
1

A Reputation and Trust Management Broker Framework for Web
Applications

Kwei-Jay Lin1, Haiyin Lu1, Tao Yu1, and Chia-en Tai2

1Department of Electrical Engineering and Computer Science
University of California, Irvine, CA, USA

2Department of Computer Science and Information Engineering
National Taiwan University, Taipei, Taiwan

Abstract
This paper presents a distributed reputation and

trust management framework that addresses the
challenges of eliciting, evaluating and propagating
reputation for web applications. We propose a broker
framework where every service user is associated
with a broker who may represent multiple users. A
broker collects for its users the distributed reputation
ratings about any web service. In return, a user
provides its broker the transaction rating after every
transaction with any service in order to build up the
reputation database on all services. In addition,
brokers form a trust network where they exchange
and collect reputation data about services. By
delegating trust management to brokers, individual
users only need to ask their brokers about the
reputation of a service before any transaction with a
server. The only overhead for a user is the
responsibility to share the reputation feedback with
its broker. We present the distributed reputation and
trust management framework and show the
performance of the system by simulations.

1. Introduction
In the real world, trust is a relationship between

two entities: it is one entity’s belief on certain
attributes about the other. There are several
properties to be considered in a trust relationship:

1. Identification: whether the subject entity is what
it claims to be.

2. Qualification: whether the subject entity is
capable of performing some specific services.

3. Consistency: whether the subject entity is able to
deliver the result with an acceptable certainty.

The first property is usually guaranteed by
requesting certain information from the subject and
identifying that the subject is among a specific group
that can be trusted to have certain privileges. The

second property is often answered by asking for a
proof about the subject’s capability and performing
some validation procedure using pre-defined policy.
The last property is the most difficult one since it
should not be claimed by the subject itself alone.
The consistency of the services or performances
provided must be verified by others, either by a
formal certification process or by feedbacks from
peer clients. In this paper, we call the third property
the reputation about a peer.

For e-services, the design of trust management
framework is a discipline that has gained much
attention in recent years [4] due to the growth of
online transactions and e-business activities.
Traditional distributed encryption and authentication
mechanisms can only solve the identification and, to
some extent, the qualification problems. However, it
is not enough to simply trust that an entity will act
consistently in all transactions. Reputation systems
[1, 2, 3, 4] are thus far the most preferred mechanism
addressing this problem. Reputations systems where
feedback ratings are aggregated over a period of time
to reflect the trustworthiness of a service provider
have been implemented in many e-marketplaces.
The success of Amazon and eBay proves that such
reputation systems are helpful in fostering trust
between parties.

Both Amazon and eBay are examples of
centralized reputation systems. With a single trust
authority controls all reputation information, such
systems may be vulnerable or inflexible. In addition,
centralized authority may be subject to the scalability
problem. To solve these problems, distributed trust
management systems have been proposed and studied
[1, 3]. In a distributed trust system, reputation
information is scattered among parties in the system.
The distributed approach brings new challenges,
including how to eliciting reputation information,
how to evaluate the trustworthiness of a party with
information gathered from potentially untrustworthy

2

parties, and how to propagate reputation information
through the community.

This paper presents the design of a general trust
framework and the implementation of trust brokers.
Due to the complexity of trust management, we
propose the deployment of software trust brokers to
manage the trust relationship for general web service
users. In offline communities, people often rely on
recommendations by word-of-mouth from personal
experience of trusted acquaintances or reviews from
trusted experts to evaluate the trustworthiness of a
service provider. Different trust levels exist in our
real-life activities with close friends, friends of
friends, credit card customers, and cash customers.
Our design is motivated to emulate these real-life
trust building processes and reputation mechanisms
by using software brokers as trusted experts.

We envision that many online users will have
their online trust brokers, which may be implemented
by a common, certified software package just like
Microsoft® Passport or Liberty Alliance. The broker
collects server reputation information for its users.
Each user, after every transaction with a server (or a
peer user), will produce a reputation rating on the
server and send it to its broker so that brokers may
use it to build up the reputation about that server. In
this way, the reputation of any server can be collected
from the report of all its previous clients. However,
due to the distributed nature of brokers, it is
impossible to collect all information from all brokers.
We need efficient mechanisms to collect and manage
the distributed reputation information in brokers.

