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Abstract

We present an algebraic framework for interacting extended quantum systems
to study complex phenomena characterized by the coexistence and competition of
different states of matter. We start by showing how to connect different (spin-
particle-gauge) languages by means of exact mappings (isomorphisms) that we
name dictionaries and prove a fundamental theorem establishing when two
arbitrary languages can be connected. These mappings serve to unravel symme-
tries which are hidden in one representation but become manifest in another.
In addition, we establish a formal link between seemingly unrelated physical
phenomena by changing the language of our model description. This link leads to
the idea of universality or equivalence. Moreover, we introduce the novel concept
of emergent symmetry as another symmetry guiding principle. By introducing the
notion of hierarchical languages, we determine the quantum phase diagram of
lattice models (previously unsolved) and unveil hidden order parameters to explore
new states of matter. Hierarchical languages also constitute an essential tool to
provide a unified description of phases which compete and coexist. Overall, our
framework provides a simple and systematic methodology to predict and discover
new kinds of orders. Another aspect exploited by the present formalism is the
relation between condensed matter and lattice gauge theories through quantum
link models. We conclude by discussing applications of these dictionaries to the
area of quantum information and computation with emphasis in building new
models of computation and quantum programming languages.
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1. Introduction

Unveiling the fundamental principles behind complex behaviour in matter is a
problem at the frontiers of condensed matter physics and embraces cases like high-
temperature superconductors, heavy fermions, and low-dimensional electron liquids.
Generically, describing the structure and behaviour of matter involves studying
systems of interacting quantum constituents (bosons, fermions, spins, gauge fields)
whose fields satisfy the basic laws of quantum mechanics. Nevertheless, the plethora
of complex phenomena exhibited by Nature exceeds our ability to explain them, in
part, because the whole is not necessarily the sum of its parts [1] and thus typical
perturbation-like-theory arguments or standard mathematical techniques are not
appropriate to disentangle its mysteries. In this paper we present a unifying algebraic
framework for interacting extended quantum systems that enables one to study
complex phenomena characterized by the coexistence and competition of various
states of matter.

The emergence of such complex phenomena may be the result of very simple,
undiscovered, principles that conspire against any straightforward explanation.
Nonetheless, we expect that two pillars of modern science, symmetry and topology,
are key guiding principles behind those fundamental laws of emergence. Group
theory and geometry have been fundamental to the physics of the twentieth century
and we count on them to continue playing such a role. Indeed, the notion of
symmetry and its breakings have shaped our current conception of Nature.
Understanding the idea of invariance and its corresponding conservation laws turns
out to be as fundamental as determining the causes that prevent such harmony and
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leads to more complex behaviour. Other kinds of order, not described by broken
symmetries, are possible. For example, quantum orders of a topological nature
distinguish the internal structure of the state without breaking any local symmetry,
and its study is beyond the scope of the present paper [2]. Another example is
provided by the notion of emergent symmetries where, as the name indicates, the
number of symmetries of the state increases as the temperature is lowered, contrary
to the broken symmetry case. These concepts are at the heart of the field of quantum
phase transitions that studies the changes that may occur in the macroscopic
properties of matter at zero temperature (i.e. T¼ 0) due to changes in the parameters
characterizing the system.

In this regard, the development of exact algebraic methods is one of the most
elegant and promising tools toward the complete understanding of quantum phases
of matter and their corresponding phase transitions. Typically, there are no distinct
length or time scales which separate the different competing orders and often these
systems are near quantum criticality which makes their study extremely complicated,
if not impossible, by the traditional techniques, such as standard mean-field or
perturbation theories. The reason which prevents the effective use of these theories
is precisely the key to the successful application of algebraic methods, namely, the
absence of a small parameter for the various complex quantum orderings. In other
words, one cannot systematically apply renormalization group ideas and easily
integrate out irrelevant degrees of freedom. On the other hand, those competing
orders are frequently related by symmetry principles characterizing the critical
behaviour caused by the competing interactions, thus increasing the symmetry group
of the effective low-energy physics.

In the present paper we will be concerned with quantum lattice systems. A
quantum lattice is a composite system identified with Z

Ns where Ns is the total
number of lattice sites, and associated to each lattice site (or mode) i 2 Z

Ns is a
Hilbert space Hi of finite dimension D describing the local modes. The total Hilbert
space, i.e. state space of the lattice, is the tensor product � of the local modes state
spaces, H ¼

N
i Hi, in the case of distinguishable subsystems. (Notice that H may

support inequivalent tensor product decompositions.) Indistinguishability places
an additional constraint on the space of admissible states which manifests itself in
their symmetry properties (e.g. antisymmetric states in the case of fermions) and,
consequently, the physical Hilbert space H is a subspace of

N
i Hi. A pure state of

the system (at T¼ 0) is simply a vector j�i in H, and an observable is a self-adjoint
operator ÔO : H ! H. The dynamical evolution of the system is determined by its
Hamiltonian H. The topology of the lattice, determined by the connectivity of the
graph induced by the interactions in H, is an important element in establishing
complexity. Unless specified, we will always consider regular lattices of coordination
z. In the case of quantum continuous systems we can still use the present formalism
after discretizing, for example, the space coordinates. Going beyond this approach is
deferred for a possible later publication.

Every given physical system is represented by a language which consists of a set of
operators that acts irreducibly on the Hilbert space H. For example, if our system
consists of a collection of interacting electrons a natural language is a set of spin 1/2
fermion field operators. Defining a language amounts to establishing the state space
H used to describe the physical system, while a Hamiltonian written in terms of
that language amounts to setting up the quantum dynamics expected to depict
the phenomenon of interest. Can we connect the different (spin-particle-gauge)
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languages of Nature within a single algebraic framework? The answer to this
question is yes and the key outcome is a set of dictionaries relating the languages
representing the different physical systems. More precisely, by dictionary we mean an
isomorphic (one-to-one) mapping connecting two languages. The existence of
dictionaries provides not only a tool to explore complexity but leads naturally to
the fundamental concept of universality, or equivalence, meaning that different
physical systems display the same behaviour. The concepts of language and
dictionary are introduced in Section 2. Previous to our work there were two
seemingly unrelated examples of these types of mappings: the Jordan–Wigner
(JW) (1928) [3] and Matsubara–Matsuda (MM) (1956) [4] transformations.
We have not only generalized these (SUð2Þ) transformations to any spin, spatial
dimension and particle statistics but have proved a fundamental theorem that
permits the connection of the generators of the different languages which can be
used to describe a given physical problem.

Section 2 starts by defining the concept of a bosonic language. Then we prove our
fundamental theorem and establish the necessary conditions for application of a
given bosonic language to describe the physical system under consideration. The
main result of this section is a proof of the existence of mappings between the
generators of any pair of languages which belong to the same class, i.e. that can be
used to describe the same physical system. The necessary and sufficient condition for
any pair of languages to be connected is that the dimension of their local Hilbert
spaces D be the same. In addition we prove that for each class of languages, there is
at least one that is realized by the generators of a Lie algebra. To complete this
picture, we introduce the notion of hierarchical language and prove that there is at
least one hierarchical language in each class. Those languages are, in general, the
most convenient ones to characterize the different quantum phases of the system
under consideration.

In Section 3, we extend these conclusions to non-bosonic systems by introducing
operators which transmute the modes statistics. These operators have a local and a
non-local component. The non-local part is a trivial generalization of the transfor-
mation introduced by Jordan and Wigner [3] to map spins S¼ 1/2 into spinless
fermions. The local component transmutes the statistics associated to the inter-
change of particles which are sharing the same lattice site i. Adding the transmuta-
tion of statistics to the fundamental theorem completes the characterization of
each class of equivalent languages. In other words, the classes of bosonic languages
defined in Section 2 are expanded in Section 3 to include fermionic, anyonic, or
hybrid (para-) languages.

The most natural choice of local Hilbert space Hi is the one spanned by a single
site (or mode) i basis of dimension D. The possibility to decompose the total Hilbert
space of the problem H into subspaces or subsystems which are not necessarily
single sites opens up the possibility to generate other dictionaries with unforeseen
applications. (Remember that H may support different tensor product decomposi-
tions.) Section 4 expands on this concept and shows the simple case of a dictionary
that uses as local Hilbert space a bond ði; jÞ state space Hi

N
Hj ¼ Hij of dimension

D2 (H ¼
N

ði;jÞ Hij), and which is mapped onto a site Hilbert space of the same
dimension.

Section 5 is devoted to show explicit connections between equivalent languages.
The main purpose of this section is to illustrate through examples the application of
the dictionaries developed in the previous two sections. Out of the many possible
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transformations predicted by our fundamental theorem and the transmutation of
statistics, we selected a few of them which are useful for the applications described in
the later sections. However, it is important to note that the procedure described to
find the mapping connecting two languages in the same class is very straightforward.
In addition, we show that the fractional exclusion statistics algebras emerge naturally
from the present formalism.

Given a model Hamiltonian operator representing a quantum system, we can use
our dictionaries to translate it into another equivalent Hamiltonian written in a
different language. In other words, we can write down the same Hamiltonian
operator in many distinct ways according to the different languages that are included
in the corresponding class. Since some of these languages are naturally associated to
specific physical entities (like spins, particles, gauge fields, etc.), the corresponding
translation provides a rigorous connection between seemingly unrelated physical
systems. This is the main subject of Section 6, where we show examples of completely
different quantum lattice systems described by the same model. Another interesting
aspect of these mappings is the potential to unveil hidden symmetries of the
Hamiltonian, possibly leading to exact or quasi-exact solutions [5]. Sometimes
particular languages allow us to recognize invariant subspaces of our
Hamiltonian. When the action of our Hamiltonian is restricted to an invariant
subspace, the corresponding operator can always be written in a language which is
more elementary than the original one (i.e. it realizes a reduced number of degrees of
freedom). In some cases, this procedure enables one to recognize the hidden
symmetries which lead to the quasi-exact solution of the model considered (i.e. the
model is integrable within the invariant subspace). The quasi-exact solution of the
one-dimensional t-Jz [6] model belongs to this class of problems. It is important
to remark that this quasi-exact solution leads to the exact determination of the
quantum phase diagram and the charge excitations of the t-Jz model.

A new notion beyond Landau’s concept of broken symmetry [7, 8] is the
complementary idea of emergent symmetry, i.e. the fact that new symmetries not
realized in the Hamiltonian describing the system can emerge at low energies. There
are many instances in which the high-symmetry, low-energy, effective theory can be
derived in an exact way, i.e. without appealing to approximate schemes like the
renormalization group. For instance, the exact effective theory (ground state plus
any charge excitations) of the one-dimensional t-Jz model is the S¼ 1/2 XXZ model
[6]. It is well known that the XXZ model has an infinite number of symmetries which
make it exactly solvable by the Bethe ansatz. Another example is provided by the
family of spin Hamiltonians for which the ground state is a product of spin singlets.
This family includes the Majumdar–Ghosh [9–11] model and many other general-
izations [9–15]. These and other simple examples introduced in Section 7 illustrate
the fundamental concept of emergent symmetry which, as we will show, can be used
as a guiding principle to find new states of matter. In a sense that will become clear
later, this concept not only formalizes but also provides systematics to the principle
of adiabatic continuity that P. W. Anderson [8] has advocated as one of the two most
important principles of condensed matter physics (together with the concept of
broken symmetry). States like the Fermi liquid or the band insulator which do not
correspond to any broken symmetry can be characterized by their corresponding
emergent symmetries. In this way one can establish a formal connection between
different phases. For instance, the emergent symmetry of the band insulator is
analogous to the emergent symmetry of the singlet dimer magnetic states. In most
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cases, the notion of emergent symmetry is approximate; however, it still provides a
guiding principle to identify the relevant degrees of freedom, and the nature of the
ground state and low-energy excitations.

Coexistence and competition of different quantum orderings associated to broken
continuous symmetries is one of the main subjects of Section 8. There we show the
fundamental role played by the hierarchical languages for the classification of the
possible order parameters and the calculation of the quantum phase diagram of a
given model. We note that the hierarchical languages are the most natural ones to
provide a unified description of the order parameters characterizing each phase. To
illustrate the procedure we consider the example of the Heisenberg SUðNÞ

Hamiltonians written in different languages. We then take the local SUðNÞ order
parameter and reduce its components according to the different subgroups of SUðNÞ

that can be used to generate an equivalent language (for instance SUð2Þ). As an
illustration, we show that the local order parameter for an S¼ 1 SUð2Þ-spin
Hamiltonian can be either the usual magnetization or a spin-nematic order parameter.
To conclude this section, we show how to obtain the quantum phase diagram of the
bilinear–biquadratic S¼ 1 Heisenberg model (for spatial dimensions d>1) just by
writing the Hamiltonian in the SUð3Þ hierarchical language. It is important to remark
that this zero-temperature phase diagram was only known for semi-classical spins [16,
17]. The fact that there is no calculation involved in the elaboration of this quantum
phase diagram permits the reader to appreciate the power and potential applications
of this algebraic framework.

The formal connection between lattice models in condensed matter physics and
lattice gauge theories of high-energy physics is described in Section 9. There we take
advantage of the existing quantum link models and the connection between spins
and other degrees of freedom, such as gauge fields, which emerges from our algebraic
approach.

In addition to the fascinating field of quantum phase transitions and statistical
mechanics, our algebraic approach can be applied to the field of quantum
information [18]. This new paradigm of information processing takes advantage of
the fundamental laws of quantum mechanics to perform operations which can be
done at least as efficiently (i.e. with polynomial complexity) as with classical devices.
The device that performs the manipulation of information is named a quantum
computer and the basic unit of information is the qubit (i.e. a two-level system). The
quantum computer (a quantum many-body system in disguise) consists of an
isolated set of quantum degrees of freedom which can be controlled and manipulated
at the quantum level to perform the required operations. The different languages
associated with the description of these quantum degrees of freedom are possible
programming languages and indeed may realize different models of quantum
computation. The development of dictionaries connecting these languages is relevant
not only to improve the efficiency of a quantum computer, but also to model and
simulate different physical phenomena. The applications of our algebraic framework
to the fields of quantum information and quantum computing are discussed in
Section 10. There we show how each physical realization of a quantum computer has
a class of languages associated to the realization of the quantum operations. For
instance, if we consider the typical case of interacting S¼ 1/2 spins the most natural
language is the one generated by the Pauli matrices. Hence we can use the dictionary
provided by the Jordan–Wigner [3] transformation to simulate a fermionic system
[19]. In this regard, the purpose of this paper is to generalize this idea to other
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possible realizations of quantum computers. We also discuss the potential applica-
tions of this algebraic framework to the description of recent experiments on bosonic
systems in optical lattices.

Finally, in Section 11 we summarize the main concepts introduced in this paper.

2. General Lie algebraic framework

The notions of Hilbert space and linear maps or operators are central to the
formulation of quantum mechanics [20]. Pure states (wavefunctions) are elements of
a Hilbert space and physical observables are associated to Hermitian (self-adjoint)
operators which act on that space, and whose eigenvalues are selected by a measur-
ing apparatus. The role of linear operators in quantum mechanics is not restricted to
the representation of physical observables. Non-Hermitian operators are very often
used. That is the case, for instance, for the creation and annihilation operators in
second quantization. Moreover, the unitary operator that describes the time
evolution of the system is in general non-Hermitian. These observations simply tell
us that linear operators in general (Hermitian and non-Hermitian) play a more
general role in quantum mechanics since they provide the mathematical language
which is required to describe the dynamical behaviour of our quantum system.

What do we mean by the term mathematical language? In order to provide a
rigorous answer for this question it is important to first determine what is the
mathematical structure associated to the set of quantum operators. Quantum
operators form a complex linear (vector) space under addition and multiplication
by a scalar over the field of complex numbers. If we augment this vector space with
a bilinear operation (product h between two operators), the set forms an algebra.
Quantum mechanics also requires this operation to be non-commutative and
associative. This additional structure makes the set of quantum operators form an
associative algebra. In principle, any operator in this algebra can play a role in the
description of our quantum system. However, one can always select a subset (which
forms a basis) in such a way that any quantum operator can be expressed as a
function of the selected ones. For instance, we can use the Pauli matrices f�x; �y; �zg

�x ¼
0 1
1 0

� �
; �y ¼

0 �i
i 0

� �
; �z ¼

1 0
0 �1

� �
; ð1Þ

to express any quantum operator associated with a spin 1=2. The particular subset of
operators that we choose to express any quantum operator is the mathematical
language that we will use for the quantum description of our system. The elements of
this subset will be called generators of the language.

What are the conditions a given set of quantum operators must satisfy to become
a language? How many different languages can be used to describe a quantum
system? What is the connection between the different languages? What is the most
appropriate language to describe a particular system? What is the relation between
language and symmetry generators? How can languages help us understand the
phenomenon of universality? (It turns out that the notions of language and
universality are closely related whenever a common language can be used to describe
seemingly unrelated physical phenomena.) A great part of this paper is dedicated to
answering these questions. In particular, in this section we introduce the notion
of bosonic language, we establish a formal connection or dictionary between the

Algebraic approach to interacting quantum systems 7



different bosonic languages associated with a given bosonic system, and we also
establish a formal relation between bosonic languages and Lie algebras.

One of the fundamental steps toward a deeper understanding of classical systems
was the recognition that dynamical variables which define the phase space are
generators of continuous transformations. The set of continuous transformations
forms a group and the infinitesimal generators provide a basis for a Lie algebra which
is related to the group. A group is a non-empty set which is closed under an
associative product h, it contains an identity, 1, and all of its elements are invertible.
When the transformations in the group leave the equations of motion invariant the
set becomes a symmetry group for the considered system. A real (complex) Lie
algebra L is a linear space over the field F of real (complex) numbers which is closed
under a non-associative Lie product [ , ] that satisfies (b; c; d 2 L and �; � 2 F):

½�bþ �c; d� ¼ �½b; d� þ �½c; d�

½b;c� ¼ �½c; b�

0 ¼ ½b;½c; d�� þ ½c; ½d; b�� þ ½d;½b; c��: ð1Þ

Whenever a continuous transformation is a symmetry of our physical system, the
infinitesimal generator, which is an element of the corresponding Lie algebra,
becomes a conserved quantity. As a consequence, it is convenient to choose that
quantity as one of the coordinates for the phase space of our system.

In the same way, it may be appropriate to choose the quantum operators
(generators of the language) for the description of a quantum system in such a
way that they simultaneously provide a basis for a Lie algebra. In other words, the
use of symmetry generators for the description of an interacting quantum system
incorporates symmetry as a guiding principle to find the possible solutions. As we
demonstrate below, it is always possible to find a language whose generators form
a basis of a Lie algebra.

We start by considering the bosonic languages of quantum mechanics. To
introduce the definition of a bosonic language, we need to define first the concept
of monoid. A monoid is a triple (M,h, 1) in which M is a non-empty set, h is an
associative product in M, and 1 is an element of M such that hð1; bÞ ¼ b ¼ hðb; 1Þ
for all b 2 M. In this way we see that the concept of monoid generalizes the notion of
group; a group is a monoid all of whose elements are invertible.1 A bosonic language
is a set of operators which can be grouped in subsets Si (associated to each mode)
and satisfy the following conditions:

� Each element c�i of Si (� 2 ½1;Nh�) belongs to the algebra of endomorphisms
for the vector spaceHi over the field of complex numbers C, c�i : Hi ! Hi, and
these elements are linearly independent.

� The elements of Si generate a monoid of linear transformations under the
associative product in the algebra which acts irreducibly onHi in the sense that
the only subspaces stabilized by Si are Hi and 0 (0 is the null vector).

� If c
�
i and c

�
j are elements of different subsets Si and Sj, then

c
�
i c

�
j ¼ hðc

�
i ; c

�
j Þ ¼ hðc

�
j ; c

�
i Þ.

The elements of the sets Si are called generators of the bosonic language.
Combining the associative product and the additive operation in the algebra of

1A monoid can also be defined as a semigroup ðM;hÞ with an element that is the unit for h, i.e. 1.
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endomorphisms of Hi, EndCHi, we can define the non-associative Lie product ½ ; �,
which is called the commutator:2 ½c�i ; c

�
j � ¼ c

�
i c

�
j � c

�
j c
�
i . Then, the last condition can

be reformulated by establishing that the commutator of elements in different subsets
is zero:

½c
�
i ; c

�
j � ¼ 0; if i 6¼ j: ð3Þ

It is also important to notice that the set Si is not necessarily closed under the regular
product (composition) or the Lie product (commutator). If the set Si is closed under
the Lie product, the elements of Si generate a Lie algebra. We will denote the Lie
algebra by Si. In addition, since each generator is represented by an endomorphism
of Hi there is a particular representation �S of Si associated to the bosonic language.
The second condition for a bosonic language implies that �S is irreducible. The third
condition implies that the global Lie algebra associated to the complete set of
generators is the direct sum of local algebras Si, S ¼

L
i Si. Therefore, if the set Si is

closed under the Lie product, we can represent the bosonic language by the
conjunction of the Lie algebra S, and the irreducible representation �S: S ^ �S .
The dimension of �S is equal to the dimension of the local Hilbert space Hi:
dim�S ¼ D. The algebra of endomorphisms for the vector spaceHi is the enveloping
algebra of Si.

The following fundamental theorem shows that two languages are equivalent if
they have in common the dimension D of their local Hilbert space Hi, and D is finite.
In other words, there is always a dictionary connecting both languages, and a given
physical phenomenon can be described with either one. A corollary of the theorem is
that given a particular language one can always find an equivalent one which can be
expressed as S ^ �S, i.e. the operators are generators of a Lie algebra Si in the
irreducible representation �S. In general there are various complex Lie algebras
which can be used to build equivalent languages. The only condition is that they
have to admit an irreducible representation of dimension D. Clearly, the number of
Lie algebras satisfying this condition increases with D.

2.1. Equivalent classes of bosonic languages
The demonstration of the fundamental theorem of this section is a direct

consequence of the classical theorem of Burnside [21, 22], which plays an important
role in the theory of rings. Given the above definitions we can enunciate the theorem
in the following way:

Burnside’s theorem. Let G be a monoid of linear transformations in a finite
dimensional vector space V over an algebraically closed field F, that acts irreducibly

2Commutators (anticommutators) will be represented by square (curly) brackets, i.e.

½A;B� ¼ AB� BA (fA;Bg ¼ ABþ BA). Sometimes we will invoke the generalized deformed commutator

defined as ½A;B�� ¼ AB� exp½i��BA. We may also use ½A;B�� ¼ AB� BA. Canonical commutation

(anticommutation) relations for the corresponding creation and annihilation operators are generically

defined as

½bj�; b
y

j�� ¼ h’�j’�i; ½bj�; bj�� ¼ 0

ðfcj�; c
y

j�g ¼ h’�j’�i; fcj�; cj�g ¼ 0Þ;

where the inner product h’�j’�i between elements of a single-particle basis (�; � 2 ½1;D�) is defined on

Hj. For the sake of clarity and with no loss of generality, we will always assume that the single-particle

basis f’�g is orthonormal, i.e. h’�j’�i ¼ ���, but, of course, this condition can be relaxed.
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on V in the sense that the only subspaces stabilized by G are V and 0. Then G

contains a basis for EndFV over F.

EndFV is an abbreviated notation for the ring of endomorphisms of V over the

field F. In quantum mechanical systems, the field F corresponds to the complex

numbers C. The proof of Burnside’s theorem can be found, for instance, in [21, 22].

An immediate consequence of this theorem is the following one which is the basis for

connecting different bosonic languages:

Fundamental theorem (on the equivalence of languages). Given two bosonic

languages having the same finite dimension D of their local Hilbert spaces, Hi, the

generators of one of them can be written as a polynomial function of the generators

of the other language and vice versa.

Proof: The proof is a trivial application of Burnside’s theorem. We need to notice

first that since the dimension D is the same for both languages, the spaces Hi are also

the same (vector space of dimension D over the field of complex numbers C). Let us

consider the monoid of transformations G1 generated by multiplying the generators

of the first language until the enlarged set becomes closed under the product. The

second condition in the definition of a bosonic language states that G1 acts

irreducibly on Hi. Since the dimension D of Hi is finite, Burnside’s theorem

guarantees that G1 admits a basis for EndCHi. Therefore, any endomorphism in

Hi can be written as a linear combination of endomorphisms in G1. In particular, the

generators of the second language can be written in this way because they belong to

EndCHi. Since each element of G1 is a product of generators of the first language,

this concludes the proof.

This theorem establishes an isomorphism between the algebras of endomorph-

isms associated to each of the two languages. Motivated by this observation we can

introduce the notion of classes of equivalent bosonic languages. We will say that two

bosonic languages belong to the same class if they have the same dimension D of

their local Hilbert spaces Hi. The fundamental theorem establishes the existence of

dictionaries connecting languages within the same class. As a consequence, we can

use any bosonic language in the class to describe a given physical phenomenon. The

natural question which emerges from this result is: What is the most appropriate

language in a given class for describing our particular problem? There is no generic

answer to this question. Nonetheless, the following two corollaries give an important

hint for problems which are invariant under particular transformations, because they

relate the notion of language to the generators of symmetry groups.

Corollary 1: In each class of bosonic languages there is at least one which is the

conjunction of a Lie algebra S and an irreducible representation �S (S ^ �S), i.e.

the generators of the bosonic language are generators of the Lie algebra Si in the

representation �S.

Proof: First, we need to notice that each class is characterized by the dimension D

of the local Hilbert space Hi. Let us consider the group Uð1Þ � SUð2Þ. The Lie

algebra associated to this group is Li ¼ uð1Þ
L

suð2Þ. The generators of Li are

f1i;S
x
i ;S

y
i ;S

z
i g, and

S�i ;S
�
j

h i
¼ i�ij���	S

	
i ; �; �; 	 ¼ x; y; z ð4Þ
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(S�
i ¼ Sx

i � iS
y
i and � is the totally antisymmetric Levi-Civita symbol), and there is

one irreducible representation �D
L of dimension D for each possible value of D.3

Therefore, the set Si ¼ f1i;S
x
i ;S

y
i ;S

z
i g in the representation �D

L fulfils the three
requirements for a bosonic language and operates in a local Hilbert space of
dimension D. Since Si is the set of generators of the Lie algebra Li, making
Si ¼ Li and �S ¼ �D

L , we have proved corollary 1.
The proof of corollary 1 shows that any bosonic problem with a local Hilbert

space of dimension D can be described with SUð2Þ-spins of magnitude (representa-
tion) S ¼ ðD� 1Þ=2. The Matsubara–Matsuda [4] transformation is the simplest
application of this corollary to D ¼ 2. (Indeed, one can construct generalized MM
transformations for any D [23].)

We introduce now another definition which is motivated by the next corollary. A
given bosonic language will be called hierarchical if any local physical operator ÔOi

can be written as a linear combination of the generators of the language, i.e.

ÔOi ¼
XNh

�¼1

	�c
�
i ; ð5Þ

where 	� 2 C, and it is the conjunction of a Lie algebra S and an irreducible
representation �S.

