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Abstract: Digital Signal Processing (DSP) applications in Bioinformatics have received great attention in recent years, 
where new effective methods for genomic sequence analysis, such as the detection of coding regions, have been devel-
oped. The use of DSP principles to analyze genomic sequences requires defining an adequate representation of the nucleo-
tide bases by numerical values, converting the nucleotide sequences into time series. Once this has been done, all the 
mathematical tools usually employed in DSP are used in solving tasks such as identification of protein coding DNA re-
gions, identification of reading frames, and others. In this article we present an overview of the most relevant applications 
of DSP algorithms in the analysis of genomic sequences, showing the main results obtained by using these techniques, 
analyzing their relative advantages and drawbacks, and providing relevant examples. We finally analyze some perspec-
tives of DSP in Bioinformatics, considering recent research results on algebraic structures of the genetic code, which sug-
gest other new DSP applications in this field, as well as the new field of Genomic Signal Processing.  
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INTRODUCTION 

Digital Signal Processing (DSP) is an area of science and 
engineering that has developed during the past 40 years as a 
result of the constant evolution of computer science and 
technology. DSP comprehends the representation, transfor-
mation and manipulation of digital signals as well as the in-
formation associated to them. In this context, signals are 
usually physical magnitudes that vary in time or space, and 
digital signals are those represented as sequences of num-
bers, as in the case of time series. 

The discipline of DSP uses a set of mathematical tools to 
analyze and process signals, among them can be mentioned 
the Discrete Fourier Transform, the Z transform, Digital Fil-
ters, Parametric Models, the Wavelet Transform, Correlation 
Functions and others. When considering the informational 
content of signals, other concepts from Information Theory 
such as entropy and mutual information are also used. 

A key concept in DSP is the possibility of representing 
the signals in the frequency domain making use of the Dis-
crete Fourier Transform. This representation leads to some 
important signal properties that are not revealed in the time 
domain, which are associated to their frequency spectrum. 

In the case of the genomic sequences, these have been 
represented mathematically by character strings of symbols 
from a size-4 alphabet consisting of the letters A, T, G and 
C, which represent each one of the nucleotide bases. In the  
case of proteins, the alphabet size is 20, corresponding to the 
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possible amino acids. The possibility of finding a wide ap-
plication of DSP techniques to the analysis of genomic se-
quences arises when these are converted appropriately into 
numerical sequences, for which several rules have been de-
veloped. Notice that genomic signals do not have time or 
space as the independent variable, as occur with most physi-
cal signals. 

This paper is organized in the following way. Firstly an 
overview of the main DSP algorithms used in applications to 
genomic sequence analysis is shown: digital filters, the Dis-
crete Fourier Transform (DFT), the Short-Time Fourier 
Transform (STFT), parametric models (AR, MA, ARMA), 
Wavelet Transform and the Information Theory concept of 
entropy. Hidden Markov Models can be considered also as a 
DSP tool, but this topic will not be covered, as there is a re-
cent comprehensive review article by De Fonzo et al. [1]. 
Then the numerical representation of genomic sequences is 
presented. This allows the application of DSP tools to study 
genomic sequences. After this, a review of the major appli-
cations of DSP to the analysis of genomic sequences is real-
ized, such as identification of protein coding DNA regions, 
identification of reading frames, location of splice sites and 
others. We finally review the perspectives of DSP in this 
field, considering recent research results on algebraic struc-
tures of the genetic code and the new field of Genomic Sig-
nal Processing.  

MAIN DSP ALGORITHMS EMPLOYED IN THE 
ANALYSIS OF GENOMIC SEQUENCES 

In this section a synthetic overview of the main DSP al-
gorithms that have been used in the analysis of genomic se-
quences is presented. There are excellent books on DSP the-
ory by Oppenheim and Schafer [2] and Proakis and Mano-
lakis [3].  
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A) Digital Filters 

A digital filter is a particular class of discrete system ca-
pable of realizing some transformation to an input discrete 
numerical sequence. There are different classes of digital 
filters according to the properties of their input-output rela-
tionships, as for example linear, nonlinear, time-invariant or 
adaptive. The basic, frequency selective digital filters, are 
linear and time-invariant (LTI) discrete systems.  

Digital filters are characterized by numerical algorithms 
that can be implemented in any class of digital processors. In 
particular, LTI digital filters can pertain to one of two cate-
gories, according to the duration of their response to the im-
pulse, or Dirac delta function, when it is used as the input 
signal: infinite (IIR) or finite (FIR) impulse response. The 
input-output relationships for IIR digital filters are character-
ized and implemented algorithmically through a finite differ-
ence equation of the form 
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where x[n] and y[n] are the input and output numerical se-
quences respectively, ak and bk are numerical coefficients, n 
is the sample index, and k is an integer delay with maximum 
values N and M for the output and input sequences respec-
tively. On the other hand FIR digital filters are characterized 
by a discrete convolution operation of the form 

][][][
1

0

mnxmhny
N

m

=
=

            (2) 

In this equation, h[m] is the impulse response of the fil-
ter, which has a length of N samples. The bilateral Z trans-
form operator is defined as  
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where z is a complex variable. When this operator is applied 
to equations (1) or (2), the system transfer function in the Z-
transform domain is obtained. The system transfer function 
relates the input and output sequences x[n] and y[n], through 
their respective Z transforms X[z] and Y[z]. The transfer 
function has the general form 
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The transfer function H(z) for this class of systems is a 
ratio of polynomials in the complex variable z and has a 
convergence region associated to it, which is closely related 
to the positions of its poles in the complex Z plane. A prop-
erty of the transfer function of LTI systems is that the com-
plex exponential sequences of the form 

nienx =][   

where i is the imaginary unit, are eigenfunctions of these 
systems, and this lead to the concept that these systems have 
an associated frequency response, which can be obtained by 

equating iez = in equation (4), i.e.  