Another issue that we study is how to build the
referral network among brokers. Brokers interact and
share reputation information. However, given
possibly contradictory experience, brokers do not
have the same level of trust on each other. In our
design, brokers solicit server reputation information
from brokers they trust more. The proposed
mechanism allows brokers to build up different trust
levels on one another, and to select only those they
trust more to share reputation information.

The rest of this paper is organized as follows.
Section 2 provides an overview of the current
research on trust management. We introduce our
proposed trust system framework in Section 3 and a
trust broker design in Section 4. Section 5 discusses
some issues on reputation authority. The system
simulation results are presented in Section 6.

2. Previous Work
Research activities in distributed trust

management lie broadly in the following areas [4].

1. Formalizing trust [8]. There are many different
ways to calculate trust. In practice, Amazon
simply takes an average of product ratings
based on customer reviews. BizRate compiles
the average satisfactory index about the
merchant in addition to product rating; while
eBay presents the feedback score and the
percentage of positive feedbacks. Researchers
proposed various improvements, e.g. by giving
higher weights to feedbacks from users with
better reputation. A successful reputation
system should make it hard to build up good
reputation so that a user is less likely to abuse
its hard earned reputation.

2. Incentive mechanisms for eliciting honest
feedbacks [2]. Studies of eBay’s reputation
system have shown that it is difficult to elicit
feedbacks. An important reason for such
difficulty is the lack of incentives for the users.
In some communities, users are reluctant to
share information for fear that it will give
competitive advantage to others. Incentive
mechanisms address this issue by providing
incentives to users that gives honest feedbacks
through some side payment mechanism.

3. Mechanisms to guard against coordinated
attack against the system [3]. Biased feedbacks
can be filtered out with a large number of
feedbacks. Even a simple approach such as to
take the average of all ratings is able to filter
out subjective and biased ratings. In contrast,
coordinated attacks on the system are much
harder to guard against. A group of users
might form a collusion giving only positive
feedbacks to the members in the group and
negative feedbacks to others outside the group.

4. Referral network systems where agents
cooperate to propagate reputation information
in the community [1]. Each agent is assumed
to have neighbors, which are then connected to
their own neighbors. An agent dynamically
restructures its neighbors based on their
trustworthiness. A direct neighbor is not as
trustworthy as some indirect neighbors if the
direct neighbor’s opinions are not consistent
with the agent’s own experience.

Our work is related to the referral network
approach [1] by using a network of brokers to

3

propagate reputation information. However, we
collect the reputation on both servers and brokers.
Each server is assumed to have a constant probability
that it may fail to deliver the requested service, due to
hardware, network or server loads problems. Such
inconsistency cannot be practically corrected due to
cost and other circumstances. Our trust broker design
is to identify the service failure probability, or the
reputation, of each server.

3. System Architecture
This research proposes a distributed trust and

reputation management framework that addresses the
challenges on managing trust among e-services. As
discussed earlier, reputation information in general is
distributed within the community. The challenge for
each user is to gather enough information for making
an informed judgment on the trustworthiness of a
service. More specifically, the trust building process
involves two separate problems:

1. how to gather reputation information, and

2. how to utilize the information gathered.

Figure 1 Trust Hierarchy

We divide the trust relationship into three levels
as shown in Figure 1. The first level, the direct trust
level, is for users that belong to a trust broker where
there is a direct measurement of trust among all
members. The second level, the connected trust
level, is when two users belong to two different trust
brokers. So users must find information about each
other through some distributed trust collection
protocols. If there is not enough trust that can be
gathered at this level, the third level, the institution
trust level, relies on a centralized trust authority to
provide global certified trust service about each other
for decision making. There will usually be some cost
associated with using the trust authority at this level.
If the third level still cannot meet the trust policy,

users will have to use some trustless protocol [5] to
conduct business.

Figure 2 shows our distributed trust and
reputation management system consisting of three
types of components: users, brokers, and reputation
authorities. In the model, all users may function as
servers themselves (just like agents or in P2P
systems). A user in the role of a “client” can
generate any request to initiate a transaction with
another user, assuming the role of a “server”. In this
architecture, users rely on their trust brokers to
collect reputation information. A broker typically
works for multiple users who are willing to share
reputation information among the group. Each
broker maintains a reputation database that collects
the reputation of all servers that have had transactions
with its users.