Corollary 2: In each class of bosonic languages there is one which is hierarchical
and its generators are the identity and the generators of suðN ¼ DÞ in the
fundamental representation.

Proof: For each class, with dimension D of the local Hilbert space Hi, we
consider the group Uð1Þ � SUðNÞ with N ¼ D. The generators of the Lie algebra
associated to this group, Li ¼ uð1Þ

L
suðNÞ, are the identity plus the generators of

suðNÞ. Since the fundamental representation �F
L of Li has dimension D ¼ N, the

conjunction of L ¼
L

i Li and this representation is one possible language for
the class considered. Since the dimension of Li is D2, which is the dimension of
the vector space EndCHi, then the generators of Li also form a basis for EndCHi.

The first consequence of corollary 2 is that the generators of any language can
be expressed as a linear combination of generators of a hierarchical language in the
same class. Again, the most trivial example is given by the class of bosonic languages
containing the spin S¼ 1/2 lattice. The generators of any language (like hard-core
bosons or any two-level system) in the same class can be written as a linear
combination of the identity and the Pauli matrices. We will see later that corollary
2 is the key to get a hierarchical classification of the possible broken symmetries of
a given physical Hamiltonian.

We consider now two additional examples that illustrate in detail the contents
of the fundamental theorem and the subsequent corollaries. The first example

3For a d-dimensional lattice with Ns sites, the operator S�j is defined in terms of a Kronecker

product � as

S�j ¼ 1� 1� � � � � S�|{z}
jth

� � � � � 1;

where 1 is the D�D unit matrix, D ¼ 2S þ 1, and S� is a spin-S operator. Thus S
�
j admits a matrix

representation of dimension DNs �DNs .
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corresponds to hard-core bosons with Nf different flavours �. Since they are hard
core only single occupancy is allowed, i.e. the eigenvalues of �nni ¼

P
� �nni� are

either 0 or 1 ( �bbyi�
�bbyi� ¼ 0, and �nni� ¼ �bbyi�

�bbi� is the number operator for the flavour �
at the site i). To distinguish between site and flavour indices we will adopt the
following convention: sites are denoted by Latin indices while the different flavours
(or orbitals within the same site) are labelled by Greek indices. The minimal set Si of
operators that we can use to generate a bosonic language which is appropriate for
hard-core bosons is Si ¼ f1i;

�bbyi�;
�bbi�g with 1 � � � Nf . It can be shown that this set

satisfies the three requirements for a bosonic language. The dimension of the local
Hilbert space for these endomorphisms is D ¼ Nf þ 1. Then by varying the total
number of flavours we can generate all possible values of D. Since each class of
bosonic languages is characterized by the value of D, these hard-core bosons provide
an example of a bosonic language in each class. It is clear that the set Si is not closed
under the Lie product. Therefore, we cannot associate a Lie algebra to this minimal
bosonic language. However, if we increase the number of generators in the set S0

i by

including bilinear forms of the type �bbyi�
�bbi�, then the new set Si ¼ f1i;

�bb y

i�;
�bbi�;

�bbyi�
�bbi�g,

with 1 � �; � � Nf , becomes closed under the Lie producth
�bbi�;

�bbj�

i
¼

h
�bbyi�;

�bbyj�

i
¼ 0;h

�bbi�;
�bbyj�

i
¼ �ij

�
��� � �nni��� � �bbyi�

�bbi�

�
,h

�bbyi�
�bbi�;

�bbyj


i
¼ �ij��
 �bb

y

i�:

8>>>>>><
>>>>>>:

ð6Þ

This means that the extended set Si is now a set of generators for a Lie algebra in a
particular representation. From the commutation relations (equation (6)) we can
conclude that Si is the direct sum of a uð1Þ algebra, generated by the identity 1i, and
an suðNÞ (N ¼ D ¼ Nf þ 1) algebra generated by f �bbyi�;

�bbi�;
�bbyi�

�bbi�g: Si ¼ uð1Þ
L

suðNÞ.
The representation �S is the fundamental representation of suðNÞ (dim�S ¼ N).
Therefore, the new language is a hierarchical one. In Section 5 we give a more
detailed description of this particular language. Here we only want to emphasize the
practical consequences of the fundamental theorem and its corollaries. The first non-
trivial observation is that for each system of interacting multiflavoured hard-core
bosons, there is an equivalent system of interacting SUðNÞ-spins in the fundamental
representation (with minimal non-zero magnitude). For Nf ¼ 1 we recover the well-
known MM transformation [4]. We can see now that this is the generalization to
suðNÞ of the MM transformation. With this example we can envisage the broad set of
applications derived from the fundamental theorem. Another consequence of the
theorem is that any physical theory for a bosonic system can be formulated in terms
of multiflavoured hard-core bosons if the dimension of the local Hilbert space is
finite. The usefulness of this formulation will depend on the particular system as
illustrated in the next sections. Since the second language is hierarchical we can write
down any local physical operator (endomorphism in Hi) as a linear combination of
its generators. Therefore, each of these generators will appear in the Hamiltonian
under consideration with a power not larger than 1. In addition, if the Hamiltonian
has a global symmetry generated by a direct sum of local transformations

L
i T̂Ti, the

symmetry will become explicit by writing the Hamiltonian in terms of a hierarchical
language. The most basic example is the case of MM hard-core bosons (Nf ¼ 1)
in a lattice, described by a Hamiltonian with a kinetic energy term and a
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nearest-neighbour density–density interaction. The expression for the Hamiltonian
in terms of the first language defined by the set Si is

Hxxz ¼ t
X
hi;ji

ð �bbyi
�bbj þ

�bbyj
�bbiÞ þ V

X
hi;ji

�nni �
1

2

� �
�nnj �

1

2

� �
; ð7Þ

where hi; ji refers to nearest-neighbours in an otherwise regular d-dimensional lattice.
Since �bbyi and �bbi are not generators of a Lie algebra, the eventual global symmetries
of Hxxz remain hidden in this particular language. However, if we translate Hxxz to
the second SUð2Þ-spin language using the dictionary provided by Matsubara and
Matsuda [6]

Sz
i ¼ �nni �

1

2
;

Sþ
i ¼ �bbyi ; ð8Þ

S�
i ¼ �bbi;

we can immediately unveil the hidden symmetries of Hxxz. The well-known
expression for Hxxz in terms of the suð2Þ generators (i.e. the equivalent spin
Hamiltonian) is

Hxxz ¼
X
hi;ji

JzS
z
i S

z
j þ

J?

2
ðSþ

i S
�
j þ S�

i S
þ
j Þ: ð9Þ

The magnetic couplings, Jz and J?, are related to the original parameters, t and V ,
by the relations Jz ¼ V and J? ¼ 2t. It is clear from the last version of Hxxz

(equation (9)) that the original model has a global SUð2Þ invariance if V ¼ 2t, i.e.
it is in the isotropic Heisenberg point. The existence of this SUð2Þ-symmetric point
has a very important consequence for the phase diagram of the bosonic model of
equation (7): If there is a charge density wave (CDW) instability at that point, the
SUð2Þ invariance implies that there is also a Bose–Einstein condensation and vice
versa. The order parameters of both phases are different components of a unique
order parameter in the spin language, i.e. the staggered magnetization of the
antiferromagnetic phase (t>0). The z-component of the staggered magnetization
is mapped onto the CDW order parameter for the bosonic gas, while the transverse
component is equivalent to the order parameter for the Bose–Einstein condensation.
Only one of these two phases, which coexist at the SUð2Þ invariant point, is stable
when we depart from the symmetric point in any of both directions in parameter
space (Bose–Einstein condensation if V<2t and CDW if V>2t). In this very simple
example we can see the advantages of using a hierarchical language (suð2Þ in this
case). In the first place, we can immediately recognize the high symmetry points.
Secondly, we can describe an eventual broken symmetry state at those points in
terms of a unified order parameter.4 If we were to use a non-hierarchical language to

4The SOð5Þ theory of Zhang [24] constitutes a particular example of a unified (high-symmetry) order

parameter used to describe the coexistence of more than one phase (in this case superconductivity and

antiferromagnetism). However, contrary to the philosophy of this paper, this description relies on the

assumption of an SOð5Þ symmetry of the low-energy effective theory, an assumption whose validity is

unclear. According to Zhang [24], this high-symmetry effective theory can be obtained by applying the

renormalization group.
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describe the same problem, we would find coexistence of more than one phase at the
high symmetry points. The order parameters of each of those phases are different
components of the unified order parameter that we simply found with the
hierarchical language. These ideas are developed in more detail in Section 8. Here
the aim is to give a flavour of the potential applications of our fundamental theorem.

Using the concept of transmutation of statistics, to be introduced in the next
section, we will extend the notion of classes of bosonic languages to more general
classes containing non-bosonic languages (i.e. languages for which equation (3) is
replaced by a different algebraic condition). The most well-known examples of non-
bosonic languages are the fermionic ones for which the commutator of equation (3)
is replaced by an anticommutator. We will see that there are non-local transforma-
tions which map non-bosonic languages into bosonic ones. In this way, the
simultaneous application of these transformations and the fundamental theorem
provides the natural path toward a unification of the different languages used to
describe quantum systems.

3. Transmutation of statistics

In the previous section we have shown that two different bosonic languages can
be connected (i.e. there is a dictionary connecting the two languages) if they have the
same dimension of their local Hilbert spaces D. However, we know that the bosonic
languages do not exhaust all the possible languages of quantum mechanics. The best-
known example is the fermionic language, whose creation and annihilation operators
obey a closed set of anticommutation relations. There are many other examples of
non-bosonic languages that we address below.

Is it possible to connect these non-bosonic languages to the bosonic ones
introduced in the previous section? A positive answer to this question is given in
this section by introducing operators which transform commutators into anti-
commutators and vice versa. These operators have a local (related to the generalized
Pauli exclusion principle – see Section 5.4) and a non-local (related to the exchange
statistics) component. The local component is derived at the beginning of this
section, while the non-local one is introduced in the second part. We will see that
Abelian anyonic statistics can also be achieved by introducing a continuous
parameter in these transformations. (Non-Abelian statistics is beyond the scope of
the present paper.) The transmutation of statistics together with the fundamental
theorem establish the framework needed to classify the classes of equivalent
languages. This means that to describe a given physical problem one can use the
original language or any other belonging to the same class.

Before proceeding, we would like to mention that it seems as if there are two
unrelated notions of anyonic statistics in the literature: one tied to quantum
mechanics in first quantization in the coordinate representation, and another derived
within the framework of quantum field theory. In both cases the original motivation
to introduce such particles was basically as an inherent possibility in the kinematics
of (2+1)-dimensional quantum mechanics and clearly the concepts, if correctly
implemented, should be equivalent but are not (B. Abdullaev, C. D. Batista, and
G. Ortiz; unpublished work). In this paper, our anyon notion is consistent with the
one developed in quantum field theory where the exclusion properties are preserved
under statistical transmutation. In this way, fermions can be kinematically trans-
formed into hard-core bosons but not into canonical bosons.

C. D. Batista and G. Ortiz14



3.1. Fermionic languages
In addition to bosons, the other type of fundamental particles found in Nature

are the fermions. We have seen that the notion of bosonic languages is closely related
to the concept of Lie algebras, since for each class of bosonic languages there is at
least one language whose elements are generators of a Lie algebra. However, the
same cannot be done for fermions. This can be easily seen by noticing that the third
condition for a bosonic language (see equation (3)) is not valid in general for
fermions. In addition, the main consequence of the third condition for a bosonic
language is that the global Lie algebra is the direct sum of the local ones associated
to each subset Si. The generalization of these concepts to fermionic languages can be
done by introducing the notion of Lie superalgebras (see for instance [25]). The
fermionic languages are associated to Lie superalgebras in the same way the bosonic
languages are associated to Lie algebras. Therefore, to give a general definition of a
fermionic language we should first introduce and explain the notions of Grassman
algebras, which are associative superalgebras, and Lie superalgebras. Since this is
beyond the scope of the present paper, we will only consider the fermionic language
generated by the canonical creation and annihilation operators

fci�; cj�g ¼ fcyi�; c
y

j�g ¼ 0;

fci�; c
y

j�g ¼ �ij���;

(
ð10Þ

and other languages obtained by imposing particular local constraints on the
canonical fermions. These generators, together with the identity, generate the
Heisenberg Lie superalgebra. In analogy to the bosonic languages (see equation (3)),
the Lie product (in the superalgebra) of two elements acting in different sites (different
subsets Si, Sj) is zero. Thus, instead of having a direct sum of local Lie algebras like in
the bosonic case, we have a direct sum of local Lie superalgebras. In the case of
canonical fermions the local Lie superalgebras are Heisenberg superalgebras.

3.2. Local transmutation
We will start by considering multiflavour fermions cyi� (� 2 ½1;Nf �) which satisfy

the canonical anticommutation relations (equation (10)). Other types of fermions
usually considered in physics can be derived from the canonical ones by imposing
particular constraints. For this reason, the transformations derived for canonical
fermions can be extended to these other fermionic algebras by incorporating those
constraints. This procedure is illustrated with different examples in the next section.

The canonical fermions can be transformed into bosons ~bbyi� which are hard-core
in each flavour (the eigenvalues of ~nni� ¼ ~bbyi�

~bbi� are either 0 or 1), i.e. two or more
bosons of the same flavour are not allowed on the same site, but two of different
flavours are permitted. In the previous section we have shown that a physical theory
for objects obeying commutation relations (Lie brackets) can be formulated in terms
of a bosonic language. By the present connection we will be able to extend this
statement to fermions (or anyons, in general) through a transmutation of statistics.
To this end, we need to define a different type of multiflavoured hard-core boson ~bbyi�
satisfying the following commutation relations

½ ~bbi�;
~bbj�� ¼ ½ ~bbyi�;

~bbyj�� ¼ 0;

½ ~bbi�;
~bbyj�� ¼ �ij���ð1� 2 ~nni�Þ ; ½ ~nni�; ~bb

y

j�� ¼ �ij��� ~bb
y

i�;

(
ð11Þ
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which implies f ~bbi�;
~bbyi�g ¼ 1. The Lie algebra generated by these bosonic operators is

L ¼
L

�;i suð2Þ, i.e. each set f ~bbyi�;
~bbi�; ~nni� � 1=2g generates an suð2Þ algebra.

To show that these bosons (hard-core in each flavour) can be expressed as a
function of canonical fermions, one defines

cyj� ¼
~bbyj�T̂T

y

j�; ð12Þ

where T̂Tj� ¼ exp½ip
P

�<�
~nnj�� is the local transmutator, and we are assuming a

particular ordering for the flavour index �. From the expression for T̂Tj� it is clear that

T̂T
2
j� ¼ I; T̂T

y

j� ¼ T̂Tj�: ð13Þ

It is straightforward to verify that the cj-operators satisfy local canonical anti-
commutation relations (equation (10) when i ¼ j).

In this way we have established a mapping between fermions and bosons which
are operating locally (on a given orbital or mode j). In other words, we have
related the subset Sj ¼ f ~bbyj�;

~bbj�; ~nnj� � 1=2g of local generators of a bosonic language
to the subset ŜSj ¼ fcyj�; cj�; n̂nj� � 1=2g of local generators of canonical fermions
(n̂nj� ¼ cyj�cj�).

3.3. Non-local transmutation
So far, we have only transmuted the commutation relations between generators

which belong to the same site or subset Si. For commutation relations of two
generators of different sites we need to introduce a non-local operator Kj. Jordan and
Wigner [3] were the first to introduce such an operator in connection to their one-
dimensional (d ¼ 1) transformation between spins S¼ 1/2 and spinless fermions.
The so-called kink operator that they introduced is

K1d
j ¼ exp ip

X
l<j

�nnl

" #
; ð14Þ

where �nnl is the number operator for spinless fermions at the site l. It is clear that for
multiflavour canonical fermions we only need to replace �nnl by n̂nl ¼

P
� n̂nl�, where �

denotes the flavour. Therefore, equation (12) must be replaced by

cyj� ¼
~bbyj�T̂T

y

j�K
y

j ¼ ~bbyj�K
y

j�; ð15Þ

where Kj ¼ K1d
j for a one-dimensional lattice. Even though this is a non-local

operator, it does not introduce long-range interactions if the model has only short-
range terms.5 In other words, a given one-dimensional Hamiltonian can be written in
terms of bosons, fermions or anyons, and the interactions remain short range for all
cases. This is a special characteristic of one dimension. The only consequence of
changing the statistics of the particles is a change of the short-range interactions in the
original basis. Therefore, the concept of particle statistics in one dimension becomes
irrelevant since any physical system can be described with a bosonic language without
changing the short-range character of the interactions [26, 27].

The next step is the generalization of Kj to higher dimensions. This has been done
by Fradkin [28, 29] and Y. R. Wang [30], who considered the generalization of the

5If the system has long-range interactions the dimension of the lattice becomes irrelevant, since any

d-dimensional system can be described in a lower dimensional lattice at the cost of including long-range

interactions.
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traditional JW transformation for the two-dimensional case, and Huerta and Zanelli
[31] and S. Wang [32], who did the same for higher dimensions. We will see that, in
the same way that we did for the one-dimensional case, these generalizations can be
extended to transform canonical fermions into bosons and vice versa. The general-
ization given by Fradkin [28, 29] for the two-dimensional case is

K2d
j ¼ exp½i

X
l

aðl; jÞ �nnl�: ð16Þ

Here, aðl; jÞ is the angle between the spatial vector l� j and a fixed direction on the
lattice, and aðj; jÞ is defined to be zero (see figure 1). Again for the case of
multiflavour canonical fermions we just need to replace �nnl by n̂nl. We comment that
the one-dimensional kink (or string) operators constitute a particular case of
equation (16) with aðl; jÞ ¼ p when l < j and equals zero otherwise.

A general procedure for finding the string operators in d dimension has been
given by Wang [32] in the way we describe below. Following the one- and two-
dimensional cases, the expression proposed for the operator Kj is

Kj ¼ exp i
X
l

!ðl; jÞ �nnl

" #
; ð17Þ

where !ðl; jÞ is a function to be determined by imposing the transmutation of
statistics. It can be shown that this is equivalent to the antisymmetric condition

exp½i!ðl; jÞ� ¼ � exp½i!ðj; lÞ�; if l 6¼ j ð18Þ

!ðl; lÞ ¼ 0: ð19Þ

The simplest solution for a one-dimensional lattice is

!ðl; jÞ ¼ p�ðj� lÞ ð20Þ

where �ðxÞ is the one-dimensional step or Heaviside function. This is the solution
found by Jordan and Wigner (see equation (14)). The solution introduced in [28, 29]
for the two-dimensional case corresponds to

!ðl; jÞ ¼ aðl; jÞ: ð21Þ

However, it has been pointed out by Wang [32] that this is not the only possible
solution since

!ðl; jÞ ¼ p½�ð j1 � l1Þð1� �l1j1Þ þ�ð j2 � l2Þ�l1j1 �; ð22Þ

Figure 1. Schematics of the geometry and function describing one of the possible ways
of defining the statistical transmutator K2d

j in two dimensions. The dotted line
represents a fixed direction on the lattice.
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with l ¼ l1e1 þ l2e2 and j ¼ j1e1 þ j2e2, also satisfies equations (18) and (19). The
advantage of this solution is that its generalization to higher dimensions is straight-
forward (l ¼

P
� l�e�, and � 2 ½1; d�). For instance, in three dimensions we have

!ðl; jÞ ¼ p½�ð j1 � l1Þð1� �l1j1Þ

þ�ð j2 � l2Þ�l1j1ð1� �l2j2 Þ

þ�ð j3 � l3Þ�l1j1�l2j2 �: ð23Þ

In the next section we will see that, for d>1, the operator Kj introduces non-local
interactions in the new representation of the original Hamiltonian. A phase factor of
the form exp½i

R y
x A � ds� appears in between the product cyxcy of the kinetic energy-

like terms. The field operator AðxÞ is defined by

AðxÞ ¼
X
l

r!ðx; lÞ �nnl; ð24Þ

where r represents the lattice gradient (�; � 2 ½1; d�)

r�!ðx; lÞ ¼ !ðxþ e�; lÞ � !ðx; lÞ: ð25Þ

It was shown [28, 29] that AðxÞ is the vector potential of a generalized Chern–Simons
construction for a lattice. The field strength F�� associated to this vector potential is
the lattice rotor

F��ðxÞ ¼ r�A�ðxÞ � r�A�ðxÞ;

F0�ðxÞ ¼ r0A�ðxÞ � r�A0ðxÞ; ð26Þ

where r0 is the time derivative and A0ðxÞ is a scalar field. Since A0 is a Lagrange
multiplier field for the Chern–Simons Lagrangian, it can be integrated out to get the
Gauss law

�nnl ¼
1

p
F12ðlÞ: ð27Þ

This relation imposes the constraint between charge and flux giving rise to the vector
potentialA. The physical interpretation is that there is a flux attached to each particle.
In this way the phase associated to the original particle statistics is now generated by a
mechanism based on the Aharonov–Bohm effect. It can be seen that the ! function
introduced by Fradkin [28, 29] (equation (21)) generates a vector potential A which is
solution of equation (27). On the other hand, the ! function proposed by Wang [32]
cannot be associated to any flux since the total change of ! on any closed loop
vanishes (or equivalently

H
A:ds ¼ 0). This result suggests that the vector potential

can be eliminated by a gauge transformation. However, it is impossible to find a gauge
transformation which does not change the commutation relations of the particles.
The advantage of the solution given by Wang [32] is the straightforward general-
ization to higher spatial dimensions. Fradkin’s approach (two-dimensional) [28, 29]
provides an alternative formulation of the original problem and has stimulated
original methods to find relevant solutions in quantum Hall systems. The general-
ization of his approach to three dimensions [31] is more involved since it requires an
extended Hilbert space and non-Abelian gauge transformations.

Summarizing, we have shown that one can write down the generators of the
canonical fermionic algebra as an operator function of hard-core bosons and then as
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a function of the generators of any Lie group having an irreducible representation of
dimension given by the dimension D of the local Hilbert space. If we are dealing with
canonical fermions, the dimension D is equal to 2Nf . However, we can obtain other
values of D by imposing different constraints on the fermionic occupation numbers
like in the bosonic case [23] (see the next section). This is a common situation for
strongly correlated problems where part of the Hilbert space is eliminated when
deriving effective low-energy theories. For instance, the Hilbert space of the effective
low-energy theory for the Hubbard model (t-J model) has the constraint of no
double-occupancy and therefore D is equal to 3.

3.4. Anyons
Similarly, one can extend this idea of transmutation of statistics to particles

satisfying general equal-time anyonic canonical commutation relations defined by an
angle �. To this end we need to generalize the transmutators to any statistical angle
0 � � � p:

T̂T
�
j� ¼ exp i�

X
�<�

nj�

" #
;

K�
j ¼ exp i

�

p

X
l

!ðl; jÞ nl

" #
: ð28Þ

We have seen that there are many types of bosonic particles. For each type we will
get a different type of anyon after statistical transmutation. For instance, if we start
from canonical bosons (ni� ¼ byi�bi�)

½bi�; bj�� ¼ ½byi�; b
y

j�� ¼ 0;

½bi�; b
y

j�� ¼ �ij��� ; ½ni�; b
y

j�� ¼ �ij���b
y

i�;

(
ð29Þ

by transmutation of the statistics

ayj� ¼ byj�ðT̂T
�
j�Þ

y
ðK�

j Þ
y
¼ byj�ðK

�
j�Þ

y; ð30Þ

one gets anyons obeying commutation relations

½aj�; aj�� ¼ ½ayj�; a
y

j�� ¼ 0;

½aj�; a
y

j�� ¼ 1;

(
ð31Þ

and deformed commutation relations if both anyonic operators correspond to
different sites or flavours. To write down those commutation relations we need first
to define a particular ordering for the combined site and flavour indices.6

In this way, for ðj; �Þ > ði; �Þ

½ai�; aj��� ¼ ½ayi�; a
y

j��� ¼ 0;

½ayj�; ai��� ¼ 0:

(
ð32Þ

6Suppose that we want to establish a particular ordering for two-flavoured particles (� ¼";#) in a

finite Ns ¼ Nx�Ny two-dimensional lattice. A possible ordering from ðj; �Þ to an ordered set of integers

I could be

I ¼ j1 þ ð j2 � 1ÞNx þ
1

2
� �

� �
NxNy;

where � ¼ 1
2
ð� 1

2
Þ for � ¼" ð#Þ.
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The requirement of an ordering for the indices comes from the fact that
½A;B�� ¼ � exp½i��½B;A���. So unless exp½i�� is a real number (i.e. bosons (� ¼ 0) or
fermions (� ¼ p)), we need to define a particular index ordering. It is in this ordering
that the intrinsic many-body character of the these particles is encoded. In this simple
example we can see that the Pauli exclusion principle and the phase associated to the
exchange of two particles with different indices (flavour or site), are two distinct and
independent concepts. The exclusion behaviour is determined by the local commu-
tation relations between operators associated to the same site and flavour. Since these
commutation relations are not changed by the transmutation, equation (30), the
exclusion properties are preserved when we change the statistics of the particles. In
our example we can create any number of anyons in the same orbital and flavour
because the local commutation relations are the same as those for canonical bosons.
However, the deformed commutation relations of equation (32) indicate that the
result of exchanging two anyons with different indices is multiplication by a phase
factor exp½i��. It is this second aspect, not related to the exclusion properties, that
decides whether the particles are bosons, fermions, or anyons.

Now we will consider another example of transmutation from bosons to anyons.
In this case, we will take the multiflavoured hard-core bosons defined by the
commutation relations equation (11). The particles obtained after the transmutation
of the hard-core bosons will be called type I hard-core anyons

~aayj� ¼
~bbyj�ðT̂T

�
j�Þ

y
ðK�

j Þ
y
¼ ~bbyj�ðK

�
j�Þ

y; ð33Þ

with

T̂T
�
j� ¼ exp i�

X
�<�

~nnj�

" #
;

K�
j ¼ exp i

�

p

X
l

!ðl; jÞ ~nnl

" #
: ð34Þ

Like in the previous example, the local commutation relations are preserved
( ~nnj� ¼ ~aayj� ~aaj�, ~nnj ¼

PNf

�¼1 ~nnj�)

½ ~aaj�; ~aaj�� ¼ ½ ~aayj�; ~aa
y

j�� ¼ 0;

½ ~aaj�; ~aa
y

j�� ¼ 1� 2 ~nnj�:

(
ð35Þ

In this particular case, since there is a hard-core condition ~aayj� ~aa
y

j� ¼ 0, the operators
also satisfy the following local anticommutation relations

f ~aaj�; ~aaj�g ¼ f ~aayj�; ~aa
y

j�g ¼ 0;

f ~aaj�; ~aa
y

j�g ¼ 1:

(
ð36Þ

Thus, the local anticommutation relations are also preserved under statistical
transmutation. Clearly, equations (36) are the local anticommutation relations for
canonical fermions. This is not surprising since the multiflavoured hard-core bosons
defined by equation (11) can be transmuted into canonical fermions (see equation
(15)). For the commutation relations involving operators with different indices, we
have to define an index ordering like in the previous example. For ðj; �Þ > ði; �Þ

½ ~aai�; ~aaj��� ¼ ½ ~aayi�; ~aa
y

j��� ¼ 0;

½ ~aayj�; ~aai��� ¼ 0:

(
ð37Þ
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� ¼ 0 corresponds to bosons which are hard-core in each flavour (see equation (11)),
and � ¼ p to canonical fermions, i.e. ~aayj�ð� ¼ 0Þ ¼ ~bb

y

j� and ~aayj�ð� ¼ pÞ ¼ cyj�. For any
statistical angle � one can put up to a single particle per mode and flavour (i.e, the
particles are hard-core in each flavour and, therefore, satisfy the Pauli exclusion
principle). It is evident in general that the transmutation of the statistics does not
change the local commutation relations and therefore the exclusion rule. In a later
section we will show how to generalize the exclusion principle to accommodate up to
p particles per single quantum state. In particular, we will see that the paraparticles,
which obey this generalized exclusion principle, can be obtained from particles which
are partial transmutations of canonical bosons (to obtain the parabosons) or
fermions (to obtain the parafermions).

