifying a parametric form of

such a relationship. A simple and commonly used estimator of the regression function is the

Nadaraya-Watson (NW) estimator, whose performance is mainly determined by the choice

of bandwidths. There exists a large body of literature on bandwidth selection for the NW

estimator, such as the rule-of-thumb and cross-validation (CV) discussed by Härdle (1990), the

plug-in method discussed by Herrmann, Engel, Wand, and Gasser (1995) and bootstrapping

proposed by Hall, Lahiri, and Polzehl (1995). Even though the NW estimator does not require

an assumption on the analytical form of the error density, one may have interest in the

distribution of the response around the estimated mean. Such a distribution is characterized

by the error density, estimation of which is a fundamental issue in statistical inference for

any regression model. This importance was extensively discussed by Efromovich (2005),

who developed a nonparametric approach to error-density estimation in a nonparametric

regression model using residuals as proxies of errors.

A simple approach to the estimation of the error density is the kernel density estimator

of residuals, whose performance is mainly determined by the choice of bandwidth. This

density estimator depends on residuals fitted through the NW estimator of the regression

function. Moreover, the resulting density estimator of the residuals provides no information

for the purpose of choosing bandwidths in the NW regression estimator, although bandwidth

selection in this situation depends on the error distribution (see for example, Zhang, Brooks,

and King, 2009). Therefore, there is a lack of a data-driven procedure for choosing bandwidths

for the two estimators simultaneously. This motivates the investigation of the paper.

Let y denote the response and x= (x1, x2, . . . , xd )′ a set of explanatory variables or regres-

sors. Given observations (yi ,xi ), for i = 1,2, . . . ,n, the multivariate nonparametric regression

model is expressed as

yi = m(xi )+εi , (1)

2
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where εi , for i = 1,2, . . . ,n, are assumed to be independent and identically distributed (iid)

with an unknown density denoted as f (ε). It is also assumed that the errors are independent

of the regressors. Let the NW estimator of the regression function be m̂(x;h) with h a vector

of bandwidths. In this paper, we assume that the unknown f (ε) is approximated by a mixture

density given by

f (ε;b) = 1

n

n∑
i=1

1

b
φ

(ε−εi

b

)
, (2)

where φ(·) is the probability density function (PDF) of the standard Gaussian distribution,

and the component Gaussian densities have means at εi , for i = 1,2, . . . ,n, and a common

variance b2.

From the viewpoint of kernel smoothing, this error density is of the form of a kernel density

estimator of the errors (rather than residuals) with φ(·) the kernel function and b the band-

width. In the situation of density estimation based on direct observations, Silverman (1978)

proved the strong uniform consistency of the kernel density estimator under the conditions

that b → 0, (nb)−1 lnn → 0 as n → 0 and that f (ε) is uniformly continuous. Consequently, it is

reasonable to expect that f (ε;b) approaches f (ε) as the sample size increases, even if f (ε) is of

an unknown form. Throughout this paper, we call (2) either the Gaussian-component mixture

(or mixture Gaussian) error density or the kernel-form error density, where b is referred to as

either the standard deviation or bandwidth.

In this paper, we propose a re-parameterization to h and b and treat the re-parameterized

bandwidths as parameters. The main contribution of this paper is to construct an approximate

likelihood and therefore, the posterior of re-parameterized bandwidths for the nonparametric

regression model with its unknown error density approximated by the Gaussian-component

mixture density given by (2). We aim to present a Bayesian sampling algorithm to estimate the

re-parameterized bandwidths in the NW estimator and the mixture Gaussian error density

in a nonparametric regression model. When the errors are assumed to follow a Gaussian

distribution, Zhang et al. (2009) derived the posterior of h for given y = (y1, y2, . . . , yn)′, where

the likelihood of y for given h is the product of the Gaussian densities of yi with its mean

value approximated by the leave-one-out NW estimator denoted as m̂i (xi ;h), for i = 1,2, . . . ,n.
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The innovation of our proposed investigation is to use the kernel-form error density given by

(2) to replace the Gaussian error density discussed by Zhang et al. (2009).

The proposed investigation is motivated by the important roles that the bandwidths

play in the NW estimator and the kernel-form error density. Härdle (1990) highlighted the

importance of bandwidth in controlling the smoothness of the NW estimator. The bandwidth

in the kernel density estimator of residuals plays the same role as the bandwidth in kernel

density estimation based on directly observed data, where the latter issue has been extensively

investigated in the literature (see for example, Wand and Jones, 1995). In our proposed

approach, once the kernel function of the NW estimator is chosen, the performances of the

NW estimator and the kernel-form error density are determined by the choices of the two

types of bandwidths.

The investigation of error density estimation is also motivated by its practical applications,

such as inference, prediction and model validation (see for example, Efromovich, 2005; Muhsal

and Neumeyer, 2010). In financial economics, an important use of the estimated error density

in modeling an asset return is to estimate the value-at-risk (VaR) for holding the asset. In such

a model, any wrong specification of the error density may produce an inaccurate estimate

of VaR and make the asset holder unable to control risk. Therefore, being able to estimate

the error density is as important as being able to estimate the mean in any regression model.

There is some existing research on estimation of the error density in nonparametric regression.

Efromovich (2005) presented the so-called Efromovich-Pinsker estimator of the error density

and showed that this estimator is asymptotically as accurate as an oracle that knows the

underlying errors. Cheng (2004) showed that the kernel density estimator of residuals is

uniformly, weakly and strongly consistent. When the regression function is estimated by

the NW estimator and the error density is estimated by the kernel estimator of residuals,

Samb (2010) proved the asymptotic normality of the bandwidths in both estimators and

derived the optimal convergence rates of the two types of bandwidths. Linton and Xiao

(2007) proposed a kernel estimator based on the local polynomial fitting for a nonparametric

regression model with an unknown error density. They showed that their estimator is adaptive
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and concluded that adaptive estimation is possible in local polynomial fitting, which includes

the NW estimator as a special case.

In all these investigations, residuals were commonly used as proxies of errors, and the

bandwidth for the kernel density estimator of residuals was pre-chosen. To our knowledge,

there is no method that can simultaneously estimate the bandwidths for the NW estimator of

the regression function and the kernel-form error density. This is the aim of this paper.

The assumption of the kernel-form error density was investigated by Yuan and de Gooijer

(2007) for nonlinear regression models. The parameters were estimated by maximizing the

likelihood with respect to parameters, where the likelihood was constructed through the

kernel-form error density based on a bandwidth pre-chosen by the rule-of-thumb. They

proved that under some regularity conditions, the maximum likelihood estimate of the vector

of parameters is consistent, asymptotically normal and efficient. Nonetheless, their numerical

maximization procedure depends on a pre-chosen bandwidth, which in turn depends on a

pilot estimate of the parameter vector.

Under the Gaussian-component mixture density of the errors, we also propose to approxi-

mate the unknown mean function of yi by m̂i (xi ;h). The density of yi is approximated by the

mixture density given by (2) with plugged-in error realizations. Therefore, the likelihood of y

for givenh and b, as well as the posterior ofh and b for given y can be approximately derived.

In comparison to the Gaussian assumption of the error density discussed in Zhang et al.