Figure 2 System Architecture

After each transaction, the client user A sends a
rating on the server user B to A’s broker. The current
system assumes users are diligent in providing honest
feedbacks. Thus a broker will collect the complete
and accurate ratings generated by its users. This way,
a broker has a chance to accumulate enough
reputation information (i.e. direct trust) about a
server to support its users. However, if a broker finds
its local reputation database inadequate for making a
recommendation to its users, it will contact the other
brokers (i.e. info from connected trust) or reputation
authorities (info from institution trust) to gather more
information.

While users rely on their brokers to manage
reputation information, brokers talk to each other to
sum up the reputation about a subject server. In our
model, brokers may decide not to share certain
reputation information with another broker, but they
cannot lie or produce false information. A server,
however, may not provide consistent services or

Reputation
Authority

Reputation
Authority

User User

Broker

User User

Broker

Direct
Trust

Trustless

Connected Trust

Institution Trust

4

results. Therefore, some server may have a less-than-
perfect reputation.

Reputation authority is the last resort for any
broker if it cannot find for its user sufficient
information about a peer. Reputation authority
maintains a global database about all servers. Due to
its size, however, the ratings kept by any authority
may be incomplete or out of date. For any given
server, the rating from each reputation authority may
be different, just like credit rating companies may
have erroneous information in real life. Moreover,
reputation authorities may utilize some incentive
program [2] to collect user reputations, and may
charge a fee for its services.

4. Broker Design
A broker has two major components (Fig. 3),

reputation manager and connection manager. The
reputation manager receives requests from client
users and other brokers. It decides whether to ask the
connection manager for collecting information from
other brokers or reputation authorities. The
connection manager takes requests from reputation
manager and passes the requests to other brokers and
reputation authorities. In this section, we look at
each component in details.

Figure 3 Broker Design

4.1. Reputation Manager
Reputation manager has three functionalities.

First, it handles requests from client users and other
brokers. Second, it forwards requests to the
connection manager when necessary. Third, it is
responsible for saving its users’ feedback
information.

Every time a broker receives a feedback rating
from one of its users, it updates the reputation
information about the server in its reputation
database. Each reputation record has the following
fields:

1. UserID: the ID of the server

2. Rating: a reputation value between 0 and 1

3. Size: the number of transactions used to
generate the reputation

4. Timestamp: the time of the last feedback

The Timestamp, which records the time when a
feedback rating was last submitted, is necessary in
order to value more recent ratings with higher
weights. The total number of transactions used to
generate the rating is an important indication on the
accuracy of the reputation.

4.1.1. User Request

A user sends a transaction request and a
threshold to its broker in the form of <myID, serverID,
repuTrans>. The broker first checks the total
transaction size in its local database, and returns the
server’s rating only if the size is greater than
repuTrans. Otherwise, the broker will forward the
request message to the connection manager, which
will use the broker-broker protocol to contact other
brokers for reputation data.

4.1.2. User Rating

The reputation manager collects feedback ratings
from its clients after each transaction. Let N be the
transaction size of the current rating oldR . After a
client submits a rating r regarding x, the reputation
manager updates its reputation value of peer x stored
in its local database from oldR to newR . The
reputation value of x is updated using the formula:

r
N

NeR
N

NeR t
old

t
new)

1
1(

1 +
−+

+
= ∆−∆− ββ

 (1)

Broker

Reputation
Manager

Users

Other Brokers’
Reputation Managers

Repu
DB

Reputation
Authorities

Other
Broker

Trust
DB

Connection
Manager

5

The difference in feedback time between r and

oldR is denoted by t∆ , while te ∆−β specifies the

discount factor of oldR . The non-discounted formula

is simply r
N

R
N

NR oldnew)
1

1(
1 +

+
+

= that takes

the average of all past ratings.

4.2. Connection Manager
The connection manager provides two important

functions. It maintains a list of trusted brokers as
well as a list of trusted reputation authorities. It acts
as the interface between the broker and the trust
network, and is responsible for sending requests to
other brokers and reputation authorities.

4.2.1. Broker-Broker Trust Protocol

In a distributed system, brokers cannot rely on its
own resources to rate all servers when interacting
with these servers. Collaboration among brokers is
extremely important. Only through collaboration can
the system identify untrustworthy servers promptly
thus reducing the risk for everyone in the community.
For this reason, brokers have a strong motivation to
cooperate.