H (ei ) = H (z)]z=ei              (5) 

The presence of the imaginary unit in the exponent im-
plies that H(e

i
) is a complex function in the frequency do-

main, whose frequency response is usually expressed as a 
magnitude response together with a phase, or angle response. 
The system transfer function is periodic in  (emphasizing 
this periodicity is the reason for using ei , instead of simply 

, as the argument of H), and it is usually plotted for its val-
ues in the main interval - < . An example of a sharp 
resonance peak in the magnitude response of an IIR filter is 
shown in Fig. (1), together with the corresponding phase 
response. The sharp magnitude peak means a high selectivity 
in frequency. The phase response of this filter is highly non-
linear (lower graph) and this nonlinearity tends to produce a 
high signal distortion.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). Frequency response in magnitude and phase of an IIR 
system exhibiting a sharp peak in the magnitude response. 

 
A variety of digital filter design techniques allow to ob-

tain any desired magnitude response with frequency selectiv-
ity properties, whereas it is desired that the phase response 
be a linear function of , in order to have low distortion. 
According to the frequency interval (band) transmitted, the 
magnitude of the basic ideal prototype filter frequency re-
sponses, can be lowpass, highpass, bandpass and bandstop. 

A combination of these responses leads to a multiband filter. 
The typical ideal frequency responses (in magnitude) of the 
prototype filters are shown in Fig. (2). These ideal responses 
can be only approximated in practical filters, where better 
approximations in general are obtained by increasing the 
order of H(z), which means a higher computational complex-
ity of the digital filters.  

Constant magnitude response together with perfect line-
arity in the phase response is the condition for signal trans-
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mission without distortion through a filter in the desired fre-
quency band. IIR digital filters have in general a nonlinear 
phase response, that depends on the design method em-
ployed. On the other hand, a property of FIR digital filters is 
that they can exhibit a perfect linear phase response under 
certain conditions of symmetry in their impulse response. 
This has been a motivation for the use of digital FIR filters in 
many applications.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). Frequency response in magnitude for the prototype ideal 
filters: lowpass, highpass, bandpass and bandstop. 

 

B) Discrete Fourier Transform 

The Discrete Fourier Transform is a mathematical 
operation that transforms one discrete, limited (finite) N 
duration function into another function, according to  
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The function X[k] is the Discrete Fourier Transform 
(DFT) of the sequence x[n] and constitutes the frequency 

domain representation of x[n], which is usually (or 
conventionally considered) a function in the time domain. 
The Discrete Fourier Transform only evaluates the frequency 
components required to reconstruct the finite segment of the 
sequence that was analyzed. In general, the DFT is a 
function in the complex domain as a result of the complex 
exponential in the right side of equation (6), and for the 
particular case of real sequences, it will be a sequence of 
complex numbers of the same length as x[n]. The DFT is 
usually represented in terms of the corresponding magnitude 
and phase functions that constitute the frequency spectrum of 
the sequence x[n].  

The Discrete Fourier transform is a very useful tool, be-
cause it can reveal periodicities in the input data as well as 

the relative intensities of these periodic components. An ex-
ample of the magnitude and phase graphs of the 64-points 
DFT for a sum of two pure sinusoids at discrete frequencies 

14/2  and 15/4  is shown in Fig. (2). Each discrete value 
of the DFT is usually called a DFT coefficient. 

The DFT, however, suffer from three important draw-
backs as a tool for spectral analysis: a) Spectral leakage, 
which means the presence of energy in zones where the 
spectrum should be zero (this is clearly seen in Fig. (3): two 
pure frequencies are analyzed while many nonzero samples 
are obtained in the spectrum at other frequencies); b) the 
frequency response of the DFT coefficients is not constant 
with frequency (“picket-fence” effect), and c) the spectral 
resolution, or ability to separate frequency lines that are 
close in frequency, depends inversely upon the length of the 
sequence in the time domain. This means that the DFT can-
not distinguish appropriately close spectral components for 
time signals of short duration. Multiplying the time signals 
by special weighting functions called windows, and control-
ling the signal length, can help in overcoming these limita-
tions in some extent. 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. (3). Example of DFT frequency spectrum (magnitude and 
phase) for two sinusoids closely spaced in frequency. Frequency 
axis is normalized to fs/N, where fs is the sampling frequency and N 
the number of samples in the sequence (64 in this example). 

 
Using the DFT for spectral analysis of random signals (or 

stochastic processes) require certain considerations to obtain 
a statistically valid result.  

For stationary random signals, a commonly employed 
procedure to obtain a power spectral density (PSD) function 
in the frequency domain is the Welch’s modified perio-
dograms method. The PSD function is obtained in this case 
by calculating the mean value of the squared DFT coeffi-
cients at each frequency value, for adjacent and usually over-
lapping windowed signal segments. The measure obtained in 
this way is a consistent estimate of the power spectrum. A 
typical spectrum obtained by the Welch’s method, for a pure 
sinusoid embedded in white Gaussian noise, is shown in Fig. 
(4). Notice the peak that corresponds to the sinusoid, whose 
magnitude is significantly greater than the noisy background. 
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Fig. (4). An example of PSD spectrum obtained through Welch’s 
method, for a sinusoid embedded in white, Gaussian noise. 