The last example of anyonic particles corresponds to the transmutation of the
hard-core bosons defined by the commutation relations equation (6). This concept
will be useful for the generalized JW transformations [23] that we introduce in the
next section (these particles will be called type II hard-core anyons or simply JW
particles)

�aayj� ¼
�bbyj� T̂T

�
j�

� �y
K�

j

� �y
¼ �bbyj� K

�
j�

� �y
; ð38Þ

with

T̂T
�
j� ¼ exp i�

X
�<�

�nnj�

" #
;

K�
j ¼ exp i

�

p

X
l

!ðl; jÞ �nnl

" #
: ð39Þ

Since the local commutation relations are preserved, we have ( �nnj� ¼ �aayj� �aaj�,
�nnj ¼

PNf

�¼1 �nnj�)

½ �aaj�; �aaj�� ¼ ½ �aayj�; �aa
y

j�� ¼ 0;

½ �aaj�; �aa
y

j�� ¼ 1� �nnj� � �nnj:

(
ð40Þ

Again, we need to define an index ordering for the deformed commutation relations
involving operators with different indices. For ð j; �Þ > ði; �Þ

½ �aai�; �aaj��� ¼ ½ �aayi�; �aa
y

j��� ¼ 0;

½ �aayj�; �aai��� ¼ 0:

(
ð41Þ

Notice that, formally, in all cases we could have considered different angles �
instead of a single one in the expressions for the local, T̂T �

j� (e.g. �1), and non-local, K�
j

(e.g. �2), transmutators, although we do not see how physically relevant this general
situation could be.

It is important to stress at this point when the exchange statistics property of
the particles (i.e. the property attached to the non-local part of the transmutator)
becomes relevant in the description of a particular physical system. It is clear that
whenever the system Hamiltonian does not permute particles on different sites i and
j, then K�

j becomes a symmetry and the Hamiltonian is invariant under particle
exchange statistics. This is the case in many one-dimensional problems (e.g. the XXZ
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model of equation (7) or the Hubbard model) and in special two-dimensional
problems such as the Uð1Þ gauge magnet that we expand on in Section 9.1.

Figure 2 summarizes the fundamental notions of languages and dictionaries
connecting them, concepts developed in Sections 2 and 3.

4. Hilbert space decomposition

We have seen in the previous section that the only condition to establish an
isomorphism between two different languages is that the dimension of their local
Hilbert spaces be equal (see figure 2). Notice, however, that the choice of local Hilbert
space Hi depends upon the particular decomposition of the global Hilbert space H.
When we work on a lattice, the most natural decomposition is the one whereHi is the
Hilbert space associated to each site (or mode). This is the decomposition that we
have adopted in our previous examples. Another possible decomposition could be the
one for which Hi corresponds to the Hilbert space of a bond (i.e. two sites instead of
one). In general, there is no restriction in the way one can partition H.

To be more concrete let us consider a S¼ 1/2 ladder system (see figure 3). The
global Hilbert space of the system can be decomposed into the direct product of the
local Hilbert spaces on each rung. By doing so, the dimension of Hi is enlarged from
D ¼ 2, for the sites decomposition, to D ¼ 4. According to our previous results, the
change of D opens up the possibility of new mappings between languages. For
instance, D ¼ 4 is the dimension of the on-site Hilbert space for canonical S¼ 1/2
fermions on a lattice. Therefore, the S¼ 1/2 spin ladder can be mapped onto a
system of electrons on a linear chain (see figure 3). To be more explicit, a possible
isomorphic mapping is (see equation (91) for a different mapping)

cyj" ¼
ffiffiffi
2

p
Sz
j2ðS

þ
j1 þ Sþ

j2ÞK
y

j ;

cyj# ¼
ffiffiffi
2

p
ðS�

j2 � S�
j1ÞS

z
j2K

y

j : ð42Þ

=
Transmutation of statistics

Relation between modes: 

+

+ LanguageNonlocalityLocality

=
D             =            D

Language A                         Language B

Dictionary:

A                                       B
dim of the local Hilbert spaces are equal

Set of operators S

Statistics between modesA set of operators S acting irreducibly on H

H DFor each mode (local Hilbert space     of dim    ): 

Figure 2. What is a language, and when can two languages be connected? Summary of
the main content of our fundamental theorem in conjunction with the concept of
transmutation of statistics.
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Equation (42) can be inverted to obtain the expression for the spin operators as
a function of the fermionic creation and annihilation operators

Sþ
j1 ¼

1ffiffi
2

p ½ð1� 2n̂nj#Þc
y

j"Kj þ ð1� 2n̂nj"ÞK
y

j cj#�;

S�
j1 ¼

1ffiffi
2

p ½Ky

j cj"ð1� 2n̂nj#Þ þ cyj#Kj ð1� 2n̂nj"Þ�;

Sz
j1 ¼

1
2 ½n̂nj" � n̂nj# þ cj#cj" þ cyj"c

y

j#�;

8>>><
>>>:

Sþ
j2 ¼

1ffiffi
2

p ½cyj"Kj þ Ky

j cj#�;

S�
j2 ¼

1ffiffi
2

p ½Ky

j cj" þ cyj#Kj �;

Sz
j2 ¼

1
2
½n̂nj" � n̂nj# � cj#cj" � cyj"c

y

j#�:

8>>><
>>>: ð43Þ

In this way we have mapped spin operators acting on a given bond onto fermionic
operators acting on the corresponding site (see figure 3). This dictionary will be
exploited in Section 6 to map ladder S¼ 1/2 magnets onto one-dimensional
Hubbard-like models.

5. Bridging the languages of quantum mechanics

The purpose of this section is to illustrate with examples the algebraic framework
developed in the previous three sections. In the first part we describe different SUðNÞ

and SOðNÞ spin-particle mappings which are a direct consequence of our funda-
mental theorem. In these cases we are connecting bosonic languages and, therefore,
it is not necessary to transmute the statistics. In contrast, in the second part we
describe the generalization of the JW transformation where the transmutation of the
statistics plays a fundamental role. In this case, we connect the different representa-
tions of SUð2Þ-spins to constrained fermions [23]. We devote the third part of this
section to show how the fractional exclusion statistics algebras emerge from the
present formalism in a natural way. We close the section showing that the notion of
parastatistics introduced by Green [33] is associated to partial transmutations of the
canonical bosonic and fermionic languages. In Section 9 we connect the gauge-field

j

1

2

j+1 j+2 j+3 j+4

i+1i i+2 i+3 i+4

jBond Site i

1

2

Figure 3. Mapping between an S¼ 1/2 ladder and a fermionic linear chain. In this case,
bonds (rungs) are mapped onto sites.
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to spin languages through the quantum link model relation. In this way one
envisages formal relations between all the different languages used to describe the
properties of quantum systems. In the course of this section we will see that many
well-known transformations are particular examples of applications of both the
fundamental theorem and the transmutation of statistics.

5.1. SUðNÞ spin-particle mappings
5.1.1. Schwinger–Wigner bosons

The connection between the Schwinger–Wigner bosons and the generators of
suðNÞ in different irreducible representations results from a simple application of the
fundamental theorem. We will consider a system of Schwinger–Wigner bosons with
Nf ¼ N different flavours (� 2 ½1;N�). These bosons obey canonical commutation
relations

½b̂bi�; b̂bj�� ¼ ½b̂byi�; b̂b
y

j�� ¼ 0;

½b̂bi�; b̂b
y

j�� ¼ �ij���;

8<
: ð44Þ

and are characterized by the constraint

XN
�¼1

b̂byj�b̂bj� ¼ M; ð45Þ

which sets the dimension of the local Hilbert space Hj, D ¼ NþM�1
M

� �
. For N¼ 2 we

get D ¼ M þ 1, which means that we can get any value of D by varying M. We also
know that the Lie algebra suð2Þ has one irreducible representation for each value of
D. In this case D ¼ 2S þ 1, where S is the spin of the representation. According to
the fundamental theorem, if 2S þ 1 ¼ M þ 1 we can write down the generators of
suð2Þ (Sx;Sy;Sz) in the S ¼ M=2 representation as a polynomial function of the
Schwinger–Wigner bosons and vice versa. The explicit form of these relations is the
well-known connection between SUð2Þ-spins and the two-flavour Schwinger–Wigner
bosons (� ¼ 1; 2)

Sz
j ¼

1

2
ðb̂byj1b̂bj1 � b̂byj2b̂bj2Þ;

Sþ
j ¼ b̂byj1b̂bj2;

S�
j ¼ b̂byj2b̂bj1: ð46Þ

According to the fundamental theorem the inverse transformation also exists.
The creation and annihilation operators for Schwinger–Wigner bosons b̂byi�; b̂bi�
can be written as a polynomial function of Sx

j ;S
y
j ;S

z
j . However, since the

Schwinger–Wigner bosons are not directly associated to the description of any
physical system the inverse transformation is, apparently, not very useful. For
this reason, the only application of the Schwinger–Wigner bosons is to provide a
different framework for solving spin Hamiltonians. For instance, it is possible to
approximately solve the isotropic Heisenberg model by a mean-field approxima-
tion which preserves the SUð2Þ invariance of the model. This symmetry is
violated in the usual spin-wave approximation where the spins are described by
Holstein–Primakoff bosons. Through this simple example we see yet another
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important advantage of having different languages to describe the same problem:
different languages provide different frameworks to obtain approximate or exact
solutions. Physics provides innumerable examples of applications of this state-
ment. It is not our intention to enumerate all of them in this paper, but to
show the operative way to build the dictionaries connecting all of those different
languages.

To find the connection between the generators of the suðNÞ algebra and the
Schwinger–Wigner bosons we just need to consider the general case of arbitrary
number of flavours. To simplify the analysis we can start by considering the
minimum value of M, i.e. M ¼ 1 (i.e. the fundamental representation). In this case
the dimension of the local Hilbert space is D ¼ N

1

� �
¼ N. Since N is also the

dimension of the fundamental representation of suðNÞ, the fundamental theorem
states that the generators of suðNÞ can be written as a function of the Schwinger–
Wigner bosons. Again, this connection is very well known and can be explicitly
written as

S
��
ðjÞ ¼ b̂byj�b̂bj�: ð47Þ

Using equations (44) and (45) we can verify that the S
��s are the generators of

the suðNÞ algebra in the fundamental representation, i.e. they satisfy the following
commutation relations

½S
��0

ðiÞ;S��
0

ðjÞ� ¼ �ij½��0�S
��0

ðjÞ � ���0S
��0

ðjÞ�; ð48Þ

and operate in an N-dimensional vector space. As in the N ¼ 2 case, by considering
larger values of M we obtain higher-order representations of suðNÞ. The relation
between the suðNÞ generators and the Schwinger–Wigner bosons is the one given by
equation (47) independently of the representation.

5.1.2. Fundamental irreducible representation of suðNÞ and Jordan–Wigner particles
The fundamental (quark) representation of suðNÞ can be mapped onto an algebra

of constrained fermions ( �ccyj� ¼ �aayj�ð� ¼ pÞ) or hard-core bosons ( �bbyj� ¼ �aayj�ð� ¼ 0Þ) with
Nf ¼ N � 1 flavours

S
��
ðjÞ ¼ �aayj� �aaj� �

���
N

S
�0
ðjÞ ¼ �aayj�K

�
j ; S

0�
ðjÞ ¼ ðK�

j Þ
y �aaj�

S
00
ðjÞ ¼

Nf

N
�
XNf

�¼1

�nnj� ¼ �
XNf

�¼1

S
��
ðjÞ; ð49Þ

where 1 � �; � � Nf runs over the set of particle flavours, and �aayj� ¼
~aayj�
QNf

�¼1ð1� ~nnj�Þ. S
��
ðjÞ (with 0 � �; � � Nf ) are the components of the SUðNÞ-spin

(i.e. there are N2 � 1 linear independent components). It is easy to verify that these
are generators of an suðnÞ Lie algebra satisfying the commutation relations

½S
��0

ðjÞ;S��
0

ðjÞ� ¼ ��0�S
��0

ðjÞ � ���0S
��0

ðjÞ: ð50Þ
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For instance, for N ¼ 3 we have [34] (� ¼ 1; 2)

SðjÞ ¼

2
3
� �nnj ðK�

j Þ
y �aaj1 ðK�

j Þ
y �aaj2

�aayj1K
�
j �nnj1 �

1
3

�aayj1 �aaj2

�aayj2K
�
j �aayj2 �aaj1 �nnj2 �

1
3

0
B@

1
CA: ð51Þ

We can immediately see that the 2� 2 block matrix S��ðjÞ ð14�; �4 2Þ contains the
generators of suð2Þ. In general, from the commutation relations equation (50), we can
verify that if S��ðjÞ are the generators of suðNÞ, then S

��
ðjÞ are the generators of the

subalgebra suðN � 1Þ. This will be useful in Section 6.

5.1.3. Generalization to other irreducible representations of suðNÞ

Here we show that the hard-core bosons �bbj� can be connected to other irreducible
representations of suðNÞ. The dimension of an suðNÞ representation of spin
S ¼ M=N is NþM�1

M

� �
. The number of flavours is then Nf ¼

NþM�1
M

� �
�1. In this case,

it is more convenient to adopt the following notation for the flavours. Each flavour �
will be denoted by an array of N integer numbers m�

1;m
�
2; � � � ;m

�
N

� 	
satisfyingPN

�¼1 m
�
� ¼ M. There are NþM�1

M

� �
arrays satisfying this condition. However, there is

a particular one, m0
1;m

0
2; . . . ;m

0
N

� 	
, associated to the vacuum state.

S
��
ðjÞ ¼ ����S þ

XNf

�¼1

g�0��
�bbyj� þ g0���

�bbj�

� �

þ
XNf

�;�¼1

g����
�bbyj�

�bbj�; ð52Þ

with

g���� ¼ ������ m�
� þ �ðm�

��1Þm
�
�
�
ðm�

�þ1Þm
�
�

�
YN

�¼1;� 6¼�;�

�m�
�m

�
�

ð53Þ

Again, it is easy to verify that these are generators of an suðnÞ Lie algebra satisfying
the commutation relations (50).

This is just an example to show that the generators of a Lie algebra in a particular
and arbitrary representation of dimension D can be used to describe a system where
D is the dimension of the local Hilbert space. For each particular case there will be
representations which will be more appropriate (easier to handle) than others. For
instance, this set of suðNÞ representations can be performed in a more natural way
using Schwinger–Wigner bosons.

5.2. SOðNÞ spin-particle mappings
Another possible language related to the JW particles is the SOðNÞ-spin

language. By this name we mean the language whose generators are the identity
and the generators of the soðNÞ Lie algebra (whose number is NðN � 1Þ=2). It is easy
to verify that the following set of operators

M
��
ðjÞ ¼ �aayj� �aaj� � �aayj� �aaj�;

M
0�
ðjÞ ¼ K�

j

� �y
�aaj� � �aayj�K

�
j ;

M
00
ðjÞ ¼ 0; ð54Þ
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obey the SOðNÞ-spin commutation relations

M
��0

ðiÞ;M��0
ðjÞ


 �
¼ �ij½��0�M

��0
ðjÞ � ��0�0M

��
ðjÞ

� ���M
�0�0

ðjÞ þ ���0M
�0�

ðjÞ�; ð55Þ

with 0 � �; � � N and 1 � �; � � Nf ¼ N � 1. The antisymmetric relation M
��=

�M
�� is immediately derived from the definition of M��, equation (54). In this way,

we have constructed another possible language connected to hard-core particles.
Like in the previous case, the subset of operators M�� is a set of generators for an
soðN � 1Þ subalgebra of soðNÞ.

In the following, for simplicity, we will only consider the connection between
SOðNÞ-spins and hard-core bosons �bbj� ¼ �aaj�ð� ¼ 0Þ with non-local transmutator
K�

j ¼ 1. For instance, for N ¼ 3, the generators are (� ¼ 1; 2)

MðjÞ ¼

0 �bbj1 �
�bbyj1

�bbj2 �
�bbyj2

�bbyj1 �
�bbj1 0 �bbyj1

�bbj2 �
�bbyj2

�bbj1
�bbyj2 �

�bbj2
�bbyj2

�bbj1 �
�bbyj1

�bbj2 0

0
B@

1
CA: ð56Þ

5.3. Generalized Jordan–Wigner particles
In 1928 Jordan and Wigner related the spin quantum mechanical degree of

freedom to spinless particles with fermion statistics. This transformation involves the
S¼ 1/2 irreducible representation of the Lie algebra suð2Þ. We have recently [23]
generalized this one-to-one mapping to any irreducible spin representation of suð2Þ,
spatial dimension of the lattice and particle exchange statistics. From the physical
viewpoint the JW particles are essentially hard-core independently of their flavour
index (i.e. they satisfy the Pauli exclusion principle with p ¼ 2 – see below).

The generalized JW mappings constitute a kind of quantum version of the well-
known classical spin-lattice-gas transformations [35] (see figure 4). In a classical
lattice gas (or binary alloy) each site can be occupied by at most one atom, a hard-
core condition equivalent to its quantum counterpart. On the other hand, since the
spin system is classical there is no intrinsic dynamics and the kinetic energy of the gas
(T) must be included a posteriori in an ad-hoc fashion. This contrasts with the
quantum case where the dynamics of the JW particles is intrinsic.

We have seen in section 3 that the canonical fermions can be transformed into
bosons which are hard-core in each flavour. We will consider now another type of
fermion which naturally emerges from the strong coupling limit of models for
interacting electrons. If the short-range component of the Coulomb repulsion is
much larger than the kinetic energy, the repulsion can be effectively replaced by a
constraint of no double occupancy. This perturbative approach is usually implemen-
ted by a canonical transformation, which leads to an effective Hamiltonian acting on
the subspace of states with no double occupancy. The fermionic subalgebra used to
describe this effective model is generated by the so-called constrained fermions.
Therefore, the constrained fermions are obtained by imposing to the canonical
fermions a local constraint of no more than one particle per orbital (or site). This
constraint may be incorporated into the fermionic algebra by defining the following
creation and annihilation operators for the constrained fields

�ccyj� ¼ cyj�

Y
�2F �

ð1� n̂nj�Þ; �ccj� ¼
Y
�2F �

ð1� n̂nj�Þ cj�; ð57Þ
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where F � is the set of flavours, with � ¼ 1
2; 1 depending upon the spin character of the

irreducible representation. It is easy to check that the particles generated by this
fermionic algebra satisfy the constraint of single occupancy, i.e. the eigenvalues of
�nnj ¼

PNf

�¼1 �nnj� are either 0 or 1. The most well-known context where these fermions
appear in condensed matter physics is the strong coupling limit of the Hubbard
model, which leads to the t-J Hamiltonian. While the Hubbard model is described in
terms of spin-1=2 canonical fermions (electrons), the fermionic language for the t-J
model is generated by creation and annihilation operators of spin-1=2 constrained
fermions ð�; � 0 ¼ ";#Þ

f �cci�; �ccj�0 g ¼ �ccyi�; �cc
y

j�0

n o
¼ 0;

�cci�; �cc
y

j�0

n o
¼ �ij �ccyj�0 �ccj� þ ���0 ð1� �nnjÞ

h i
: ð58Þ

In this section we will consider the general case of constrained fermions with Nf ¼2S
different flavours. In the context of our previous example, this generalization can
be interpreted as the natural language for a t-J model with more than one

Figure 4. Classical version of the Jordan–Wigner particles defined in [23]. Here the
mapping is performed between the simple lattice of Ising spins Si ¼ �1 and a lattice
gas of one type of atom or a binary alloy. N� , with � ¼";#, is the number of Ising
spins of type � while N� is the number of hard-core atoms of flavour � with no kinetic
energy T .
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orbital per site j or larger-spin fermions. The set of commutation relations for only
two different flavours, equation (58), is generalized in the following way

f �cci�; �ccj�0 g ¼ f �ccyi�; �cc
y

j�0 g ¼ 0;

f �cci�; �cc
y

j�0 g ¼ �ij
1þ �nnj� � �nnj if �= �’,

�ccyj�0 �ccj� if � 6=�’ .

(
ð59Þ

Notice that
Q� 6¼�
�2F �

ð1� �nnj�Þ ¼ 1þ �nnj� � �nnj with number operators satisfying
�nnj� �nnj�0 ¼ ���0 �nnj� .

We may now ask what is the bosonic language obtained from the constrained
fermions when the statistics is transmuted, i.e.

�bb
y

j� ¼ �ccyj�K
p
j : ð60Þ

(We do not need to include the local transmutator since the constraint does not allow
more than one particle per site (or orbital).) The answer to the question becomes
clear if we compare the set of commutation relations for the hard-core bosons (6) to
the set of anticommutation relations for the constrained fermions (59). All antic-
ommutators which are not of the form f �cci�; �cc

y

j� 0 g are mapped onto the corresponding
commutators for hard-core bosons (6). This results from the transmutator Kp

j . What
is the effect of the transmutation on commutators containing bilinear forms in the
creation and annihilation operators? First, it is easy to check that in this case the
commutator ½ �bbyi�

�bbi�;
�bbyj
 � ¼ �ij��
 �bb

y

i� of bosonic operators is mapped onto the corre-
sponding commutator of fermionic operators

½ �ccyi� �cci�; �cc
y

j
 � ¼ �ij��
 �cc
y

i�: ð61Þ

Finally, to complete this correspondence between commutation and anticommuta-
tion relations we have to consider the effect of the transmutation on the commu-
tators ½ �bbj�;

�bbyj�� and the anticommutators f �ccj�; �cc
y

j�g. It is easy to check that the
transmutation does not change these particular products, i.e.

f �bbi�;
�bbyi�g ¼ ���ð1� �nniÞ þ �bbyi�

�bbi�: ð62Þ

We can see that the anticommutator f �bbi�;
�bbyi�g is a linear combination of generators of

the Lie algebra defined by the set of commutation relations (6). This is so since the
set of generators fI; �bbyi�;

�bbi�;
�bbyi�

�bbi�g belongs to the fundamental representation of the
Lie algebra.

Therefore, in this case, the generators of the Lie algebra associated to the bosonic
language are transmuted into generators of a Lie superalgebra associated to the
constrained fermions. The Lie product in the Lie algebra (6), is turned into the
graded Lie product in the superalgebra. The generators of the bosonic Lie algebra
can be separated into two subsets which are mapped onto the odd and the even
generators of the fermionic Lie superalgebra. In this particular case, the Lie algebra
associated to the commutation relations (6) is uð1Þ

L
suðNÞ. The creation and

annihilation operators for the hard-core bosons, �bbyi� and �bbi�, are mapped onto the
odd generators of the Lie superalgebra, �ccyi� and �cci�, while the identity and the bilinear
forms, I and �bbyi�

�bbi� are mapped onto the even generators I and �ccyi� �cci�. The bosons
which are hard core in each flavour, ~bbi�, and the canonical fermions, ci�, provide
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another example of transmutation of a Lie algebra into a Lie superalgebra. In this
case, the generators of the Lie algebra uð1Þ

LNf

�¼1 suð2Þ are transmuted into the
generators of a Heisenberg Lie superalgebra.

In this way, through the transmutation of statistics we have established a direct
connection between the multiflavoured constrained fermions and the multiflavoured
hard-core bosons. Using this connection we can see that the MM transformation [4]
can be obtained from the JW transformation [3] by a simple transmutation of the
statistics.

In the course of demonstrating corollary 1, we have shown that for each class of
languages characterized by the dimension D of the local Hilbert space, there is one
whose generators are also generators of the Lie algebra uð1Þ

L
suð2Þ (D ¼ 2S þ 1). In

addition, we have seen that there is another language in the class whose generators
are the identity and the creation and annihilation operators for multiflavoured hard-
core bosons (Nf ¼ D� 1). Then, according to the fundamental theorem, the three
components fSx

i ;S
y
i ;S

z
i g of a spin S can be written as a polynomial function of

fIi; �bb
y

i�;
�bbi�g with 1 � � � Nf and vice versa. This is the generalization of the MM [4]

transformation to any irreducible spin-S representation of suð2Þ. Adding now this
result to the mapping already established between the multiflavoured hard-core
bosons and the constrained fermions, we can conclude that it is also possible to write
fSx

i ;S
y
i ;S

z
i g as a polynomial function of the identity and the creation and annihila-

tion operators of multiflavoured constrained fermions and vice versa. The latter is
the generalization of the JW transformation to any spin S [23]. On the other hand,
the generalized JW spin-fermion mapping can be easily extended to include a spin-
anyon mapping simply by using the anyonic particles generated by �aayj� and �aaj� (see
equation 38) [23]. The explicit form of this generalization is given by [23]:7

Half-odd integer spin S (� 2 F 1
2
¼ f�S þ 1; . . . ;Sg):

Sþ
j ¼ � �SS �aay

j �SSþ1
K�

j þ
X

�2F 1
2
;� 6¼S

�� �aayj�þ1 �aaj�;

S�
j ¼ � �SS ðK�

j Þ
y �aa

j �SSþ1
þ

X
�2F 1

2
;� 6¼S

�� �aayj� �aaj�þ1;

Sz
j ¼ �S þ

X
�2F 1

2

ðS þ �Þ �nnj�;

�aayj� ¼ ðK�
j Þ

yL
1
2
� Sþ

j

� ��þS

P
1
2

j ;

where P
1
2

j ¼
Y
�2F 1=2

� � Sz
j

� þ S
; L1=2

� ¼
Y��1

�¼�S

��1
� :

Integer spin S (� 2 F 1 ¼ f�S; . . . ;�1; 1; . . . ;Sg):

Sþ
j ¼ �0 ð �aayj1 K�

j þ ðK�
j Þ

y �aa
j�11
Þ þ

X
�2F 1;� 6¼�1;S

�� �aayj�þ1 �aaj�;

S�
j ¼ �0 ððK�

j Þ
y �aaj1 þ �aay

j�11
K�

j Þ þ
X

�2F 1;� 6¼�1;S

�� �aayj� �aaj�þ1;

7These isomorphisms represent useful dictionaries translating a spin language S into itinerant

quantum particle languages with effective spin s ¼ S � 1=2.
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Sz
j ¼

X
�2F 1

� �nnj�;

�aayj� ¼ ðK�
j Þ

yL1
�

Sþ
j

� ��
P1

j if �> 0 ,

S�
j

� ��
P1

j if �< 0 ,

8><
>:

where P1
j ¼

Y
�2F 1

� � Sz
j

�
; L1

� ¼
Yj�j�1

�¼0

��1
� ;

and �� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðS � �ÞðS þ � þ 1Þ

p
(see figure 5). [A bar in a subindex means the negative

of that number (e.g. ��� ¼ ��).] The total number of flavours is Nf ¼ 2S, and the
S¼ 1/2 case simply reduces to the traditional JW transformation. These mappings
enforce the condition on the Casimir operator S2

j ¼ SðS þ 1Þ.