However, given that the objective of a broker is
to provide service to its own users, some brokers will
choose not to share its data with all other brokers for
fear of competition for customers, etc. Therefore,
each broker maintains a list of trusted brokers and
their trust values in its trust database. Trust
information is not static. The trust value of a broker
is based on the number of accurate recommendations
that have been provided. It is updated each time after
a recommendation is received and compared with the
actual transaction result. At the beginning, all fellow
brokers are given a neutral trust value of X=0.5.
After each transaction experience, the trust value is
updated using the formula

)1(XFXX −∗+= (2)

if there is a match; and using the formula

)1(FXX −∗= (3)

if the recommendation does not match the actual
experience. In the equations, F is a positive index
with a value of less than 1. For example, if F is 0.2
and X was 0.6, the new value of X is 0.68 when the
recommendation is good. On the other hand, a bad
recommendation will reduces X to a new value of 0.4.
The update equations are designed in such a way that

X always has a value between 0 and 1. Moreover, it
is difficult to gain additional trust but easy to lose
trust when X has a large value.

The connection manager of each broker
maintains a list of fellow brokers sorted by their trust
values. When the reputation about a specific peer is
requested, the broker will contact the first m brokers
with a trust value higher than a threshold value T.
Each fellow broker contacted will send back its
reputation record about the peer.

Moreover, a depth parameter may be specified in
the recommendation request. A trusted broker will
forward the request to its own trusted brokers with
the depth value decremented by 1. The forwarding
requests form a recursive recommendation chain until
the depth value reaches 0. The length of the chain is
bounded by the depth parameter, which is in turn
decided by how much local reputation is already
there, specified by the original requestor. For
example, suppose that the local reputation database
currently has a size of 100 transactions, but the user
client wants to have a size of 500 transactions, the
broker may want to define m = 2 and depth = 2. A
total of 6 brokers will be contacted by the request (2
in the first level and 4 in the second level) that most
likely will return recommendations based on the
experience of 600 transactions. If there are already a
large number of local transactions, the broker should
use a smaller depth with a larger m such that the
recommendation collection can be done more
efficiently with fewer indirect requests.

The threshold value T is used to filter any low-
trust broker from the solicitation. The threshold
value should be used by all connected brokers at all
levels for the specific request.

4.2.2. Aggregating Reputation
Recommendations

A connection manager keeps all recent
recommendations from the broker chain in its
database. All recommendations received for the
same request share the same request ID. The broker
uses the following method to aggregate the
recommendations.

Each recommendation Ri is weighed by the
number of transactions Ni, the time differential factor
F(t∆), and the trust value on that broker Xi. Each
broker uses a differential threshold to decide whether
the recommendation should be taken at the full value.
If Ri was reported with a time differential less than

6

the threshold, the value of the time differential factor
F(t∆) is 1; otherwise, it is te ∆−β . We have

∑
∗∗

=
N

RNXR iii * F(t∆) (4)

where ∑ ∗= ii NXN *F(t∆).

The connection manager forwards the reputation
recommendation to the reputation manager, which in
turn forwards it to the user. In the recommendation,
the locally recorded reputation is combined with the
recommendations received from all brokers. If the
user decides to act on the recommendation, it will
send a feedback report to its broker after the
transaction. The broker’s reputation manager will
forward the user’s rating to the recommendation
manager. The connection manager checks its
recommendation database for all foreign
recommendations of the target server. If the user’s
rating is the same as the recommendation within an
acceptable margin, the connection manager will
update the trust value for the broker who sent the
recommendation. The connection manager then
rearranges the order of the trusted brokers list
according to the new trust value.

4.2.3. Responding to Other Brokers

As we have discussed earlier, trusted brokers
will cooperate with each other in the community.
However, if broker B asks C, which has a small trust
value on B, for a recommendation on some user, C
may decide not to do the favor. This is only fair
since B has not given too much credible information
to C in the past. The behavior of a broker on another
broker can be classified in three cases:

1. Always cooperate: if the trust value is
higher than H.

2. Partially cooperate: if the trust value is
between H and L.

3. Do not cooperate: if the trust value is less
than L.

For fellow brokers with high trust values, a
broker will return the complete reputation record on
the requested user. For brokers with low trust values,
nothing will be returned (that is, a zero reputation
record is reported). For medium trust brokers, a
recommendation with the size discounted by the trust
value is returned. For example, if the local reputation
has a size of 1000 transactions, and the trust value is

0.6, the reputation record reported will reflect only
600 transactions.