 
In the case of non-stationary signals, The Short Time 

Fourier Transform (STFT) is an algorithm frequently used 
for the DFT-based spectral analysis. In the STFT, the time 
signal is divided into short segments (usually overlapped) 
and a DFT is calculated for each one of these segments. A 
three dimensional graph called spectrogram is obtained by 
plotting the squared magnitude of the DFT coefficients as a 
function of time. This squared magnitude is usually repre-
sented by the brightness of the graph, as shown in Fig. (5).  

 

 

 

 

 

 

 

 

 

Fig. (5). Spectrogram of a harmonic signal whose frequency varies 
linearly with time (“linear chirp”). 

 
An important special case of the STFT is the Gabor 

Transform, in which a Gaussian weighting window is ap-
plied to the analyzed time sequence. This procedure allows 
obtaining a better simultaneous resolution in time and fre-
quency. 

C) Spectral Analysis Using Parametric Models 

Parametric spectral analysis is a method that can be used 
in many cases with some advantages over the non-parametric 
methods. Its advantages rely in that it is possible to obtain a 
parametric description of the second-order statistics of a ran-
dom sequence, by assuming a certain production model for 
it. A comprehensive analysis of such methods is given in  
Stoica and Moses [4]. 

Spectral analysis using parametric methods does not suf-
fer from the limitations in spectral resolution that character-
ize the DFT-based methods, because they do not imply a 
windowing (segment selection) process. 

The mathematical expression of the PSD function of a 
random sequence is described in this case in terms of the 
model parameters, and the variance of a white (constant 
PSD) random noise process used as the input signal of the 
model. In consequence, the values to be computed in this 
method are the parameters of the model and the variance of 
the input process. 

The general expression for the transfer function of the 
model in parametric spectral analysis is analogous to that of 
a digital filter as shown in equation (3), which is expressed 
as the ratio of polynomials in the complex variable z 
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to which corresponds the equation in finite differences  
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in which w[n] is the input sequence and the observed data 
x[n] represent the model’s output. Equations (7) and (8) are 
related through the Z transform operator shown in equation 
(3). The PSD function is obtained from (7) using (5) to ob-
tain the model’s frequency response, and is given by 

xx ( ) = H (ei )
2

ww ( )             (9) 

In equation (9) H(ei ) is the frequency response of the 
model, while ww and xx are respectively the PSD functions 
of the corresponding input and output signals. For a white-
noise input,  

22
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where 2
w  is the input noise variance. 

According to the characteristics of the PSD for the ana-
lyzed random sequence there are three types of parametric 
models: 

• Autoregressive (AR) models, corresponding to the 
particular case { }0=kb  for k > 0, resulting in an all-

pole transfer function.  

• Moving average (MA) models, which correspond 
to{ }0=ka , resulting in an all-zero transfer function. 

• Autoregressive, moving average (ARMA) models, 
which is the general case in which there are poles and 
zeros in the model’s transfer function. 
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There is equivalence between the three types of models if 
the order is selected appropriately, i. e., a process which is 
inherently AR of a certain order, can be described by an MA 
model of higher order. However, AR models are more used 
because of the relative simplicity in calculating the model’s 
parameters through the Yule-Walker equations. Fig. (6) 
shows the PSD curve for a typical AR spectrum. 

 

 

 

 

 

 

 

 

 

 

 

Fig. (6). A typical PSD function obtained for an AR model, exhibit-
ing two peaks corresponding to two pairs of complex conjugate 
poles in the model’s transfer function. 
 

D) Discrete Wavelet Transform 

The Discrete Wavelet Transform (DWT) is a mathemati-
cal tool that can be used very effectively for non-stationary 
signal analysis. There is a great amount of literature on 
DWT, see for example Burrus et al. [5].  

In DWT analysis, a signal x(t) can be described through a 
linear decomposition as  
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In this equation j,k   are integer indexes, aj,k are the 
wavelet coefficients of the expansion, and j,k is a set of 
wavelet functions in t. Notice that the wavelet coefficients 

kja , constitute a discrete set, and that the coefficient’s values 

are calculated according to 
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The DWT obtains the decomposition of the signal x[n] 
into a set of orthonormal wavelets and their associated scal-

ing functions j,k that constitute a wavelet basis. These func-
tions can belong to different wavelet families that are ex-
pressed by the functions j,k which can be generated by dila-
tions and translations of a basic (“mother”) wavelet. These 
dilations and translations are discrete, and the indexes j and k 

are respectively related to these processes, that can be ex-
pressed as 

( )ktt jj

kj = 22)( 2/
, , j,k          (13)  

In Eq. (13) the functions j,k are dilated in a dyadic form 
(in powers of two), when varying the values of the index j, 
and in analogous way translated when varying the index k. In 
this process, translation is associated with time resolution, 
and dilation provides scaling, a concept closely related here 
to frequency resolution. 

Wavelet functions must satisfy the conditions 

0)(lim , =tji
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           (14)  

and  = 0)(, dttji
.          (15)  

In these conditions, (14) implies decay, and (15) implies 
oscillations like a wave function. Fig. (7) shows examples of 
wavelets functions that are well described in the literature. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (7). Examples of wavelets: (a) Daubechies Db10, (b) Coiflet 
Coif5.  