5.4. Fractional exclusion statistics algebras
What microscopic properties of the fundamental particle constituents determine

the thermodynamic behaviour of matter? It has been known since the early days of
quantum mechanics that particles in Nature are either bosons or fermions in three-
dimensional space. It was immediately realized that for a given interaction among
particles the properties of matter were completely different depending upon the
constituents being bosons or fermions (for example, normal Coulomb matter is
stable thanks to the fermionic nature of its particles). Moreover, it has been known
for a long time [36] that there are other theoretical possibilities that interpolate
between fermions and bosons, i.e. cases where p>1 identical particles occupy one
and the same state. Quantum statistics was the name given to this phenomenon
which is clearly nonexistent in the classical physics description of matter.

Figure 5. Constrained anyon states per site for integer and half-odd integer spin S. In both
cases there are 2S flavours and the corresponding 2S þ 1 values of Sz are shown in
the middle column. One degree of freedom is assigned to the anyon vacuum (circle)
whose relative position depends upon the spin being integer or half-odd integer.
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In the 1970s it was realized that two space dimensions allowed for other exotic
possibilities with particles having fractional spin and statistics [37]. Later on, this
concept proved to be not merely an intellectual exercise since particles obeying
such quantum statistics were experimentally realized in the context of the quantum
Hall effect (QHE). It was Haldane [38], to our knowledge, who was the first to realize
that the Pauli exclusion principle and exchange statistics ideas were in principle
independent concepts. In this way, motivated by the properties of quasi-particles in
the fractional QHE, he generalized the Pauli exclusion principle introducing the
concept of fractional exclusion statistics.

Basically, two physical features characterize the quantum statistics of particles.
One is related to their indistinguishability and is characterized by the property that
when two identical particles are exchanged the total wavefunction acquires a phase
factor (exchange or permutation statistics). Another refers to the ability to accom-
modate p particles in the same single-particle quantum state (exclusion statistics).8 The
first concept depends upon the space dimensionality of the system while the second
one is independent and, therefore, unrelated to the notion of anyonic fractional
statistics which is applicable exclusively in two space dimensions. For instance, from
the generalized Pauli principle viewpoint there is no distinction between particles
obeying the algebra of equations (40) and (41) for any statistical angle �, i.e. all of them
correspond to p ¼ 1. However, the exchange of two particles �aa does depend upon �.

In this section we consider the problem of formulating the algebra satisfied by
these generalized Pauli-exclusion particles and its connection to our fundamental
theorem. Our definition is a possible second-quantized version of Haldane’s
definition introduced at the first quantization level.

To simplify matters we consider as an example a single flavour (single site)
fractional exclusion statistics algebra

½g ; g � ¼ ½gy; gy� ¼ 0;

½g ; gy� ¼ 1� F ; ½gyg ; gy� ¼ gy;

�
ð63Þ

where the operator F (Fy ¼ F) is a polynomial function of gy and g, such that
gyF ¼ 0. The F term represents a sort of deformation of the canonical boson algebra
(deformed Heisenberg algebras play an important role in the theory of representa-
tions of quantum groups). For example, F can be ð p!=ðpþ 1ÞÞF ¼ ðgyÞpðg Þp ¼Qp�1

j¼0 ðg
yg � jÞ and p is an arbitrary integer with the condition p>0. For g-particles

with this F operator it is very easy to prove that they satisfy the nilpotency condition

ðgyÞpþ1
¼ 0; ð64Þ

which means that one can put up to p particles on each mode. A ð pþ 1Þ-dimensional
matrix representation of this algebra is

g ¼

0 1 0 0 � � � 0
0 0

ffiffiffi
2

p
0 � � � 0

0 0 0
ffiffiffi
3

p
� � � 0

..

. ..
. ..

. ..
. ..

. ..
.

0 0 0 0 � � �
ffiffiffi
p

p

0 0 0 0 � � � 0

0
BBBBBB@

1
CCCCCCA: ð65Þ

8Fermions correspond to the case p ¼ 2, while for bosons p is an arbitrary integer number larger

than 2.
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Certainly, one can build infinitely many different algebras leading to different
types of fractional exclusion statistics particles with the same value of p. For
example, consider the suð2Þ algebra generated by the operators f �ggyi ; �ggi; n

g
i g (with

ðngi Þ
y
¼ ngi ) in the S¼ 1 (triplet) representation (ð �ggyi Þ

3
¼ 0, i.e. p ¼ 2)

½ �ggi; �ggj� ¼ ½ �ggyi ; �gg
y

j � ¼ 0;

½ �ggi; �gg
y

j � ¼ �ijð1� ngi Þ ; ½n
g
i ; �gg

y

j � ¼ �ij �ggyj :

(
ð66Þ

It is straightforward to realize how these particles relate to the usual spin generators
of suð2Þ

Sþ
j ¼

ffiffiffi
2

p
�ggyj ;

S�
j ¼

ffiffiffi
2

p
�ggj;

Sz
j ¼ ngj � 1; ð67Þ

which can be seen as a possible generalization of the MM [4] transformation for
S¼ 1.

For example, if we consider the one-dimensional XY model in the S¼ 1 spin
representation

Hxy ¼ J
X
j

ðSx
j S

x
jþ1 þ S

y
j S

y
jþ1Þ; ð68Þ

it is simply related to the g-particle Hamiltonian

Hxy ¼ J
X
j

ð �ggyj �ggjþ1 þ �ggyjþ1 �ggjÞ

¼ 2J
X
k

cos k �ggyk �ggk; ð69Þ

where �ggyk ¼ ð1=
ffiffiffiffiffiffi
Ns

p
Þ
P

j expðik � jÞ �ggyj is the Fourier-transformed operator.

5.5. Green’s parastatistics
Since the very beginnings of quantum mechanics people tried to understand the

depth and consequences of the symmetrization postulate which asserts that physical
states of identical particles must be either symmetric (Bose statistics) or anti-
symmetric (Fermi statistics) under permutations. In 1953 H.S. Green [33] considered
the possibility of having non-identical but dynamically similar particles satisfying
what is now known as parastatistics. The introduction of parastatistics allowed some
hope of representing all particle fields in terms of a fundamental spinor field and, of
course, canonical fermions and bosons represented particular cases (parastatistics of
order p ¼ 1).

Soon, Greenberg [39] suggested that quarks satisfy parastatistics of order 3 and
Green [40] reformulated the neutrino theory of light identifying the neutrinos with
parafermions of order 2. It is not our intention to discuss the physical aspects of
these assertions but to present parastatistics as another operator language which
allows representation of Lie algebras and to relate these particles to those already
introduced in previous sections.
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Following Green [33, 40], let us introduce the auxiliary modes (the upper (lower)
sign will be used to define the parafermions (parabosons))

½d�i ; d
�
j �� ¼ ½ �dd�i ;

�dd�j �� ¼ 0;

½d�i ;
�dd�j �� ¼ �ij;

(
ð70Þ

labelled by the Green indices � ¼ 1; . . . ; p and j ¼ 1; . . . ;N and where �dd�j ¼ ðd�j Þ
y,

together with the condition d�j jvacuumi ¼ 0; 8ðj; �Þ. For � 6¼ � the auxiliary modes
satisfy non-standard relations, i.e.

½d�i ; d
�
j �	 ¼ ½ �dd�i ;

�dd�j �	 ¼ 0;

½d�i ;
�dd�j �	 ¼ 0:

8<
: ð71Þ

Parafermion and paraboson creation and annihilation operators are defined in terms
of the auxiliary modes by

dy

j ¼
Xp
�¼1

�dd�j ; dj ¼
Xp
�¼1

d�j ; ð72Þ

and consequently satisfy the commutation relations

½½dy

i ; dj �	; dl �� ¼ �2�il dj ;

½½di ; dj �	; dl �� ¼ 0:

(
ð73Þ

It easy to verify that one can define a set of commutative number operators ndj
(n�j ¼ �dd�j d

�
j ) by

ndj ¼
1

2
ð½dy

j ; dj �	 � pÞ ¼
Xp
�¼1

n�j ; ð74Þ

which satisfy the commutation rules

½ndi ; d
y

j �� ¼ �ij d
y

j : ð75Þ

Note that in the parafermionic case ðn�j Þ
2
¼ n�j , which implies that ndj has eigenvalues

ranging from 0 to p. Moreover,

ðdy

j Þ
p
¼ p!

Yp
�¼1

�dd�j ; ð76Þ

such that ðdy

j Þ
pþ1

¼ 0, which in a sense also generalizes the Pauli exclusion principle.
It is clear from these definitions that canonical fermions (bosons) are parafermions
(parabosons) of order p¼1.

To connect these paraparticles to those already described in previous sections,
one has to realize that (total or partial) local and non-local transmutations are
necessary. It is easy to see that the parafermionic auxiliary modes are

�dd�i ¼ cyi� exp ip
X
j<i

X
�6¼�

n̂nj� þ
X
�<�

n̂ni�

 !" #
; ð77Þ
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where a partial non-local transmutation connects �dd�j to the canonical multiflavoured
fermions cyj�, equation (10). Similarly, the parabosonic auxiliary fields are obtained as

�dd�i ¼ byi� exp ip
X
j<i

X
� 6¼�

nj� þ
X
�<�

ni�

 !" #
; ð78Þ

in terms of canonical multiflavoured bosons byj�, equation (29).
One can represent all Lie algebras in terms of parafermion or paraboson creation

and annihilation operators. Several authors contributed to this observation in the
early 1960s and 1970s [41–44]. In the following we just present as an example the
isomorphism between the algebra of N parafermions and the proper orthogonal
complex Lie algebra BN (i.e. the complexification of soð2N þ 1Þ) of dimension
Nð2N þ 1Þ. The set of operators antisymmetric in their indices (m; n 2 ½1; 2N�)

Lmn ¼ �Lnm ¼ ið‘n‘m � ‘m‘nÞ; ðm < nÞ

Lm0 ¼ �L0m ¼ ‘m;

L00 ¼ 0;

8<
: ð79Þ

where

‘2j�1 ¼
dy

j þ dj

2
; ‘2j ¼

dy

j � dj

2i
; ð80Þ

represents a basis which span the Lie algebra isomorphic to BN (�;�0; �; �0 2 ½0; 2N�)

½L��0 ;L��0 � ¼ið���0�L��0 þ ��0�0L��

þ ���L�0�0 � ���0L�0�Þ: ð81Þ

6. Equivalent classes of models

In the previous section we have shown how the different languages of quantum
mechanics are connected. How can we exploit these dictionaries to get a better
understanding of different physical phenomena? There are many different answers to
this question which we will develop in the next sections. In particular, the present
section is devoted to showing the equivalence between models which, in principle,
describe completely different systems.9 In other words, we show that models
describing different physical problems are associated to the same Hamiltonian
written in different languages. In this way, these dictionaries appear as an essential
tool to connect distinct fields of physics. Preliminary applications of these concepts
are given in [23, 45]. In [23], we showed explicit connections between spin S¼ 1 and t-
J-like models. In [45] we demonstrated the equivalence between SUð3Þ ferromagnet-
ism, the coexistence of magnetism and Bose–Einstein condensation in an interacting
bosonic gas, and the coexistence of a spin-nematic phase and ferromagnetism for a
spin-one system. The choice of examples in the present Section 6 is by no means
exhaustive, it is simply illustrative. Table 1 summarizes some of the most celebrated
mappings known today.

Another interesting aspect of these mappings is the possibility of unveiling
hidden symmetries which lead to exact or quasi-exact solutions. By exact solvability

9Care should be exercised regarding the boundary conditions of the model. Keeping this warning in

mind we will omit any reference to boundary conditions in the following.
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we mean that the full spectral problem is reduced to an algebraic procedure, while
problems which are quasi-exactly solvable are those which admit only a partial
determination of the spectrum by an algebraic procedure (see figure 6). Sometimes
there are particular languages which allow us to recognize invariant subspaces of our
Hamiltonian. The restricted action of the Hamiltonian in an invariant subspace can
always be described by a class of languages which are more basic than the original
one. By more basic we mean a lower dimension of the local Hilbert space, or in other
words, languages describing systems with fewer degrees of freedom. There are
particular cases where the simplification is even deeper, since by using a more basic

Table 1. Equivalence between spin models (model A) and particle models (model B),
equivalence that can be simply established by using our fundamental theorem. The
meaning of the different terms is clarified in the text (BB: bilinear–biquadratic;
F: fermionic; B: bosonic). The last column describes the type of equivalence (C:
complete Hilbert space mapping; P: partial Hilbert space mapping) and type
of solutions (E: exact; E (BA): exact Bethe ansatz; GS: only ground state; QE:
quasi-exact; U: unsolvable).

d Model A Model B M - S

1 Isotropic XY (S¼ 1/2) t C - E
1 Anisotropic XY (S¼ 1/2) t�� C - E
1 XXZ (S¼ 1/2) t�V C - E (BA)
1 XXZ (S¼ 1/2) t� Jz P - E (BA)
1 XYZ (S¼ 1/2) t���V C - E (BA)
1 Majumdar–Ghosh (S¼ 1/2) t� t0 �V�V0 C - GS
1 BB S¼ 1 (¼ p/4, LS) t� �JJ �V� � C - E (BA)
1 BB S¼ 1 (tan ¼ 1/3, AKLT) t���V� � C - GS
1 BB S¼ 1 (¼ 7p/4, TB) t��� �JJ �V� � C - E (BA)
1 BB S¼ 1 (¼ 3p/2, K) �� �JJ �V� � C - QE
1 S¼ 3/2 F(S¼ 1/2) Hubbard C - E (BA)
2 U (1) gauge magnet F strings C - E
2 Shastry–Sutherland (S¼ 1/2) t� t0 �V�V 0 C - GS
Any BB S¼ 1 (¼ 5p/4) t� �JJ �V� � C - QE
Any Anisotropic S¼ 1 Heisenberg B(S¼ 1/2) Hubbard P - U

Model A Model B Model A Model B

Complete Hilbert space Partial Hilbert space

Figure 6. Schematics of the two types of mappings that one can perform: complete and
partial Hilbert space mappings. The figure also shows examples illustrating each class.
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language we also recognize hidden symmetries for the restricted action of
the Hamiltonian in the invariant subspace. The quasi-exact solution of the one-
dimensional t-Jz [6] model is an example of successful application of this concept.
This quasi-exact solution led to the exact quantum phase diagram and charge
excitations of the t-Jz model [6].

6.1. SUð2Þ Heisenberg magnets
The XYZ S¼ 1/2 spin model (D ¼ 2) is the most popular example of a family of

Hamiltonians which is Bethe-ansatz solvable in d ¼ 1 [46]

Hxyz ¼
X
hi;ji

Jx Sx
i S

x
j þ Jy S

y
i S

y
j þ Jz S

z
i S

z
j : ð82Þ

Using the MM [4] transformation of equation (8), the XYZ model is mapped onto a
gas of interacting hard-core bosons with density–density interactions and particle
non-conserving terms

Hxyz ¼ t
X
hi;ji

ð �bbyi
�bbj þ

�bbyj
�bbiÞ þ�

X
hi;ji

ð �bbyi
�bbyj þ

�bbj
�bbiÞ

þ V
X
hi;ji

�nni �
1

2

� �
�nnj �

1

2

� �
; ð83Þ

where t ¼ ðJx þ JyÞ=4, � ¼ ðJx � JyÞ=4, and V ¼ Jz. Note that when d ¼ 1 the
non-local transmutator is a symmetry and, therefore, we could have used spinless
fermions instead of hard-core bosons in equation (83).

Another family of spin Hamiltonians (D ¼ 3) which has been extensively studied
is the bilinear–biquadratic (BB) S¼ 1 Heisenberg model (J>0):

H ¼ J
ffiffiffi
2

p X
hi;ji

cos Si � Sj þ sin Si � Sj

� �2h i
: ð84Þ

Using the S¼ 1 generalization of the JW transformation for hard-core bosons [23],

Sþ
j ¼

ffiffiffi
2

p
�bbyj" þ

�bbj#

� �
S�
j ¼

ffiffiffi
2

p
�bbj" þ

�bbyj#

� �
Sz
j ¼ �nnj" � �nnj# ð85Þ

(see Section 5.3), H is mapped onto a t-J-like model for S¼ 1/2 hard-core bosons
including particle non-conserving terms

H ¼
X
hi;ji;�

ðt �bb
y

i�
�bbj� þ� �bb

y

i�
�bb
y

j� þH:c:Þ þ 4�
X
hi;ji

szi � s
z
j

þ �JJ
X
hi;ji

si � sj �
�nni �nnj

4

� �
þ V

X
hi;ji

�nni �nnj � �
X
j

ð �nnj � 1Þ; ð86Þ

where sj ¼
1
2
�bb
y

j�r��
�bbj� (r denoting Pauli matrices), t ¼ J

ffiffiffi
2

p
cos, � ¼ J

ffiffiffi
2

p
ðcos �

sinÞ, �JJ ¼ J2
ffiffiffi
2

p
sin,V ¼ �JJ, � ¼ zJ

ffiffiffi
2

p
sin, and z is the coordination of

the lattice. Again, for d ¼ 1 the exchange statistics of the particles is irrelevant and
one could have used S¼ 1/2 constrained fermions instead of hard-core bosons. From
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the known solutions in the spin model one can immediately recognize the solvable
cases in the particle model (86). These are  ¼ p=4 (d ¼ 1) Lai–Sutherland (LS) [47,
48],  ¼ 7p=4 (d ¼ 1) Takhtajan–Babujian (TB) [49–51], tan ¼ 1=3 (d ¼ 1) Affleck–
Kennedy–Lieb–Tasaki (AKLT) [52],  ¼ 3p=2 (d ¼ 1) Klümper (K) [53], and
 ¼ 5p=4 (any d) our work in [45].

Of particular current interest are the S¼ 1/2 Heisenberg models on ladders. The
simplest case corresponds to having only nearest-neighbour magnetic interactions
(see figure 7a)

H ladd
Heis ¼ J1

X
j

�1S
z
j1S

z
j2 þ Sx

j1S
x
j2 þ S

y
j1S

y
j2

� �
þ J2

X
j;�¼1;2

�2S
z
j�S

z
jþ1� þ Sx

j�S
x
jþ1� þ S

y
j�S

y
jþ1�

� �
: ð87Þ

Using the mapping given in equations (43) which connects S¼ 1/2 spins with
canonical fermions, H ladd

Heis can be rewritten as a Hubbard-like model on a linear
chain (up to an irrelevant constant). For instance, if �1 ¼ 1 and �2 ¼ 0 we get

H ladd
Heis ¼ t

X
j;�

cyj�c
y

jþ1 ���ð1� n̂nj ��� � n̂njþ1�Þ þH:c:

þ t
X
j;�

cyj�cjþ1�½ð1� n̂nj ���Þð1� n̂njþ1 ���Þ � n̂nj ��� n̂njþ1 ���� þH:c:

�U
X
j

n̂nj"n̂nj#; ð88Þ

where U ¼ J1 and t ¼ J2. This is a correlated Hubbard model with zero two-body
hopping terms plus a superconducting term. In the absence of the superconducting

i+1i i+2 i+3 i+4

j

1

2

j

1

2

j+1

j+1

j+2

j+2

j+3

j+3

j+4

j+4

(b)

(a)

Figure 7. A spin S ¼ 1/2 Heisenberg ladder mapped onto a Hubbard chain model with
correlated hopping. Models a and b are related through a gauge transformation.
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term, this model has been exactly solved by Arrachea and Aligia [54]. To eliminate
the superconducting terms the original spin model has to be modified in the
following way

~HH ladd
Heis ¼ J1

X
j

ð�1S
z
j1S

z
j2 þ Sx

j1S
x
j2 þ S

y
j1S

y
j2Þ

þ J2
X

j;�¼1;2

Pjð�2S
z
j�S

z
jþ1� þ Sx

j�S
x
jþ1� þ S

y
j�S

y
jþ1�ÞPj;

where Pj ¼
P

�¼1;2ðS
z
j� þ Sz

jþ1�Þ ¼ n̂nj" � n̂nj# þ n̂njþ1" � n̂njþ1# ¼ 2ðszj þ szjþ1Þ.
~HH ladd
Heis for

�1 ¼ 1 and �2 ¼ 0 is equivalent to the Hubbard model with correlated hopping
solved in [54]. If the sites 1 and 2 are interchanged in one sublattice (see figure 7b),
the sign of the three-body hoppings changes from positive to negative.

Let us consider now the Heisenberg spin-ladder model illustrated in figure 8.

HSS ¼ J1
X
j

ð�1S
z
j1S

z
j2 þ Sx

j1S
x
j2 þ S

y
j1S

y
j2Þ

þ J2
X
j;�;�0

ð�2S
z
j�S

z
jþ1�0 þ Sx

j�S
x
jþ1�0 þ S

y
j�S

y
jþ1�0 Þ: ð89Þ

The isotropic limit (�1 ¼ �2 ¼ 1) of this model has been considered by Sutherland
[55] who established that for J1 > 2J2 the ground state is a product state of bond
singlets. Again, using equations (43), HSS can be rewritten as a one-dimensional
Hubbard-like model (up to an irrelevant constant)

HSS ¼ t
X
j;�

cyj�c
y

jþ1 ���ð1� n̂nj ���Þð1� n̂njþ1�Þ þH:c:

þ t
X
j;�

cyj�cjþ1�ð1� n̂nj ���Þð1� n̂njþ1 ���Þ þH:c:

þ Jz
X
j

szj s
z
jþ1 �U

X
j

n̂nj"n̂nj# � �
X
j

n̂nj; ð90Þ

where U ¼ J1�1, t ¼ J2, Jz ¼ 4J2�2, and � ¼ ð1��1ÞJ1=2. This model is quasi-
exactly solvable in the isotropic case �1 ¼ �2 ¼ 1. In addition, if we cancel the
superconducting terms, the resulting model is also quasi-exactly solvable because
there are invariant subspaces for which the action of the Hamiltonian can be mapped
onto a t-Jz chain model [6] (remember that a constrained S¼ 1/2 fermion is related to
the canonical ones through the relation �ccyj� ¼ cyj�ð1� n̂nj ���Þ).

i+1i i+2 i+3 i+4

j

1

2

j+1 j+2 j+3 j+4

Figure 8. Sutherland S ¼ 1/2 model and its mapping onto a Hubbard-like chain model.
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For correlated hopping model Hamiltonians, the previous mapping (43) works
well. However, for standard (non-correlated) Hamiltonians it does not. Let us
introduce a new transformation that is expected to work in the latter case

Sþ
j1 ¼ cyj"

�KK j";

Sz
j1 ¼ n̂nj" �

1

2
;

Sþ
j2 ¼ cyj#

�KK j#;

Sz
j2 ¼ n̂nj# �

1

2
;

8>>>>>>>><
>>>>>>>>:

ð91Þ

where the non-local operator �KK j� is now defined as

�KK j" ¼ exp ip
X
l

n̂nl# þ
X
l<j

n̂nl"

 !" #
;

�KK j# ¼ exp ip
X
l<j

n̂nl#

" #
: ð92Þ

This transformation was originally introduced by Mattis and Nam [56] to solve
the following Hubbard-like model

HMN ¼
�

4

XN�1

j;�

ðcyj� � cj�Þðc
y

jþ1� þ cjþ1�Þ

þU
XN
j¼1

n̂nj" �
1

2

� �
n̂nj# �

1

2

� �
; ð93Þ

which after the spin-particle transformation (91) becomes (� ¼ 1; 2)

HMN ¼ �
XN�1

j;�

Sx
j�S

x
jþ1� þU

XN
j¼1

Sz
j1S

z
j2: ð94Þ

Using the same transformation, the one-dimensional Hubbard Hamiltonian

H1d
Hubb ¼ t

XN�1

j;�

ðcyj�cjþ1� þ cyjþ1�cj�Þ þU
XN
j¼1

n̂nj" �
1

2

� �
n̂nj# �

1

2

� �
; ð95Þ

can be transformed into

H1d
Hubb ¼ 2t

XN�1

j;�

ðSx
j�S

x
jþ1� þ S

y
j�S

y
jþ1�Þ þU

XN
j¼1

Sz
j1S

z
j2; ð96Þ

which represents a two-leg ladder made out of two XY -chains coupled by an Ising
interaction.