It should be clear that the trust value is not
symmetric between two brokers. One broker may be
rated highly by another broker but not vice versa.
For this reason, the local trust values for all brokers
should be kept by a broker carefully and privately.
Since the values are updated dynamically, the trust
relationship among brokers is time-varying and
unpredictable. However, the long-term relationship
among good brokers should prevail so that they will
all belong in a trusted cluster.

5. Reputation Authority
In the case when a broker and its trust network

together still do not have enough evidence about a
potential client, a broker may consult a reputation
authority. A reputation authority collects reputation
information from all brokers and produces a global
rating on all users. Since a reputation authority is an
independent service provider, its data may be more
unbiased. On the other hand, as in the case of any
big organization, the data from a global reputation
authority may not be as accurate and timely as some
local user groups. In addition, some reputation
authority may impose service charges to those
brokers requesting for information.

To prevent its reputation data from being
discredited by coordinated attacks and conspired
brokers that provide false ratings, a reputation
authority may use robust mechanisms to detect and
filter inaccurate reports, as well as to reward accurate
reports. For example, an incentive mechanism [2]
can be used to encourage all brokers to report
feedback honestly. Another approach is to use
feedback and community factors to produce a more
correct trust report [3].

6. System Performance Study
To model reputation, every user in our system

has a randomly assigned consistency factor (CF) that
defines its capability to deliver a service. For
example, if a user has a CF of 0.8, it may fail to
deliver its service 20% of the time. Every broker
keeps in its reputation database its local CF values of
all servers. The local CF values are generated from
its users’ rating report. To evaluate the system’s
reputation knowledge about a server, we compute the
total standard deviation between all brokers’ local CF
values on the server and the server’s true CF value.
The average deviation of all servers defines the
system’s overall reputation correctness (SC). A

7

system is said to have perfect reputation knowledge
when SC is 0.

6.1. System Parameters
We have conducted simulations of a reputation

system with 600 users using 60 brokers. Each
broker collects transaction feedbacks from its 10
users and interacts with other brokers to gather global
reputation about other users. In our simulation, the
system generates a new transaction about every 1
msec. Therefore the same transaction pair (A, B) will
be generated every 360,000 msec on average. Since
each broker is maintaining reputation database for 10
users, we should have one new reputation rating on B
received by A’s broker every 36,000 msec. We
decide that any of B’s execution history outside of
the window of last 100 transactions with A should no
longer be meaningful to A. We can thus derive the ß
value to be 1/(36*105) or around 2.7*10-7 in Eqs. (1)
and (4).

In our simulations, the F value in Eqs. (2) and (3)
is randomly selected for each broker in the range of
[0.2, 0.5]. Initially, each broker has a trust value of
0.8 on 4 other brokers, and 0.5 on the rest of the
brokers. We also set the broker search fan-out m = 2
and depth = 5. In other words, each broker will
connect to the two most trusted brokers in the trust
network and the search for reputation data in the trust
network can go as deep as 5 levels.

In each of our simulations, we generate 6*106
transactions between users and servers, and compute
the system correctness after every 60,000 transactions
and thus have 100 data points from each simulation.

6.2. Simulation Result
Figures 4-7 show the results from those

simulations. In each figure, we have 3 curves, for
different initial values on users in the broker’s
reputation database; the values are set to 1, actual CF,
and 1-CF respectively. The ß value is set to 10-6 or
2.7*10-7

.
 Another parameter, the reputation threshold,

is used to decide whether to proceed with the
transaction. If the reputation return from a broker is
below the threshold, A will not conduct the
transaction with B. In that case, no update on B’s
reputation can be reported to the broker.

The result shows that the initial reputation value
has a big impact on the system correctness. When
all brokers have a perfect knowledge on every user’s
CF initially, they are more likely to keep the system
in a reasonably correct state. If the initial reputation

data are wrong in brokers’ reputation databases, the
system will improve slowly with time, if the
reputation threshold is 0. In all cases, the system
correctness is the worst if the initial reputation value
is 1-CF.

When the reputation threshold is high, a user is
more likely not to conduct a transaction with a
supposedly “bad” server and thus will not be able to
generate new reputation data to improve the current
system knowledge, even when that knowledge is
inaccurate. This is an issue in our current system
design. We will need additional mechanisms to test if
the current reputation data is correct even when the
reputation reported is very bad. This is like asking
someone to taste a food item even if he knows that
most people do not like it. There should be some
way for the person to be prepared for the worst, or
even be rewarded for the courage. How to verify or
correct a bad reputation is an interesting problem for
our future study.