 
The DWT, for which an algorithm called Fast Wavelet 

Transforms (FWT) allows a very efficient calculation, plays 
currently a central role in many DSP applications. The result 
of the DWT is a multi-resolution decomposition, in which at 
each level the signal is decomposed in “approximation” and 
“detail” coefficients. This decomposition is realized through 
a process that is equivalent to lowpass and highpass filtering 
for the approximation and for the details respectively, using 
special digital filters called “Quadrature Mirror Filters” 
(QMF.) There are two types of QMF filters: the lowpass 
scaling filter h, and the highpass wavelet filter g. The g filter 
is equivalent to the h filter reversed in time and alternating 
the signs of its coefficients. DWT decompositions can be 
depicted by a tree structure as shown in Fig. (8), where ap-
proximation and detail coefficients are represented. Each one 
of the J decomposition levels corresponds to a certain dila-
tion j, whereas the index k determines the corresponding 
translations. The DWT can be also extended to non-
orthogonal decompositions.  
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Fig. (8). Approximation and Detail coefficients in a tree structure 
for a DWT three-level decomposition. S is the original signal, cDi 

and cAi stand respectively for detail and approximation coefficients 
at level i. 
 

E) Entropy Measures 

Entropy measures are another example of a signal 
processing concept that has been used in genomic sequence 
analysis. 

The concept of entropy is used in signal analysis as a 
measure of randomness. The first definition of the entropy of 
a discrete information source (producing a discrete sequence) 
was introduced by Shannon [6] as  
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where pi are the probabilities of the set of values that can 
take the sequence X, {x1, x2, ... ,xn}. 

Another definition frequently used is the Rényi entropy 
[7], given by 
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Here H (X) is the Rényi entropy of order , where  

 0, and {pi} are the signal probabilities as defined before. 

F) Final Remarks 

Although in this section the more frequently used DSP 
techniques were overviewed, it is important to notice that 
there are other various important techniques that in some 
cases have been used in the Bioinformatics field, such as 
different transforms (Cosine, Sine, Walsh-Hadamard, Hil-
bert), fractal analysis, and others.  

NUMERICAL REPRESENTATION OF GENOMIC 

SEQUENCES 

The first approach to convert genomic information in 
numerical sequences was given by Voss [8] with the defini-
tion of the indicator sequences, defined as binary sequences 
for each base, where 1 at position k indicates the presence of 
the base at that position, and 0 its absence. For example, 
given the DNA sequence  

ACTTAGCTACAGA… 

The binary indicator sequences X for each base A, T, C 
and G are respectively: 

XA[k] = 1000100010101…  

XT[k] = 0011000100000…  

XC[k] = 0100001001000…  

XG[k] = 0000010000010…          (18) 

The main advantages of the indicator sequences are their 
simplicity, and the fact that they can provide a four-
dimensional representation of the frequency spectrum of a 
character string, by means of computing the DFT of each 
one of the indicator sequences. This dimensionality can be 
reduced to three through the Z curves [9, 10] and the tetrahe-
dron [11] methods. 

Another relevant numerical representation of genomic 
sequences is a mapping in which a complex number is as-
signed to each base of the nucleotide sequence. In this case, 
these complex numbers are appropriately selected to provide 
useful properties of the numerical sequences. One of such 
properties is obtained by assigning complex conjugate com-
plex numbers to the base pairs A, T and C, G. In this case all 
palindromes will have conjugate symmetric numerical se-
quences. This lead to the generalized linear phase described 
by Anastassiou [12]. A simple example of such mapping, 
used in this reference is  

  1  ,1  ,1  ,1 jgjcjtja +===+=         (19) 

where a, t, c and g are the numbers assigned respectively to 
the bases A, T, C and G. 

A more complete mapping that gives the representation 
of all IUPAC nucleotide classes comprising single nucleo-
tides, doublets, triplets and quadruplets is given by Cristea et 

al. in [13] and applied in [14] to analyze the variability of 
pathogens’ genomes. 

Other relevant criteria to select the numerical values to 
represent genomic sequences are discussed by Akhtar et al. 
[15]: equal magnitudes, equidistance, compactness of the 
representation and easiness to use various mathematical 
tools. Other examples of representations that have been used 
are  

3  ,2  ,1  ,0 ==== gact  in [16], which correspond to a Ga-

lois field assignment, and 

5.0  ,5.0    ,5.1  ,5.1 ==== gcta  

used in [15]. Notice that the latter shows the complementary 
property, in the same way as in the complex assignment (19). 
Rushdi and Tuqan [17] proposed a generic matrix based 
framework that comprises most of the mappings reported in 
the literature as special cases and can allow a number of po-
tential new mappings. 

A representation of genomic sequences by means of qua-
ternions was introduced by Brodzik and Peters in [18], which 
allows using the quaternionic Fourier Transform for pattern 
detection in DNA sequences. 
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A relationship between the numerical assignment to the 
nucleotides and to the amino acids has been established 
through FIR digital filtering in [12]. 

APPLICATIONS OF DSP IN THE ANALYSIS GE-

NOMIC SEQUENCES  

Digital Signal Processing applications to Bioinformatics 
started in recent years in which great attention was put to the 
problem of genomic sequence analysis. Fig. (9) depicts a 
protein-coding DNA region and, in particular, a gene from 
an eukaryotic genome, indicating the introns and exons and 
the points where the gene begins (start codon), its end (stop 
codon), donor splice sites (transition from an exon to an in-
tron), donor splice sites (transition from intron to exon) and a 
CpG island (a region rich in CG pairs that may promote gene 
function). Detecting all these places in a genomic sequence 
is a source of application for DSP techniques. 