(2009), our assumption of the mixture Gaussian density of the errors in the same model is

robust in terms of different specifications of the error density. In order to understand the

benefit and loss that result from this robust assumption against other parametric assumptions,

we conduct simulation studies by drawing samples from a nonparametric regression model,

where the error densities are Gaussian, Student t and a mixture of two Gaussians, respectively.

We also investigate the nonparametric regression of the All Ordinaries daily return on the

overnight FTSE and S&P 500 returns with the error density assumed to be Gaussian, Student

t and mixture Gaussian, respectively. We compute the VaR under each estimated density,

and find that the two parametric assumptions tend to underestimate the VaR in comparison
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to the kernel-form error density. Our second application is motivated by the work of Zhang

et al. (2009), where a security’s state-price density (SPD) is estimated in a nonparametric

regression model with Gaussian errors. In this paper, we assume that the unknown error

density is approximated by the mixture Gaussian density given by (2).

The rest of this paper is organized as follows. In Section 2, we derive the posterior of

the bandwidth parameters in the NW estimator and kernel-form error density. Section 3

presents simulations to evaluate the performance of Bayesian estimation of bandwidths

under the Gaussian, Student t and mixture Gaussian error densities. In Section 4, we present

an empirical investigation of the nonparametric relationship between stock index returns

across three stock markets. Section 5 applies the proposed sampling procedure to estimate

bandwidths in a nonparametric regression model involved in the SPD estimation. Section 6

concludes the paper.

2 Bayesian estimation of bandwidths

The bandwidths in the NW estimator of the regression function and the kernel-form error

density estimator play an important role in controlling the smoothness of the regression

function and the error density estimator. Because of that, bandwidths are also called smooth-

ing parameters in the literature. In this paper, we treat these bandwidths as parameters.

In the context of kernel density estimation based on direct observations, there exist some

investigations involving similar treatment (see for example, Brewer, 2000; Gangopadhyay and

Cheung, 2002; de Lima and Atuncar, 2011). In nonparametric and semiparametric regression

models, bandwidths are also treated as parameters (Härdle, Hall, and Ichimura, 1993; Rothe,

2009, among others).

One may feel reluctant to treat bandwidths as parameters when the asymptotic properties

of the NW estimator and the kernel estimator of the error density are under investigation,

because both types of bandwidths approach zero as the sample size tends to infinity. Under

the asymptotic mean integrated squared error (AMISE), Samb (2010) derived the optimal

convergence rates for h and b in a nonparametric regression. Let ∆h and ∆b denote the

6
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optimal rates for h and b, respectively. Let h= (h1,h2, . . . ,hd )′ denote a vector of bandwidths

used by the NW estimator. We re-parametrize b and the elements of h as

b = τ0n−∆b , (3)

hk = τk n−∆h , for k = 1,2, . . . ,d , (4)

where τi , for i = 0,1, . . . ,d , can certainly be treated as constant parameters. Nonetheless, we

do not have to use such a re-parameterization in finite samples, where n−∆h and n−∆b are

known constants. Let τ 2 denote
(
τ2

0,τ2
1, . . . ,τ2

d

)
throughout this paper, and strictly speaking,

this is the vector of parameters in our proposed Bayesian sampling procedure.

Given observations denoted as (yi ,xi ), for i = 1,2, . . . ,n, we aim to construct the likelihood,

as well as the posterior of the parameters. In Section 2.1, we briefly describe the construction

of the likelihood and posterior under the assumption of the Gaussian errors. We then derive

the likelihood and posterior of bandwidths under the assumption of mixture Gaussian error

density in Section 2.2.

2.1 Gaussian error distribution

Zhang et al. (2009) considered the nonparametric regression model given by (1), where εi , for

i = 1,2, . . . ,n, are iid and follow N (0,σ2) with σ2 an unknown parameter. The model implies

that
yi −m(xi )

σ
∼ N (0,1).

As the analytical form of m(xi ) is unknown, it is estimated by the leave-one-out NW estimator,

m̂i (xi ;h) =
(n −1)−1 ∑n

j=1; j 6=i Kh(xi −x j )y j

(n −1)−1 ∑n
j=1; j 6=i Kh(xi −x j )

, (5)

where Kh(z) = K (z./h)./hwith K (·) being a kernel function and “./” division by elements. Let

h2 = (
h2

1,h2
2, . . . ,h2

d

)′
. Treating σ2 and the elements of h2 as parameters, one can derive the

likelihood of y = (y1, y2, . . . , yn)′ as

Lg
(
y

∣∣h2,σ2 )= (
2πσ2)−n/2

exp

(
− 1

2σ2

n∑
i=1

[
yi −m̂i (xi ,h)

]2

)
. (6)
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Zhang et al. (2009) derived the posterior of h2 and σ2, which is proportional to the product of

(6) and pre-chosen priors of h2 and σ2. A posterior simulation algorithm was also presented

for estimating h2 and σ2.

A limitation of this approach is that the distribution of the iid errors has to be specified.

Any wrong assumption of the error density may lead to an inaccurate estimate of the vector of

bandwidths. In what follows, we will investigate a robust specification of the error density.

2.2 Gaussian-component mixture error density

The aim of this paper is to investigate the construction of the likelihood and posterior in (1)

with its unknown error density approximated by the Gaussian-component mixture density

given by (2). If m(x) is known, this mixture density is a well-defined density function of the

errors. Therefore, we can derive the density of the response variable as

yi ∼ f
([

yi −m(xi )
]

;b
)= 1

n

n∑
j=1

1

b
φ

([
yi −m(xi )

]− [
y j −m(x j )

]
b

)
, (7)

for i = 1,2, . . . ,n. Yuan and de Gooijer (2007) and Zhang and King (2010) demonstrated the

validity of this mixture density as a density of the regression errors in a class of nonlinear regres-

sion models and a family of univariate GARCH models, respectively. Zhang and King (2010)

proposed using Bayesian sampling techniques to estimate bandwidths in their semiparamet-

ric GARCH model with its unknown error density approximated by a mixture Gaussian density,

which is the same as (2). Consequently, the likelihood for their semiparametric GARCH model

is well defined, and subsequent posterior simulation is meaningful.

The regression function in (1) is unknown, but can be estimated by the NW estimator for

the purpose of constructing the likelihood. As a result, the realized errors or residuals are used

as proxies of errors. We propose to plug-in the leave-one-out NW estimator of m(x) into (7).

Therefore, the density of yi is approximated by f (yi −m̂i (xi ;h);b), which is expressed as

f̂
([

yi −m̂i (xi ;h)
]

;b
)= 1

n

n∑
j=1

1

b
φ

([
yi −m̂i (xi ;h)

]− [
y j −m̂ j (x j ;h)

]
b

)
. (8)

In fact, the use of m̂i (xi ;h) as an approximation to the mean of yi was proposed by Zhang et al.

(2009) in the nonparametric regression model with Gaussian errors. They constructed the
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likelihood through the Gaussian density of yi with its mean value approximated by m̂i (xi ;h),

for i = 1,2, . . . ,n.

2.2.1 Likelihood

The likelihood of y is essentially the product of the density of yi given by (8), for i = 1,2, . . . ,n.

However, it is impossible to estimate b by maximizing such a likelihood, because it con-

tains at least one unwanted term φ(0)/b. The likelihood approaches infinity as b tends to

zero. An exclusion of the i th term only from the summation is not enough because when

y j − yi = m̂ j (x j ;h)− m̂i (xi ;h), for j 6= i , the j th term in the summation becomes φ(0)/b.