Other interesting examples of quasi-exactly solvable models in two dimensions of
relevance for strongly correlated matter will be presented in a separate publication.
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6.2. Single-band fermionic Hubbard model
The Hubbard model is the most popular model of a strongly interacting system in

condensed matter physics. It contains a kinetic energy term represented by a hopping
integral t plus a local on-site Coulomb repulsion U. The single-band Hubbard
Hamiltonian is (� ¼";#)

HHubb ¼ t
X
hi;ji;�

ðcyi�cj� þ cyj�ci�Þ þU
X
i

n̂ni" �
1

2

� �
n̂ni# �

1

2

� �
: ð97Þ

The dimension of the local Hilbert space is D ¼ 4 since per lattice site j we can only
have the states: fj0i; cyj"j0i; c

y

j#j0i; c
y

j"c
y

j#j0ig, and j0i is the vacuum state. Replacing
the c-operators by the expression for transmutation of statistics given in equation
(15) we get

HHubb ¼ t
X
hi;ji;�

ð ~bb
y

i�T̂Ti�T̂Tj�K
y

i Kj
~bbj� þH:c:Þ

þU
X
i

~nni" �
1

2

� �
~nni# �

1

2

� �
; ð98Þ

where T̂Ti" ¼ exp½ip ~nni#�, T̂Ti# ¼ 1, Kj ¼ exp½i
P

l aðl; jÞ ~nnl� , with ~nnj ¼ ~nnj" þ ~nnj#, and we
have used the result

½T̂Tj�;K
y

i � ¼ 0: ð99Þ

The (statistical gauge field) vector potential associated to this transmutation of
statistics is

A�ðjÞ ¼ pð ~nnj# � ~nnjþe�#Þ �
X
l

½aðl; jÞ � aðl; jþ e�Þ� ~nnl: ð100Þ

Using this expression for the vector potential we can rewrite HHubb in the following
way

HHubb ¼ t
X
hi;ji;�

ð ~bbyi� exp½iA�ðiÞ�
~bbj� þH:c:Þ

þU
X
i

~nni" �
1

2

� �
~nni# �

1

2

� �
: ð101Þ

In this way we see that the Hubbard Hamiltonian can be written in a bosonic
representation but with interactions which are non-local when d > 1. When d ¼ 1
the vector potential acts as a correlated hopping term and the interactions become
local:

H1d
Hubb ¼ t

X
i

½ ~bbyi"ð1� 2 ~nniþ1#Þ
~bbiþ1" þ

~bbyi#ð1� 2ni"Þ ~bbiþ1#

þH:c � þU
X
i

~nni" �
1

2

� �
~nni# �

1

2

� �
: ð102Þ

The SUð2Þ-spin S¼ 3/2 is another physical object for which the dimension of the
local Hilbert space is D ¼ 4. From our fundamental theorem it is possible to write
down these constrained bosons ~bb

y

j� in terms of spins S¼ 3/2. In this way, we can find
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a S¼ 3/2 representation for the Hubbard model. A possible mapping between these
bosons and a spin S¼ 3/2 is

Sþ
j ¼

ffiffiffi
3

p
~bb
y

j# þ 2 ~bb
y

j"
~bbj#;

S�
j ¼

ffiffiffi
3

p
~bbj# þ 2 ~bb

y

j#
~bbj";

Sz
j ¼

1

2
ð ~nnj" � ~nnj#Þ þ

3

2
ð ~nnj" þ ~nnj# � 1Þ: ð103Þ

This mapping can be inverted to get the bosonic operators as a function of the spin
operators

~bb
y

j" ¼
1

2
ffiffiffi
3

p ðSþ
j Þ

2;

~bb
y

j# ¼
1ffiffiffi
3

p Sþ
j Sz

j þ
1

2

� �2

: ð104Þ

Similarly, the expression for the spin S¼ 3/2 operators in terms of canonical
fermions is

Sþ
j ¼

ffiffiffi
3

p
cyj#K j þ 2 cyj"cj#;

S�
j ¼

ffiffiffi
3

p
Ky

j cj# þ 2 cyj#cj";

Sz
j ¼

1

2
ðn̂nj" � n̂nj#Þ þ

3

2
ðn̂nj" þ n̂nj# � 1Þ: ð105Þ

Again, we can write down the fermionic operators in terms of the spin operators

cyj" ¼
1

2
ffiffiffi
3

p ðSþ
j Þ

2
K

y

j"

cyj# ¼
1ffiffiffi
3

p Sþ
j Sz

j þ
1

2

� �2

K
y

j#: ð106Þ

Using these expressions we can write down the Hubbard model in terms of S¼ 3/2
spins as

HHubb ¼
t

3

X
hi;ji

Sþ
i Sz

i þ
1

2

� �2

exp½iA�ðiÞ� Sz
j þ

1

2

� �2

S�
j

"

þ
ðSþ

i Þ
2

2
exp½iA�ðiÞ�

ðS�
j Þ

2

2
þH:c:

#

þ
U

4

X
i

ðSz
i Þ

2
�
5

4

 �
: ð107Þ

The S¼ 3/2 representation of the one-dimensional Hubbard model is

H1d
Hubb ¼

�t

3

X
j

Sþ
j Sz

j þ
1

2

� �
Sz
jþ1 þ

1

2

� �2

S�
jþ1

"

þ
1

2
ðSþ

j Þ
2
ðSz

jþ1 þ 1ÞðS�
jþ1Þ

2
þH:c:

i
þ
U

4

X
j

ðSz
j Þ

2
�
5

4

 �
: ð108Þ
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Since the one-dimensional Hubbard model is Bethe ansatz solvable [57], we are
providing a new spin S¼ 3/2 Hamiltonian which is also Bethe ansatz solvable
through the isomorphic mapping between the two languages (fermions and spins).

We can also write down the one-dimensional Hubbard model using the
hierarchical SUð4Þ language. To do so, we fist need to find the dictionary connecting
the components of an SUð4Þ-spin in the fundamental representation with the
creation and annihilation operators of the particle language:

SðjÞ ¼

S
00
ðjÞ ~bbj"ð1� ~nnj#Þ ~bbj#ð1� ~nnj"Þ ~bbj#

~bbj"

ð1� ~nnj#Þ ~bb
y

j" S
11
ðjÞ ~bbyj"

~bbj# ~nnj" ~bbj#

ð1� ~nnj"Þ ~bb
y

j#
~bbyj#

~bbj" S
22
ðjÞ ~nnj# ~bbj"

~bbyj"
~bbyj#

~bbyj# ~nnj"
~bbyj" ~nnj# S

33
ðjÞ

0
BBBBB@

1
CCCCCA; ð109Þ

where S
00
ðjÞ ¼ ð1� ~nnj"Þð1� ~nnj#Þ �

1
4
, S

11
ðjÞ ¼ ~nnj"ð1� ~nnj#Þ �

1
4
, S

22
ðjÞ ¼ ~nnj#

ð1� ~nnj"Þ �
1
4
, and S

33
ðjÞ ¼ ~nnj" ~nnj# �

1
4
. For a general SUðNÞ group there are actually

two kinds of spinors: upper and lower. The upper spinors transform according to the
conjugate representation. For the particular case of SUð2Þ, the conjugate representa-
tion is equivalent to the original one, i.e. the conjugation is equivalent to a similarity
transformation. However, in general for N > 2 the conjugate representation is not
equivalent to the original one. Consequently, the SUðN > 2Þ ferromagnetic and
antiferromagnetic Heisenberg Hamiltonians are essentially different operators (in the
case of SUð2Þ, they just differ by an overall sign) [58]. In the same way that we wrote
in equation (109) the generators of suð4Þ in the fundamental representation, we can
write down the corresponding expressions for the generators in the conjugate
representation:

~SSðjÞ ¼

� ~SS00
ðjÞ � ~bbj" ~nnj# � ~bbj# ~nnj" � ~bbj#

~bbj"

� ~nnj# ~bb
y

j" � ~SS11
ðjÞ � ~bbyj"

~bbj# ð ~nnj" � 1Þ ~bbj#

� ~nnj" ~bb
y

j# � ~bbyj#
~bbj" � ~SS22

ðjÞ ð ~nnj# � 1Þ ~bbj"

� ~bbyj"
~bbyj#

~bbyj#ð ~nnj" � 1Þ ~bbyj"ð ~nnj# � 1Þ � ~SS33
ðjÞ

0
BBBBB@

1
CCCCCA; ð110Þ

where ~SS00
ðjÞ ¼ ~nnj" ~nnj# �

1
4
, ~SS11

ðjÞ ¼ ~nnj#ð1� ~nnj"Þ �
1
4
, ~SS22

ðjÞ ¼ ~nnj"ð1� ~nnj#Þ�
1
4
, and

~SS33
ðjÞ ¼ ð1� ~nnj"Þð1� ~nnj#Þ �

1
4
.

The expression of the one-dimensional Hubbard model in terms of the SUð4Þ
hierarchical language is ðJ�� ¼ J��; J

0
�� ¼ J 0

��Þ

H1d
Hubb ¼

X
j

½J��S
��
ðjÞS��ðjþ 1Þ þ J 0

��S
��
ðjÞ ~SS��ðjþ 1Þ

þ
U

2
ðS

00
ðjÞ þ S

33
ðjÞÞ� ð111Þ

where the non-zero magnetic interactions are: J01 ¼ J02 ¼ �J13 ¼ �J23 ¼ t and
J 0
01 ¼ �J 0

02 ¼ J 0
13 ¼ �J 0

23 ¼ �t. We can see from equation (111) that in this
representation the U term plays the role of a magnetic field. The case J 0

�� ¼ 0
corresponds to the Hubbard-like model which was exactly solved by Arrachea and
Aligia [54].
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6.3. Single-band bosonic Hubbard model
We consider now a model of hard-core bosons including two degenerate orbitals

� ¼ f1; 2g per site

H ¼ �t
X

hi;ji;�;�0

ð ~bb
y

i�
~bbj�0 þ

~bb
y

j�0
~bbi�Þ þU

X
j

~nnj1 ~nnj2

þ V
X
hi;ji

ð ~nni � 1Þð ~nnj � 1Þ � �
X
j

~nnj; ð112Þ

where ~nnj� ¼ ~bb
y

j�
~bbj� and ~nnj ¼ ~nnj1 þ ~nnj2. The first term represents a hopping connecting

pair of orbitals belonging to nearest-neighbour sites hi; ji. The second is a local
Coulomb repulsion term between particles occupying different orbitals of the same
site. The third term corresponds to a nearest-neighbour density–density repulsion
V . The dimension of the local Hilbert space is D ¼ 4 since per lattice site j

we can only have the states fj0i; ~bb
y

j1j0i;
~bb
y

j2j0i;
~bb
y

j1
~bb
y

j2j0ig, and j0i is the vacuum state.
As mentioned in Section 3.2, the hard-core boson operators in each site generate

an suð2Þ algebra f ~bb
y

i�;
~bbi�; ~nni� � 1=2g. The associated representation is the fundamental

one, i.e. S¼ 1/2. Since there are two orbitals per site, the local algebra associated in
each site is the direct sum of two suð2Þ algebras, and the representation is the direct
sum of both S¼ 1/2 representations. It is well known that by reducing the direct sum
we get two irreducible representations: the singlet and the triplet representations. The
singlet is associated to the antisymmetric (under the permutation of both orbitals)
state

j iAi ¼
1ffiffiffi
2

p ð ~bb
y

i1 �
~bb
y

i2Þj0i ¼
~bb
y

iAj0i: ð113Þ

The three remaining states, which belong to the triplet representation, are symmetric.
These states can be generated by the creation operator

~bb
y

iS ¼
1ffiffiffi
2

p ð ~bb
y

i1 þ
~bb
y

i2Þ: ð114Þ

By applying this operator to the vacuum state j0i one can get a particular basis for
the triplet representation

fj0i; ~bb
y

iSj0i;
~bb
y

iS
~bb
y

iSj0ig: ð115Þ

The singlet plus the triplet states generate another basis for the local Hilbert space of
H with D ¼ 4 ( ~nnj ¼ ~bb

y

jA
~bbjA þ ~bb

y

jS
~bbjS). If we apply the MM [4] transformation to these

hard-core bosons, we get a spin S¼ 1/2 for each orbital. After that transformation it
becomes clear that j iAi is the singlet state, while the other three (equation (115))
are the triplet states with Sz ¼ �1; 0; 1. Note that the local algebra satisfied by ~bb

y

iA

and ~bb
y

iS is not the same as the one satisfied by ~bb
y

i1 and ~bb
y

i2. In particular,
~bb
y

iA
~bb
y

iS ¼ ~bb
y

iS
~bb
y

iA ¼ 0.
Going back to our model (112), we immediately notice that the local singlet state

j iAi is invariant under the application ofH. In other words, if there is one particle in
an antisymmetric state at site i, that local state will be conserved. There is a local
Uð1Þ symmetry associated to this conservation

j iAi ! e�i j iAi; ð116Þ
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which leaves H invariant. Consequently, one can identify invariant subspaces of H.
These subspaces are classified according to the set of sites N A which are in a singlet
state. We can now take advantage of the invariance of these subpaces, and project H
onto each of them to reduce the effective number of degrees of freedom. The
expression for H (up to a constant) restricted to the subspace associated to the set
N A is

HN A
¼ �2t

X
hi;ji

~bb
y

iS
~bbjS þ ~bb

y

jS
~bbiS

� �
� �

X
�jj

~nnjS

þ V
X
hi;ji

ð ~nniS � 1Þð ~nnjS � 1Þ

þ
U

2

X
�jj

~nnjSð ~nnjS � 1Þ; ð117Þ

where hi; ji and �jj means sites i; j 62 N A and ~nnjS ¼ 1� ½ ~bbjS;
~bby
jS�. Having a singlet at a

given site j is equivalent to taking the site out of the lattice since that local singlet is

frozen at j (Pauli blocking). The action of H on each invariant subspace can be

described by the operators ~bb
y

iS and ~bbiS, which are generators of an suð2Þ algebra in the
S¼ 1 (triplet) representation. This is easily seen using the mapping of equation (67)
after replacing the �ggj’s by the ~bbjS’s operators acting only on sites j 62 N A

Sþ
j ¼

ffiffiffi
2

p
~bby
jS;

S�
j ¼

ffiffiffi
2

p
~bbjS;

Sz
j ¼ ~nnjS � 1: ð118Þ

A natural consequence of this transformation is the possibility of mapping HN A

onto an S¼ 1 spin Hamiltonian. This is done by inverting equation (118):

~bb
y

jS ¼
1ffiffiffi
2

p Sþ
j ;

~bbjS ¼
1ffiffiffi
2

p S�
j ;

~nnjS ¼ Sz
j þ 1; ð119Þ

and replacing these expressions in equation (117) to get

HN A
¼ �t

X
hi;ji

ðSþ
i S

�
j þ S�

i S
þ
j Þ þ V

X
hi;ji

Sz
i S

z
j

þ
U

2

X
�jj

ðSz
j Þ

2
þ

U

2
� �

� �X
�jj

Sz
j : ð120Þ

This is an anisotropic Heisenberg model (Jz ¼ V and Jx ¼ Jy ¼ �2t) with a magnetic
field Bz ¼ U=2� � applied along the z-axis. In addition, there is an easy-plane
single-ion anisotropy. Therefore, each invariant subspace of H gives rise to an
anisotropic Heisenberg model HN A

acting on a partially depleted lattice (i.e. the sites
in N A are removed from the lattice). From the variational principle it becomes
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evident that the lowest energy subspace is the one containing no local singlet states,
i.e. N A is the empty set 1 (the original lattice is not depleted).

We know from our fundamental theorem that there are many other possible
languages that may be used to describe the present system. In particular, since
ð ~bb

y

iSÞ
3
¼ 0 it is clear that these modes satisfy a generalized Pauli exclusion principle

with p ¼ 2 and, therefore, one can establish a mapping to g-particles which satisfy
the algebra written in equation (63). The explicit form for this mapping is

~bb
y

jS ¼ gyj 1þ
1ffiffiffi
2

p � 1

� �
ngj

 �
;

~bbjS ¼ 1þ
1ffiffiffi
2

p � 1

� �
ngj

 �
gj;

~nnjS ¼ ngj ; ð121Þ

where ngj ¼ gyj gj. Again, by replacing these expressions in equation (117), we can
write down HN A

in terms of the g-particles as

HN A
¼ �

X
hi;ji

ðgyi gj þ gyj giÞðh1 þ h2 þ h3Þ

þ
U

2

X
�jj

ngj ðn
g
j � 1Þ þ V

X
hi;ji

ðngi � 1Þðngj � 1Þ

� �
X
�jj

ngj ; ð122Þ

where h1 ¼ t1ðn
g
i þ ngj � 2Þðngi þ ngj � 3Þ, h2 ¼ �t2ðn

g
i þ ngj � 1Þðngi þ ngj � 3Þ, and h3 ¼

t3ðn
g
i þ ngj � 1Þðngi þ ngj � 2Þ with t1 ¼ t, t2 ¼

ffiffiffi
2

p
t, and t3 ¼ t=2. The correlated

hopping term values are such that the matrix elements of the three possible hopping
processes, illustrated in figure 9, are the same.

Figure 9. Hopping processes for the bosonic Hubbard model written in the g-particles
language, equation (122). There are three different hopping processes t1, t2, and t3.
Note, however, that the non-vanishing matrix elements of the kinetic energy TN A

are
the same (�2t) regardless of the hopping process.
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6.4. BCS reduced Hamiltonian
These general mappings between languages are not restricted to real space

lattices, indeed one can find mappings between modes in Fourier space, for instance.
A very well-known example is the one introduced by P. W. Anderson [59, 60] for the
case of the Bardeen–Cooper–Schrieffer (BCS) reduced Hamiltonian

HBCS ¼
X
k

�kðn̂nk" þ n̂n�k# � 1Þ

� V
X
k;k0

0 cyk0"c
y

�k0#c�k#ck"; ð123Þ

where the (canonical) fermionic modes (electrons) are defined on a momentum space
lattice with momentum index k and n̂nk� ¼ cyk�ck� (with � ¼";#). Again, this is a case
where the dimension of the local Hilbert space is D ¼ 4 with a possible basis
fj0i; cyk"j0i; c

y

k#j0i; c
y

k"c
y

k#j0ig and it turns out it is exactly solvable.
It is clear from this Hamiltonian that if the total charge of the pair (k ";�k #) is

one (i.e. the pair state is occupied by a single electron, n̂nk" ¼ 1 and n̂n�k# ¼ 0, or
n̂nk" ¼ 0 and n̂n�k# ¼ 1) it will remain equal to one after application of HBCS (Pauli
blocking). We will show now that this conservation is derived from an SUð2Þ gauge
symmetry of the BCS reduced Hamiltonian which becomes explicit when we write
HBCS in terms of the generators of suð2Þ

L
suð2Þ. This constitutes another example of

the use of alternative languages to unveil hidden symmetries and, to our knowledge,
this has not been revealed in the way we will present below.

We just need to note that the following sets of operators

�zk ¼
1

2
ðn̂nk" þ n̂n�k# � 1Þ;

�þk ¼ cyk"c
y

�k#;

��k ¼ c�k#ck"; ð124Þ

and

Sz
k ¼

1

2
ðn̂nk" � n̂n�k#Þ;

Sþ
k ¼ cyk"c�k#;

S�
k ¼ cy�k#ck"; ð125Þ

satisfy the spin suð2Þ commutation relations (�; �; 	 ¼ x; y; z)

S�k ;S
�
k0


 �
¼ i�kk0���	S

	
k;

��k ; �
�
k0


 �
¼ i�kk0���	�

	
k;

S�k ; �
�
k0


 �
¼ 0 : ð126Þ

The last set of local suð2Þ generators is associated to the conservation of the parity of
the total charge in each pair ðk ";�k #). Since these are local transformations, the
symmetry generated by them is an SUð2Þ gauge symmetry. To see this we just need to
rewrite HBCS in the pseudo-spin language [59, 60]

HBCS ¼ 2
X
k

�k�
z
k � V

X
k;k0

0 �xk0�
x
k þ �

y
k0�

y
k

� �
: ð127Þ

Since HBCS is only a function of the set of local suð2Þ generators given by equation
(124) it commutes with the set of generators given by equation (125).
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In this way, this SUð2Þ gauge symmetry splits the total Hilbert space into
invariant subspaces labelled by the set of momentaN bp which have single occupancy
of electrons. Within each subspace (which corresponds to a depleted momentum
space lattice) the operators �bbyk ¼ cyk"c

y

�k# are the single-flavour hard-core bosons
whose algebra was defined in equation (6), and the Hamiltonian becomes

H
N bp

BCS ¼ 2
X
k

�k �bb
y

k
�bbk � V

X
k;k0

0 �bby
k0
�bbk; ð128Þ

where k and k0 mean sites in a momentum lattice k; k0 62N bp. (This model is exactly
solvable.) Thus, a superconducting BCS state is a Bose–Einstein condensate, in
momentum space, of hard-core bosons (i.e. spinless JW particles).

6.5. Bosonic t-J model
In Section 5.1 we introduced an suðNÞ language for the hard-core bosons (see

equation (49)). In other words, we showed that the generators of suðNÞ in the
fundamental representation can be used to describe a system of hard-core bosons
with Nf ¼ N � 1 different flavours. To illustrate a possible application of this
result, we will consider here the case of spin S¼ 1/2 hard-core bosons (i.e. Nf ¼ 2
and D ¼ N ¼ 3). In particular, we will show that the bosonic t-J model10

Hb
t�J ¼ t

X
hi;ji;�

�bb
y

i�
�bbj� þ

�bb
y

j�
�bbi�

� �
þ J

X
hi;ji

si � sj �
�nni �nnj

4

� �
� �

X
j

�nnj; ð129Þ

with sj ¼
1
2
�bb
y

j�r��
�bbj� (r denoting Pauli matrices), can be rewritten as an anisotropic

SUð3Þ Heisenberg model. To this end we just need to use the identities given in
equation (49) to replace the bosonic operators by the corresponding suð3Þ generators
S
��
ðjÞ to get

Hb
t�J ¼

X
hi;ji

J��S
��
ðiÞS��ðjÞ þ B

X
j

S
00
ðjÞ; ð130Þ

with (J�� ¼ J��)

J00 ¼ �
J

2
; J10 ¼ J20 ¼ t;

J12 ¼ J11 ¼ J22 ¼
J

2
; B ¼ �þ

zJ

6
; ð131Þ

and z is the coordination of the lattice. In this way we have established an exact
mapping between the t-J model and an anisotropic SUð3Þ Heisenberg model with an
applied ‘magnetic field’ B.

We have also seen in Section 5.1 that the suðNÞ generators can be represented in
terms of Schwinger–Wigner bosons. Therefore, we can use Schwinger–Wigner
bosons to get a mean-field solution of the Hamiltonian (equation (130)). In this
way we see how the change of language in the bosonic t-J model opens the possibility
to get a simple and original solution [61].

10Other representations with different particle statistics are possible; for example, we could have used

a hard-core fermion representation [23]. In such a case, the resulting Hamiltonian would be similar in

form to equation (129) with a kinetic energy term modified to include a non-local gauge field.
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These examples illustrate the process of unveiling hidden connections between
different problems just by changing the language. We also saw in the bosonic
Hubbard model example that the same process which unveils hidden symmetries
reduces the whole space to a direct sum of invariant subspaces. The effective number
of degrees of freedom in each subspace is lower than the original one. Consequently,
we can use a new class of languages A^ � with a lower dim � to describe the
original problem. This reduction not only simplifies the resolution of the problem,
but also establishes new connections with other physical systems.

6.6. SOð3Þ Heisenberg model
As shown in equation (56), the generators of soð3Þ are the components of an

antisymmetric tensor of order three. By contracting this tensor with the completely
antisymmetric one ����, we can see that the three generators of soð3Þ transform like
a vector L

L�ðjÞ ¼ ����M
��
ðjÞ: ð132Þ

It is well known that the soð3Þ and suð2Þ algebras are isomorphic. As a consequence
of this, we can establish a simple mapping between L and the three generators of
suð2Þ S in the spin-one representation

SðjÞ ¼ iLðjÞ: ð133Þ

Using this basic result of group theory, we can map the SOð3Þ Heisenberg model

H
SOð3Þ
Heis ¼ J

X
hi;ji

LðiÞ � LðjÞ ð134Þ

¼ �4J
X
hi;ji

s
y
i s

y
j þ J

X
hi;ji�

ð �bb
y

i�
�bb
y

j� �
�bb
y

i�
�bbj� þH:c:Þ

into the S ¼ 1 SUð2Þ Heisenberg model:

H
SOð3Þ
Heis ¼ �H

SUð2Þ
Heis ¼ �J

X
hi;ji

SðiÞ � SðjÞ: ð135Þ

In other words, the S ¼ 1 SUð2Þ Heisenberg model is equivalent to a model
consisting of a gas of S ¼ 1=2 hard-core bosons with a magnetic interaction along
the y-axis and a superconducting term.

7. Broken versus emergent symmetry

Matter organizes itself in different ways depending upon the nature of its
constituents and interactions. Symmetry and topology are fundamental guiding
principles behind this organization. A symmetry transformation is a modification of
the observer’s point of view that does not change the outcome of an experiment
performed on the same system. In mathematical terms it is a transformation that
takes the Hilbert space of states H into an equivalent one. Wigner’s theorem asserts
that any transformation T̂T which conserves the transition probability between rays
in H

jhT̂Ty�jT̂T�ij2 ¼ jh�j�ij2 ð136Þ

can be represented by a linear unitary or antilinear antiunitary map O (Oy
¼ O

�1) on
H. Since the operation of time-reversal is one of the few relevant examples in physics
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which involves an antiunitary operator, we will only consider unitary mappings in
the following.

Symmetries may be classified as external or space-time (e.g. the Poincar�e group)
and internal. The latter refers to the set of transformations that leaves the
Hamiltonian of the system H invariant; i.e. these are the symmetries of the physical
laws. This set forms a group which is named the internal symmetry group G and is
defined as

G ¼ fh�g; with group elements h�; that satisfy ½H; h�� ¼ 0 ; ð137Þ

with f representing the identity element, and where the number of elements defines
its order, which may be finite, denumerable infinite (discrete), or non-denumerable
infinite (continuous). In general, groups of symmetries in physics are either finite or
Lie groups (non-denumerable infinite). Besides, the group G may be Abelian (i.e.
½h�; h�0 � ¼ 0; 8�; �0) or non-Abelian, and local (also called gauge, meaning that the
symmetry applies to subsystems of the original physical system) or global. Invariant
physical observables, O, are those Hermitian operators which remain invariant
under the symmetry group G, i.e. ½O; h�� ¼ 0. Every observable which is a function of
the groups elements h� is a constant of motion since it commutes with H. Table 2
shows representative examples of physical models displaying different kinds of
symmetries. For each group element h� there is a unitary operator (see above) that
will be denoted as O� ¼ Oðh�Þ which maps H into an equivalent Hilbert space. The
set fO�g forms a representation of the group G. A representation is a homomorphic
mapping of the group G onto a set of linear operators O such that OðfÞ ¼ 1, and
O�O� ¼ Oðh�h�Þ. The dimension of the representation, dimðOÞ, is the dimension of
the (vector) space on which it acts. By a representation we will mean a non-singular
(in particular, unitary) dimðOÞ�dimðOÞ matrix representation. A representation is
irreducible if its invariant subspaces under the action of all the elements of the group
are only 0 and the full space. A completely reducible representation can be written as
a direct sum of irreducible representations. The eigenstates of H that have the same
eigenvalue En form an invariant subspace

HO�j�ni ¼ O�Hj�ni ¼ EnO�j�ni ð138Þ

meaning j�0
ni ¼ O�j�ni is also an eigenstate with the same eigenvalue. When the

dimension of this invariant subspace is larger than one, the energy eigenvalue En is
degenerate. The dimension of the degenerate subspace is equal to the dimension of
the representation of G associated with the eigenstate j�ni. If the group G is Abelian
all the irreducible representations are one dimensional and there is no degeneracy
induced by G.

Table 2. Examples of models displaying different kinds of symmetries. The group (or subgroup)

of symmetries involved is written in parentheses.