One of the main motivations to introduce DSP in this 
field was the find of hidden periodicities or oscillating pat-
terns in the genomic sequences, which were described by 
Trifonov in [19] as 3, 10.5, 200 and 400-base periodicities. 
Among them, the three-base periodicity was found to be a 
characteristic of the protein-coding regions in both prokary-
otic and eukaryotic sequences.  

The 3-periodicity is explained in more detail by Tuqan 
and Rushdi [20] as related to the codon bias. Consider a ge-
nomic sequence analyzed through a rectangular window with 
three-base length, that is displaced along the entire sequence 
in three-base length intervals. The relative number of occur-
rences of base l in the kth (k=0, 1, 2) position of the codon in 
the specific window positions, reveals that there is an unbal-
ance of the abundance of base l in codon position k with re-
spect to the average frequency of occurrence of base l in the 
three possible codon positions. This phenomenon is reflected 
in the frequency spectrum of the DNA sequence as a spectral 
line exactly at N/3 in the DFT, N being the DFT length. 
Another contribution to explain the three-base periodicity 
was made by Sánchez and López-Villaseñor [21] through the 
concept of same-phase triplet clustering, a condition in 
which a triplet appears several times in one phase with no 
interruptions by the two other possible phases. 

Detection of Protein-Coding Regions Through Spectral 

Analysis and the 3-Periodicity Property 

A number of authors have devised algorithms to detect 
protein coding regions in genomic sequences by finding re-
gions exhibiting a three-periodicity. Vaidyanathan and Yoon 
[22] applied to the indicator sequences an anti-notch IIR 
digital filter with a sharp narrow band centred at 0 = 2 /3, 
with the purpose of detecting the period 3 component. They 
showed also lattice and multistage implementations, as well 
as an equivalent DFT approach to this problem. The concept 
that DNA sequences have an 1/f power spectrum that can be 
considered as a noisy background, is used to argue that the 
window length used to calculate the DFT should be long 
enough, typically a few hundreds bp as 351, to a few thou-
sands, in order that the 3-periodicity dominates the noise 
background. A typical result is given in Fig. (10), where 
comparison to a threshold is usually employed to determine 
the detected regions.  

 

 

 

 

 

 

 

 

 
 
Fig. (10). Detection of 3-periodicity regions using DSP. Typical 
plot in which noticeable peaks correspond to coding regions. 

 
Another digital filtering approach, the polyphase Filtered 

DNA spectrum, was presented by Tuqan and Rushdi [23]. 

Fox and Carreira [24] introduced a method in which only 
one digital filter operation is required, followed by a quad-
ratic windowing operation which produces a signal that has 
almost zero energy in the non-coding regions, improving the 
effectiveness of the method.  

 

 

 

 

 

 

 

 

 

 
Fig. (9). Diagram of a protein-coding DNA region and of a gene from an eukaryotic DNA, showing different characteristic points whose 
detection is a source of applications of DSP techniques. 
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The DFT approach to find the 3-periodicity regions in 
genomic sequences has been used by various authors. 
Afreixo et al. [25] analyze several methods for the Fourier 
analysis of symbolic data oriented to DNA sequences, con-
sidering different approaches as the indicator sequences, 
vector and symbolic correlation sequences and spectral enve-
lope.  

Tiwari et al. [26] presented an early study of the applica-
tion of DFT analysis for gene prediction, where an experi-
mental study for a variety of genomic sequences was per-
formed. Another early example can be found in Yan et al. 
[27], based in the format of the Z curve. Anastassiou [12] 
used the DFT and the STFT spectrograms to analyze the 
indicator sequences and introduced an optimized spectral 
content measure to improve the discriminating properties of 
the method. Datta et al. [28] used the DFT to find the 3-
periodicity regions and formalized mathematically some 
properties of the DNA sequences. A fast DFT based gene 
prediction algorithm and a DFT based splicing algorithms 
are presented by these authors in [29, 30].  

Isaac et al. [31] showed FTG, a web server to predict 
genes based on DFT techniques, which allows rapid visuali-
zation by providing an output in GIF format. Stoffer et al. 
[32] presented a study on the local spectral envelope used 
together with a dyadic-tree based adaptive segmentation for 
gene detection. This work considers DNA as a piecewise 
stationary series, and provide a thorough mathematical foun-
dation for its analysis. 

Epps et al. [33] developed an integer period DFT for bio-
logical sequence processing that has some advantages in 
detecting DNA periodicities. Rushdi and Tuqan [34] ana-
lyzed other trigonometric transforms as the discrete cosine 
transform (DCT), the discrete sine transform (DST) and the 
discrete Hartley transform (DHT), to find periodicities in 
DNA sequences. They showed also a unified multirate DSP 
model based on these transforms.  

Berger et al. [35] analyzed the power spectrum of the ge-
nomic sequences using the Warped DFT and the Walsh Ha-
damard Transform to improve the effectiveness in detecting 
periodicities. Rodríguez-Fuentes et al. [36] introduced com-
putational improvements in using the STFT to analyze ge-
nomic sequences. 