Nonetheless, a remedy to this problem is to exclude the j th term that makes
[

y j −m̂ j (x j ;h)
]=[

yi −m̂i (xi ;h)
]
, from the summation given by (8). Let

Ji =
{

j : y j −m̂ j (x j ;h) 6= yi −m̂i (xi ;h), for j = 1,2, . . . ,n
}

, (9)

for i = 1,2, . . . ,n, and let ni denote the number of terms excluded from the summation in (8).

The density of yi is therefore, approximated as

f̃
([

yi −m̂i (xi ;h)
]

;b
)= 1

n −ni

n∑
j∈Ji

1

b
φ

([
yi −m̂i (xi ;h)

]− [
y j −m̂ j (x j ;h)

]
b

)
, (10)

where yi −m̂i (xi ;h) is the i th residual denoted as ε̂i , for i = 1,2, . . . ,n.

There are a few issues that should be addressed. First, although f̃ (ε̂i ;b) has the form of the

kernel density estimator of residuals excluding those with the same value as ε̂i , its functional

form does not depend on the excluded residuals because f̃ (ε̂i ;b) can be rewritten as

f̃ (ε̂i ;b) = 1

(n −ni )b

[
n∑

j=1
φ

(
ε̂i − ε̂ j

b

)
−niφ(0)

]
,

whose functional form does not depend on ε̂i , for i = 1,2, . . . ,n.

Second, from the view of kernel density estimation, the approximate density of yi given

by (10) is the kernel density estimator based on a reduced set of residuals excluding the

observations whose residuals are the same as ε̂i . This implies that residuals are used as the

proxies of the errors (see also Efromovich, 2005). Expressing it mathematically, the mixture
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Gaussian density of the errors, f (εi ;b), is approximated as

f (εi ;b) ≈ f̃ (ε̂i ;b) = 1

n −ni

n∑
j∈Ji

1

b
K

(
ε̂i − ε̂ j

b

)
,

for i = 1,2, . . . ,n.

Finally, using residuals as the proxies of the errors, we approximate the density of yi by

f̃
(
yi −m̂i (xi );b

)
, for i = 1,2, . . . ,n, from which we are able to derive an approximation of the

likelihood.

Given h2 and b2, the likelihood of y = (y1, y2, . . . , yn)′ is approximately

L
(
y|h2,b2)= n∏

i=1

{
1

n −ni

n∑
j∈Ji

1

b
φ

([
yi −m̂i (xi ;h)

]− [
y j −m̂ j (x j ;h)

]
b

)}
,

where b and h can be re-parameterized according to (3) and (4) whenever it is necessary. In

such a situation, this likelihood function is denoted as L
(
y|τ 2

)
.

2.2.2 Priors

We now discuss the issue of prior choices for the re-parameterized bandwidths. Let π
(
τ2

k

)
denote the prior of τ2

k , for k = 0,1, . . . ,d . As τ2
0n−2∆b and τ2

k n−2∆h , for k = 1,2, . . . ,d , which are

respectively, the squared bandwidths for the kernel-form error density and the NW estimator,

play the same role as a variance parameter, we assume that the priors of τ2
0n−2∆b and τ2

k n−2∆h

are the inverse Gamma density denoted as IG(αb ,βb) and IG(αh ,βh), respectively. Therefore,

the prior of τ2
0 is

π
(
τ2

0

)= (
βb

)αb

Γ(αb)

(
1

τ2
0n−2∆b

)αb+1

exp

{
− βb

τ2
0n−2∆b

}
n−2∆b , (11)

where n−∆b is the optimal rate of b under the AMISE, and αb and βb are hyperparameters.

The prior of τ2
k is

π
(
τ2

k

)= (
βh

)αh

Γ(αh)

(
1

τ2
k n−2∆h

)αh+1

exp

{
− βh

τ2
k n−2∆h

}
n−2∆h , (12)

for k = 1,2, . . . ,d , where n−∆h is the optimal rate of hk under the AMISE, and αh and βh are

hyperparameters.
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2.2.3 Posterior

According to Bayes theorem, the posterior of τ 2 is approximately expressed as (up to a

normalizing constant)

π
(
τ 2|y)∝ L

(
y|τ 2) d∏

k=0
π

(
τ2

k

)
, (13)

from which we use the random-walk Metropolis algorithm to sample the elements of τ 2. The

sampling procedure is as follows.

Step 1: Initialize τ 2 with the initial value denoted as τ 2
(0).

Step 2: Update τ 2 using the random-walk Metropolis algorithm with updated values denoted

as τ 2
(1).

Step 3: Repeat Step 2 until the chain
{
τ 2

(i ) : i = 1,2, . . .
}

achieves a reasonable mixing perfor-

mance.

When the sampling procedure is completed, the ergodic average of the sampled chain

of τ is used as the estimate of τ , where τ denotes (τ0,τ1, . . . ,τd )′. Therefore, the estimates of

the element of b and h can be computed through (3) and (4), and the analytical form of the

kernel-form error density can be derived based on the estimated b and h.

3 Monte Carlo simulation

The purposes of this simulation study are as follows. First, with one simulated sample, we

illustrate the use and effectiveness of our Bayesian sampling algorithm for estimating the

bandwidths in the NW regression estimator and the kernel estimator of the error density

based on residuals. As our sampling method is built up under an unknown error density, this

method is also compared with its parametric counterparts under the assumptions of Student

t and Gaussian error densities, where Bayes factors derived from marginal likelihood are used

to determine which assumption is favored against the others.

Second, we will generate 1,000 samples from a nonparametric regression model with

its error densities assumed to be respectively, the Gaussian, Student t and a mixture of
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two Gaussian densities. We estimate the bandwidths in the NW estimator of the regression

function using the normal reference rule (NRR) discussed in Scott (1992), likelihood CV,

bootstrapping and Bayesian sampling technique under each of the above three error-density

assumptions. Their estimation accuracies are assessed by average squared errors (ASE) in

Section 3.3. Furthermore, Bayesian methods also allow us to estimate either the bandwidth

in the kernel density estimator of residuals under the mixture Gaussian error density, or the

parameters σ and ν in the parametric error-density assumptions.

Finally, three Bayesian sampling approaches are compared through 1,000 samples in

Section 3.4, where Bayes factors are used for comparison purposes. We briefly describe Bayes

factors as follows.

3.1 Bayes factors

In Bayesian inference, model selection is often conducted through the Bayes factor of the

model of interest against a competing model, which reflects a summary of evidence provided

by the data supporting the model as opposed to its competing model. The Bayes factor is

defined as the ratio of the marginal likelihoods derived under the model of interest and its

competing model, respectively.

The marginal likelihood is the expectation of the likelihood with respect to the prior of

parameters. It is seldom calculated as the integral of the product of the likelihood and prior of

parameters, but instead, is often computed numerically (Gelfand and Dey, 1994; Newton and

Raftery, 1994; Chib, 1995; Kass and Raftery, 1995; Geweke, 1999, among others). In this paper,

we employed the method proposed by Chib (1995) to compute the marginal likelihood.