0

0.1

0.2

0.3

0.4

0.5

0.6

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97

60000*n

av
gS
D

1
CF[i]
1-CF[i]

Figure 4. SC for repu threshold=0 and ßßßß=10-6

0

0.1

0.2

0.3

0.4

0.5

0.6

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97

60000*n

av
gS
D

1
CF[i]
1-CF[i]

Figure 5. SC for threshold=0.3 and ß=2.7*10-7

8

0

0.1

0.2

0.3

0.4

0.5

0.6
1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97

60000*n

av
gS
D

1
CF[i]
1-CF[i]

Figure 6. SC for threshold=0.5 and ßßßß=10-6

0

0.1

0.2

0.3

0.4

0.5

0.6

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99

60000*n

av
gS
D

1
CF[i]
1-CF[i]

Figure 7. SC for threshold=0.7 and ßßßß=10-6

7. Conclusions
With the expansion of broadband Internet and

the growing adoption of Web services standards, we
expect a continuing growth of e-services and e-
commerce. Due to the on-line nature of e-services, it
is important to check the trustworthiness of any
service before it is invoked. However, most e-service
users will be too naïve to design a trust measure
themselves. On the other hand, they may connect to
a trust community that can provide them with
valuable experiences on a potential server. It is both
effective and efficient for a user to use and to share
reputation information in such a friendly distributed
trust network.

In this paper, we have presented a distributed
trust framework where service brokers manage trust
information for users. Our framework combines
three levels of trust and utilizes security broker, trust
network, and reputation authority at each level
respectively. A broker keeps a trust value on each of

its fellow brokers in the network and updates the trust
value after checking their recommendation against
the actual experience. A broker also maintains the
reputation on e-servers using the feedback from
clients and from other brokers. We believe this is an
effective way to manage trust and reputation in the e-
service environment.

8. References

[1] B. Yu and M. Singh. “A Social Mechanism of
Reputation Management in Electronic
Communities” Proceedings of 4th Int. Workshop
on Cooperative Information Agents, pp. 154 -
165, 2000.

[2] R. Jurca and B. Faltings. “An Incentive
Compatible Reputation Mechanism”, Proc. IEEE
Conf. on E-Commerce, pp. 285-292, Newport
Beach, CA, June 2003.

[3] L. Xiong and L. Liu. “PeerTrust: Supporting
Reputation-Based Trust for Peer-to-Peer
Electronic Communities”, to appear in IEEE
Transactions on Knowledge and Data
Engineering, Special Issue on Peer to Peer Based
Data Management.

[4] C. Dellarocas and P. Resnick. “Online
Reputation Mechanisms: A Roadmap for Future
Research” Summary report of the First
Interdisciplinary Symposium on Online
Reputation Mechanisms, April 26-27, 2003.
http://ccs.mit.edu/dell/papers/symposiumreport0
3.pdf

[5] M.J. Atallah, H.G. Elmongui, V. Deshpande,
L.B. Schwartz, “Secure supply-chain protocols”,
Proc. IEEE Conf. on E-Commerce, pp. 293-302,
Newport Beach, CA, June 2003.

[6] Chen, H., Yu, T., & K.J. Lin. “QCWS: An
Implementation of QoS-Capable Multimedia
Web Services.” Proceedings of the Fifth
International Symposium on Multimedia
Software Engineering, pp. 38-45, Taichung,
Taiwan, Dec 2003.

[7] T. Yu and K.J. Lin, “Service Selection
Algorithms for Web Services with End-to-end
QoS Constraints” Proc. of IEEE Conference on
E-Commerce Technology, San Diego, CA, July
2004.

[8] C. Dellarocas, “The Design of Reliable Trust
Management Systems fro Electronic Trading
Communities”, Working paper, MIT 2001,
http://ccs.mit.edu/dell/trustmgt.pdf.

	Abstract
	This paper presents a distributed reputation and trust management framework that addresses the challenges of eliciting, evaluating and propagating reputation for web applications. We propose a broker framework where every service user is associated with
	Introduction
	Previous Work
	System Architecture
	Broker Design
	Reputation Manager
	User Request
	User Rating

	Connection Manager
	Broker-Broker Trust Protocol
	Aggregating Reputation Recommendations
	Responding to Other Brokers

	Reputation Authority
	System Performance Study
	System Parameters
	Simulation Result

	Conclusions
	References