The phase of the DFT has been used as well in detecting 
coding regions. Kotlar and Lavner [37] introduced the Spec-

tral Rotation Measure, deriving a method in which the DFT 
phase is computed at the 1/3 frequency for the binary se-
quences for A, T, C, and G. Experimental analysis of the 
genes of S. cerevisiae and other organisms showed a distri-
bution of the phase in a bell-like curve around a central value 
in all four nucleotides, and a nearly uniform distribution in 
the non-coding regions, allowing to define measures to iden-
tify coding regions based on this phase property. Rushdi and 
Tuqan [38] derived the filtered spectral rotation measure 
based on the polyphase filtered DNA spectrum introduced in 
[23], as an alternative measure to detect coding regions. 

Yin and Yau [39] introduced an algorithm called Exon 
Prediction via Nucleotide Distributions (EPND), which 

combines the information from the peak at the N/3 frequency 
in the DFT and the frequencies of occurrence of the nucleo-
tides in the three codon positions (position asymmetry meas-
ure) obtaining an improvement of the effectiveness in the 
detection of coding regions.  

Akhtar et al. [40] showed an optimization of the period-3 
methods taking into account both computational complexity 
and the relative accuracy of gene prediction. In this work, a 
paired and weighted spectral rotation (PWSR) measure pre-
viously defined by the authors was employed. This study 
used as additional information the statistical property of eu-
karyotic sequences by which introns are rich in nucleotides 
‘A’ and ‘T’ whereas exons are rich in nucleotides ‘C’ and 
‘G’.  

At this point, it is worth to mention that other studies like 
that of Xing et al. [41] reveal that the PSD itself does not 
provide sufficient resolving power to detect periodic signals 
in short coding sequences, and consequently other ap-
proaches in addition to the DFT have been used for this pur-
pose. 

Autoregressive modeling of DNA sequences was ad-
dressed by Chakravarthy et al. [42] who presented a model 
in which AR parameters are used as features. The AR resid-
ual error analysis shows a high specificity of coding DNA 
sequences, and the analysis based in AR features was useful 
in distinguishing between coding and non-coding DNA se-
quences. The AR model was very specific to the coding 
DNA sequences, and its specificity increased with increasing 
model orders. Rao and Shepherd [43] addressed the problem 
of detecting 3-periodicity in short genomic sequences based 
on the AR technique, in an effort to take advantage of the 
inherent improved frequency resolution of the AR models. 

Akhtar et al. [44] presented an autoregressive modelling 
for the classification of genomic sequences, that provides a 
compact multi-dimensional feature that characterize the short 
term spectrum. The AR feature was also combined with a 
time-frequency hybrid (TFH) feature composed by the 
PWSR measure and the time-domain average magnitude 
difference function (AMDF). A Gaussian mixture model clas-
sifier was employed and showed improved recognition capa-
bilities. Another approach based on Singular Value Decom-
position was presented by the same authors in [45]. Akhtar 
[46] also presents a comparison between time and frequency 
domain techniques to detect short coding regions and show 
some advantages of the former. 

Cristea et al. [47] address the detection of nucleotide se-
quences using a two step procedure comprising a Principal 
Components Analysis (PCA) stage, which retains only the 
high variance components of the input signal, and a feed-
forward Artificial Neural Network (ANN), which performs 
the prediction. It is shown that the PCA stage performs an 
approximate DFT, passing from the time (space) domain to 
the frequency domain, and the ANN implements the inverse 
DFT, generating the estimate of the next sample of the se-
quence in the time (space) domain. Rodríguez-Fuentes et al. 
[48] used a combination of DSP approaches to detect coding 
regions in genomic sequences and showed the advantages of 
the combined method over the individual ones. Gunawan et 
al. [49] introduced a signal boosting technique to enhance 
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the coding region and improve the likelihood of its correct 
identification. The authors claim that when using this 
method together with ANN classification, the ratio of coding 
to non-coding energy is almost doubled. 

Reading frame identification is an important issue in the 
detection of coding regions. This topic has also received at-
tention from the DSP point of view. Anastassiou [12] and 
Kotlar and Lavner [37] presented algorithms for this pur-
pose, which make use of the phase properties of the 
weighted transformed indicator sequences and showed good 
results. 

Detection of Coding Regions and Other Applications Us-

ing an Information Theory Approach 

The concept of entropy as it is used in Information The-
ory has been employed as well to detect coding regions. 
Román-Roldán et al. [50] defined a complexity measure, 
based on the entropic segmentation of DNA sequences into 
homogeneous domains. Bernaola-Galván et al. [51] intro-
duced a computational approach to finding borders between 
coding and non-coding DNA, in which the sequences are 
described by a 12-letter alphabet, capable of representing the 
differential base composition at each codon position, and the 
borders are searched by means of an entropic segmentation 
through the Jensen-Shannon measure. The method showed to 
be very accurate and does not require prior training.  

Nicorici and Astola [52] extended this approach by ap-
plying recursively an entropic segmentation method on DNA 
sequences using 12 and 18-symbol alphabets to capture the 
differential nucleotide composition in codons as well as the 
differential stop-codon in all phases of both strands. The 
method uses the Jensen-Rényi divergence measure, nucleo-
tide statistics and stop codon statistics in the two DNA 
strands in order to find the borders between the coding and 
non-coding regions. This method does not require prior 
training and showed good results. 