Let θ denote the parameter vector and y the data. Chib (1995) showed that the marginal

likelihood under a model A is expressed as

PA (y) = `A (y|θ)πA (θ)

πA (θ|y)
, (14)

where `A (y|θ), πA (θ) and πA (θ|y) denote respectively, the likelihood, prior and posterior

under model A . PA (y) is usually computed at the posterior estimate of θ. The numerator

has a closed form and can be computed analytically. The denominator is the posterior of
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θ, which is often replaced by its kernel density estimator based on the simulated chain of θ

through a posterior sampler.

The Bayes factor of model A against model B is defined as

BF = PA (y)

PB(y)
,

which is used to make a decision on whether A is favored against B, according to the Jeffreys

(1961) scales modified by Kass and Raftery (1995). A Bayes factor value between 1 and 3

indicates that the evidence supporting A against B is not worth more than a bare mention.

When the Bayes factor is between 3 and 20, A is favored against B with positive evidence;

when the Bayes factor is between 20 and 150, A is favored against B with strong evidence;

and when the Bayes factor is above 150, A is favored against B with very strong evidence.

3.2 Performance of the proposed Bayesian methods

Consider the relationships between y and x= (x1, x2, x3)′ given by

yi = sin(2πx1,i )+4(1−x2,i )(1+x2,i )+ 2x3,i

1+0.8x2
3,i

+εi , (15)

for i = 1,2, . . . ,n. A sample of 1,000 observations was generated by drawing x1,i , x2,i and x3,i

independently from the uniform density on (0,1) and εi from the mixture of two Gaussian

densities defined as 0.7N (0,0.72)+ 0.3N (0,1.52), and calculating yi based on (15), for i =
1,2, . . . ,1000.

The relationship between yi and (x1,i , x2,i , x3,i )′ was modeled by the nonparametric re-

gression model given as

yi = m(x1,i , x2,i , x3,i )+εi , (16)

where ε1,ε2, . . . ,εn are assumed to be iid.

As there are three regressors, the optimal rates of the bandwidths for the NW estimator of

the regression function and kernel estimator of the error density are respectively, n−1/7 and

n−3/17 (see Samb, 2010). Therefore, the bandwidths are re-parameterized as

b = τ0n−3/17, and hk = τk n−1/7, for k = 1,2,3,
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which are used throughout this section.

Assuming that the error density of (16) is unknown and is approximated by the mixture

Gaussian density given by (2), we applied our Bayesian sampling algorithm to (16) using the

generated sample. The hyperparameters were chosen as αh = αb = 1 and βh = βb = 0.05.

These values are often used as the parameter values of an inverse Gamma density when it

is chosen as the prior of a variance parameter (see also Geweke, 2009). The burn-in period

contains 1,000 draws, and the following 10,000 draws were recorded. Whenever the random-

walk Metropolis algorithm was used, the acceptance rate was controlled to be between 0.2 and

0.3. The posterior means of the re-parameterized bandwidths are presented in the first panel

of Table 1. The mixing performance of this posterior sampler is examined by the simulation

inefficiency factor (SIF), which can be loosely interpreted as the number of draws needed so

as to obtain independent draws from the simulated Markov chain. For example, a SIF value of

20 indicates that approximately, we would need to keep one draw for every 20 draws so as to

derive independent draws (see for example, Roberts, 1996; Kim, Shephard, and Chib, 1998;

Tse, Zhang, and Yu, 2004).

The standard deviation of the posterior mean is approximated by the batch-mean standard

deviation. It becomes smaller and smaller with the number of simulation iterations increasing,

if the sampler achieves a reasonable mixing performance. The SIF and batch-mean standard

deviation were used to monitor the mixing performance. Table 1 presents the values of these

two indicators, which show that the sampler has mixed very well.

Under the assumption of Gaussian errors, we used Zhang et al.’s (2009) simulation algo-

rithm to sample the re-parameterized bandwidths and the variance parameter from their

conditional posteriors, where the re-parameterization was carried out according to (4). The

priors of the re-parameterized bandwidths are the same as those under the mixture Gaussian

error density. The prior of σ2 is the inverse Gamma density with hyperparameters ασ = 1 and

βσ = 0.05. The results are given in the second panel of Table 1.

Assuming the errors of (16) follow the Student t distribution with ν degrees of freedom, we

derived the likelihood and posterior in a similar way as those derived under Gaussian errors.
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The priors of the re-parameterized bandwidths are the same as those under Gaussian errors,

and the prior of ν is the Gaussian density with mean 10 and variance 52, which is truncated at

3 with the functional form given by

π(ν) = 1/5 φ((ν−10)/5)

1−Φ((3−10)/5)
, (17)

where Φ(·) is the cumulative density function (CDF) of the standard Gaussian distribution.

This prior is flat and restricts ν to be greater than 3.

We used the random-walk Metropolis algorithm to sample the re-parameterized band-

widths and ν from their posterior. The results are presented in the third panel of Table 1.

Under these two parametric assumptions, the values of the SIF and batch-mean standard

deviation indicate that both samplers have achieved a reasonable mixing performance.

For each error-density assumption of the nonparametric regression model given by (16),

we computed the marginal likelihood given by (14) and the average squared error (ASE)

defined as

ASE(h) = 1

n

n∑
i=1

[m̂(xi ,h)−m(xi )]2 .

We found the following evidence from this simulation study. First, the marginal likelihood

obtained under the mixture Gaussian error density is larger than that obtained under either

the Gaussian or Student t error density. The Bayes factors of the mixture Gaussian error density

are exp(20.48) against the Student t , and exp(32.79) against the Gaussian error densities,

respectively. Therefore, the assumption of the mixture Gaussian error density is favored

against its parametric counterparts with very strong evidence. Nonetheless, we cannot

draw a conclusion only based on one simulated sample. In Section 3.3, we calculate the

marginal likelihood under each assumption of the error density for 1,000 samples that are

independently drawn.

Second, even though the estimated bandwidth vectors in the NW estimator under three

assumptions of error density are almost the same, their associated ASEs are different. The

ASE derived under the mixture Gaussian error density is 0.0661, which is smaller than that

derived under either the Gaussian or Student t error density.
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Third, we obtained an estimate of the bandwidth for the kernel error-density estimator,

whose graph is plotted in the top panel of Figure 1, along with the graphs of the true density,

the Gaussian and Student t error densities. Among these three error-density assumptions,

the one derived under the mixture Gaussian error density is the closest to the true density.

Moreover, we also plotted the corresponding CDF in the bottom panel of Figure 1. As the

goodness of fit of the resulting NW estimator is only about 69.4% under each error-density

assumption, we believe the error-density estimator obtained under the mixture Gaussian

error density performs reasonably well.

3.3 Accuracy of the estimated bandwidth vectors

The accuracy of chosen bandwidths is measured by the ASE of the resulting NW estimator of

the true regression function. In kernel density estimation of directly observed data, the NRR

is often used for bandwidth selection (see for example, Silverman, 1986; Scott, 1992; Bowman

and Azzalini, 1997). Härdle and Müller (2000) indicated that methods for bandwidth selection

in nonparametric regression are the same as those for kernel density estimation. Therefore,

we considered the NRR for bandwidth selection in the nonparametric regression model in

this simulation study.