Symmetry Discrete Continuous

Global Ising (Z2) Classical XY (O(2))
XYZ (D2h) Heisenberg (SU(2))
Gauge magnet (Z2) Gauge magnet (U(1))

Local BCS (hidden SU(2))
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Lie groups play a fundamental role in physics. There is a notion of continuity or
closeness imposed on the elements of the group manifold h� such that a finite
transformation of the group can be generated by a series of infinitesimal ones. For a
one-parameter continuous group the representations (the homomorphic mapping
must be continuous) of its elements can be written

O�ð�Þ ¼ exp½i�X��; ð139Þ

where � is a continuous parameter and the X�’s are the generators of the Lie algebra.
The representations of the group elements are defined such that � ¼ 0 represents the
identity operator 1 and an infinitesimal transformation �� is expressed as

O�ð��Þ ¼ 1þ i �� X�; ð140Þ

where the generators form a Lie algebra,

½X�;X�� ¼ iC

�� X
; ð141Þ

with C

�� representing the structure constants of the algebra. Notice that the

generators themselves are conserved quantities, i.e. ½H;X�� ¼ 0.
Let us provide an example to show how these ideas are applied. Suppose we have

the following model Hamiltonian representing interacting spinless fermions

H ¼ �t
X
hi;ji

ðcyi cj þ cyj ciÞ þ V
X
hi;ji

n̂ni �
1

2

� �
n̂nj �

1

2

� �
; ð142Þ

where hi; ji represents nearest neighbours in an otherwise bipartite lattice (i.e. the
union of two interpenetrating sublattices A and B). Among the elements of G there
are two Abelian symmetries: one continuous and global Uð1Þ related to charge
conservation, and another discrete and local (staggered) Z2 related to a particle–hole
transformation. The continuous symmetry is realized by the unitary mappings

O� ¼ exp i�
X
j

n̂nj

" #
; O� c

y

j O
y

� ¼ exp½i��cyj ; ð143Þ

while the discrete one is realized by the identity and the particle-hole transformation

Op�h ¼
Y
j

exp½ip�jBn̂nj� exp i
p
2
ðcyj þ cjÞ

h i
;

Op�h cyj O
y

p�h ¼
cj sublattice A

�cj sublattice B;

(
ð144Þ

where �jB is one if j belongs to sublattice B and zero otherwise.
In some instances the states of matter display the symmetries compatible with the

quantum equations of motion (i.e. symmetries of H)

Hj�ðtÞi ¼ i@tj�ðtÞi; ð145Þ

while other more interesting situations are characterized by states with fewer (broken-
symmetry scenario) or with more symmetries (emergent symmetry scenario). In
Section 7.2 we will introduce and expand on the latter concept.
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7.1. Broken symmetry

To put the concept of emergent symmetry in context let us start summarizing the,

in principle independent but very powerful, broken-symmetry scenario. The broken-

symmetry phenomenon, which is manifested by a lowest-energy state not having

the full symmetry of the Hamiltonian G but less, has been beautifully described in

P. W. Anderson’s book Basic Notions of Condensed Matter Physics [8]. Here we will

simply restate the main known results.

To say that the ground state of H, j�0i, is invariant under G means that

O�j�0i ¼ j�0i; 8�: ð146Þ

If j�0i is not invariant under a given symmetry operation O�, we say that the

symmetry is spontaneously broken. (Notice that if such a symmetry does not exist

and j�0i is not invariant that means that the symmetry is explicitly broken.) The

broken-symmetry state is also called the ordered state. In general, a subset of G, GBS,

contains the transformations that do not leave j�0i invariant, while a residual

symmetry subgroup GR remains.

To make a quantitative distinction between the symmetric and the broken-

symmetry phases we need to introduce the concept of order parameter, representing

the supplementary variable needed to describe the lower symmetry state. By

definition, the order parameter is a physical quantity which is zero for the symmetric

phase and non-zero for the broken-symmetry state. However, this simple require-

ment is still too general since there are many different quantities that can satisfy this

condition. The most natural choice is dictated by the symmetry which is sponta-

neously broken. The order parameter is then a physical quantity that transforms

like a non-trivial representation of the symmetry group. The adequate choice of

representation depends on the particular problem under consideration. For instance,

out of a broken SUð2Þ symmetry, a system may have dipolar (usual magnetic

ordering), nematic, or more sophisticated multipolar orderings. Each transforms like

a different representation of the SUð2Þ group. One of the most important experi-

mental challenges is the design of physical measurements that distinguish between

the different representations of the broken-symmetry groups.

Spontaneous symmetry breaking can be associated with collective phenomena,

which is the relevant case for matter organization, or with a trivial phenomenon that

occurs when part of the one-particle spectrum of H is degenerate. The latter scenario

is not of interest here because it does not lead to the important concept of ergodicity

breaking. As an example, consider the ground state of an odd number of non-

interacting spin-1/2 fermions. The ground state is not SUð2Þ invariant (i.e, it breaks

that symmetry) but as soon as we add one particle to the system the SUð2Þ symmetry

is restored. On the other hand, when the phenomenon is collective, spontaneous

symmetry breaking is in general related to ergodicity breaking meaning that for

given initial conditions the equations of motion, although symmetric, cannot connect

(because of kinematic or dynamical reasons) states that would otherwise restore

those symmetries. The phenomenon of ergodicity breaking is not exclusive to

systems with a macroscopically large number of degrees of freedom (thermodynamic

limit); it may happen in systems with a finite number of degrees of freedom as well

(e.g. a single particle in a double well with an infinite barrier in between). The first

case is a result of the existence of a multitude of inequivalent representations of the
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observables of an infinite system. In other words, it is a result of the non-
commutativity of the limits

lim
	!1

lim
F!0

 ð	;FÞ 6¼ lim
F!0

lim
	!1

 ð	;FÞ; ð147Þ

where 	 is the volume of the system, and F is the generalized external field that
linearly couples to the order parameter  . Notice that when the symmetry breaking
is induced by ergodicity breaking, the subspaces which get disconnected in the
dynamics of the system are still connected by symmetry operations of GBS. This
means that ergodicity breaking in a system with a Hamiltonian invariant under GBS

requires the ground state to be degenerate.
Our last observation raises the following question: Is it possible to have

spontaneous symmetry breaking when the ground state is non-degenerate? The
answer to this question is yes. Symmetry breaking implies that the ground state is not
invariant under the action of GBS. Non-degeneracy means that the representation
associated to this state is one dimensional. Let us consider an example of this
situation in which G is the Abelian group of translations. The system consists of an
Ns-site ring of non-interacting spinless fermions in the presence of a uniform
magnetic field threading the ring whose total flux is Ns:

H ¼ �t
XNs

j¼1

ðcyj exp½i� cjþ1 þ cyjþ1 exp½�i� cjÞ: ð148Þ

The ground state of this system is non-degenerate and has a non-zero total
momentum (non-zero current); i.e. it does not belong to the trivial representation
of the group of translations.

As usual, mathematical concepts have physical relevance whenever there are
observable consequences. So, what are the consequences of symmetry breaking?
They are:

1. Generalized rigidity and long-range order
With the appearance of a broken-symmetry state an order parameter  

emerges which represents a measure of the degree of asymmetry in the broken-
symmetry phase. The general problem of how to explicitly define an order
parameter is deferred to a later section; here we will simply assume that we
know  and it is defined as the expectation value of some space-dependent
local observable (order field)  ̂ ðxÞ. Since the state is translationally invariant
(in the thermodynamic limit) it happens that

lim
jx�x0 j!1

h ̂ ðxÞ ̂ ðx0Þi !  2: ð149Þ

In other words, the broken symmetry state carries long-range correlations in the
order field. Conversely, long-range correlations imply a broken-symmetry state,
therefore, long-range correlations are a necessary and sufficient condition for
the existence of an ordered state. P. W. Anderson has called this pheno-
menon generalized rigidity. In his words [8] it is an ‘emergent property not
contained in the simple laws of physics, although it is a consequence of them’.
Given a physical Hamiltonian it is not straightforward, in general, to determine
whether its ground state is invariant or not. However, under certain conditions
(e.g. low space dimensionality) one can certainly establish that there is no
broken-symmetry phase and, therefore, no long-range order. Those conditions
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constitute the hypothesis of the Mermin–Wagner–Hohenberg theorem. The
idea behind this theorem is that (thermal or quantum) fluctuations may destroy
long-range order, so the conditions of the theorem are directly tied to the
reasons that may cause strong fluctuations to the ordered state. Continuous
symmetries, low space dimensionality, short-range (constituent) interactions
cause stronger fluctuations. Thus at finite temperature, T>0, short-range spin
models with a continuous symmetry in d � 2 do not show spontaneous
ordering. At T¼ 0, the existence of a gap in the excitation spectrum (of a system
with a continuous symmetry) precludes long-range order, but the presence of
gapless excitations does not necessarily imply this order. (Note that the
Mermin–Wagner–Hohenberg and Goldstone (see below) theorems are two
complementary aspects of the same fact, and both follow in a unified way from a
clever use of Bogoliubov’s inequality [62].)

2. New massless particles: Nambu–Goldstone modes
As mentioned above, continuous symmetries play a special role since

degeneracies are non-countably infinite. If a continuous symmetry is
spontaneously broken, the spectrum of H generally has gapless collective
excitations (soft modes). These emergent excitations (quasi-particles), which
can be interpreted as new particles with zero mass, are called Nambu–
Goldstone modes or bosons. They are the quantized excitations associated
with a spatial twist of the order parameter. The energy of the twist is typically
proportional to the inverse of the system’s length, i.e. it increases linearly with
the wavevector k of the twist. (The energy of the resulting state vanishes as
k ! 0.) The number of Nambu–Goldstone bosons is at most dim G � dim GR.
The Anderson–Higgs mechanism in gauge theories provides an exception to
this theorem, i.e. some (or all, depending upon the symmetry group of the
gauge theory) Nambu–Goldstone bosons do not emerge even though the
continuous symmetry is broken. The idea behind this mechanism is that after
the symmetry is broken, the coupling of our ungauged system to a massless
gauge field generates a mass for the gauge field giving rise to massive bosonic
excitations.

3. Topological defects
The breakdown of long-range order (with temperature, for instance)

carries the formation of defect structures such as vortices and domain walls,
each characterized by the type of singularity in the order parameter. The
topological stability of these defects is defined by the homotopy class of the
manifold where the order parameter lives, and work has been developed to
mathematically classify these defect structures. The book by P. W. Anderson
[8] provides an excellent introduction to the subject.

7.2. Emergent symmetry
In the previous subsection, we revised the fundamental aspects and the deep

physical consequences of the concept of broken symmetry. We will introduce now
another notion which complements the previous one and also plays a central role
in the description of physical systems. This is the notion of emergent symmetry.
In a broken-symmetry phenomenon, the symmetry of the considered system is
lowered below a critical temperature. But is it possible to have the opposite situation
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where the symmetry of our system increases when the temperature is lowered? In a
sense that will become clear below, the answer to this question is yes. However, we
will see that the emergence of a new symmetry is not signalled by a phase transition
but by a cross-over between two different energy scales. This new concept is useful to
characterize the relevant degrees of freedom that dominate the low-energy physics
and the nature of the quasi-particles that result from the interactions between these
degrees of freedom.

The isolation of the relevant degrees of freedom for the description of complex
systems plays a central role in physics. In general, this process results from a careful
separation of the different energy scales involved in the Hamiltonian H under
consideration. The elimination of the irrelevant degrees of freedom can be achieved
by different methods like perturbation theory, algebraic approaches, or the renormal-
ization group. The result is a new low-energy effective Hamiltonian, Heff, that is a
valid description of the physical system below some characteristic energy Ec. The
Hilbert space M0 of Heff is then a subspace of the Hilbert space H of the original
Hamiltonian H. Sometimes the spectrum of Heff and the low-energy spectrum of H
are exactly the same. However, in the more general case, the difference between both
spectra is finite and can be made arbitrarily small by increasing the distance between
the corresponding energy scales in H.

We will say that a new symmetry emerges whenever there is a symmetry group G
of transformations (which is not a group of symmetries of H ) with elements of the
form g� ¼

P
k ak

Qnk
j¼1 Uj (ak is a c-number and nk an integer), where the unitary

operator Uj acts on the local Hilbert space Hj, and

½g�;Heff� ¼ 0 for any g� 2 G: ð150Þ

The transformations in G are defined in the original Hilbert space H and leave
the subspace M0 invariant. (H ¼

N
j Hj is an arbitrary decomposition of H.) The

condition g� ¼
P

k ak
Qnk

j¼1 Uj means that the g�’s are linear combinations of nk-local
operators (product of nk operators each of them acting on the local space Hj). In this
way, we are excluding non-local transformations. This is because for each g� that
commutes with Heff, it is always possible to find a non-local operator that commutes
with H and is identical to g� when restricted to the subspace M0. Note that if Heff

provides an exact description of the low-energy spectrum of H, we say that the
emergent symmetry is exact. In contrast, if Heff is only a very good approximation to
the low-energy spectrum of H, the emergent symmetry is only an approximate
concept. In other words, suppose that Heff þH 0

eff is the Hamiltonian that reproduces
the exact low-energy spectrum of H. If, for instance, we have derived Heff within
perturbation theory to order n in the small parameter � (the ratio between the small
and the large energy scales), H 0

eff is of order �nþm, where m is a positive integer.
Therefore,

½g�;Heff þH 0
eff� ¼ ½g�;H

0
eff� ¼ Oð�nþmÞ for any g� 2 G: ð151Þ

Although in these cases the emergent symmetry is an approximate notion, the
concept is still useful to identify the nature and properties of the low-energy quasi-
particles. This is illustrated in the last examples of this section.

Let us start considering cases in which the notion of emergent symmetry is exact.
During the last few decades, exact dimer ground states were found for different
quantum spin models [12, 63]. The most famous example is the Majumdar–Ghosh
solution [9–11] of the Heisenberg spin-1/2 chain with nearest and second-nearest
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neighbour interactions J1 and J2, respectively. The common characteristic of these
quantum spin models is the emergence of a local Uð1Þ gauge symmetry that gives rise
to the conservation of each local dimer. In general, the dimerized ground states can
be written as

j�0i ¼
O
ði1;i2Þ

jsði1; i2Þi; ð152Þ

where ði1; i2Þ denotes a pair of sites and each site belongs to one and only one pair.
The wavefunction jsði1; i2Þi is the singlet state for the pair ði1; i2Þ. Let us now
introduce the following local Uð1Þ transformation

T̂Tði1; i2Þ ¼ exp½ia12Pði1; i2Þ�; ð153Þ

where Pði1; i2Þ ¼ jsði1; i2Þihsði1; i2Þj is a local projector on the singlet state of the
bond ði1; i2Þ. It is clear that T̂Tði1; i2Þj�0i ¼ exp½ia12�j�0i. The generators of this Uð1Þ
gauge group are the projectors Pði1; i2Þ which count the number of singlet states
on each bond ði1; i2Þ. Then, the set of bonds ði1; i2Þ provides the natural subsytem
decomposition of H. It is important to note that in most of these cases the emergent
symmetry is only present in the ground state which is separated from the lowest
energy excitations by an energy gap; i.e. M0 is a one-dimensional subspace.
Nevertheless, this emergent property of the ground state determines the nature of
the low-energy excitations, which are local spin triplets on each bond, that propagate
on a sea of singlet dimers. For models like those of equation (89) or of [15], there is
an invariant low-energy subspace given by a dimerized ground state and an arbitrary
number of triplet excitations, with the condition that triplets cannot be created on
dimers which are nearest neighbours. The action of the Hamiltonian restricted to this
subspace is invariant under a Uð1Þ gauge transformation and, again, the exact low-
energy theory has an infinite number of symmetries not present in the original
models.

What is the origin of the emergent Uð1Þ gauge symmetry of quantum dimer
ground states of the form of equation (152)? For most, if not all, of the cases the
origin is geometrical frustration. The particular connectivity of the lattice (or lattice
topology) produces negative interference between the different links that connect two
dimers. When the interference is complete, the dimers become disconnected and the
gauge symmetry emerges. This principle is by no means restricted to quantum dimer
systems. We can imagine different local structures (instead of dimers) that get
disconnected due to the same reason. For instance, currents localized in plaquettes
can also result from an emergent SUð2Þ gauge symmetry in frustrated lattices. As
shown in [64], this occurs for particular fillings of the Hubbard model on a family of
frustrated lattices. The guiding principle is always the same. In a certain region of
parameters, local currents with two possible orientations become conserved quan-
tities. The local chirality can be described with a pseudo-spin-1/2 variable that is the
relevant degree of freedom to build a low-energy effective theory. Any weak physical
interaction that breaks the emergent gauge symmetry can introduce a finite coupling
between the local currents and produce different orderings of the chiral degrees of
freedom. In the case of [64], the interaction that breaks the gauge symmetry is an
inter-site Coulomb repulsion. This interaction induces an XY-like ordering of the
local currents. The low-energy excitations are chiral waves that are described by
magnons in the pseudo-spin language. Following the same strategy, one can find
physical Hamiltonians that give rise to different and, sometimes, unusual low-energy
degrees of freedom (see the example of equation (158) below).
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However, frustration is not a requirement to have an exact emergent gauge
symmetry. For instance, the Fermi liquid or the band insulator are two examples of
emergent symmetries that do not involve any geometrical frustration. These phases
of matter are not characterized by any broken symmetry since their corresponding
ground states are non-degenerate. According to Landau’s theory of Fermi liquids
[65], the quasi-particles of the Fermi liquid have an infinite lifetime if they are right at
the Fermi surface. This means that the low-energy spectrum of the Fermi liquid is
invariant under local Uð1Þ transformations of the form exp½ikF c

y

kF
ckF � (where c

y

kF
is

the creation operator of a quasi-particle with Fermi wavevector kF ). The band
insulator can also be characterized by a local Uð1Þ emergent symmetry. In this case,
the Uð1Þ symmetry can be factorized in real space and is generated by the local
transformation exp½iacyj cj�. This is the mathematical expression for charge localiza-
tion that characterizes the insulating state: the charge is locally conserved. Like in the
case of the spin dimers, only the ground state of the band insulator exhibits the
property of emergent symmetry. In contrast, the dimension of M0 for the Fermi
liquid phase is equal to the number of wavevectors kF that are on the Fermi surface.
Note that the Fermi surface is the manifold associated with the group of emergent
symmetries whose topology characterizes the universality class of the Fermi liquid.

Exactly and quasi-exactly solvable models also provide examples for exact
emergent symmetries. A model is quasi-exactly solvable when only part of the
spectrum can, in a purely algebraic form, be exactly diagonalized. Let us call S0 the
subspace generated by the exactly solvable part of the spectrum. Since H is exactly
solvable when restricted to S0, there is a set of operators g� that commute with
H : S0 ! S0. If S0 is also the lowest energy subspace and the operators g� can be
factorized as g� ¼

P
k ak

Qnk
j¼1 Uj, we have another case of emergent symmetry. As

an example of a quasi-exactly solvable model that also has an emergent symmetry,
we will consider the t-Jz chain [6]. The lowest energy subspace of this model
can be mapped into the exactly solvable S¼ 1/2 XXZ chain. This means that
Ht�Jz : S0 ! S0 has an infinite number of symmetries gn that are linear combina-
tions of n-local operators (products of n-body spin variables) [66]. These are the
quantum symmetries that make the XXZ chain an integrable problem. The relevant
low-energy degrees of freedom of Ht�Jz are holes which are attached to an anti-phase
domain for the staggered magnetization. For Jz < 8t, the system is a Luttinger liquid
of particles that carry both electrical and topological charges.

We will consider now the cases in which the emergent symmetry is an
approximate, albeit important, concept. In the simple example that we describe
below, a global SUð2Þ invariance emerges at low energies. The model is a
d-dimensional hypercubic Kondo lattice with an attractive (U > 0) Hubbard
interaction for the conduction band, an anisotropic Kondo interaction between
the magnetic impurities and the conduction electrons, and a Heisenberg antiferro-
magnetic interaction ðJ > 0Þ between the localized spins ð� ¼";#Þ

HKA ¼ �t
X
hi;ji;�

ðcyi�cj� þ cyj�ci�Þ � �
X
i

n̂ni �U
X
i

n̂ni"n̂ni#

þ JK
X
i

ð
Sz
i s

z
j þ Sx

i s
x
j þ S

y
i s

y
j Þ þ J

X
hi;ji

Si � Sj; ð154Þ

where Si is the spin operator for the localized moment at the site i, and s�i ¼
1=2

P
�;�0 c

y

i��
�
��0ci�0 with � ¼ fx; y; zg. The symmetry group of HKA is Uð1Þ �Uð1Þ.

The corresponding generators or conserved quantities are the total number of
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particles
P

i n̂ni and the z-component of the total spin
P

iðS
z
i þ szi Þ. This model

describes the competition between a Kondo-like system (JK 
 U) and an s-wave
superconductor coexisting with antiferromagnetic ordering of the localized magnetic
moments (JK � U). We will consider here the large U limit U 
 JK ; t. In this limit,
the low-energy subspace M0 is generated by states in which the sites of the
conduction band are either empty or double occupied. In other words, the
conduction states are non-magnetic and the Kondo interaction is therefore
quenched. The low-energy effective model in M0 is

HKA
eff ¼ J

X
hi;ji

Si � Sj þ ~tt
X
hi;ji;�

ð �bb
y

i
�bbj þ

�bb
y

j
�bbiÞ þ 2~tt

X
hi;ji;�

�nni �nnj � ~��
X
i

�nni; ð155Þ

where ~tt ¼ 2t2=U, and ~�� ¼ 2�þ z ~tt. The hard-core bosons represent the local Cooper
pairs

�bb
y

i ¼ cyi"c
y

i#
�bbi ¼ ci#ci": ð156Þ

The first observation is that the localized spins and the conduction electrons are
decoupled in HKA

eff . The original Kondo interaction is suppressed by the competing
U term. As a consequence, the symmetry group of HKA

eff is Uð1Þ � SUð2Þ. The Uð1Þ
symmetry is again associated with the conservation of the number of particles that
are now Cooper pairs. The emergent spin rotational SUð2Þ invariance is explicit from
the expression HKA

eff of equation (155). This is a simple example of a global SUð2Þ
symmetry that only appears at low energies. The higher-order terms in JK=U will
remove this SUð2Þ invariance leaving the original Uð1Þ symmetry of rotations
around the z-axis. This means that one of the two Goldstone modes associated to
the spontaneously broken SUð2Þ symmetry will acquire a small mass of order
ðJK=UÞ

n with n � 2.
In the same way that an emergent global symmetry is helpful for identifying

the nature of the quasi-particles, an emergent gauge symmetry provides a guiding
principle for identifying the relevant degrees of freedom at low energies. In general, a
non-interacting theory is characterized by local symmetries that express the
independence of each particle. For instance, the translation of only one particle is
a symmetry for a non-interacting gas. The inclusion of the interactions removes
this local symmetry and the many-body problem becomes, in general, non-trivial.
However, in many cases it is possible to find another locally gauge-invariant limit for
the interacting problem. In this case, the local gauge invariance emerges only at low
energies and signals the appearance of effective degrees of freedom that become
decoupled. For instance, the origin of antiferromagnetism is more transparent in
the strong coupling limit of the half-filled Hubbard model than in the weak or
intermediate coupling regimes. Before giving a formal expression for this statement,
it is convenient to illustrate its meaning with this simple example. Let us consider
a repulsive Hubbard Hamiltonian at half-filling (U>0):

HHubb ¼ �t
X
hi;ji;�

ðcyi�cj� þ cyj�ci�Þ þU
X
i

n̂ni"n̂ni# � �
X
i

n̂ni: ð157Þ

In the infinite-U limit, the low-energy subspace M0 is generated by states having one
particle per site, i.e. there is one spin S ¼ 1=2 localized on each site. All states in the
manifold M0 have the same energy, and this massive degeneracy is associated with
an emergent SUð2Þ gauge symmetry. In other words, in this limit the local spins get
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decoupled and are free to rotate without changing the energy of the system. This tells

us that the natural degrees of freedom to describe the system in the strong coupling

limit are localized spins, instead of itinerant fermions. The presence of an emergent

gauge symmetry indicates that there is a limit in our original interacting theory for

which some degrees of freedom become non-interacting. The internal structure of

these degrees of freedom is determined by the gauge symmetry group. If the system

in our example is close to the gauge invariant limit, U 
 t, but finite, the relevant

degrees of freedom are still the same but they become weakly interacting. This is the

origin of antiferromagnetism in the strongly interacting Mott insulators. Since the

large-U limit of the Hubbard model is very well known, it may seem to the reader

that the use of the new concept of emergent symmetry just provides a complicated

way to describe a simple phenomenon. However, this is not the case for the non-

trivial examples that are described below. In addition, we will see that the concept of

emergent gauge symmetry is important as a guiding principle to find new states of

matter that result from strongly interacting systems. One has to keep in mind that

even antiferromagnetism remained as a hidden phase for a long period of time.

Let us consider the case of a gauge symmetry group that is a direct product of

local symmetry groups, G ¼
N

k Gk, where each local group Gk acts on the local

space Hk. If the reduced Hilbert space M0 admits the decomposition M0 ¼
N

k Hk,

this will provide the natural basis to write down Heff. In particular, if Gk is a

continuous group, the generators of Gk are conserved quantities at low energies

because they commute with Heff. These generators are physical degrees of freedom

and their conservation implies that they are non-interacting. Note that these effective

degrees of freedom are the bricks to build new phases out of interacting systems.

As soon as we move away (but not too far) from the gauge invariant limit, these

degrees of freedom will interact, producing, in some cases, novel types of orderings.

The main goal in the rest of this section will be illustrating this phenomenon with

different examples.

We will consider now the spin-1/2 ladder of figure 10, described by the following

Hamiltonian

HSL ¼ J
X
i;�;�0

Si� � Si�0 þ J 0
X

i;�¼1;4

Si� � Siþ1�; ð158Þ

with J; J 0>0 and 1��; �0 �4. In the limit J 0�J, the low-energy subspace of HSL

only contains states in which each square plaquette i is in a singlet state. This is clear

when we analyse the spectrum of an isolated plaquette. The energy of the eigenstates

only depends on the total spin ST : EðST Þ ¼ ST ðST þ 1ÞJ. Thus, the two possible

singlets (ST ¼ 0) are the lowest energy states, with the ST ¼ 1 and ST ¼ 2 states

having eigenvalues 2J and 6J, respectively.