Multihac et al. [53] used a more theoretical information 
theory perspective to interpret the amount of information 
carried by the binding site patterns in the DNA molecules, 
using maximum entropy methods. Benson [54] defined a new 
distance measure for comparing sequence profiles by esti-
mating path lengths along an entropy surface and used it to 
analyze similarities within families of tandem repeats in the 
C. elegans genome. May et al. [55] reviewed the existing 
coding (both source and channel) theoretic methods for 
modelling genetic systems, and present research results for 
Escherichia coli K-12. As a last reference to be cited in this 
area, Hussinia et al. [56] analyzed in a formalized mathe-
matical framework the properties of the languages used in 
DNA computations. 

Relative Merits of Different Approaches to Detect Cod-

ing Regions in Genomic Sequences  

The methods to detect coding regions in genomic se-
quences based in finding regions with a remarkable period-3 
component in the frequency spectrum, constitute a qualita-
tively different approach that is independent from other 
methods (for example statistical) applied so far to solve this 
task. Among the methods based in spectral analysis, the 

DFT-based Spectral Rotation Measure, the Paired and 
Weighted Spectral Rotation (PSWR) measure, as well as the 
paired spectral content (PSC) outperforms the conventional 
1-D frequency-domain methods (i. e. the simple detection of 
the period-3 spectral component in its various forms), pro-
ducing higher values of specificity. By comparison with 
other period-3 based measures, [15] reports that the DFT-
based PWSR measure method showed significant improve-
ments, respectively, over the Spectral Content and Spectral 
Rotation measures in the detection of exonic nucleotides at a 
fixed false positive rate. 

Other classical methods based in the period-3 detection 
like the antinotch filter and the autoregressive (AR) models 
showed lower coding region detection capabilities. Formal 
evaluations made in [15] revealed that the more recent 
AMDF time domain method performs better in terms of ex-
onic nucleotide detection rates than the classical period-3 
methods. The limitations of the classical methods in this case 
have been attributed to their relatively large window size, 
which reduces the time resolution. It has been suggested that 
the optimum window length for period-3 based methods de-
pends on the length of the exon regions and that further im-
provements over the previously discussed methods are ob-
tained using the time-frequency hybrid method (TFH). The 
authors consider that a promising line of development is the 
use of combined methods in which the detection capabilities 
of the combination outperforms that of the individual meth-
ods included, an approach that was used in [48]. 

Other Studies on Genomic Sequences Using DSP Tech-

niques 

There are other characteristics of the genomic sequences 
that have been studied using DSP techniques. One example 
is the general analysis of latent periodicities in genomic se-
quences which appears in Arora et al. [57], where sequential 
averaging is used when the data exhibits cyclostationarity 
properties.  

Cristea [58, 59] studied the behaviour of the phase for 
complex representations of the bases in genomic sequences. 
These papers report the existence of a global helicoidal 
wrapping of the complex representations of the bases along 
the sequences. This is considered as a large scale trend of 
genomic signals. Here other properties are analyzed as well, 
related to the cumulated and unwrapped phase. These theo-
retical concepts were applied by Cristea et al. [60] to identify 
HIV Protease (PR) and Reverse Transcriptase (RT) muta-
tions leading to multiple drug resistance to PR and RT in-
hibitors. 

Bouaynaya and Schonfeld [61, 62] analyze the long-
range power-law correlations detected in eukaryotic DNA, 
introducing new non-stationary methods to study the correla-
tion properties in genomic sequences. They defined a quanti-
tative measure of the degree of randomness (deviation from 
a white Gaussian process) derived from the Hilbert transform 
spectrum. It was shown there that DNA sequences exhibit 
long range correlations and that DNA correlations are much 
more complex than power laws with a single scaling expo-
nent.  
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The Discrete Wavelet Transform has been used to ana-
lyze genomic sequences. A general perspective on the use of 
Wavelets and the DWT in Bioinformatics is presented by 
Liò [63]. An introductory analysis of genomic sequences 
using the DWT was presented by Ning et al. [64], and an 
approach to visualize regular patterns in DNA was intro-
duced by Dodin et al. [65].  

Referring to other various applications, Buchner and Jan-
jarasjitt [66] introduced an algorithm based on processing a 
DNA sequence with the short-time periodicity transform, to 
detect and visualize tandem repeats in DNA sequences, Cris-
tea et al. [67] use DSP methods for trend extraction from sets 
of genomic signals and apply their methodology to study the 
mutations in pathogen genomes, and Akhtar [15] evaluated 
different DSP methods to detect splice sites. 

Sharma et al. [68] studied the repetitive DNA sequences 
using the DFT to identify significant periodicities present 
and providing a complete detection of repeats together with 
interactive and detailed visualization of the spectral analysis.  

Dasgupta et al. [69] combined wavelet transform and 
Hidden Markov Models to identify the location of CpG is-
lands in Human Genome. Another DSP approach for the 
same purpose was introduced by Rushdi and Tuqan [70]. 
Gupta et al. [71] devised an efficient algorithm to detect pal-
indromes in DNA sequences using a signal processing opera-
tion called periodicity transform. Providence [72] applied 
time-varying cellular automata to the problem of finding 
signals in DNA sequences. Zhang and Kinsner [73] em-
ployed a multifractal analysis to DNA feature extraction, 
using the Rényi and Mandelbrot fractal dimension spectra 
for extracting the information contained in the DNA se-
quences. 

Su et al. [74] applied the matched filter algorithm to ana-
lyze the structure of genomic sequences, in particular to lo-
cate and align similar segments between two sequences. An-
drade and Manolakos [75] addressed the application of DSP to 
the electrophoresis process used in DNA sequencing and de-
veloped algorithms for signal background estimation and 
baseline correction.  