The likelihood CV for bandwidth selection has been extensively discussed (see for example,

Wahba and Wold, 1975; Härdle and Marron, 1985; Härdle and Müller, 2000). The bootstrapping

approach to bandwidth selection in nonparametric regression was presented by Hall et al.

(1995), where two pilot bandwidths have to be specified before bootstrapping begins. The

purpose of the first bandwidth is to generate a bootstrapping sample, while the second aims

to obtain an initial estimate of the regression function. In our simulation study, the two pilot

bandwidths were chosen using the NRR and likelihood CV.

For the purpose of generating samples, the error densities we considered are the Gaussian,

Student t and a mixture of two Gaussian densities. We generated 1,000 samples through

the regression function given by (15) based on each of the three densities of the errors. For

each sample, we chose bandwidths for the NW estimator through the NRR, likelihood CV
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and bootstrapping, and derived the estimates of the re-parameterized bandwidths through

Bayesian sampling under each of the three assumptions of the error density. As with the

Bayesian sampling method, we also estimated the re-parameterized bandwidth for the kernel

error-density estimator, as well as σ and ν under the Gaussian and Student t error densities,

respectively.

We calculated the ASE of the NW estimator of the regression function with bandwidths

estimated through the aforementioned methods. The mean and standard deviation of the

1,000 ASE values were calculated and tabulated in Table 2. When the errors were generated

from N (0,0.92), the mean ASE derived through Bayesian sampling with any error-density as-

sumption is smaller than that derived through either the NRR, likelihood CV or bootstrapping.

In addition, different assumptions of the error density make no obvious difference in the

resulting mean ASE values.

When errors were generated from the Student t density with 4 degrees of freedom, the

mean ASE derived through Bayesian sampling with any error-density assumption is again

smaller than that derived through either the NRR, likelihood CV or bootstrapping. The mean

ASE obtained through Bayesian sampling under the Gaussian error density is slightly smaller

than that obtained through the likelihood CV. Moreover, bootstrapping is clearly the worst

performer among all four methods considered.

When the errors were generated from the mixture of two Gaussian densities defined as

0.7N (0,0.72)+0.3N (0,1.52), the mean ASE derived through Bayesian sampling under any error-

density assumption is clearly smaller than that derived through either the NRR, likelihood CV

or bootstrapping. In addition, different assumptions of the error density lead to similar mean

ASE values.

3.4 Bayesian comparison among error-density assumptions

The benefit of the mixture Gaussian error density assumption is to gain robustness in terms

of error-density specification, because this mixture density is a kernel density estimator of

residuals, and has the capacity to approximate an unknown error density. In the nonpara-
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metric regression model given by (1), the assumption of a mixture Gaussian error density

does not outperform its parametric counterparts under correct error-density assumptions.

However, this mixture density usually outperforms its parametric counterparts under wrong

assumptions of the error density. We conducted a simulation study using the same 1,000

samples in Section 3.3 to illustrate this.

3.4.1 Comparison when errors were simulated from Gaussian distribution

For those samples generated by simulating the errors of (15) from N (0,0.92), we applied the

Bayesian sampling methods to estimate the parameters in (16), where the error density was

assumed to be either the Gaussian with mean zero and variance σ2, the Student t with ν

degrees of freedom or the mixture Gaussian density given by (8). The Bayesian sampling

algorithm under each error-density assumption was applied to each of the 1,000 generated

samples. Under each error-density assumption, we derived the estimates of all parameters

and marginal likelihood for each sample. We also computed the mean and standard deviation

of the 1,000 values of each estimated parameter. Table 3 presents a summary of these results,

where the mean of the SIF values computed under each assumption of the error density is

below 16. This finding indicates that the Bayesian sampling algorithms have mixed very well.

As the Gaussian error assumption is correct, we calculated the Bayes factors of the assump-

tion of Gaussian error density against the assumptions of Student t and mixture Gaussian

error densities. According to the Jeffreys (1961) scales modified by Kass and Raftery (1995),

the assumption of Gaussian error density is favored against the Student t assumption with

either strong or very strong evidence in 98.8% of simulated samples. In only 40.6% of simu-

lated samples, the Gaussian assumption is favored with either strong or very strong evidence

against the mixture Gaussian error density. Moreover, our assumption of a mixture Gaussian

error density is favored with either positive, strong or very strong evidence against the correct

assumption of the error density in 8.7% of simulated samples. Therefore, on average, the

assumption of a mixture Gaussian error density is not favored against the correct assumption

of the error density .
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3.4.2 Comparison when errors were simulated from Student t distribution

We generated samples by simulating the errors from the Student t distribution with ν = 4.

The Bayesian sampling method was used to estimate all parameters in the nonparametric

regression model given by (16), where we considered three assumptions of the error density.

We found that the mean of the 1,000 SIF values of each parameter is below 17, which indicates

a very reasonable mixing performance of all three samplers. We obtained the mean and

standard deviation of the 1,000 values of each estimated parameter under three different

assumptions of the error density. We also calculated the marginal likelihood under three

assumptions of the error density using each simulated sample. As the Student t error density

is the correct assumption, we calculated the Bayes factors of the Student t assumption of the

error density against the other two assumptions, respectively. A summary of these results is

presented in the second panel of Table 3.

According to the modified Jeffreys scales, the assumption of Student t errors is favored

with either strong or very strong evidence against the Gaussian assumption in all simulated

samples, and against the assumption of mixture Gaussian errors in 90.1% of simulated sam-

ples. However, the mixture Gaussian error-density assumption is favored with either positive,

strong or very strong evidence against the correct assumption in 2.7% of simulated samples.

This finding shows that on average, the assumption of mixture Gaussian error density is not

favored against the correct assumption of the error density.

3.4.3 Comparison when errors were simulated from mixture Gaussian distribution

We simulated samples by drawing errors from a mixture of two Gaussian distributions defined

as 0.7N (0,0.72)+0.3N (0,1.52). The Bayesian sampling method under each of the three error-

density assumptions, was applied to estimate parameters in the nonparametric regression

model. According to Bayes factors, we derived the estimates of parameters and marginal

likelihood for each sample under three assumptions of the error density. We made decisions

on whether the assumption of the mixture Gaussian error density is favored against the other

two assumptions for each simulated sample. A summary of these results is given in the third
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panel of Table 3.

All three assumptions of the error density led to similar estimates of the bandwidth vector

in the NW estimator. The mean of SIF values for each parameter under three assumptions

of the error density is below 16. This indicates a very good mixing performance of all three

samplers.

As the errors were generated from a mixture of two Gaussian densities, all three assump-

tions of the error density are inaccurate. The assumption of Gaussian errors is likely to lead

to poorer performance than the other two, because the true error density exhibits heavy

tails. According to the computed Bayes factors and the modified Jeffreys scales, the mixture

Gaussian assumption of the error density is favored against the Gaussian assumption in

99.2% of simulated samples, and against the Student t assumption in 60.7% of simulated

samples. In comparison, the Student t assumption is favored against the mixture Gaussian

assumption in only 27.0% of simulated samples. Moreover, we found that the assumption

of the mixture Gaussian error density is favored with either strong or very strong evidence

against the assumption of the Student t error density in 49.2% of simulated samples. On the

other hand, the latter assumption is favored against the former with the same strength of

evidence in only 16.3% of simulated samples. Thus, we can conclude that when the error

density is unknown, our proposed mixture Gaussian error density is often favored against its

parametric counterparts with wrong error-density assumptions.