We will classify the two local singlet states according to the eigenvalues of the

reflection symmetry plane along the diagonal of the plaquette (see figure 10). One of

the singlet states jSi;si is symmetric under this reflection while the other one, jSi;ai, is

antisymmetric. These two singlet states can be described with an effective pseudo-

spin � ¼ 1=2 variable. We will represent the symmetric state jSi;si ¼ j"i by the

eigenvector of �z with eigenvalue 1/2 and the antisymmetric one, jSi;ai ¼ j#i, by the

other eigenvector of �z. In the infinite-J limit, the low-energy degrees of freedom �i
are completely decoupled. This situation is similar to the infinite-U limit of the

Hubbard model. However, in the present case, the pseudo-spin variable �i does not
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represent a magnetic degree of freedom. By means of a canonical transformation to
second order in J 0=J, we can derive the following low-energy effective Hamiltonian

HSL
eff ¼

Jeff

4

X
i

ð2�zi �
z
iþ1 � �

x
i �

x
iþ1 � �

y
i �

y
iþ1Þ; ð159Þ

where Jeff ¼ �ðJ 0Þ
2=J. HSL

eff is an Ising-like anisotropic Heisenberg model. Since
Jeff < 0, the ground state is a fully polarized ferromagnet that has two possible
orientations (Z2 broken symmetry). In terms of the original variables, the fully
polarized states correspond to the direct product of the symmetric and the
antisymmetric singlets:

N
i jSi;si and

N
i jSi;ai. The Z2 �Uð1Þ symmetry of HSL

eff is
an emergent symmetry because H is not invariant under the corresponding
transformations. These symmetries are explicitly removed when higher order terms
in J 0=J are added to HSL

eff . These terms will stabilize one of the fully polarized
ferromagnetic solutions. However, the presence of these terms does not modify the
nature of the quasi-particles of HSL

eff . These novel quasi-particles, which we will name
kekulons,11 are magnons in the pseudo-spin language whose spectrum is gapped due
to the Ising-like character of HSL

eff . In the original language, these magnons are
massive singlet waves. The main effect of the higher-order corrections to HSL

eff is a
renormalization of the mass (gap) of these quasi-particles. Therefore, even though
the emergent symmetry is approximate in the present problem, its most important
physical consequences remain valid.

We have seen that there is a systematic procedure for obtaining new types of
orderings. The procedure starts from some limit in parameter space, in general the
strong coupling limit, in which effective low-energy degrees of freedom are simulta-
neously stabilized and decoupled. The interactions between these degrees of freedom
appear when we move away from this limit and the symmetries or approximate
symmetries of these effective interactions have important consequences for the
properties of the ground state and the low-energy excitations. These degrees of
freedom are the bricks for the novel orderings that result from the effective
interactions and simplify the description of the new phase. These novel orderings,

11After Friedrich August Kekulé, a German chemist, who solely on intuition proposed the known

resonant structure of benzene in 1872, before quantum mechanics was born. It was Linus Pauling who

formally developed the resonance theory in 1931.

Figure 10. Four-leg spin ladder. In each plaquette i, there are four spin-1/2 which interact
through a Heisenberg exchange term of strength J. The interaction between
plaquettes is J 0, and the links are indicated in the figure.
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which are in general associated with the presence of competing interactions, pose
a challenge for experimental physicists to develop probes that are sensitive to the
new phases.

8. Broken symmetry phase transitions

It is widely recognized that the resolution of interacting systems at a microscopic
level requires sophisticated techniques which go beyond the traditional approaches.
Much of the current understanding on quantum phases of matter and their
corresponding phase transitions is due to renormalization group analysis or the
existence of a few exact solutions. The latter, the most desirable scenario, is also the
hardest since one seldom encounters solutions in spatial dimensions larger than one.
For strongly interacting systems the situation worsens because it is difficult, if not
impossible, to identify a small parameter: their ground states are susceptible to
different quantum orderings and low-energy excitations because of competing
interactions that abound in non-linearities. Often these systems are near quantum
criticality which makes their study even more challenging.

A fundamental notion of universality (or equivalence) naturally emerges from
our dictionaries. This notion refers to the fact that many apparently different
problems in Nature have the same underlying algebraic structure and, therefore,
the same physical behaviour. In this way, as a result of unveiling the symmetry
structure of the problem, there is a concept of physical equivalence hidden in those
dictionaries. If the complete Hilbert space of the problem maps onto another in a
different language, the concept of universality applies to all length and time scales.
On the other hand, if only certain invariant subspaces of the original Hamiltonian
map onto another physical system, then, universality will only manifest itself at
certain energy scales.

It was Landau [7] who first noticed the crucial role of symmetry for phase
transitions. Since the symmetry of a given state cannot be changed continuously,
different symmetries must be associated to states of matter which are qualitatively
different. To characterize the symmetry of a given state, Landau introduced the
notion of an order parameter. This parameter is zero in the symmetric state and
has a non-zero average when the symmetry is broken. Another property of this
parameter is that it is non-invariant under at least one of the transformations of the
system Hamiltonian. As Landau recognized a long time ago, the order parameter is
the relevant physical quantity to build a macroscopic theory of thermodynamical
phase transitions. However, the search for the order parameter characterizing a
broken symmetry state can be a highly non-trivial task.

There are examples in Nature of systems entailing hidden microscopic order
parameters which do not correspond to macroscopic variables, i.e. they cannot be
coupled to any external physical field. To find these hidden order parameters we
cannot avoid a microscopic description of our physical system. It is important to
notice the practical consequences of this search: a new microscopic order parameter
amounts to predicting a new possible state of matter. The glassy materials are good
examples of systems belonging to this class. Since the order parameters characteriz-
ing a broken continuous symmetry are associated in general to the generators of the
symmetry group, one can imagine that a language based on symmetry generators can
shed some light on the search of the possible order parameters for a given system.
It is the purpose of this section to illustrate this idea with different examples and
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to introduce the notion of hierarchical language. One of our goals is to show the
fundamental role played by the hierarchical languages in the classification of orders
in matter.

8.1. Classification of order parameters
To illustrate the general procedure of getting and classifying the possible order

parameters of a given model, we start discussing the family of Heisenberg models
with SUðNÞ spins in the fundamental representation

H
SUðNÞ
Heis ¼ J

X
hi;ji

S
��
ðiÞS��ðjÞ: ð160Þ

(A summary of the methodology to obtain and classify order parameters is presented
at the end of Section 8.2.) For J<0, the ground states of this family of Hamiltonians
can be exactly computed and it is a fully polarized SUðNÞ ferromagnet. The order
parameter is the SUðNÞ magnetization S

��
¼
P

j S
��
ðjÞ which has N2 � 1 (number of

generators of suðNÞ) components. If J > 0, and the ground state has antiferromag-
netic long-range order, the order parameter is the staggered SUðNÞ magnetization
S
��
ST ¼

P
j e

iQ�jS
��
ð jÞ (Q is the antiferromagnetic wavevector). By adding terms which

break the SUðNÞ symmetry explicitly, we can get lower symmetry order parameters
associated to the subgroups of SUðNÞ.

We can now ask what is the expression of these order parameters in a spin SUð2Þ
or in a bosonic representation of H

SUðNÞ
Heis . The answer to this question will allow us to

explore new phases which can appear in the spin or the bosonic equivalent models.
In addition, we will find that the high symmetry points of these models correspond
to situations where two or more different phases coexist.

We start with the spin SUð2Þ representations of H
SUðNÞ
Heis . The local Hilbert space

of this SUðNÞHeisenberg Hamiltonian has dimension N so we can use an SUð2Þ spin
S ¼ ðN � 1Þ=2 to represent this model. In this representation the Hamiltonian (160)
has the following form

H
SUðNÞ
Heis ¼ J

X
hi;ji

XN�1

l¼0

�lðSi � SjÞ
l; ð161Þ

with the values of the �l ’s determined from the following system of equations

XN�1

l¼0

�l ½1� SðS þ 1Þ�l � ð�1Þl½SðS þ 1Þ�l
� 	

¼ 2ð�1ÞN ;

XN�1

l¼0

�l ½Y1 � SðS þ 1Þ�l � ð�1Þl½SðS þ 1Þ�l
� 	

¼ 0;

XN�1

l¼0

�l ½Y2 � SðS þ 1Þ�l � ½1� SðS þ 1Þ�l
� 	

¼ 0; ð162Þ

where Y1 ¼ mð2mþ 1Þ, Y2 ¼ nð2n� 1Þ and m, n are integers. When N is an odd
integer (i.e. S is integer) m and n satisfy 0 � m � S, and 1 � n � S, while for even N
(i.e. S is half-odd integer), 0 � m � S � 1=2, and 1 � n � S þ 1=2. It is easy to check
that there are N � 1 linearly independent equations and N variables �l. The
undetermined variable corresponds to an additive constant.
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The simplest case corresponds to SUð2Þ. Here we get the spin 1/2 (S ¼ ð2� 1Þ=2)
version

H
SUð2Þ
Heis ¼ 2J

X
hi;ji

Si � Sj: ð163Þ

To understand the general procedure we continue with the first non-trivial example,
i.e. SUð3Þ. This particular example has been analyzed in [45]. By solving the above
system of equations we get that the spin one (S ¼ ð3� 1Þ=2) version of the SUð3Þ
Heisenberg Hamiltonian is (up to a constant)

H
SUð3Þ
Heis ¼ J

X
hi;ji

½ Si � Sj þ Si � Sj

� �2
�: ð164Þ

To fix ideas let us start with the simple ferromagnetic case J < 0. As mentioned
above, the ground state of the ferromagnetic SUð3Þ Heisenberg model is the state
with maximum total SUð3Þ spin S. The order parameter associated to this broken
symmetry is the total SUð3Þ magnetization S

��
¼
P

j S
��
ðjÞ which has eight

independent components. We now raise the following question: what is the order
parameter of the equivalent model (164) written in the (SUð2Þ) S¼ 1 language? To
answer this question we need to write down the relation between the components of
S
�� and the S¼ 1 generators. The fundamental theorem guarantees the existence of

these mappings. From equation (51) and the generalized JW mappings (Section 5.3),
we get (the site index j is omitted)

Sx ¼
1ffiffiffi
2

p ðS
01
þ S

20
þ S

02
þ S

10
Þ;

Sy ¼
�1ffiffiffi
2

p
i
ðS

01
þ S

20
� S

02
� S

10
Þ;

Sz ¼ S
11
� S

22;

ðSxÞ
2
�
2

3
¼

1

2
ðS

12
þ S

21
þ S

00
Þ; ðSzÞ

2
�
2

3
¼ �S

00;

Sx;Syf g ¼ iðS21
� S

12
Þ;

Sx;Szf g ¼
1ffiffiffi
2

p ðS
01
� S

20
� S

02
þ S

10
Þ;

Sy;Szf g ¼
�1ffiffiffi
2

p
i
ðS

01
� S

20
þ S

02
� S

10
Þ: ð165Þ

The first three operators are the components of the S¼ 1 ferromagnetic order
parameter, while the second five are the components of the spin-nematic order
parameter (components of the bilinear symmetric traceless tensor). The traceless
condition implies that ðSyÞ

2
� 2

3
¼ �ððSzÞ

2
� 2

3
Þ � ððSxÞ

2
� 2

3
Þ. In this way, we see that

by rotating the SUð3Þ ferromagnetic order parameter it is possible to evolve from a
ferromagnetic to a spin-nematic ground state and vice versa. This means that the
SUð3Þ invariance of the spin Hamiltonian gives rise to coexistence of both phases.
Since the algebra suð3Þ provides a fundamental representation when the local Hilbert
space has D ¼ 3, any local and linear operator can be written as a linear combination
of the identity and the suð3Þ generators. The SUð3Þ magnetization is the highest-
dimensional order parameter for the S¼ 1 problem. By reducing the symmetry of the
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Hamiltonian to any subgroup G of SUð3Þ we can obtain lower symmetry order
parameters. The general procedure consists in building a new basis for the generators
where each operator transforms according to an irreducible representation of G. For
instance, if we take G ¼ SUð2Þ we can do this classification by inverting equations
(165):

S
00

¼
2

3
� ðSzÞ

2; S
11

¼
SzðSz þ 1Þ

2
�
1

3
;

S
10

¼
1

2
ffiffiffi
2

p ½Sþ þ Sþ;Sz
� 	

�

S
01

¼
1

2
ffiffiffi
2

p ½S� þ S�;Szf g�

S
20

¼
1

2
ffiffiffi
2

p ½S� � S�;Szf g�

S
02

¼
1

2
ffiffiffi
2

p ½Sþ � Sþ;Sz
� 	

�

S
12

¼
i

2
Sx;Syf g þ ðSxÞ

2
þ
1

2
ðSzÞ

2
� 1;

S
21

¼
1

2i
Sx;Syf g þ ðSxÞ

2
þ
1

2
ðSzÞ

2
� 1: ð166Þ

In this way we see that the ferromagnetic and the spin-nematic order parameters
form a particular basis of suð3Þ generators in the fundamental representation. In
other words, we can write down any linear operator as a linear combination of the
components of both order parameters. Therefore, if a S¼ 1 Hamiltonian is SUð2Þ
invariant the local order parameter can be either ferromagnetic or spin-nematic since
it can be written as a linear combination of both. This exhausts all possible order
parameters for an SUð2Þ invariant S¼ 1 Hamiltonian.

Following the previous procedure we can now classify the possible local order
parameters of an SUð2Þ spin S Hamiltonian. The ordinary magnetization is the only
phase that can be derived from S¼ 1/2 spins. It is well known that a spin-nematic
phase like the one described above cannot exist for S¼ 1/2. For S¼ 1, we have seen
that there is an additional spin-nematic phase which appears in a natural way from
the connection with the SUð3Þ group. In general, we can write down a spin S
Hamiltonian in terms of the generators of SUð2S þ 1Þ in the fundamental
representation. To determine the possible local order parameters of an SUðNÞ

invariant spin S Hamiltonian we have to reduce this space of generators according
to the irreducible representations of SUð2Þ. It is easy to check that those representa-
tions correspond to the totally symmetric tensors of rank l � 2S, i.e. the possible
order parameters are generated by application of the SUð2Þ transformations to
the set fSz; ðSzÞ

2; � � � ; ðSzÞ
2S
g. ðSzÞ

l is the highest weight operator of the SUð2Þ
representation associated to the totally symmetric tensor of rank l. The dimension
of this representation is 2l þ 1. Therefore, the dimension of the space spanned by
these operators is

P2S
l¼1ð2l þ 1Þ ¼ ð2S þ 1Þ2 � 1 which coincides with the dimension

of the space of generators of SUð2S þ 1Þ. In this way we see that there are 2S
independent local order parameters for a spin S problem. The first two correspond
to the local magnetization and the local spin-nematic order parameters. To our
knowledge, there is no special name for the other multipolar orderings.
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This last example illustrates the general procedure to follow in order to
determine and classify the possible local order parameters of a given system. It is
important to remark that this classification can be made in any representation
[45]. For instance, we can rewrite the SUð3Þ Heisenberg Hamiltonian in terms of
S¼ 1/2 hard-core bosons. In that language the local order parameters may be the
local magnetization and the Bose–Einstein condensation order parameter �bby�. In
this way our algebraic procedure allows one to identify the possible local order
parameters of a given system. In addition, the coexistence of more than one order
parameter (more than one phase) can be described in a unified way by using an
adequate language.

Another connection, which is useful to illustrate the purpose of this section, is the
one relating the SUðNÞ Heisenberg Hamiltonians to t-J-like Hamiltonians for hard-
core bosons with spin S ¼ ðN � 2Þ=2 (i.e. Nf ¼ N � 1 different flavours). To this end
we have to use the bosonic expressions for the generators of SUðNÞ (equation (49))
introduced in Section 5. Using these expressions we can rewrite the SUðNÞ

Heisenberg Hamiltonian in the following way

H
SUðNÞ
Heis ¼ ~HH

SUðN�1Þ
Heis þ J

X
hi;ji;�

�bb
y

i�
�bbj� þ

�bbyj�
�bbi�

h i
þ J

X
hi;ji

�nni �nnj � zJ
N � 1

N

X
j

�nnj; ð167Þ

where �nnj ¼
PNf

�¼1 �nnj�, and ~HH
SUðN�1Þ
Heis is given by

~HH
SUðN�1Þ
Heis ¼ J

X
hi;ji;ð�;�Þ¼1;Nf

S
��
ðiÞS��ðjÞ: ð168Þ

This mapping is valid for any spatial dimension d. If we write down the same
Hamiltonian using fermions instead of hard-core bosons, a gauge field appears in
d ¼ 2 due to the presence of the Kj operators which transmute the statistics.
When d ¼ 1 the Hamiltonian is exactly the same for fermions and hard-core
bosons (and anyons, in general). In this particular language we can check that the
ferromagnetic SUðNÞ order parameter describes the coexistence of all the
magnetic phases associated to the SUðN � 1Þ Heisenberg Hamiltonian (for
instance, ferromagnetic and spin-nematic phases for N ¼ 4), a Bose–Einstein
condensate for each of the N � 1 different flavours, and a homogeneous (k ¼ 0)
charge density wave.

Let us start analysing the simplest N ¼ 2 case (equation (163)). This case
corresponds to spinless bosons with a kinetic energy term and a nearest-neighbour
density–density interaction. There are no spin degrees of freedom for this particular
case and the SUð2Þ invariance is then associated to the charge degrees of freedom.
The two phases which coexist in this case are the Bose–Einstein condensate and the
uniform charge density wave order. For N ¼ 3 we have the usual t-J Hamiltonian
for spin S¼ 1/2 hard-core bosons (or fermions in one dimension). In this case the
SUð3Þ symmetry gives rise to a coexistence between S¼ 1/2 ferromagnetism, Bose–
Einstein condensation in both flavours, and the uniform charge density wave. These
orders are different components of the same SUð3Þ order parameter (see equation
(51)). In this particular language, �bby" ¼ S

10, �bby# ¼ S
20, �bb" ¼ S

01, and �bb# ¼ S
02 are the

components of the order parameter for the spin up and down Bose–Einstein
condensates. For the magnetization we get sz ¼ 1

2
ðS

11
� S

22
Þ, sx ¼ 1

2
ðS

12
þ S

21
Þ,

and sy ¼ 1
2i
ðS

12
� S

21
Þ. The fact that �nnj ¼

2
3
� S

00 can take any value by making
SUð3Þ rotations of the ground states is another manifestation of the Bose–Einstein
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condensation. In addition, �nnj is the order parameter associated to the uniform charge
density wave (if the SUð3Þ magnetization is oriented along the charge density wave
direction we obtain �nnj ¼ 1 in each site). For N ¼ 4 we get a model which describes a
gas of S¼ 1 hard-core bosons with the bilinear–biquadratic magnetic interaction of
equation (164). In this case we get the coexistence of ferromagnetism, spin-nematic,
Bose–Einstein condensation for the three different flavours, and a uniform charge
density wave. As in the previous case there is an additional phase when N is
increased by one.

Therefore, this family of SUðNÞ Heisenberg Hamiltonians naturally describes
multi-phase behaviour when the original language, based upon the generators of
SUðNÞ, is translated into another based on generators of a lower symmetry group.
This illustrates a general rule which applies to any pair of groups ðG;GÞ such that G is
a subgroup of G, and the order parameter P transforms according to an irreducible
representation of G. In general, this representation will be reducible under the
operations of the lower symmetry group G, i.e. we will be able to express the given
representation as a direct sum of representations which are irreducible under the
application of G. We can associate an order parameter p
 to each of these
representations. If we add the dimensions of each of these p
 order parameters,
we will get the dimension of P. Therefore, by using the lower symmetry language, we
obtain different phases, and each of them is characterized by one order parameter p
 .

In the previous analysis we have not discussed the possible spatial dependence
of the order parameter. In other words, we assumed that it was homogeneous over
the entire lattice. However, there are many instances in Nature where the order
parameter is non-uniform. Antiferromagnetism is one of the most common
examples. The previous analysis can be easily extended to the case of non-uniform
order parameters with a well-defined wavevector k. We just need to recognize that
the non-uniform order parameters can be written as a Fourier transform of the local
order parameter pð jÞ if the model considered has lattice translation invariance.
Indeed, the presence of a non-uniform order parameter indicates that the translation
symmetry has been spontaneously broken. Therefore the expression for the
non-uniform order parameter p̂pðkÞ is

p̂pðkÞ ¼
1

Ns

X
j

exp½ik � j� pð jÞ: ð169Þ

Since the previous analysis is applied to the local order parameters pð jÞ, equation
(169) shows that conclusions are trivially extended to non-uniform global order
parameters.

8.2. Hierarchical languages: The quantum phase diagram of
the bilinear–biquadratic Heisenberg model

We have seen that the local order parameter acquires its simplest form when it is
expressed in terms of the hierarchical language. In addition, the generators of this
language exhaust all possible local order parameters which may result from the
solution of the problem under consideration. In other words, any local order
parameter can be written as a linear combination of generators of the hierarchical
language. The Hamiltonians considered above are special cases since they have an
SUðNÞ invariance and therefore correspond to high symmetry points of an eventual
phase diagram. We just considered those cases as the simplest examples of
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coexistence of different phases and unification of order parameters. We will show

now that high symmetry is not a requirement for the successful application of the

present formalism to the determination of quantum phase diagrams. To this end we

will consider the most general isotropic SUð2Þ S¼ 1 model with nearest-neighbour

interactions in a hypercubic lattice (an overall J > 0 factor is omitted in the

following)

H ¼
ffiffiffi
2

p X
hi;ji

cos Si � Sj þ sin Si � Sj

� �2h i
; ð170Þ

a model already introduced in equation (84). The parameter  sets the relative

strength between the bilinear and biquadratic terms. Equation (164) corresponds to

the particular case  ¼ 5p=4. Indeed, as shown below, there are four isolated values

of  ¼ fp=4; p=2; 5p=4; 3p=2g for which H is SUð3Þ invariant. The only symmetry

which is present for any value of  is the global SUð2Þ invariance since H is a

function of the scalar products Si � Sj.

The Hamiltonian H has been the subject of several studies in the last two

decades [16, 17, 67–79], nevertheless, the complete characterization of the different

phases was, until now, not completely solved. A semiclassical treatment for d>1 [16,

17] indicates that there are four different phases: the usual ferromagnetic

(p=2<<5p=4) and antiferromagnetic (3p=2<<p=4) phases are separated on

both sides by collinear- (5p=4<<3p=2) and orthogonal-nematic (p=4< <p=2)
orderings. We will show below that the collinear- and orthogonal-nematic phases

obtained with the semiclassical approximation are replaced by uniform- and

staggered-nematic orderings, respectively.

As we have seen in the previous subsection, the SUð3Þ spins in the fundamental

representation and the S¼ 1 SUð2Þ spins are two equivalent languages. In addition,

we have shown in Sections 5.1 and 5.3 that the SUð3Þ spins and the S¼ 1 SUð2Þ spins

can be respectively mapped onto S¼ 1
2
hard-core bosons. We will now use these

transformations to map the spin one Hamiltonian H onto its SUð3Þ spin version.

For pedagogical reasons, it is convenient to use the S¼ 1
2
hard-core bosons as an

intermediate language.

In Section 5.1, we introduced a spin-particle transformation connecting SUðNÞ

spins and multiflavoured hard-core bosons (JW particles, in general). In particular,

the fundamental (quark) representations of SUðNÞ were mapped onto an algebra of

hard-core bosons with Nf ¼ N � 1 flavours (see equation (49)). For N ¼ 3 the hard-

core bosons have two flavours (� ¼";#) which can be associated to an internal spin

S¼ 1/2 degree of freedom. A compact way of writing the SUð3Þ spin in terms of

hard-core bosons is

SðjÞ ¼

2
3
� �nnj �bbj"

�bbj#

�bbyj" �nnj" �
1
3

�bbyj"
�bbj#

�bbyj#
�bbyj#

�bbj" �nnj# �
1
3

0
BBB@

1
CCCA: ð171Þ

It is straightforward to write down each generator of the suð3Þ algebra in terms of the

Gell-Mann (traceless Hermitian) matrices
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	1 ¼

0 1 0

1 0 0

0 0 0

0
B@

1
CA; 	2 ¼

0 �i 0

i 0 0

0 0 0

0
B@

1
CA; 	3 ¼

1 0 0

0 �1 0

0 0 0

0
B@

1
CA;

	4 ¼

0 0 1

0 0 0

1 0 0

0
B@

1
CA; 	5 ¼

0 0 �i

0 0 0

i 0 0

0
B@

1
CA; 	6 ¼

0 0 0

0 0 1

0 1 0

0
B@

1
CA;

	7 ¼

0 0 0

0 0 �i

0 i 0

0
B@

1
CA; 	8 ¼ 1ffiffiffi

3
p

1 0 0

0 1 0

0 0 �2

0
B@

1
CA;

with the result

�bbyj" ¼
	1 þ i	2

2
; �bbj" ¼

	1 � i	2
2

;

�bbyj# ¼
	6 � i	7

2
; �bbj# ¼

	6 þ i	7
2

;

�bbyj"
�bbj# ¼

	4 þ i	5
2

; �bbyj#
�bbj" ¼

	4 � i	5
2

;

�nnj" �
1

3
¼
	3
2
þ

	8

2
ffiffiffi
3

p ; �nnj# �
1

3
¼ �

	8ffiffiffi
3

p :

This constitutes the Cartan–Weyl representation of suð3Þ and illustrates the fact that
a S¼ 1 SUð2Þ spin can be equally represented in terms of quark fields.

In the same way that we wrote in equation (171) the generators of SUð3Þ in the
fundamental representation, we can write down the corresponding expressions for
the generators in the conjugate representation

~SSðjÞ ¼

2

3
� �nnj � �bbyj# � �bbyj"

� �bbj# �nnj# �
1
3

�bbyj"
�bbj#

� �bbj"
�bbyj#

�bbj" �nnj" �
1

3

0
BBB@

1
CCCA: ð172Þ

When the S¼ 1 operators are replaced by the corresponding functions of SUð3Þ
generators in the fundamental and the conjugate representations, it turns out that
H, up to an irrelevant constant, is a linear combination of the ferromagnetic and the
antiferromagnetic SUð3Þ Heisenberg models

H ¼
ffiffiffi
2

p X
hi;ji

h
cos  S

��
ðiÞS��ðjÞ þ ðsin� cosÞ S��ðiÞ ~SS��ðjÞ

i
: ð173Þ

Repeated Greek superscripts are summed and the site index i runs over one of the
two sublattices. This expression for H illustrates the very important result that any
non-linear interaction in the original representation is simply a bilinear term in the
new representation when mapped onto the highest rank algebra [45]. In particular, as
mentioned above, there are certain special points in parameter space where the
Hamiltonian is highly symmetric. For example, for  ¼ p=4 and 5p=4, H is
explicitly invariant under uniform SUð3Þ transformations on the spins [47, 48], while
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for  ¼ p=2; 3p=2, H is explicitly invariant under staggered conjugate rotations of
the two sublattices. These symmetries are hard to identify in the original spin
representation but are manifest in the SUð3Þ representation.