Other DSP applications related to studies on proteins can 
be found in Hong and Tewfik [76], Aydin and Altunbasak 
[77], Lazovic [78], Ramachandran and Antoniou [79] and 
D’Avenio et al. [80].  

New Perspectives of DSP Applications Based on the Al-

gebraic Structures of the Genetic Code 

The numerical representation of the genetic code and 
consequently of genomic sequences as has been presented in 
the various references cited in this article are not unique and 
extraordinary. In fact, the genetic codification systems that 
have been used so far, could be non-optimum. The nature of 
the genetic code is now fairly well known and there are 
trends to improve predictions. From the second half of 20th 
century, many attempts have been made to understand the 
internal regularity of the genetic code, based on several 
mathematical or geometrical points of view, by Bashford and 
Jarvis [81], Bashford et al. [82], Beland and Allen [83], 
Crick [84], Eck [85], Epstein [86], Jimenez-Montaño [87], 

Jukes [88] and Hornos and Hornos [89]. In any case the 
Code represents an extension of the four-letter alphabet of 
deoxyribonucleic (DNA) bases: A, G, C, T (U in RNA).  

In recent years, the genetic code algebraic structures have 
been introduced by Sánchez et al. [90-92]. It has been shown 
that this code constitutes a more fundamental concept than a 
“conventional codification system”, as a consequence of its 
biological meaning. Depending on the algebraic operation 
defined in the base set, different structures were obtained. If 
the Watson-Crick base pairing (G:C and A:T) is expressed 
by the classical logical operations with “OR” ( ) and “AND” 
( ) in such a way that the following expressions hold: 
G C=C, T A=C, G C=G and T A=G then a Boolean alge-
bra is obtained which is isomorphic to the Boolean algebra 
defined on the set {0,1}2: G 00, A 01, T 10 and C 11 
[90]. This leads to a binary representation of DNA se-
quences. On the other hand, if the Watson-Crick base pairing 
is expressed by the sum “+”: G+C=C and U+A=C then this 
requirement leads to define an additive group on the DNA 
base set, isomorphic to the complex representation: G 1, 
A exp( i/2), T exp( i) and C exp(3 i/2) [92].  

Notice that here a numerical representation of DNA 
bases refer to their algebraic representation, which means the 
existence of an isomorphism between an algebraic structure 
with a biological meaning defined in the base or codon sets, 
and another one defined in some numerical set. We point out 
that the numerical representations mentioned before in this 
paper are codification (ad hoc) but not algebraic representa-
tions because of the absence of algebraic operations. These 
new models lead to go beyond the genetic code limits to deal 
with the quantitative relationship between DNA genomic 
sequences.  

In particular, the extension of the four DNA base set with 
a dummy variable (D) leads to analogous algebraic struc-
tures, useful to deal with the multiple sequence alignments of 
genomic regions where the gaps are replaced by the symbol 
D [93]. For instance, the additive group defined in the set 
{D, G, A, T, C} is isomorphic to the complex representation: 
D  1, G  exp(2 i/5), A  exp(4 i/5), T  exp(6 i/5) 
and C  exp(8 i/5). The 3-periodicity was detected this way 
in the power spectra of the complex representations of mul-
tiple aligned genomes from HIV-1 [94]. These results 
showed the theoretical possibilities of using generalized DSP 
techniques in the comparative genomics.  

CONCLUSION 

The application of Digital Signal Processing in Genomic 
Sequence Analysis has received great attention in the last 
few years, providing a new insight in the solution of various 
problems like 

• Detection of coding regions in genomic sequences 
based on spectral analysis. 

• Reading frame identification. 

• Detection of periodicities in genomic sequences. 

• Detection of CpG islands. 

• Detection of palindromes. 
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• Finding diverse signals and features in genomic se-
quences. 

• Studies on proteins. 

On the other hand, the main DSP tools that have found 
application in this field are 

• Digital filters (IIR, FIR). 

• Discrete transforms (Fourier, Cosine, Walsh Ha-
damard, Wavelet). 

• Parametric models (mainly autoregressive). 

• Information Theory concepts (entropy).  

• Fractals. 

Other algorithmic tools that have been applied in Bioin-
formatics although not addressed in this paper are considered 
usually as neighbouring areas. This is the case of Hidden 
Markov Models (HMM), Artificial Neural Networks (ANN), 
Support Vector Machines (SVM), Fuzzy Sets and Genetic 
Algorithms.  

A recent development closely related to the impact of 
DSP on Bioinformatics is the new field of Genomic Signal 
Processing (GSP). An early survey on this can be found in 
Zhang et al. [95]. A formal definition of GSP was given by 
Dougherty et al. [96] as “the analysis, processing, and use of 
genomic signals for gaining biological knowledge and the 
translation of that knowledge into systems-based applica-
tions.” Schonfeld et al. [97] remark the current interest in 
using DSP methods to obtain information from genomic and 
proteomic data to build models of molecular biological sys-
tems. This would allow obtaining a deeper understanding of 
the structure and functions of living systems and will help in 
developing new diagnostic tools, therapeutic procedures and 
pharmacological drugs. An application example in cancer 
classification and prediction can be seen in Qiu et al. [98]. 

Finally, it is interesting to notice that Bioinformatics is 
also having an influence on new developments, as can be 
seen in [99, 100]. 
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