3.5 Sensitivity of prior choices

Current asymptotic results show that as the sample size tends to infinity, the two types of

bandwidths approach zero asymptotically. When there are three or more regressors in the

nonparametric regression model, Samb (2010) proved that the optimal rates are n−3/(2d+11) for

the bandwidth in the kernel density estimator of residuals and n−1/(d+4) for the bandwidths

in the NW estimator of the regression function, where d represents the number of regressors.
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Therefore, we assume that the prior densities of b and hi are the uniform densities given by

b ∼U
(
0,2σεn−3/17+1/10) , (18)

hk ∼U
(
0,2σk n−1/7+1/10) , (19)

where σε is the standard deviation of residuals, and σk is the standard deviation of the kth

regressor, for k = 1,2, . . . ,d . The optimal rates were scaled up by n1/10 to guarantee that the

most appropriate values of bandwidths are within the intervals.

Replacing the prior densities in (13) with the uniform priors defined by (18) and (19), we

derived the approximate posterior of h and b, through which we sampled the parameters

using the random-walk Metropolis algorithm for each of the 1,000 samples in Section 3.2.

Moreover, we used the uniform priors given by (19) to derive the approximate posterior for

the nonparametric regression model with either the Gaussian or Student t errors. We derived

the estimate of the parameter vector by implementing the same posterior sampler for each

sample. A summary of the simulation results is presented in Table 4.

Transforming the estimated τ values reported in Table 3 into bandwidth values according

to (4), we found that over the 1,000 generated samples, the means of the posterior estimates of

the parameter vector obtained under the uniform priors are similar to those obtained under

the inverse Gamma priors for each assumption of the error density. Therefore, the posterior

estimate of the parameter vector obtained through the aforementioned posterior samplers is

on average, insensitive to different prior choices of the bandwidth parameters. Nonetheless,

the decisions on whether one assumption of the error density is favored against the others

under the uniform priors are different from those under the inverse Gamma priors.

When the errors were generated from the Gaussian distribution, the assumption of Gaus-

sian errors is favored against the assumption of Student t errors with either strong or very

strong evidence in 99.7% of simulated samples under the uniform priors. This relative fre-

quency is similar to the relative frequency of 98.8% under the inverse Gamma priors. On the

other hand, the Gaussian assumption is favored against the mixture Gaussian error density

with either strong or very strong evidence in 48.3% of simulated samples under the uniform

priors, rather than 40.6% of simulated samples under the inverse Gamma priors.
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When the errors were generated from the Student t distribution, the decisions on whether

the Student t assumption is favored against the other two under the uniform priors are largely

the same as those under the inverse Gamma priors.

When the errors were generated from the mixture of two Gaussian densities, the pro-

posed mixture Gaussian error density is favored with either positive, strong or very strong

evidence against the Gaussian and Student t error densities in respectively, 99.6% and 73.7%

of the simulated samples, under the uniform priors. The latter value is clearly larger than its

counterpart, which is 60.7%, under the inverse Gamma priors.

To summarize, on average, the estimated bandwidths are largely insensitive to prior

choices. Nonetheless, when samples were generated from either the Gaussian or the mixture

Gaussian error distributions, the assumption of a mixture Gaussian error density is more

frequently favored against the Student t assumption under uniform priors than under inverse

Gamma priors.

4 An application to nonparametric regression of stock returns

To investigate the empirical relevance of the Bayesian bandwidth selectors, we applied them

to the nonparametric regression of the All Ordinaries daily return on the overnight returns of

FTSE and S&P 500. As the opening time for share trading in the Australian stock market is

after the closing time of the previous-day trading in the UK and USA stock markets, such an

investigation can reveal the relationship between the Australian stock market and the other

two markets.

4.1 Data

The data consist of the All Ordinaries, FTSE and S&P 500 closing indices collected from the

3rd January 2007 to the 30th March 2011, excluding non-trading days. The All Ordinaries

daily return was matched to the overnight FTSE and S&P 500 returns. As a consequence,

the daily returns of the FTSE and S&P 500 indices on the 30th March 2011 (local time) was

not used for the purpose of estimating bandwidths. When one market experienced a non-
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trading day, we also deleted the trading data in the other two markets on that day. The sample

contains n = 1,022 observations, from which we computed continuously compounded daily

percentage returns. We employ the multivariate nonparametric regression model given by

yi = m(x1,i , x2,i )+εi , for i = 1,2, . . . ,n, (20)

where yi is the return of the All Ordinaries daily index, and ε1,ε2, . . . ,εn are assumed to be iid

with their distributions assumed to be Gaussian, Student t and mixture Gaussian, respectively.

4.2 Bandwidth estimates under different error densities

As Bayesian sampling was used to estimate the re-parameterized bandwidths (and the pa-

rameter under each parametric assumption of the error density), we re-parameterized the

bandwidths for the NW estimator of the regression function as hk = τk n−1/6, for k = 1 and 2,

under each of the three assumptions of the error density. The prior of τ2
k given by (12), was

chosen by assuming that τ2
k n−2/6 follows IG(αh,βh) with αh = 1 and βh = 0.05, under each

assumption of the error density.

When the error density of (20) are assumed Gaussian with mean zero and variance σ2, we

chose the prior of σ2 as IG(1,0.05). Note that our prior choices for σ2 and τ2
k , for k = 1 and 2,

are different from those in Zhang et al. (2009). The random-walk Metropolis algorithm was

used to sample τ2
1 and τ2

2 from their conditional posterior, while the Gibbs sampler was used

to sample σ2 from its conditional posterior. We used the batch-mean standard deviation and

SIF to examine the mixing performance of the sampling algorithm. Both the batch-mean

standard deviation and SIF indicate that all simulated chains have achieved a reasonable

mixing performance with the SIF values below 35. Table 5 presents the estimates of σ and

the elements of τ , and their associated statistics. During the MCMC iterations, we obtained

the 95% Bayesian credible interval of each element of the bandwidth vector, which cannot be

obtained through the NRR, likelihood CV and bootstrapping.

When the errors are assumed to follow the Student t distribution withνdegrees of freedom,

we assumed that the prior of ν is a truncated Gaussian density given by (17) and used the

random-walk Metropolis algorithm to sample ν and the elements of τ 2. Table 5 presents
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the estimated (ν,τ1,τ2)′, and its associated statistics. According to the batch-mean standard

deviation and SIF, each simulated chain has mixed well. As the estimate of ν is small, this

indicates a slightly heavy-tailed behavior of the error density. As a consequence, it leads to a

different distributional shape in comparison with the Gaussian error density.

When the errors are assumed to follow the mixture of Gaussian densities given by (8), the

bandwidth for the kernel-form error density was re-parameterized as b = τ0n−1/5. The prior

of τ2
0 given by (11), was chosen by assuming that τ2

0n−2/5 follows IG(αb ,βb) with αb = 1 and

βb = 0.05. We used the random-walk Metropolis algorithm to sample τ2
k , for k = 0,1 and 2,

from their posterior given by (13). Table 5 presents the estimated τk , for k = 0,1 and 2, and

their associated statistics. According to the batch-mean standard deviation and SIF values, all

simulated chains have achieved a reasonable mixing performance.