In the following we will concentrate on the determination of the quantum phase
diagram of H for spatial dimensions d > 1 to avoid the strong effects of quantum
fluctuations which can restore the continuous symmetry when d ¼ 1. In the previous
section we have analysed the high symmetry point  ¼ 5p=4. We found that the
ground state has a non-zero order parameter

S ¼
X
j

SðjÞ; ð174Þ

associated to a broken continuous SUð3Þ symmetry. This order parameter is the
uniform SUð3Þ magnetization and corresponds to the coexistence of a ferromagnetic
and a uniform spin-nematic ordering (see equation (165)). This indicates that
 ¼ 5p=4 is a quantum phase transition point separating a ferromagnetic phase
from a uniform spin-nematic one. Let us consider now the related point  ¼ p=4
which differs in an overall sign from the previous case. This sign changes the
interaction from ferromagnetic to antiferromagnetic. Therefore, for this new high
symmetry point we expect to get a ground state characterized by the staggered order
parameter

SST ¼
X
j

exp½iQ � j� Sð jÞ; ð175Þ

where Q is the antiferromagnetic wavevector. It is clear from equation (165), that
this staggered SUð3Þ order parameter corresponds to the coexistence of the staggered
SUð2Þ magnetization

MST ¼
X
j

exp½iQ � j� Sj; ð176Þ

and the staggered nematic order parameter

NST ¼
X
j

exp½iQ � j� Nj: ð177Þ

Nj is the symmetric and traceless component of the tensor obtained from the
tensorial product of two vectors Sj. Hence,  ¼ p=4 is a transition point separating
the usual antiferromagnetic ordering from a staggered spin-nematic phase char-
acterized by the order parameter of equation (177).

We will now consider the other two high-symmetry points,  ¼ p=2; 3p=2. For
 ¼ 3p=2, the SUð3Þ symmetry is generated by the staggered operator

Sþ ¼
X
j2A

SðjÞ þ
X
j2B

~SSðjÞ; ð178Þ

where A and B denote the two different sublattices of a hypercubic lattice. In this
case, we have a ferromagnetic interaction between SðiÞ and ~SSðjÞ, and then Sþ is the
order parameter characterizing the broken SUð3Þ symmetry of the ground state. It is
interesting to note that when the SUð3Þ order parameter Sþ is reduced with respect
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to the SUð2Þ group, the two coexisting order parameters are the staggered
magnetization (see equation (176)) and the uniform nematic order parameter

N ¼
X
j

Nj: ð179Þ

In other words, if we apply an SUð3Þ rotation generated by Sþ to the staggered
magnetization we get the uniform nematic order parameter, and vice versa, the
uniform nematic order parameter is rotated into the staggered magnetization. This
can be immediately seen by writing down the components of the local SUð2Þ
magnetization and the nematic order parameter as a function of the local generators
of suð3Þ in the conjugate representation ~SSð jÞ

Sx ¼
�1ffiffiffi
2

p ð ~SS01
þ ~SS20

þ ~SS02
þ ~SS10

Þ;

Sy ¼
1ffiffiffi
2

p
i
ð ~SS01

þ ~SS20
� ~SS02

� ~SS10
Þ;

Sz ¼ ~SS22
� ~SS11;

ðSxÞ
2
�
2

3
¼

1

2
ð ~SS12

þ ~SS21
þ ~SS00

Þ; ðSzÞ
2
�
2

3
¼ � ~SS00;

fSx;Syg ¼ ið ~SS21
� ~SS12

Þ;

fSx;Szg ¼
1ffiffiffi
2

p ð ~SS01
� ~SS20

� ~SS02
þ ~SS10

Þ;

fSy;Szg ¼
�1ffiffiffi
2

p
i
ð ~SS01

� ~SS20
þ ~SS02

� ~SS10
Þ: ð180Þ

Comparing these expressions to those in equation (165), we see that when we change
from Sð jÞ to ~SSð jÞ, there is a change in sign for the three components associated to the
magnetization, while the five components corresponding to the nematic parameter
remain the same. Then, it is clear that Sþ describes the coexistence of a staggered
magnetization and a uniform nematic ordering. Therefore, the conclusion is that
 ¼ 3p=2 separates an ordinary antiferromagnetic phase from the uniform nematic
ordering.

The last high symmetry point to be considered is  ¼ p=2. In this case the
coupling between SðiÞ and ~SSð jÞ turns out to be positive, i.e. antiferromagnetic, and
therefore we expect to get a broken continuous symmetry characterized by the order
parameter

S� ¼
X
j2A

Sð jÞ �
X
j2B

~SSð jÞ: ð181Þ

From the considerations above, it is clear that S� describes the coexistence of
ferromagnetism (uniform magnetization) and staggered nematic order. Hence,
 ¼ p=2 is a transition point separating these two phases.

In this way, by identifying the high-symmetry points of H we have determined
the quantum phase diagram of this model (see figure 11). In addition to the
transition points, we have obtained explicit expressions for the order parameters
associated to each phase for any d > 1; these are summarized in table 3. We can also
predict from this analysis that the four transition points (high-symmetry points)
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correspond to first order quantum phase transitions. In each phase, the correspond-

ing order parameter has a finite value and they coexist pairwise at the high-symmetry

points. However, as soon as we depart from this point in one or the other direction

in , the SUð3Þ symmetry is removed and one of the order parameters goes

discontinuously to zero. In other words, the states with pure magnetic (ferro or

antiferromagnetic) and nematic orderings belong to different representations of

SUð2Þ (the remaining symmetry) so only one of them remains as the ground state

when the SUð3Þ symmetry is lifted.

In closing this section let us summarize the main steps to follow in order to obtain

and classify the local order parameters.

� Identify the group GHL¼SUðDÞ associated to the hierarchical language whose

fundamental representation has the same dimension D as the local Hilbert

space of the problem. The generators of this language exhaust all possible local

order parameters.

� Identify the group of global symmetries of the Hamiltonian G which are direct

products of local transformations.

� Given that G  GHL, then one can classify the generators of GHL in the

fundamental representation according to the irreducible representations of G.

Each irreducible representation leads to a different broken symmetry order

parameter.

� Key: existence of a general set of SUðDÞ transformations.

π 2
π 4

 23π
 45π

FM

AF

UN

SN

Exact solution

φ

Figure 11. Quantum phase diagram of the bilinear–biquadratic SUð2Þ S ¼ 1 model
for d>1. The phases are: AF: antiferromagnetic; SN: staggered-nematic; FM:
ferromagnetic; UN: uniform-nematic.

Table 3. Order parameters describing the different phases of the bilinear–biquadratic
S ¼ 1 Heisenberg model for d>1.  indicates the phase boundary where the two
phases in parentheses coexist.

 Global SU (3) OP OP 1 OP 2

5p/4 (FM-UN) S ¼
P

j Sð jÞ M N

p/4 (AF-SN) SST ¼
P

j exp½iQ � j�Sð jÞ MST NST

3p/2 (AF-UN) Sþ ¼
P

j2A Sð jÞ þ
P

j2B
~SSð jÞ MST N

p/2 (FM-SN) S� ¼
P

j2A Sð jÞ �
P

j2B
~SSð jÞ M NST
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9. Lattice gauge theories and the quantum link models

Wilson’s lattice formulation of quantum field theory provides a non-perturbative
regularization to Euclidean functional integrals [80]. The space-time lattice supplies
the field theory with a cutoff such that loop integrations in perturbation theory yields
finite results instead of divergences.

In this way, a natural analogy emerges between quantum field theory on a
d-dimensional lattice and classical statistical mechanics in d þ 1 dimensions, which
for a pure gauge theory (i.e. gauge theories without matter fields) amounts to
considering the classical lattice action:

S½u� ¼ �
X
i;� 6¼�

Tr ui;�uiþ�̂�;�u
y

iþ�̂�;�u
y

i;�

n o
: ð182Þ

The classical complex parallel transporters ui;� transform as:

u0i;� ¼ 
�1ðiÞ ui;� 
ðiþ �̂�Þ ð183Þ

under local gauge transformations 
ðiÞ which leave the action S½u� invariant. The
elementary parallel transporters are associated with an ordered pair of points in the
lattice (links). For instance, the link (i; �) corresponds to the straight path from
lattice site i to iþ �̂�.

Recently, Wiese and coworkers [81] have further elaborated work started by
Horn in 1981 [82] on a new way of non-perturbative regularization of field theories
which they named D-theory. In D-theory the Euclidean action in the standard
Wilsonian formulation of a d-dimensional lattice field theory is replaced by a
Hamilton operator H

H ¼
X
i;� 6¼�

Tr Ui;�Uiþ�̂�;�U
y

iþ�̂�;�U
y

i;�

n o
ð184Þ

with quantum link operators Ui;� on a d-dimensional lattice, which constitute
generators of an algebra acting on a Hilbert space (e.g. a Uð1Þ quantum link model
can be realized with quantum links that satisfy an suð2Þ algebra). H commutes with
the local generators of gauge transformations Gi (U

0
i;�¼

Q
j 


�1ðjÞ Ui;�

Q
l 
ðlÞ with


ðiÞ ¼ ei�i�Gi) and the theory is defined through the quantum partition function
Z ¼ Tr e��H

� 	
, where the trace is taken on the Hilbert space.

As emphasized in [81], D-theory is not a new set of field theories but another
lattice regularization and quantization of the corresponding classical models. The
main important and attractive feature is the use of discrete quantized variables and
finite Hilbert spaces. However, it turns out to be necessary to formulate the theory
with an additional Euclidean dimension (i.e. in d þ 1). In this regard dimensional
reduction is a fundamental component to relate quantum link models to ordinary
gauge theories. The dimensional reduction hypothesis relies on the existence
of a massless phase in d þ 1 dimensions, an assumption that must be verified on a
case-by-case basis.

The existence of a quantum link model connecting lattice gauge theories to spin
(or other algebraic) theories opens the possibility of formal connections between
gauge theories of high-energy physics and strongly correlated problems of condensed
matter. Indeed, since there is a connection between the ‘gauge world’ and the ‘spin
world’ and we exhausted the connection between the ‘spin world’ and the ‘particle
world’ the consequence is that one can find isomorphisms between the ‘gauge world’
and the ‘particle world’. In this way, for instance, one may look for the exact
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equivalent of confinement (in gauge theories) in the particle (condensed-matter)
language. Even though some of these ideas were speculated on in the literature there
was no formal rigorous relation established. The connection is our fundamental
theorem.

9.1. Uð1Þ Gauge magnet
For pedagogical purposes, it is convenient to illustrate the connection between

gauge and condensed matter theories by considering the simplest Uð1Þ gauge theory,
usually called a gauge magnet. Gauge magnets are gauge-invariant generalizations
of the Heisenberg models. The corresponding classical model has a Uð1Þ parallel
transporter

uj;� ¼ ei�j;� ð185Þ

associated to each link ðj; �Þ and the action S½u� is given by equation (182). The
dagger in this case denotes complex conjugation. As shown by Chandrasekharan
and Wiese [83], after the quantization process the uj;� fields become generators of
a local suð2Þ algebra

Ui;� ¼ Sþ
i;�;

Uy

i;� ¼ S�
i;�: ð186Þ

In other words, each link variable is replaced by a spin operator. As in the case of
quantum spin systems, this quantization can be realized with any spin representation
of SUð2Þ. The simplest case corresponds to S¼ 1/2. In this case there are two
possible states for each link variable which are denoted by the two possible
eigenvalues of Sz

i;� ¼ �1=2. The Hamiltonian of the quantum Uð1Þ gauge magnet
is obtained by substituting equation (186) into equation (184)

Hgm ¼
X
i;� 6¼�

S�
i;�S

�
iþ�̂�;�S

þ
iþ�̂�;�S

þ
i;�; ð187Þ

and the generator of the Uð1Þ gauge symmetry is

GðiÞ ¼
X
�

ðSz
i��̂�;� þ Sz

i;�Þ: ð188Þ

It is natural to ask what is the equivalent particle Hamiltonian which is obtained
by applying a spin-particle transformation to equation (187). We will only consider
the simplest S¼ 1/2 case for which Orland [84] obtained the exact solution in 2þ 1
dimensions. The key observation made by Orland is that this spin model is
equivalent to a gas of transversely oscillating fermionic strings. The string tension
can be obtained from the exact solution and it was shown that the fermionic charges
are confined. To obtain this result we need to introduce a dual transformation which
replaces the links by sites: ði; �Þ ! r, ði; �Þ ! rþ x̂x, and ðiþ �̂�; �Þ ! rþ ŷy. This
transformation is illustrated in figure 12, where we can see that the dual lattice is
divided into a checkerboard pattern. This means that a plaquette with vertices
r ¼ ðr1; r2Þ, rþ x̂x, rþ x̂xþ ŷy, and rþ ŷy is black if r1 þ r2 is even and white if r1 þ r2 is
odd. The sublattice of points r such that r1 þ r2 is even will be denoted by A.

The expression for Hgm after the dual transformation is

Hgm ¼
X
r2A

S�
r S

�
rþŷyS

þ
rþx̂xþŷyS

þ
rþx̂x þ S�

rþx̂xþŷyS
�
rþx̂xS

þ
r S

þ
rþŷy: ð189Þ
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It is clear from this expression that the black plaquettes are active and the white ones

are passive. Equation (188) implies that the total charge in each white (passive)

plaquette is conserved. In the absence of background sources, the physical states are

those which are annihilated by the ‘Gauss law’ operator GðiÞ. In the particle

language, this condition means that there are two particles on each white plaquette

(see for instance the state illustrated in figure 13).

We have seen in Section 5.3 that a spin S¼ 1/2 can be transformed into a spinless

hard-core anyon through the generalized JW mapping

Sþ
r ¼ �aayrK

�
r ;

S�
r ¼ ðK�

r Þ
y �aar;

Sz
r ¼ �aayr �aar �

1

2
: ð190Þ

For � ¼ 0, the anyons become hard-core bosons and for � ¼ p they are spinless

fermions. By substituting these expressions into equation (189) we get the following

Figure 12. Transformation from the direct square lattice, with lattice sites i and links ði; �Þ,
ði; �Þ, to the dual checkerboard lattice, with sites r and links ðr; xÞ and ðr; yÞ.

Figure 13. Schematic picture of a ground state of the S¼ 1/2 gauge magnet in the particle
language. Quantum fluctuations (QF) correspond to the horizontal motion of vertical
pairs in the active (black) plaquettes.
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Hamiltonian representing interacting hard-core anyons

Hgm ¼
X
r2A

�aar �aarþŷy �aa
y

rþx̂xþŷy
�aay
rþx̂x

þ �aarþx̂x �aarþx̂xþŷy �aa
y

rþŷy
�aayr : ð191Þ

Notice that the transmutators K�
r and ðK�

r Þ
y do not appear in the Hamiltonian. This

means that Hgm is invariant under transmutation of the statistics. To physically
understand the origin of this invariance we just need to realize that the dynamics
imposed by Hgm only allows the motion of particles along the horizontal axis within
a passive plaquette (see figure 13). Therefore, the original ordering of the particles is
preserved and the statistics turn out to be irrelevant.

The exact ground states of this model [84] correspond to parallel strings which
are aligned in the ŷy direction (see figure 13). The model can be exactly solved because
the quantum fluctuations of each string are described by an effective one-dimen-
sional S¼ 1/2 XY model [84]. Notice that this solution relates to the new paradigm
in strongly correlated matter where the appearance of local inhomogeneous (stripe-
like) structures seems to be a common feature of many different physical systems.

There are other possible connections between the gauge magnet and condensed
matter theories which correspond to different changes of language. If each link is
associated to a singlet bond state (Cooper pair), Orland [85] has shown that the
S¼ 1/2 gauge magnet is mapped onto the Rokhsar–Kivelson model [86] (without the
diagonal term) if the new ‘Gauss law’ ½GðiÞ þ 2�j i ¼ 0 is imposed. In this way we see
how the formal connections between condensed matter and lattice gauge theories can
be exploited to predict new physical behaviour in one or the other field.

10. Quantum information and computation

A new challenge in information theory and computer science has recently
emerged as the result of applying the fundamental laws of quantum mechanics
and using the quantum effects to advantage. This new set of ideas comprise what is
known as the ‘theory of quantum computation and quantum information’ and has
as a major objective to process information in a way that exceeds the capabilities of
classical information [18]. The device that performs the manipulation of information
is named a quantum computer and the standard unit of information is the qubit
(i.e. a two-level system). The close relationship between information processing and
the physical phenomena leading to it is perhaps the most remarkable aspect of
this new paradigm. Since information can be represented in many different
physical forms, and easily converted from one form to another without changing
its meaning, quantum information represents a new abstract archetype for
information processing independent of the precise implementation of the quantum
computer, only requiring at least one physical representation to be useful.

A key fundamental concept in information theory is the realization [19] that
a model of computation is intimately connected to a physical system through a closed
operator algebra. In other words, each physical system is associated to a certain
language (e.g. spin S¼ 1/2) and thus to an algebra realizing it (e.g. Pauli algebra),
and that particular algebra may become a possible model of computation. An
immediate consequence is that an arbitrary physical system can be simulated by
another physical system (e.g. a quantum computer) whenever there exists an
isomorphic mapping between the different operator algebras representing the
systems [19]. A very simple example is provided in [19] and [87], where it is shown
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how to simulate a one-dimensional impurity Anderson model using a quantum

computer based on an array of spins S¼ 1/2. Another resource of quantum

information that can help us understand complex phenomena in strongly correlated

matter is the notion and measures of entanglement.

It is very clear the power that our fundamental theorem has by providing the

formal connections (isomorphisms) between the different languages of Nature.

Therefore, the implications for quantum information and computation are rather

obvious, namely that one can identify quantum resources and define convenient

models of computation, or imitate an arbitrary quantum phenomenon with a given

quantum computer given the appropriate dictionaries to translate Nature’s language

to the machine language. In this way, one can recognize three complementary areas

where the concepts of language and dictionaries developed in the present paper are

of particular relevance, areas we will expand on in the following.

Models of computation and quantum resources

A model of computation consists of an algebra of operators, a set of

controllable Hamiltonians and measurable observables, and an initial state of

the physical system. The set of controllable Hamiltonians must be universal in

the sense that any unitary operation can be performed with such a set. The

standard model of computation is a particular example which uses the Pauli

operator algebra and the qubit as a basic unit. Another possible model is the

fermion model [19] which is isomorphically related to the standard one

through the JW mapping and, thus, is equivalent. The main point is that the

choice of model depends upon the nature of the available physical resources

and their quantum control. For example, in a liquid NMR quantum computer

the nuclear spins of the molecules (S¼ 1/2) are the units which can be

controlled and the standard model is the appropriate one.

The control of quantum mechanical systems is hampered by quantum

noise and decoherence and, therefore, identifying static quantum resources for

information processing is a great challenge. Given a physical information

processing device there will be a language which will be the most natural one

for the elementary static resources of the device. For instance, if we could

control 4He atoms at the quantum level it would be natural to consider a hard-

core boson model of computation. The importance of our fundamental

theorem is that once one identifies the best quantum resources it allows us to

build the model of computation accordingly.

Simulation of physical phenomena

Physical phenomena can be simulated or imitated by a quantum network

[88, 89] with the help of a quantum computer. Imitation is realized through

a quantum algorithm which consists of a quantum network with a means to

repeat blocks of instructions. A quantum network is defined by a sequence of

universal gates (unitary operations), applied to the system for the purpose of

information processing, and measurements in a fixed temporal order. The

measurement operation is mostly needed to classically access information

about the state of the system. Every matrix which represents a reversible

operation on quantum states can be expressed as a product of the one and

two-qubit gates, and the minimum set needed to represent any such matrices is

called a universal set of gates.
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When trying to simulate a problem using quantum information processing,
an important issue is to determine how many physical resources are needed for
the solution. The main resources are quantum space, the number of qubits
needed, and quantum time, the number of quantum gates required. The
accounting of algorithmic resources forms the foundations of quantum
complexity theory. One of the objectives in quantum information theory is to
accomplish imitation efficiently, i.e. with polynomial complexity, and the hope
is that quantum imitation is more efficient (i.e. needs less resources) than
classical imitation. There are examples that support such a hope (e.g. fermion
simulations with polynomially bounded statistical errors [19, 88, 89]),
although there is no general proof that indicates the superiority of quantum
over classical imitations, regarding efficiency. Indeed, there is, so far, no
efficient quantum algorithm that can determine the ground state (or, in
general, the spectrum) of a given Hermitian operator [88, 89], despite
occasional claims. It is known that the ability to resolve this question leads to
efficient algorithms for NP complete problems like the travelling salesman
conundrum.

A very important observation, in connection with the notion of efficiency,
is a corollary of our fundamental theorem: Given two languages, the
generators of one of them can be written as a polynomial function, with
polynomial complexity in the number of modes or resources, of the generators of
the other and vice versa. This result implies that the important algorithmic
step of translation from the language of the system to be imitated to the
machine language does not change the complexity of the quantum space and
time.

Certainly, a general purpose quantum computer is not the only device that
allows simulation of physical phenomena in Nature (with its many languages).
Imitation can also be achieved in a conceptually different manner using a
quantum simulator. The main distinction is the lack of universality of the
latter. An example of a quantum simulator is an optical lattice [90] which is
specifically designed to imitate a given physical Hamiltonian and where there
is limited quantum control. The possibility of control and tunability of the
interactions of the elementary constituents offers the potential to design new
states of matter [61, 90]. This is of particular relevance in strongly correlated
matter where these quantum simulators furnish the benchmark to test theories
and approximations [61]. Again, the importance of the languages and
dictionaries developed in this paper is clear and concrete.

Quantum information measures
Entanglement, a word that Schr€odinger coined to distinguish quantum

from classical mechanics, is that bizarre feature of composite quantum systems
that led to so much controversy in the past (like quantum non-locality in the
Einstein–Podolsky–Rosen gedanken experiment). Essentially, entanglement is
a quantum property whereby a pure state of a composite quantum system may
cease to be determined by the states of its constituent subsystems. Entangled
pure states are those that have mixed subsystem states. An independent concept
is the notion of separability which refers to the property of a quantum state of a
composite system of being able to be written as a direct product of states of its
component subsystems. The theory of entanglement, and its generalizations, is
currently under development [18, 91]. In [91] entanglement is viewed as an
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observer-dependent concept, whose properties are determined by the
expectations of a distinguished subspace of observables of the system of
interest (experimental access), without reference to a preferred subsystem
decomposition. The standard notion of entanglement is recovered when these
means are limited to local observables acting on subsystems. Tremendous effort
is being put into trying to understand the properties of entanglement that can
be used as a resource in quantum information.

In a sense that must be defined more precisely [91], the notion of
entanglement is a relative of the notion of quantum correlations and a very
relevant question is whether one can construct useful measures of entanglement
to understand the emergence of complex phenomena in strongly correlated
matter. A quantum phase transition involves a qualitative change in the
correlations of the ground state of the system as a result of tuning parameters
of its Hamiltonian. In some cases an order parameter is associated to the
transition, in others a topological order. It is intuitively expected that this
change is also associated to a change in the nature of entanglement. Therefore,
quantifying and classifying entanglement is very important to characterize a
quantum phase transition: can measures of entanglement distinguish between
broken and non-broken [2] symmetry phase transitions?

11. Summary

We have introduced an algebraic framework for interacting quantum systems to
study complex phenomena characterized by the coexistence and competition of
various ordered states. We argued that symmetry, and topology, are key guiding
principles behind such complex emergent behaviour. Emphasis has been made in
developing a systematic mathematical structure that allows one to attack these
problems within a single unifying approach.

The core result of the paper, from which all other results follow, is the proof of
a fundamental theorem that permits one to connect the various operator languages
used in the description of the properties of physical systems. This theorem together
with the notion of transmutation of statistics provide the tools necessary to unify the
quantum description of matter. To formalize this unification we needed to rigorously
define the concepts of language and dictionary: to model a particular physical
phenomenon we commonly identify the main degrees of freedom of the problem and
associate to them certain operators. One can furnish the resulting set of operators
(that we call language) with an algebraic structure and ask whether two different
languages have something in common. The fundamental theorem tells us that two
languages can be connected whenever the dimension of their local Hilbert spaces are
equal. We expanded the notion of local Hilbert space to embrace different Hilbert
space decompositions (we saw, for instance, how to map the Hilbert space of a bond
to a site). The resulting one-to-one language mappings we named dictionaries (a
traditional example of which is the Jordan–Wigner mapping). In the course of the
presentation we showed, through example, many different dictionaries relating
diverse operator languages. In this way we defined universality of behaviour as an
equivalence relation between seemingly different physical phenomena which share
exactly the same underlying mathematical structure as a result of one-to-one
language mappings (for example, the spin-nematic order and Bose–Einstein con-
densation of flavoured hard-core bosons). Out of the many languages one can use to
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describe a given physical problem there is a class, which we named hierarchical
language, which has the advantage that any local operator can be expressed as a
linear combination of its generators. In this way, hierarchical languages provide the

tools necessary to classify order parameters.
A new, formally developed, notion is the idea of emergent symmetry, i.e. the fact

that new symmetries not realized in the Hamiltonian describing the system can
emerge at low energies. From a broader perspective, an emergent symmetry is a non-
local transformation which commutes with the system Hamiltonian and becomes
local when restricted to a low-energy subspace of the Hilbert space. In some instances
like the quasi-exactly solvable problems, to which the one-dimensional t-Jz model
belongs [6], or the family of spin Hamiltonians for which the ground state is a

product of spin singlets (e.g. the Majumdar–Ghosh model), the low-energy effective
theory can be derived in an exact way and the emergent symmetry is exact. In other
cases, the emergent symmetry is approximate, however, it still provides a guiding
principle to identify the nature of the ground state and its low-energy excitations. In
the same way that rigidity is related to a broken-symmetry phenomenon, localization
(in real or any other space) is connected to the emergence of a gauge symmetry.
Indeed, the metal–insulator transition may be interpreted as a discontinuous change
in the group of emergent symmetries characterizing the two phases.

Figure 14 summarizes the spirit and fundamental concepts that emerge from our
fundamental theorem.

There are several reasons for our algebraic framework to constitute a powerful
method to study complex phenomena in interacting quantum systems. Most impor-
tantly: to connect seemingly unrelated physical phenomena (e.g. high-Tc or heavy
fermions and quantum spin theories); to identify the general symmetry principles
behind complex phase diagrams; to unveil hidden symmetries (and associated order
parameters) to explore new states of matter; to obtain exact solutions of relevant
physical models that display complex ordering at certain points in Hamiltonian space;

and to find new approximations which do not favour any of the competing
interactions. The power of the present approach is reflected in the unlimited number

Figure 14. Unified framework. For each D there is more than one diagram with a different
hierarchical language (H.L.). I indicates that there is an isomorphic mapping between
two languages, e.g. L1 and L2.
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of potential applications where they could be used, and ranges from condensed matter
and statistical mechanics to lattice gauge theories and quantum information and
computation. We hope and envisage this formalism will find future applications in
contexts different from those we have developed here.
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[67] SÓLYOM, J., 1987, Phys. Rev. B, 36, 8642.
[68] PARKINSON, J. B., 1988, J. phys. C, 21, 3793.
[69] BARBER, M. N., and BATCHELOR, M. T., 1989, Phys. Rev. B, 40, 4621.
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