4.3 Comparison of different error-density assumptions

We computed the Bayes factors with marginal likelihoods calculated through (14), where the

marginal likelihood derived under each assumption of the error density is shown in Table 5.

The marginal likelihood under the mixture Gaussian error density is found to be slightly larger

than that under the Student t errors, while the Bayes factor reveals no sufficient evidence

to make a decision on whether the former assumption is favored against the latter due to

narrow difference between the two marginal likelihood values. However, the assumption

of the mixture Gaussian error density is favored against the assumption of Gaussian error

density with very strong evidence.

Conditional on the overnight daily returns of the FTSE and S&P 500 indices on the 30th

March 2011 (local time), we forecasted the daily return of the All Ordinaries index on the 31st

March 2011 (local time) before the Australian stock market opened. Under each assumption

of the error density, we derived the posterior estimates of the re-parameterized bandwidths

for the NW estimator of the regression function, which was computed at the daily returns

of FTSE and S&P 500 on the 30th March 2011 to derive a point forecast of the daily return

of the All Ordinaries index on the 31st March 2011. We also produced such a point forecast
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at each iteration of the MCMC simulation so as to obtain a posterior sample of the point

forecast, based on which we derived the 95% Bayesian credible interval for the point forecast

on the All Ordinaries index on the 31st March 2011. Under the three assumptions of the

error density, the point forecasts are respectively, 0.2663%, 0.2562% and 0.2676%; and the

corresponding credible intervals are respectively, (0.2449%,0.2885%), (0.2381%,0.2736%) and

(0.2486%,0.2905%).

4.4 Error-density estimators under different assumptions

Under the Gaussian-component mixture density of the errors, we are able to estimate the

density of the one-step-ahead point forecast of the All Ordinaries daily return, and the derived

density can be regarded as a density forecast. Using the estimated bandwidths and parameters

given in Table 5, we derived the density of the point forecast of the All Ordinaries daily return

on the 31st March 2011 under each of the three assumptions of the error density. The graphs

of the three derived densities are presented in Figure 2. The three density graphs are obviously

different to each other at their peaks and left tails. As the sample period covers the current

global financial crisis, the heavy-tailed feature of stock index-return during this period is more

evident than that during non-crisis periods. Consequently, the heavy-tailed mixture Gaussian

and Student t densities are favored against the Gaussian according to Bayes factors. During

the period of global financial crisis, global stock markets had experienced very frequent huge

drops. Therefore, the estimated density of the point forecast of the All Ordinaries return

obtained through the Gaussian-component mixture density of errors exhibits a thick left tail.

This distributional feature cannot be revealed through the assumption of Student t errors.

Under each of the three estimated densities of the All Ordinaries daily return, we computed

the one-day VaR for holding an investment on the All Ordinaries index on the 31st March 2011.

At the 95% confidence level, the one-day VaRs are respectively, $1.5668, $1.5452 and $1.4803

for every $100 investment on the All Ordinaries index under the assumptions of the mixture

Gaussian, Student t and Gaussian error densities. In light of the fact that many financial firms

had experienced severe liquidity stress or even filed for bankruptcy during the global financial
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crisis, we tend to believe that market risk had been underestimated. Therefore, we believe

that in comparison to the mixture Gaussian error density, the assumption of Gaussian errors

leads to an underestimated VaR.

5 An application to SPD estimation

Aït-Sahalia and Lo (1998) showed that in a dynamic equilibrium model, the price of a security

is

Pt = exp
{
rt ,λλ

}
E∗

t {Z (ST )} = exp
{
rt ,λλ

}∫ ∞

−∞
Z (ST ) f ∗

t (ST )dST ,

where T = t +λ, λ is the length of time to maturity, rt ,λ is a constant risk-free interest rate

between t and T , E∗
t represents the expectation taken conditional on information available at

date t , ST is the price of the security at date T , Z (ST ) is the payoff of the security at the expiry

date T , and f ∗
t (ST ) is the date-t SPD for the payoff of the security at date T . When an option is

the security of interest, the SPD is the second-order derivative of a call-option pricing formula

with respect to strike price calculated at ST . Aït-Sahalia and Lo (1998) showed that the date-t

price of a call option, is a nonlinear function of (St , X t ,λ,rt ,λ,δt ,λ)′, which can be estimated

through the nonparametric regression technique, where δt ,λ is the dividend rate at date t .

In order to reduce the number of regressors, Aït-Sahalia and Lo (1998) assumed that the

call-option pricing formula is given by the Black-Scholes (BS) formula except that the date-t

volatility denoted by σt , is estimated by the nonparametric regression of the implied volatility

on z̃t = (Ft , X ,δ), where Ft is the futures price of the underlying asset. The kernel estimator of

the regression function is

σ̂t (Ft , X ,λ|h) =
n−1 ∑n

j=1 Kh(z̃t − z̃ j )σ̃ j

n−1 ∑n
j=1 Kh(z̃t − z̃ j )

,

where σ̃ j is the volatility implied by the price of the call option, andh is a vector of bandwidths.

According to Aït-Sahalia and Lo (1998) and Huynh, Kervella, and Zheng (2002), the SPD and
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the risk measures of delta (∆) and Gamma (Γ) are expressed as

fBS,t (ST ) = 1

ST

p
2πσ2λ

exp

{
− [ln(ST /St )− (rt ,λ−δt ,λ−σ2/2)λ]2

2σ2λ

}
,

∆BS =Φ(d1),

ΓBS = φ(d1)

Stσ
p
λ

.

where d1 =
{
ln(St /X )+ (rt ,λ−δt ,λ+σ2/2)λ

}
/(σλ1/2).

Zhang et al. (2009) assumed that the errors of the nonparametric regression model of

σ̃t on z̃t follow the Gaussian distribution with a zero mean and unknown variance. In this

paper, we assume that the errors of this nonparametric regression model follow the mixture

of Gaussian densities given by (2). We fitted the model to the S&P 500 index options data,

which are the same as those investigated by Aït-Sahalia and Lo (1998) and Zhang et al. (2009).

The sample period is from the 4th January to the 31st December 1993, and the sample size

is n = 14,431. We applied the sampling procedure proposed in Section 2.2 to sample the

re-parameterized bandwidths from their posterior. Table 6 presents the estimates of the

re-parameterized bandwidths and some associated statistics. Transforming the estimated

τ values into bandwidths according to (4), we found that the bandwidth vector for the NW

estimator is (4.9810,4.7884,13.8418)′. This is clearly different from (5.6243,5.4831,9.7509)′

derived under the assumption of Gaussian error density. The bandwidth for the kernel-form

error density is 0.2424.

The Bayes factor of the mixture Gaussian error density against the Gaussian error density

is exp(4210.13), which is very strong evidence supporting the former. Using the bandwidth

vector derived by Aït-Sahalia and Lo (1998), and the ones estimated through Bayesian sam-

pling under both error densities, we plotted the graphs of the SPD, the risk measures ∆ and Γ

at maturities of 2 and 10 days, respectively, in Figure 3. At the maturity of 2 days, the SPD and

Γ produced through the bandwidth vector derived under the mixture Gaussian error density

are respectively, different from those derived under the Gaussian error density. However, as

the time to maturity increases to 10 days, both densities lead to similar estimates of the SPD

and Γ.
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Moreover, the SPD,∆ and Γ derived through Bayesian sampling under each assumption of

the error density are clearly different from those derived through the rule-of-thumb reported

by Aït-Sahalia and Lo (1998). However, different assumptions of the error density lead to

similar estimates of the SPD, risk measures ∆ and Γwhen maturity is 25 days or more.

6 Conclusion

We have presented a Bayesian approach to the estimation of bandwidths for the Nadaraya-

Watson regression estimator and kernel-form error density estimator in the nonparametric

regression model. The unknown error density is approximated by the mixture of Gaussian

densities centered at individual error realizations and scaled by a constant parameter or the

bandwidth in the context of kernel smoothing. We have conducted a series of simulation

studies, which reveal that our approach outperforms the normal reference rule, likelihood

cross-validation and bootstrapping methods in estimating the bandwidths for the Nadaraya-

Watson estimator (as measured by ASE). In comparison to the parametric assumption of

either the Gaussian or Student t error density, our proposed mixture Gaussian error density

or equivalently the kernel-form density estimator of residuals, is not favored against the

correct error-density assumption, but is favored against wrong assumptions of the error

density. Our Bayesian sampling procedure represents a data-driven solution to the problem

of simultaneously estimating bandwidths for the kernel estimators of the regression function

and error density.

Applying to the nonparametric regression of the All Ordinaries daily return on the overnight

FTSE and S&P 500 returns, we have obtained the bandwidth estimates for the kernel estimator

of the regression under the three error-density assumptions. Although the assumption of

a Gaussian-component mixture error density performs on par with the assumption of the

Student t error density, they both outperform the Gaussian error-density assumption. The

density estimator of the All Ordinaries daily return obtained through the mixture Gaussian

error density exhibits a more reasonable left-tail behavior than that obtained through either

the Gaussian or Student t error density. Moreover, under the Gaussian-component mixture
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error density, we are able to estimate the density of the one-step-ahead point forecast of

the All Ordinaries return. Therefore, the resulting value-at-risk is distribution-free and gain

robustness in terms of different specifications of the error density.

We have also employed the proposed Bayesian sampling algorithm to estimate bandwidths

for the nonparametric regression model involved in the state-price density estimation, where

the error density is approximated by the Gaussian-component mixture density of the errors.

The assumption of such an error density is favored with very strong evidence against the

assumption of Gaussian error density. Moreover, we have found that the state-price density,

risk measures ∆ and Γ estimated under this mixture error density are different from the

corresponding ones estimated under Gaussian assumption errors at short maturities of the

underlying asset. This example confirms the usefulness of relaxing the Gaussian assumption

of the error density to a kernel-form or equivalently the Gaussian-component mixture error

density in a nonparametric regression model.
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Table 1: Parameter estimates and their statistics for Bayesian bandwidth estimation under
mixture Gaussian, Gaussian and Student t error densities for a simulated sample with sample
size n = 1,000. LML refers to log marginal likelihood.

Error Parameter Estimate 95% Bayesian Standard Batch-mean SIF
density credible interval deviation standard dev

Mixture τb 0.8991 (0.6319, 1.2015) 0.1461 0.0034 5.45
τ1 0.1904 (0.1591, 0.2275) 0.0176 0.0007 16.63
τ2 0.2620 (0.2181, 0.3090) 0.0234 0.0007 9.88
τ3 0.5263 (0.4160, 0.6578) 0.0604 0.0021 11.80
LML -1389.99
ASE 0.0515

Gaussian σ 0.9881 (0.9460, 1.0332) 0.0220 0.0002 1.24
τ1 0.1908 (0.1553, 0.2322) 0.0194 0.0006 10.44
τ2 0.2640 (0.2169, 0.3140) 0.0238 0.0008 10.01
τ3 0.5733 (0.4239, 0.7411) 0.0792 0.0029 12.96
LML -1422.78
ASE 0.0523

Student t ν 13.7022 (9.1922, 20.1306) 2.7330 0.0683 6.25
τ1 0.2003 (0.1623, 0.2463) 0.0207 0.0006 9.40
τ2 0.2683 (0.2171, 0.3185) 0.0270 0.0009 11.57
τ3 0.5356 (0.3994, 0.7038) 0.0775 0.0033 18.32
LML -1410.47
ASE 0.0520

Table 2: Mean and standard deviation (sd) of 1,000 ASE derived through each bandwidth
estimation method based on 1,000 generated samples with errors simulated from three
specified densities.

Source of simulated errors NRR CV Bootstrap Bayesian
Gaussian Student t Mixture

N (0,0.92) Mean 0.0721 0.0701 0.0900 0.0582 0.0591 0.0585
sd 0.0089 0.0107 0.0161 0.0090 0.0092 0.0091

Student t with ν=4 Mean 0.1113 0.0963 0.2377 0.0950 0.0914 0.0930
sd 0.0189 0.0192 0.1167 0.0195 0.0175 0.0183

0.7N (0,0.72)+0.3N (0,1.52) Mean 0.0794 0.0754 0.1136 0.0664 0.0663 0.0656
sd 0.0103 0.0120 0.0244 0.0108 0.0107 0.0105
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Table 5: Estimated parameters and their associated statistics of Bayesian bandwidth estima-
tion with the mixture Gaussian, Gaussian and Student t error densities. LML represents the
log marginal likelihood.

Error Parameter Estimate 95% Bayesian Standard Batch-mean SIF
density credible interval deviation standard dev
Mixture τ0 1.2286 (0.8503, 1.6091) 0.1978 0.0085 18.48

τ1 1.5341 (1.1036, 1.8758) 0.2081 0.0110 27.83
τ2 2.3616 (1.9774, 2.8225) 0.2169 0.0090 17.18
LML -1484.43

Gaussian σ 1.0560 (1.0127, 1.1013) 0.0233 0.0002 0.81
τ1 1.9804 (1.7134, 2.2812) 0.1445 0.0067 21.47
τ2 2.5214 (2.1956, 2.9128) 0.1880 0.0089 22.49
LML -1514.80

Student t ν 9.9630 (7.1845, 14.3219) 1.7992 0.0443 6.06
τ1 1.9116 (1.6346, 2.2549) 0.1630 0.0066 16.48
τ2 2.2941 (1.9626, 2.6650) 0.1856 0.0080 18.58
LML -1485.41

Table 6: Estimates of the re-parameterized bandwidths and their statistics: S&P500 index
options data.

Parameters Mean 95% Bayesian Standard Batch-mean SIF
credible interval deviation standard error

τ0 1.3140 (1.2357, 1.4023) 0.0433 0.0010 5.88
τ1 19.5661 (18.9537, 20.2791) 0.3450 0.0110 10.19
τ2 18.8094 (17.7145, 19.8321) 0.5279 0.0237 20.09
τ3 54.3724 (52.3348, 56.7741) 1.0790 0.0381 12.48
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Figure 1: Graphs of the true and estimated densities of regression errors.
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Figure 2: Estimated densities of the forecasted All Ordinaries return on the 31st March 2011.
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Figure 3: Graphs of the estimated state-price density, risk measures ∆ and Γ based on S&P
500 index options data. The first column is for the maturity of 2 days, and the second column
is for the maturity of 10 days. AL denotes graphs obtained through the bandwidth vector
provided by Aït-Sahalia and Lo (1998).
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